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Abstract The neonatal rat ventricular myocyte model of
hypertrophy has provided tremendous insight with regard to
signaling pathways regulating cardiac growth and gene
expression. Many mediators thus discovered have been
successfully extrapolated to the in vivo setting, as assessed
using genetically engineered mice and physiological inter-
ventions. Studies in neonatal rat ventricular myocytes
demonstrated a role for the small G-protein RhoA and its
downstream effector kinase, Rho-associated coiled-coil
containing protein kinase (ROCK), in agonist-mediated
hypertrophy. Transgenic expression of RhoA in the heart
does not phenocopy this response, however, nor does
genetic deletion of ROCK prevent hypertrophy. Pharmaco-
logic inhibition of ROCK has effects most consistent with
roles for RhoA signaling in the development of heart failure
or responses to ischemic damage. Whether signals elicited
downstream of RhoA promote cell death or survival and are
deleterious or salutary is, however, context and cell-type
dependent. The concepts discussed above are reviewed, and
the hypothesis that RhoA might protect cardiomyocytes
from ischemia and other insults is presented. Novel RhoA
targets including phospholipid regulated and regulating
enzymes (Akt, PI kinases, phospholipase C, protein kinases
C and D) and serum response element-mediated transcrip-
tional responses are considered as possible pathways
through which RhoA could affect cardiomyocyte survival.
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Gαq and RhoA Signaling Pathways in Cardiac
Hypertrophy

There is considerable evidence that G-protein coupled
receptors (GPCRs) that interact with the heterotrimeric G-
protein, Gαq, mediate cardiac hypertrophy (see Fig. 1). In
neonatal rat ventricular myocytes (NRVMs), GPCR ago-
nists such as norepinephrine (NE), phenylephrine (PE), and
endothelin 1 (ET-1), acting through α1-adrenergic and ET-1
receptors coupled to Gαq, induce cardiac hypertrophy as
evidenced by fetal gene expression, myofilament organiza-
tion, increased protein synthesis, and cardiomyocyte en-
largement [1–7]. In vivo studies subsequently demonstrated
that transgenic expression of Gαq induces hypertrophy, as
does Gαq expression in NRVMs [8–10]. Development of
hypertrophy in mice subjected to transverse aortic constric-
tion (TAC) was subsequently shown to be prevented by
transgenic expression of a peptide inhibitor that blocks
GPCR coupling to Gαq [11], or by genetic deletion of the
alpha (α) subunit of Gαq and its homolog Gα11 [12]. The
best known effector of Gαq is phospholipase C (PLC) [13,
14], and accordingly, signals generated through phosphoi-
nositide hydrolysis, including activation of protein kinase C
(PKC) and of Ca2+-regulated enzymes such as calcineurin
and CaMKII have been considered to serve as downstream
mediators of GPCR effects on hypertrophic gene expression
and cell enlargement [15, 16].

Studies carried out in vitro and subsequently in vivo also
suggested that a low-molecular-weight G-protein, RhoA,
plays a role in development of cardiac hypertrophy. Early
studies from our group and others showed that in the
NRVMs model of hypertrophy, agonist-induced increases
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in cell size, protein expression, and actin organization (all
hallmarks of hypertrophy) could be attenuated by treatment
with the C3 exoenzyme, which ribosylates and inhibits
RhoA function [17, 18], or by expression of a dominant-
negative form of RhoA [19]. Hypertrophic effects of RhoA
were demonstrated to be transduced through activation of
Rho-associated coiled-coil containing protein kinase
(ROCK), a well-characterized RhoA effector [20–24]. RhoA
and ROCK have also been demonstrated to be transducers
of hypertrophy induced by static or pulsatile stretch of
NRVMs [25, 26]. Our laboratory showed involvement of
RhoA in MAP kinase translocation to the nucleus and in
cardiomyocyte enlargement induced by stretch [25], while
others have demonstrated that stretch-induced regulation of
hypertrophy-associated gene expression is abolished fol-
lowing transfection with RhoA antisense oligonucleotides
[26].

RhoA and ROCK have also been implicated in hyper-
trophy induced by pressure overload (TAC) or in vivo
agonist infusion. There is rapid activation of RhoA and
ROCK in adult rat hearts subjected to pressure overload
[27]. Moreover, recent work using a similar pressure

overload model showed that ROCK inhibition reduced the
hypertrophic response and collagen deposition (a result of
fibrosis), as well as improving cardiac function [28].
Treatment with the ROCK inhibitor fasudil (HA-1077) also
blunted the hypertrophic response to angiotensin II (Ang II)
infusion in rats, a treatment associated with ROCK
activation as assessed by phosphorylation of ezrin/radixin/
moesin (ERM) proteins [29]. These findings support the
involvement of RhoA/ROCK signaling in development of
hypertrophy in vivo.

The relative importance of, and relationship between,
Gαq and RhoA signaling pathways in agonist and TAC-
induced hypertrophy has not been extensively analyzed. Is
RhoA a downstream target of Gαq signaling or does RhoA
initiate a distinct and parallel hypertrophic signaling
pathway? We originally proposed that RhoA could be
activated downstream of Gαq in NRVM hypertrophic
pathways [19], although we had no specific mechanistic
insights into how this would occur. RhoA is activated by
guanine nucleotide exchange factors (GEFs), proteins that
catalyze exchange of guanosine 5c-diphosphate (GDP) for
guanosine 5c-triphosphate (GTP) on RhoA [30]. The GTP-
bound RhoA is the active form that interacts with and
regulates effectors such as ROCK to elicit downstream
responses [31, 32]. While it has been clear for many years
that certain GPCR agonists can cause RhoA activation, the
GEFs acting downstream of GPCRs have only recently
been identified. Among these are GEFs such as the p63 rho
GEF (RhoGEF), shown to bind and be regulated by Gαq

[33–35]. Discovery of Gαq-regulated GEFs provides a
means by which GPCRs that stimulate Gαq could also lead
to RhoA activation and RhoA-mediated hypertrophy. Per-
haps the newly discovered protective effects of cardiac α1

adrenergic receptors (Simpson, unpublished observations)
reflect activation of a RhoA signaling pathway.

Notably, however, the best described hypertrophic
agonists (NE, PE, and ET-1) are not nearly as efficacious
at activating RhoA as are another set of ligands, including
sphingosine 1-phosphate (S1P), lysophosphatidic acid
(LPA), thrombin, and thromboxane A2. The receptors for
this latter group of ligands couple not only to Gαq but also
with high efficiency to the newest member of the hetero-
trimeric G-protein family, Gα12 and its family member
Gα13 [36, 37]. Indeed, initial insights into how GPCRs
activate RhoA emerged from seminal papers demonstrating
that a particular GEF, the p115RhoGEF, interacts directly
with Gα12 and Gα13 [38, 39]. It is now clear that the
interaction of Gα12 or Gα13 with other RhoGEFs including
leukemia-associated RhoGEF(LARG) and PDZ-RhoGEF
leads to their activation [30, 40, 41]. There is also an A
kinase-anchoring protein (AKAP-Lbc) that contains a
RhoGEF domain and mediates RhoA activation in cardio-
myocytes in response to agonists such as LPA and PE,

Fig. 1 GPCRs signaling in hypertrophy, survival, and failure. Dashed
lines indicate pathways that the authors do not consider to be
predominant. Abbreviations: NE norepinephrine, PE phenylephrine,
ET-1 endothelin-1, S1P sphingosine 1-phosphate, LPA lysophosphati-
dic acid, I/R ischemia/reperfusion, InsP3 inositol-1,4,5-triphosphate,
DAG diacylglycerol, PLC phospholipase C, RhoGEF rho guanine
nucleotide exchange factor, PKC, protein kinase C, CaMK, calcium–
calmodulin-dependent kinase, CaN, calcineurin, ROCK rho-associated
coiled-coil containing protein kinase, FAK focal adhesion kinase, PLD
phospholipase D
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[42, 43]. It is now well accepted that much as the effector
for Gαs-coupled receptors is adenylate cyclase and that for
Gαq-coupled receptors is PLCβ, RhoGEFs and RhoA
activation serve as the primary effector for signaling by
GPCRs that couple to Gα12/13 proteins. Ligands such as
S1P and LPA, by activating GPCRs that couple to Gα12 or
Gα13 and hence to RhoGEFs, are very effective initiators of
RhoA signaling pathways.

Interestingly, recent studies challenge the hypothesized
role of Gα12/13, RhoA, and ROCK in development of
hypertrophy. Expression of Gα12 in NRVMs has been
shown to induce a hypertrophic response [18, 44, 45].
Moreover a recent study of transgenic mice engineered to
express an inhibitor of Gα12/13 (RGS domain of p115GEF)
in a cardiac-specific manner did not show decreases in
hypertrophy in response to pressure overload [46]. Genetic
deletion of Gα12/13 also fails to block hypertrophy in vivo
(S. Offermanns, personal communication). These findings
contrast with those of comparable experiments cited above
in which TAC-induced hypertrophy was inhibited when
Gαq signaling was prevented [12, 47]. Recent studies also
show no inhibition of pressure overload-induced hypertro-
phy in mice in which ROCK1, the RhoA target suggested
to mediate hypertrophy in NRVMs, is genetically deleted
[48, 49]. Several lines of evidence from our laboratory also
argue that RhoA signaling does not lead to cardiac
hypertrophy. For example, we observe no difference in
hypertrophy induced by pressure overload in mice in which
S1P2 or S1P3 receptors are genetically deleted, although we
know that stimulation of S1P receptors leads to robust
RhoA activation in cardiomyocytes [50, 51] and that RhoA
activation occurs through S1P2 and/or S1P3 receptors [52].
We have also observed that cardiac-specific inducible
RhoA expression does not lead to hypertrophy in mice
followed for up to 1 year (Xiang et. al, manuscript in
preparation). Thus, reevaluation with new models indicates
that RhoA signaling is neither sufficient for the induction of
cardiac hypertrophy nor necessary for that induced by
pressure overload in vivo. If RhoA is not a critical player in
development of in vivo hypertrophy, is there an alternative
physiological role for RhoA activation and the agonists/
interventions that induce RhoA activation in the heart?

Heart Failure

Cardiac hypertrophic responses can become maladaptive if
the initial cardiac insult persists. The mechanisms respon-
sible for the transition from compensatory to maladaptive
hypertrophy and remodeling are not well understood,
although various molecular mechanisms have been sug-
gested to underlie this transition. A role for RhoA
activation in the transition from hypertrophy to dilation

and heart failure is suggested by several in vivo findings.
One is that a lethal dilated cardiomyopathy develops in
cardiac-specific RhoA transgenic mice [53]. More recent
studies using a tyrosine phosphatase knockout mouse also
showed RhoA-mediated cardiac dilation, suggesting a role
for RhoA in the development of cardiomyopathy [54].
Genetically altered mouse models have also implicated
ROCK in the development of heart failure. Thus, whereas
ROCK1 null and heterozygous null mice show no
difference in development of hypertrophy following pres-
sure overload or Ang II infusion, they have significantly
less fibrosis and reduced expression of a variety of
extracellular matrix (ECM) proteins and fibrogenic cyto-
kines [48, 55]. Similarly, there is improved cardiac function
in the Gαq transgenic model of dilated cardiomyopathy
when these mice are crossed with mice in which ROCK1 is
deleted [49]. Taken together these studies implicate RhoA/
ROCK signaling in the transition from compensatory
hypertrophy to heart failure.

Both expression and activity of RhoA and ROCK have
been noted to increase in a variety of cardiovascular disease
models, including myocardial infarction and pressure
overload [27, 56–58]. ROCK1 is activated not only by
RhoA binding but also through its cleavage, which is
increased in human heart failure patients [59]. A maladap-
tive role of RhoA/ROCK signaling in the cardiovascular
system in vivo is supported by several studies demonstrat-
ing that inhibitors of RhoA/ROCK diminish diastolic
contractile dysfunction induced by pressure-overload or
reperfusion injury [28, 60, 61]. Key to interpreting these
findings, however, is that the sites for maladaptive ROCK
signaling are not clearly defined. In studies using pharma-
cologic inhibitors of ROCK, as well as in conventional
knockout mouse models, ROCK function would be
inhibited not only in cardiomyocytes but also in fibroblasts,
endothelial, and inflammatory cells. RhoA/ROCK signaling
pathways are well-established mediators of changes in
migration, proliferation, and gene expression in these cell
types [62–66]. Accordingly, RhoA- and ROCK-mediated
responses in noncardiomyocytes likely contribute to the
detrimental effects of RhoA signaling in cardiovascular
disease.

Ischemic Injury

Ischemia/reperfusion (I/R) damage occurs when interrupted
blood flow is followed by restored circulation, resulting in
oxidative stress, mitochondrial dysfunction, inflammation,
and tissue damage. I/R also activates numerous intracellular
signaling pathways, some deleterious, but others protective
[67]. We have observed marked activation of RhoA in
response to I/R in isolated perfused mouse hearts (Fig. 2).
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Whether this occurs through activation of a RhoGEF in
response to released mediators or as a direct result of
oxidative stress is not known. Interestingly, a recent paper
provided evidence that RhoA can be directly activated by
reactive oxygen species, via a mechanism involving critical
cysteine residues present in a redox-sensitive motif [68].
Published studies using an in vivo rat I/R model demon-
strate increased expression of RhoA and activity of ROCK
following 30 min of coronary occlusion followed by 24 h
of reperfusion [60]. In this model, infarct size was reduced
by inhibiting ROCK with Y-27632. A similar study carried
out using an in vivo mouse I/R model also showed
decreased infarct size and significantly less inflammation
in mice treated with ROCK inhibitors compared with
control, suggesting a deleterious role of RhoA/ROCK
signaling in ischemic injury [61, 69].

What are the mechanisms by which ROCK inhibition
could decrease I/R injury? A recent study showed that
infarct size was not diminished by Y-27632 when wort-
mannin or nitro-L-arginine methyl ester were also present,
suggesting that protective PI3K/Akt/NO signaling path-
ways are necessary [61]. Another study demonstrated that I/
R decreased expression of the antiapoptotic Bcl-2 protein
and that this did not occur in Y-27632-treated hearts [60].
Consistent with a role of ROCK in apoptosis, Y-27632-
treated animals showed reduced TUNEL-positive nuclei in
the infarcted regions [61]. Inflammatory responses induced
by I/R are also abrogated by inhibition of ROCK with Y-
27632 suggesting that RhoA/ROCK effects on inflamma-
tory gene expression contribute to cardiovascular injury
after I/R[61, 69]. Finally ROCK inhibition with Y-27632 or
fasudil (HA-1077) was shown to decrease fibrosis follow-
ing myocardial infarction in both mouse and rat models [56,
58], indicating that ROCK contributes either directly or
indirectly to proliferation of cardiac fibroblasts in ischemic
disease. Thus, there are numerous sites and mechanisms
through which Rho/ROCK signaling could be deleterious
and account for the salutary effect of ROCK inhibitors on
I/R injury and development of heart failure.

RhoA Regulation of Cardiomyocyte Death and Survival

Cardiomyocyte loss by apoptosis and/or necrosis plays a
crucial role in development of heart failure [70–72]. Our
previous finding that cardiac-specific RhoA transgenic mice
show spontaneous dilated cardiomyopathy [53] led us to
hypothesize that cardiomyocyte cell death could be induced
by sustained activity of RhoA. In subsequent work, we
demonstrated that enhanced and sustained RhoA/ROCK
signaling in NRVMs induces cardiomyocyte apoptosis [50].
Specifically, we demonstrated that expression of constitu-
tively activated RhoA for 48–72 h activated a mitochondrial
death pathway in association with a striking up-regulation,
activation, and mitochondrial association of the proapoptotic
Bcl family member, Bax [50].

Conversely, we found that more acute RhoA activation
protected cardiomyocytes from apoptotic insult [51]. Expres-
sion of activated RhoA in NRVMs for less than 24 h did not
induce apoptosis but rather protected cells against both
peroxide and glucose deprivation-induced apoptosis. Protec-
tion was dependent on ROCK activity, cytoskeletal integrity,
and the activation of focal adhesion kinase (FAK). FAK,
which is known to be activated through integrin engage-
ment with the ECM, has a number of distinct phosphor-
ylation sites that enable binding to signaling molecules
including Src, PI3K, and p130Cas [73, 74]. We demon-
strated that the role of FAK as a protein scaffold is
responsive to RhoA signaling in NRVMs, recruiting the
p85 subunit of PI3K and activating the survival kinase Akt.
Mechanical stretch, which has been shown to activate RhoA
in cardiomyocytes, was also found to elicit FAK and Akt
activation [26, 51]. Interestingly, cardiomyocyte-specific
ablation of FAK increased infarct size and cardiomyocyte
apoptosis in response to I/R [75], consistent with a role for
FAK as a protective downstream target of RhoA signaling in
cardiomyocytes (Fig. 3).

In summary, although there is much evidence that
activation of ROCK is deleterious in the heart, RhoA may
have the capacity to confer protection in cardiomyocytes by
signaling through Akt or other effectors. Recent studies in
cardiac and noncardiac cells have identified new targets
through which activated RhoA can signal. These, as well as
more established targets that have not been fully investi-
gated, are described below as potential mediators of
cardiomyocyte protection through RhoA signaling.

RhoA and Phospholipid Signaling

Phosphoinositide Synthesis

As described above, RhoA acts indirectly, through its well-
known effects on cytoskeletal remodeling and FAK, to

Ctrl Isch I/R

RhoA

GTP-RhoA

Fig. 2 RhoA is activated by ischemia/reperfusion in the perfused
mouse heart. Isolated adult mouse hearts were retrograde perfused
using the Langendorff method. Hearts were subjected to continuous
perfusion (Ctrl), ischemia (Isch) for 30 min, or ischemia for 30 min
and reperfusion for 60 min (I/R). Hearts were frozen, homogenized,
and assessed for total RhoA in the lysate and activated RhoA based on
pull-down with GST-rhotekin
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stimulate phosphoinositide signaling. There are, in addition,
other phospholipid signaling pathways that are modulated
through RhoA, several of which appear to be the direct result
of RhoA interactions with phospholipid metabolizing
enzymes (Fig. 4). One of the earliest effects described in
mammalian cells was the regulation of phosphatidylinositol
4,5-bisphosphate (PIP2) synthesis via effects of RhoA on the
synthetic enzyme PIP-5 kinase [76, 77]. RhoA-mediated
changes in the synthesis and hence the level of PIP2 can
affect the ability of the cell to respond to integrins or
GPCRs that signal via PLC- mediated PIP2 hydrolysis [76,
78]. In addition to serving as a substrate for PLC, PIP2
subserves myriad cellular functions including regulation of
ion channels and cytoskeletal proteins and recruitment of
signaling molecules to the cell membrane. Thus, one
hypothesis is that effects of RhoA on PIP2 levels can affect
cell survival [79, 80].

PLC Activation

PLC epsilon (PLCε), the newest member of the PLC
family, is uniquely positioned to serve as an integrator of
signaling from GPCRs and small GTPases [81, 82]. This
isoform of PLC is directly regulated by binding of the small
GTPases Rap1 and RhoA [83–88]. There is, in contrast, no
regulation by Gαq, the direct activator of the canonical
PLC, PLCβ [89–91]. Accordingly PLCε is regulated by
agonists that couple to Gα12/13 and RhoA rather than those
that couple to Gαq [83, 90]. Another critical feature of
PLCε is that it contains an N-terminal CDC25 homology
domain that functions as an exchange factor for small
GTPases [85, 87, 92]. This allows the enzyme to function
not only as a phospholipase (generating diacylglycerol
[DAG] and inositol trisphosphate) but also as an activator
of Rap1 (Fig. 4).

Two important functions downstream of Rap1 activation
may be relevant to cardiomyocyte signaling. One is that
active Rap1 could feedback on and thus continue to activate
PLCε, contributing to sustained DAG production [83, 87,
93]. DAG plays an important role in activation of PKC and
studies from the Smrcka laboratory demonstrate that the
novel PKC isoform, PKCε, is in fact activated through
PLCε in the heart [94]. Rap1 also activates ERK, and we
have shown that PLCε contributes to sustained agonist-

PLD

nPKC

CDC25 X Y RA

PLC 

GPCR

RhoA

GEF

PIP2PIPPI

PARap1

Cell Survival

ERK PKD

PIP5K

DAG

Fig. 4 RhoA-mediated protective signaling through phospholipid
regulatory enzymes

Stretch,
I/R

Integrins

CCN1
CCN1

Cell Survival

Cytoskeletal 
rearrangement

Akt

FAK

PI3K

Rho

S1P receptor
Fig. 3 RhoA-mediated protec-
tive signaling through Akt
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induced ERK activation [83]. There is considerable
evidence that ERK signaling is protective in many cell
types including cardiomyocytes [95–97], as is PKCε [98–
102]. Thus, sustained activation of ERK or PKCε, resulting
from activation of PLCε, could contribute to RhoA-mediated
cardiomyocyte protection. Smrcka's laboratory also demon-
strated that there is a significant level of PLCε expression in
the heart and that PLCε is increased in human failing hearts
and in animal models of pressure overload and isoproterenol-
induced hypertrophy [103]. Their analysis of PLCε knockout
mice revealed decreased β-adrenergic receptor-induced
contractility. In addition, they saw enhanced pathological
hypertrophy and fibrosis in PLCε knockout mice, leading to
the suggestion that PLCε protects against development of
pathologic hypertrophy [103].

Phospholipase D Activation

While PLC activation is often considered to be the major
mechanism for DAG generation, another phospholipase,
phospholipase D (PLD) may be equally or more important.
In contrast to PLC, PLD uses the more abundant phospho-
lipid, phosphatidylcholine, as its substrate and initially
produces phosphatidic acid (PA), which is then converted
to DAG through the actions of lipid phosphatases (Fig. 4).
Two mammalian PLD isozymes, PLD1 and PLD2, have
been identified [33, 104–106]. There is abundant evidence
that PLD1 (but not PLD2) is activated by the Rho family
GTPases RhoA, Rac1, and Cdc42, with RhoA being the
most efficacious [105, 107–109]. RhoA regulates PLD1
[108, 110–113] through direct interaction with its C-terminus
[108, 110, 111, 114]. Activation of PLD1 could also occur
indirectly through increased RhoA-mediated synthesis of
PIP2, another critical cofactor for PLD activation [78, 112,
115].

Roles for PLD/PA/DAG signaling in the myocardium,
particularly in myocardial protection, have been suggested.
Like the kinase pathways activated during I/R and serving
protective functions [67, 116–119], there is considerable
evidence that oxidative stress activates and regulates PLD
activity [120–126]. Activation of PLD in response to
oxidative stress is associated with various cardiac patholo-
gies, including coronary heart diseases [127–129]. PLD has
been reported to be involved in cardioprotection by ischemic
preconditioning, a phenomenon in which brief episodes of
I/R render the myocardium insensitive to a subsequent
prolonged ischemic episode [130, 131]. Pharmacologically
induced activation of PLD was shown to reduce infarct size,
while inhibition of PLD blocked the beneficial effects of
preconditioning in isolated rabbit and rat hearts [130, 131].
Interestingly, adenosine-induced protection against I/R injury
was suggested to be mediated through RhoA and a direct
interaction with PLD1, as it was blocked by a mutant PLD1

that did not bind RhoA [132]. Thus, PLD1 activity appears
to be involved in cardioprotection, although mechanisms
for its activation and protective function have not been
elucidated.

Protein Kinase Activation and DAG

As mentioned above, DAG generated through the actions of
PLC or PLD activates PKC. PKC has been implicated in
cardiac metabolism, contractile function, hypertrophy, heart
failure, fibrosis, inflammation, and responses to ischemic
injury. The predominant isozyme of PKC in the ventricle is
PKCα, an isoform shown by Molkentin’s group to play a
role in heart failure susceptibility and cardiac contractility
[133, 134]. The novel PKC isozymes, PKCε and PKCδ,
have been suggested to play divergent roles in I/R injury.
PKCε has been shown to confer cardioprotection against
I/R injury and to contribute to the protective effects of
preconditioning [98–100, 135] and postconditioning [101,
136] in various animal models and in the human myocar-
dium [102]. While some data also implicate PKCδ in
cardioprotection [137], most evidence suggests that PKCδ
is proapoptotic and has detrimental effects in the heart
[138–142]. In the setting of I/R injury, it has been shown
that either PKCε activation or PKCδ inhibition reduce I/R
damage, whereas PKCε inhibition or PKCδ activation
increase injury [102, 140, 143]. Additionally, combined
PKCε activation and PKCδ inhibition have been shown to
exert additive protection against I/R injury in isolated rat
hearts [144].

Protein Kinase D Activation

Protein kinase D (PKD) is activated in the adult myocar-
dium [145] and in other tissues through effects of novel
PKCs [146–148]. There are a growing number of functions
attributed to PKD signaling in the heart, including
regulation of contractile function through phosphorylation
of troponin-I [149, 150], and phosphorylation of HDAC-5,
a class II HDAC, that regulates cardiac hypertrophy [151–
153]. In other systems, PKD has also been shown to
function, via nuclear factor κB signaling, as a mediator of
cell survival [154–156]. Notably, PKD activity has been
reported to be regulated by RhoA. Expression of a
constitutively activated RhoA increased basal PKD kinase
activity in COS-7 cells [157] and induced PKD activation-
loop phosphorylation in HeLa cells [158]. RhoA-induced
PKD activation was suggested to be mediated through
ROCK and PKCε since treatment with the ROCK inhibitor
Y-27632 or knockdown of PKCε (but not PKCδ) by siRNA
inhibited RhoA-induced PKD phosphorylation in HeLa
cells [158]. A Rho/ROCK/PKC signaling pathway has also
been reported to be upstream of PKD-induced protection
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against oxidative stress in intestinal epithelial cells [159]. A
functional role of PKD for cardiac protection has not, to our
knowledge, been demonstrated.

RhoA and Gene Expression

RhoA and SRF

Rho GTPases are best known for their role in regulation of
cytoskeletal dynamics through effectors that control cell
adhesion, morphology, and motility [160–169]. Rho
GTPases also play a critical, albeit generally less appreci-
ated role, in transcriptional regulation, as first noted based
on RhoA-dependent regulation of serum response factor
(SRF) target genes [170]. The SRF protein is constitutively
localized to the nucleus and bound to serum response
element (SRE) sequences, and no direct modifications of
the protein are required for its function [171–174]. Rather
SRF associates with other transcription factors to provide
combinatorial control of its target genes [175]. Two major
classes of coactivators, regulated by separate signaling
pathways, are known to activate SRF: the ternary complex
factors (TCFs) and the myocardin-related transcription
factors (MRTFs) [176–179].

The TCF family is activated by MAP kinase-mediated
phosphorylation [176, 179, 180]. However, Treisman's group
showed that RhoA effects on SRF activity were mediated
through a TCF independent pathway [170]. RhoA activation
was also shown to stimulate c-fos SRE transcription in a
TCF-independent manner [181]. In cardiomyocytes, we
reported that RhoA affects ANF gene expression through
TCF independent SRE sites [182]. Myocardin, MRTF-A and
MRTF-B comprise the second, more recently characterized
SRF coactivator family [179, 183, 184]. The activity of
MRTF-A and MRTF-B depends on RhoA signaling and
actin dynamics [179, 185–189]. Association of MRTF-A
with G-actin results in its sequestration in the cytoplasm.
Serum stimulation and other signals that activate RhoA
promote actin polymerization [188, 190, 191] , leading to
MRTF-A translocation into the nucleus and SRF target gene
activation [179, 188, 192]. Immediate-early genes, SRF
itself, skeletal α-actin, and myosin light chain-2 (MLC-2v),
are among the genes regulated in this manner [180, 193–
195]. Also notable among the SRF-regulated genes are the
growth factor inducible immediate early genes CCN1
(Cyr61) and CCN2 (CTGF), which belong to the CCN
family of matricellular proteins [196–199].

RhoA and CCN1/Cyr61

CCN1 was first identified as an immediate early gene
upregulated in response to growth factors and subsequently

determined to be secreted from the cell, where it serves a
function intermediate between that of ECM proteins and
growth factors [200–202]. CCN1 is a pleiotropic molecule,
acting via cell surface integrin engagement to regulate cell
migration, proliferation, and survival [197, 198, 203, 204].
Mechanical stretch induces CCN1 expression [205–207],
and recent studies showed that MRTF-A and CREB
binding proteins are required for mechanical strain-
induced transcriptional activation of the CCN1 gene in
vitro and in vivo [207, 208](see Fig. 3). Mechanical
overload-induced CCN1 gene expression in vivo was also
associated with RhoA-mediated nuclear localization of
MRTF-A and enrichment of SRE sites on the CCN1
promoter with MRTF-A and acetylated histone H3.

CCN1 in the Heart

Little is known about the regulation or role of CCN1 in the
heart, but several papers report that CCN1 expression is
highly expressed in the myocardium of patients with heart
failure or ischemic myopathy [209–211]. CCN1 expression
has also been shown to increase in mouse heart in response
to pressure overload and myocardial infarction and in
cardiomyocytes stimulated by GPCR agonists [211]. Mul-
tiple signaling pathways including activation of ERK and
PKC can contribute to induction of CCN1 expression [211].
In addition, there is considerable evidence that signaling
through RhoA plays a major role in CCN1 induction in
response to S1P and other agonists in cardiomyocytes
(Zhao et. al., manuscript in preparation) as in other cell
types [204, 205, 208, 212, 213]. A paper by Yoshida et al.
[214] provides intriguing evidence supporting the hypoth-
esis that CCN1 is cardioprotective. These investigators
observed that CCN1 addition to isolated cardiomyocytes
attenuated the response to oxidative stress and that this
occurred via CCN1 effects on integrin β1-mediated FAK
and Akt activation. Thus, RhoA-mediated increases in
CCN1 expression and release are a potential mechanism
by which the cell can further activate integrins, FAK, and
protective Akt signals (see Fig. 3).

Conclusion

One of the challenges faced by maturing scientists is that of
remembering what we published and defended in the past
and squaring it with our more recent findings and made by
our colleagues. The solace is that the old theories advanced
the field to the stage where they can now be revisited and
revised using more sophisticated approaches. The notion
that RhoA serves as a mediator of cardiac hypertrophy, one
that we proposed and others espoused a decade ago, is not
wrong, but the role of RhoA in this response appears minor
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by comparison with that of other pathways shown to be
essential and efficacious hypertrophic mediators. Pharma-
cologic inhibitors of ROCK have been developed in the last
decade and have proven to be remarkable tools for further
discovery, including demonstration that vascular tone is
regulated by biochemically defined RhoA/ROCK path-
ways. These inhibitors have since been shown to be useful
in treating a plethora of cardiovascular pathologies, from
hypertension to atherosclerosis, and from heart failure to
ischemic damage. While targets for the effects of ROCK
inhibitors may be known, the cellular site of their action is
not. Indeed, a notion we propose here is that whereas
chronic RhoA signaling through ROCK may be a villain in
inflammatory cells, fibroblasts, endothelial cells, and
vascular smooth muscle, more acute activation of RhoA,
at least within the cardiomyocyte, may serve to promote
survival. There is evidence that RhoA is protective in a
number of contexts, and there are multiple potential direct
targets for RhoA that could mediate such responses. We
suggest that RhoA is activated in the myocyte along with
other protective pathways and that its effects on the
cytoskeleton, phospholipids, or gene expression could be
used to aid the ailing myocyte. If salutary pathways can be
uncovered, they would be potential targets for cardiopro-
tection. Accordingly, a prudent approach to treating con-
ditions such as ischemic heart diseases might be to avoid
the use of RhoA/ROCK inhibitors during the earliest phases
of ischemic injury.
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