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3Department of Applied Physics, Yale University, New Haven, CT 06511, USA
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(Dated: March 13, 2020)

This study, utilizing high-fidelity methods for computing electron-phonon scattering rates, the-
oretically demonstrates that ultrahigh intrinsic bulk thermoelectric performance across cryogenic-
to-high temperatures is physically possible. It also demonstrates the benefit of accidental band de-
generacy to thermoelectric performance is conditional upon their characters. Full-Heusler Sr2BiAu
featuring ten energy-aligned dispersive pockets (six along Γ−X and four at L) is herein predicted
to be theoretically capable of delivering zT = 0.4 − 4.9 at 100 − 700 K. Relative to the previously
investigated Ba2BiAu, the additional L-pockets in Sr2BiAu significantly increase the power factor
at low temperatures, as high as 12 mW m−1 K−2 near room temperature. As temperature rises,
the performance decays quickly and sinks below that of Ba2BiAu due to the differing dispersion
and scattering characteristics of the L and Γ−X states. Sr2SbAu is generally projected to deliver
worse performance due to the appreciable energy-misalignment in the two accessible band pockets.
The dominant intrinsic defect at play is Bi/SbAu antisites, which limit the n-dopabilities of all of
the Heusler compounds. Calculations suggest only Sr2SbAu potentially has both a large enough
stability region and high enough SbAu antisite formation energies to retain some small chance at
experimental realization as a high-performing thermoelectric.

I. INTRODUCTION

Thermoelectricity is a clean energy harvesting tech-
nology that allows direct interconversion between heat
and electric current. The indicator of thermoelectric effi-
ciency is the dimensionless figure of merit known as zT .
To date, bulk thermoelectric materials have not overcome
zT = 3, with zT = 2 only achieved in a few chalcogenide
compounds [1–10]. Materials that deliver commercially-
relevant performance below room temperature are partic-
ularly scarce, where alloys of Bi2Te3 [11–13] and Mg3Sb2-
Mg3Bi2 [14–17] are essentially the only materials with
zT near 1. This is unfortunate since many industrial ap-
plications, including refrigeration and spacecraft propul-
sion, would greatly benefit from efficient thermoelectrics
at room-to-cryogenic temperatures [18–21].

The dearth of efficient thermoelectrics especially at low
temperatures can easily be inferred from the definition

zT = α2σT
κ . Here, α2σ is the thermoelectric power fac-

tor (PF), composed of the Seebeck coefficient (α) and
electronic conductivity (σ). The total thermal conduc-
tivity (κ) is the sum of lattice thermal conductivity and
electronic thermal conductivity (κlat + κe). A desirable
thermoelectric material requires high α and σ with low κ.
Unfortunately, such a combination is inherently difficult
to achieve [22–27]. At low temperatures, due to small T
and high κlat, designing for high PF is all the more indis-
pensable, but unfortunately high PF is generally limited
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by the counterproductive behaviors of α and σ. High σ
must then arise from high mobility( µ) since attempts
to boost it via doping necessarily suppresses α. A large
number of band pockets is generally thought to enhance
σ at presumably little to no expense in α because it can
deliver higher carrier concentration for given Fermi level.
These considerations are best represented by bands of 1)
small effective mass (m) capable of producing µ and 2)
high band degeneracy or pocket multiplicity [26, 28–32].

As a culmination of these concepts, full-Heusler
Ba2BiAu (n-type) was recently studied based on a rig-
orous treatment of electron-phonon and phonon-phonon
scattering, and has led to the prediction of an unprece-
dentedly high zT ≈ 5 at 700 K and a promising zT = 1.5
at 300 K [33]. In this compound, one highly dispersive
conduction band pocket along sixfold degenerate Γ −X
proved critical to the high PF. Meanwhile, κlat is min-
imal due to anharmonic rattling of Au atoms, a trait
shared by this class of full-Heusler compounds [34]. The
study showcased a rare coexistance of very high PF and
ultralow κlat for bulk thermoelectrics — albeit without
consideration of dopability and the experimental realiz-
ability of the compound.

In the present work, we achieve the following. 1)
We show that analogous but multi-pocketed full-Heusler
compounds, in particular Sr2BiAu, can theoretically at-
tain even higher thermoelectric performance across a
broader temperature spectrum, which is especially niche
at low temperatures. 2) We analyze the benefit of pocket
multiplicity in the form of accidental (non-symmetry-
related) degeneracy, which we conclude is conditional
upon the similarities of the pockets. 3) By investigat-
ing phase stability and intrinsic defects, we predict that
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due to the formation of Bi/SbAu antisite formations, the
Heusler compounds stand slim chance of being realized as
high-performing thermoelectrics, though Sr2SbAu might
fare better than the rest.

II. COMPUTATIONAL METHODS

A. Electronic Structures

The electronic structure is calculated with Quantum
Espresso [35, 36] with the Optimized Norm-Conserving
Vanderbilt pseudopotentials [37–39] and Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [40]
with and without spin-orbit coupling (SOC) for compar-
isons. Plane-wave cutoff of 100 Ry is used. In order to ob-
tain more accurate band gaps, advanced functionals such
as Becke-Johnson potential by Tran and Blaha (mBJ)
[41] and the Heyd-Scuseria-Ernzerhof hybrid-exchange
functional (HSE06) [42, 43] were used. Band analysis
was done on sumo [? ].

B. Electron-phonon Scattering

In treating electron-phonon scattering, we first com-
pute electronic states and e-ph interaction matrix ele-
ments at a coarse 8 × 8 × 8 k-point mesh, using phonon
perturbations computed at a coarse 4×4×4 q-point mesh
using density functional perturbation theory (DFPT)
[44, 45]. Then with the EPW package [46–49] we in-
terpolate electronic states, phonons, and the matrix el-
ements onto dense 40 × 40 × 40 k-point and q-point
meshes through maximally localized Wannier functions
[50–52]. Long-ranged polar optical scattering matrix el-
ements are added on the dense k-mesh [53]. The imag-
inary part of the resulting electron self-energy leads di-
rectly to band-and-k-dependent electron lifetimes (τνk)
limited by electron-phonon (e-ph) scattering. Supple-
mental Material [54] has further theoretical details.

C. Electron Transport

With τνk as inputs, we employ the Boltzmann trans-
port formalism (implemented in BoltzTraP [55] modified
in-house) in the relaxation time approximation (RTA) to
compute electron transport properties:

σ =
1

ΩNk

∑
νk

(τv2)νk

(
− ∂f

∂E

)
νk

, (1)

α =
σ−1

ΩTNk

∑
νk

(τv2)νk(EF − Eνk)

(
− ∂f

∂E

)
νk

, (2)

κe =
1

ΩTNk

∑
νk

(τv2)νk(EF − Eνk)2
(
− ∂f

∂E

)
νk

− α2σT.

(3)
The validity of RTA coupled with e-ph matrix elements
calculated via DFPT and Wannier interpolation has been
well-established by multiple recent instances of applica-
tion that approximated experimental measurements well
[56–59]. In performing Eqs. 1–3 we utilize the band
structure calculated with SOC and the band gap value
from mBJ+SOC for consistent comparison with our pre-
vious study on Ba2BiAu. For Sr2BiAu, since the effect
of SOC on the electronic structure or phonon is minimal
(as will be shown), SOC is neglected for the computations
of electron-phonon scattering, due to the computational
expense. For Sr2SbAu, however, SOC substantially im-
pacts the electronic structure and is therefore included
in electron-phonon scattering computations.

D. Stability and Defects

We use Vienna Ab initio Simulations Package (VASP)
[64–67] throughout this section to perform DFT total
energy calculations for both competing phases and de-
fective supercells. We also incorporate SOC and use the
projector-augmented wave (PAW) pseudopotentials [68]
with the PBE functional throughout.

All binary and ternary phases that could potentially
form from the compositions of the Heuslers compounds
available on Materials Project [60] and Inorganic Crystal
Structure Database [61–63] are considered for the eval-
uation of phase stability. Sr2BiAu has thirteen compet-
ing binary and ternary phases, while Ba2BiAu has ten,
Sr2SbAu twelve, and Ba2SbAu fifteen. We construct the
ternary phase diagrams using the calculated formation
energies (shown in Fig. S4 of Supplemental Material
[54]), which reveal the phase fields under each of which
various pairs of competing phases may coexist with the
compounds of interest. The equilibrium chemical poten-
tials are derived using the corresponding phase fields. Of
note, all compounds with energies within the numerical
noise of DFT (∼10 meV per atom) from the convex hull
were placed on the hull.

We consider all possible vacancy and antisite intrin-
sic point defects, and employ the standard supercell ap-
proach. We create host and defective supercells that are
2 × 2 × 2 expansions of the fully relaxed conventional
cubic unit cells of the compounds. The host supercells
contain 128 atoms, of which 64 are Ba/Sr atoms, 32 are
Bi/Sb atoms, and 32 are Au atoms. This is allowed for
all types of point defects because a full-Heusler crystal
structure remains identical upon the exchange of lattice
sites between the Ba/Sr atoms and the Bi/Sb and Au
atoms. For charged supercells, electrons are either re-
moved or added according to the charge. For total ener-
gies of defective supercells, a plane-wave cut-off energy of
600 eV and a 2×2×2 k-point mesh are used throughout
all self-consistent calculations of defective supercells. All
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relaxations are performed with the Methfessel-Paxton’s
smearing scheme [69] to properly treat the metallic char-
acteristics of the cells with charged defects.

Point defect formation energies are calculated as

∆ED
f = ED−EHost−

∑
a

∆Naµa+q(Ev+EF)+Ecor, (4)

where ED is the total energy of a defective cell, EHost is
the total energy of a host full-Heusler cell into which a
defect is introduced, q is the charge on the defect and µa
is the chemical potential of element a in the compounds
(e.g., as determined by the phase diagram). ∆Na is the
excess (positive) or deficient (negative) number of atoms
of element a in the defective cell relative to the host cell.
For instance, if the defect is an BiAu antisite (Bi in place
of Au), then ∆NBi = 1 and ∆NAu = −1. EF is a free
parameter and represents the Fermi level as counted pos-
itively up from Ev, which is the energy required to re-
move an electron from a given host, i. e., the valence
band maximum (VBM) of the host compound. Lastly,
Ecor is a correction term for finite-sized supercells, which
experience several fictitious effects.

Charged defects experience experience fictitious elec-
trostatic interactions between periodic images of the de-
fect, due to periodic boundary condition, and interac-
tions between the defect and the homogeneous, jellium-
like background charge that enforces overall charge-
neutrality. These are corrected by the method of Makov
and Payne [70],

Ecor =
q2γ

2εL
− 2πqQ

3εL3
, (5)

where γ is the Madelung constant, Q is the quadrupole
moment, L is the supercell lattice parameter, and ε is the
dielectric constant of the host compound. While more so-
phisticated correction schemes have been proposed [71–
73], we do not employ them because 1) the compounds
have high dielectric constants, 2) cell sizes used are large
enough for Eq. 5 to be acceptable (L > 16 Å), and 3)
other methods will likely not change the main conclusions
we draw. Band-gap correction also must be performed
to reference the defect energies to more realistic band
edges of the host compounds, for which we use HSE06
with SOC. This treatment scheme of choice is based on
HSE06’s credible track record of preserving the band-
edge-relative defect energies calculated with PBE when
aligned to a common reference level (achieved with the
local electrostatic potential) [74–78]. Potential adjust-
ment of the electrostatic reference energy between the
two cells are also made. Finally, band-filling corrections
[73] are also calculated, but are zero for all compounds.
This set of corrections was confirmed with the aide code
(not yet published). Additional details on calculations
of phase stability and defect energies are provided in the
Supplementary Material [54].

III. ELECTRONIC PROPERTIES

A. The Electronic Structure

The band structures of Sr2BiAu and Sr2SbAu are
shown in 1a–b. Sr2BiAu and Sr2SbAu feature additional
dispersive conduction band pockets at the fourfold de-
generate L-point while retaining the sixfold degenerate
pocket along Γ − X. SOC does not affect the conduc-
tion band pocket along Γ − X, just as in the case of
Ba2BiAu. The corresponding energy surfaces as seen in
Fig. 1c reveal all ten pockets. Whereas the L-pocket of
Sr2BiAu is nearly energy-aligned with the Γ−X-pocket,
the L-pocket of Sr2SbAu is lower than the Γ−X-pocket
by 0.06 eV. The effective masses of the very dispersive
Γ −X-pocket are essentially identical for all three com-

eDOS

eDOS

(a)	

(b)	

(c)	

Sr2BiAu

Sr2SbAu

FIG. 1. (Color online) a) Electronic band structures of
Sr2BiAu with (black, solid) and without (red, dotted) SOC,
aligned at the CBM. The atom-decomposed density of states
with SOC is shown on the right. b) Same for Sr2SbAu. c)
Isoenergy surfaces of Sr2SbAu with SOC, at 0.1 eV above the
CBM (left) and below the VBM (right). The levels corre-
spond to electron doping concentration of ne = 1.44 × 1020

cm−3 and hole doping concentration of nh = 1.40×1020 cm−3,
respectively.
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Sr2BiAu@ 800 K 300 K
(a)	 (b)	 (c)	

Ba2BiAu ~ T -1.5

Sr2BiAu 

Sr2SbAu 
Γ-Χ

L

Electron

FIG. 2. (Color online) a) Comparison of electron mobilities of the Heusler compounds at low and high temperatures. b) The
relative strength of polar-optical scattering (POP) and lattice deformation scattering (DEF) of the Γ−X-pocket (red), which
is clearly dominated by POP, and the L-pocket (blue) which is heavily affected by DEF. c) Relative e-ph scattering rates of
Sr2BiAu and Sr2SbAu at 300 K.

pounds at approximately m‖ = 0.07 and m⊥ = 0.48.
The L-pockets are somewhat less dispersive, and their
principal effective masses are approximately m‖ = 0.19
and m⊥ = 0.45 for both of the Sr-compounds.

A popular index for correlating a band structure to the
PF it generates is the so-called Fermi surface complexity
factor, calculated as [31]

C = Npocket

(
2

3

(
m⊥
m‖

) 1
3

+
1

3

(
m⊥
m‖

)− 2
3

)3/2

, (6)

The band characters as described above yield complexity
factors of 9.5 for Ba2BiAu, which only has a Γ − X-
pocket, and 14 for the two Sr-compounds, though the
value is ambiguous for Sr2SbAu where the pockets are
misaligned.

The band gaps as calculated by PBE+SOC are 0.19
eV for Sr2BiAu and 0.5 eV for Sr2SbAu, which are severe
underestimations. The mBJ functional with SOC yields
0.53 eV Sr2BiAu and 0.85 eV for Sr2SbAu, where HSE06
with SOC yields 0.53 eV and 0.81 eV, respectively.

B. Scattering & Mobility

Electron mobilities of the three Heusler compounds,
calculated using band-and-k-dependent electron-phonon
lifetimes, are juxtaposed in Fig. 2a. Electron mobil-
ities of the two Sr compounds decay at a faster rate
with temperature than that of Ba2BiAu. This is due to
the extra pocket L-pocket that the Sr compounds have.
The L-pocket is overall heavier than the Γ − X-pocket
and attains a larger electronic density of states (eDOS).
Whereas the Γ −X-pocket is dispersive enough that the
phase space for lattice deformation scattering is small, al-
lowing polar-optical scattering to dominate, the heavier
L-pocket is much more affected by deformation scatter-
ing [see Fig. 2c]. It is well known that lattice defor-
mation results in quicker temperature-decay of mobility
than polar-optical interactions. Therefore, presence of
the L-states result in faster decay of mobility with tem-
perature than if only the Γ − X-pocket were present,

which in turn results in quicker decay of mobilities of the
Sr compounds than that of Ba2BiAu.

Though the mobilities of the Sr compounds exhibit
similar trends, they notably differ in magnitude. This is
partially due to the fact that the heavier L-pocket is the
true band minimum in Sr2SbAu, whereas in Sr2BiAu it is
nearly perfectly aligned with the Γ−X-pocket. Sr2SbAu
also generally experiences somewhat heavier scattering
especially around 0.3 eV above the CBM, as seen in
Fig. 2c. The differences in the temperature-dependence
of mobility arising from accidentally degenerate pockets
that are disparate in character translate to the behavior
of their thermoelectric properties of the compounds, as
will be seen.

We find that there is little to no intervalley scattering
between the two pockets. When we artificially remove
the L-pockets such that their participation to scattering
of other states is forbidden, we detect virtually no change
in the scattering rates of the remaining Γ −X-pocket.

IV. THERMOELECTRIC PROPERTIES

A. The Power Factor

Sr2BiAu is capable of attaining very high n-type PFs
across all temperatures, as shown in Fig. 3a, topping out
at 12 mW m−1K−2 near room temperature. Sr2SbAu
simply performs worse, as made clear by Fig. 3b. It is a
well-known engineering strategy to boost the PF to en-
gineer bands of multiple pockets for energy convergence
[81, 82]. In essence Sr2BiAu is a natural realization of this
concept. Its theoretical PF hovers above the measured
PF of the p-type NbFeSb [79] across all temperature do-
mains [see Fig. 3c]. In contrast, Sr2SbAu falls short of
such natural band convergence as the heavier L-pocket is
lower than the Γ −X-pocket by 0.06 eV. This, together
with somewhat heavier scattering in Sr2SbAu, results in
both lower σ and α in comparison to Sr2BiAu [see Fig.
3d.]

Comparison of Sr2BiAu and Ba2BiAu provides insights
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n-Sr2BiAu 300 K

n-Ba2BiAu
n-Sr2SbAu

(CBM)

p-NbFeSb

n-PbTe

n-Sr2SbAu

Sr2BiAu

(c)	

(a)	 Sr2SbAu

500 K

200 K 300 K

(b)	

(d)	

n-Sr2B
iAu

n-Sr2SbAu
n-Sr2Sb

Au

300 K

(e)	

FIG. 3. (Color online) The n-type power factor of a) Sr2BiAu and b) Sr2SbAu against electron doping concentration. c)
Maximum n-type power factors of Sr2BiAu and Sr2BiAu at each temperature juxtaposed with power factors of high-performing
thermoelectrics: p-type NbFeSb [79], n-type PbTe [80], and theoretical n-type Ba2BiAu [33]). d) Comparison of the n-
type Seebeck coefficient (solid) and conductivity (dotted) of Sr2BiAu (red) and Sr2SbAu (blue) at 300 K. e) The spectral
conductivities of three full-Heusler compounds at 300 K, where they are all zero-aligned to their respective CBMs.

to the effects of the additional, heavier L-pocket and the
aforementioned temperature-dependent mobility profiles.
At low temperatures, the PFs behave as expected from
the complexity factors, and Sr2BiAu easily performs bet-
ter than Ba2BiAu. However as higher temperatures ex-
cite deeper L states whose lifetimes decay quickly with
energy (as reflected by mobilties), Ba2BiAu begins to
outperform Sr2BiAu. Such a crossover indicates that the
presence of a heavier pocket ultimately benefits the PF
below a certain threshold temperature beyond which the
deep heavy states with short lifetimes are critically ex-
cited, negating the benefit of higher carrier concentration
(per Fermi level). The threshold temperature is, in turn,
dependent upon the extent to which the second pocket is
heavier than the first.

The essence of the overall relationship between the
three band structures and their thermoelectric perfor-
mance is represented by their energy-dependent spectral
conductivities, Σ(E) = N(E)τ(E)v2(E), plotted in Fig.
3e. In comparison to Ba2BiAu, Sr2BiAu attains no-
ticeably steeper slope and higher values of Σ(E) at its
CBM due to simultaneous excitation of the Γ −X-and-
L-pockets. High Σ(E) with steep onset is an undoubted
signature for both high α and σ. Meanwhile, the profile
for Sr2SbAu is kinked: the main incline corresponding
to the Γ − X-pocket occurs 0.06 eV into the CBM fol-
lowed by a much more gradual onset corresponding to
the heavier L-pocket. This is clearly less effective for
thermoelectricity.

The main lesson of the above discussions is that a
multitude of inherently distinct, symmetry-inequivalent
pockets of accidental degeneracy is not necessarily ben-
eficial for thermoelectrics. It better benefits thermoelec-
tric performance if the pockets share similar dispersion
and scattering behaviors. If sufficiently different in char-
acter, then one may be better off without the heavier
pocket as the disparity in pocket lifetimes and mobilities
would overpower increased carrier population. Only in
the perfectly symmetry-identical cases do more pockets
universally lead to higher performance. More generally,
this demonstrates that indicators such as the complexity
factor are valid in so far as all pockets share similar if not
symmetry-identical profiles in not only the band shapes
but also scattering behaviors. The complexity factor be-
comes an increasingly poorer measure of thermoelectric
performance as the band pockets are accidentally degen-
erate and become more disparate in character.

B. Thermal Properties and the Figure of Merit

The Lorenz numbers (L) of the Sr-based compounds
are consistently below the free-electron Wiedemann-
Franz value (LWF = 2.44 × 10−8 WΩK−2). L < LWF

by itself is expected as it reflects transport dominated by
phonon scattering, whether due to polar-optical or lat-
tice deformation [85]. Yet upon a closer examination, a
couple of anomalies are spotted. L in these two com-
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(a)	 (c)	(b)	
Sr2BiAu Sr2SbAu

500 K 700 K

200 K
300 K

Wiedemann-Franz	law	
200 K

300 K
700 K

500 K

Wiedemann-Franz	law	

Sr2SbAu

Sr2BiAu

FIG. 4. (Color online) a) The Lorenz number of Sr2BiAu against n-doping concentration. b) The Lorenz number of Sr2SbAu
against the Fermi level. The dotted horizontal lines mark the Wiedemann-Franz value. c) Lattice thermal conductivities of
Sr2BiAu and Sr2SbAu.

(a)	 (b)	
Sr2BiAu Sr2SbAu

200 K 300 K

500 K

300 K

200 K

700 K

700 K

500 K

(c)	
Sr2BiAu

Sr2SbAu

FIG. 5. (Color online) Theoretical n-type zT of a) Sr2BiAu and b) Sr2SbAu against electron doping concentration. c)
Theoretical maximum zT of n-type Sr2BiAu and Sr2SbAu at each temperature in comparison to state-of-the-art thermoelectrics
[1, 4, 6, 8, 10–13, 15, 16, 83, 84]

pounds decrease with temperature whereas the free elec-
tron picture predicts increasing L (towards LWF with
temperature [85]). Moreover, L reaches as low as 10−8

WΩK−2 if not lower at high temperatures for Sr2BiAu.
We attribute these results to the rapid rate at which scat-
tering rates increase as the dominant process shifts from
polar-optical near the band edge to lattice deformation in
the deep electronic states. Referring back to Fig. 3e, at

about 0.35 eV above the CBMs, Σ(E) substantially drops
in magnitude after a peak, which is associated with the
spike in the scattering rate and eDOS there. Because
high-energy electrons occupying deep states contribute
much more to κe whereas low-energy electrons contribute
more to σ, comparatively faster decay lifetimes at high
energies, which are increasingly excited at higher tem-
peratures, leads to lower L than if just one scattering
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mechanism took place.

The small magnitudes of L and therefore κe relative to
σ are particularly important because κe > κlat in these
compounds. The ultralow κlat has been predicted by a
previous study [34], whose results we reproduce here [see
Fig. 4c] using the same computational methods combin-
ing compressive sensing lattice dynamics [86] and itera-
tive Boltzmann transport [87]. Phonon dispersion and
density of states can be found in the Supplemental Ma-
terial [54].

The combination of high PF, and low κlat and L result
in ultrahigh intrinsic zT from cryogenic to high temper-
atures, especially for Sr2BiAu. Notable in particular is
the high performance zT = 0.4 − 2.2 in the 100 − 300
K range, which if realized would fill in the niche at low
temperatures. Comparisons made in Fig. 5c reveal that
the theoretical performance of Sr2BiAu is record-high at
nearly all temperatures for bulk materials. While some-
what lower in zT , Sr2SbAu is still poised to offer higher
efficiencies than most of state-of-the-art thermoelectric
compounds. If the offset Γ −X-and-L-pockets could be
made to align in energy via doping or temperature effect,
it would attain even higher PF and zT . Overall, because
κe is the dominant thermal conductivity and L is rather
constant, zT peaks at lower EF (ne) than the PF where
the high Seebeck coefficient develops. In fact, Fig. 5b
demonstrates that zT peaks at a non-degenerate level at
high temperatures. This in turn has an important con-
sequence to n-dopability of these compounds as intrinsic
defects will be shown severely constrain the amount of
extrinsic electrons that can be introduced.

SrSbAuSrAu2

Sr5Sb3

Sr2SbAu

FIG. 6. (Color online) The region of phase stability (shaded
red) of Sr2SbAu in the chemical potential space of Sb (the
horizontal axes), and Au (the vertical axes). The Sr chemical
potential is determined by the two. Secondary competing
phases to be found in the vicinity are labeled. The green dot
indicates the point where the SbAu antisite has the highest
formation energy and thus is least detrimental to n-doping.

V. STABILITY, DEFECTS, AND DOPABILITY

For the Heusler compounds hereby studied to exper-
imentally realize their thermoelectric potentials, they
ought to have a large region of stability and be n-
dopable – desirably to their ideal carrier concentrations
of ne ≈ 1019 cm−3. With the rapid emergence of com-
putationally discovered hypothetical materials, it is im-
portant that analyses of realizability accompany perfor-
mance predictions for a better guidance to experimental-
ists [88]. Accordingly we analyze the stability and intrin-
sic defect energetics of the four full-Heusler compounds
(Ba2SbAu in addition to the three compounds studied
above).

A. Phase Stability

The two Sr-compounds each have a stoichiometrically
identical P21/m phase, as noted in a previous publica-
tion [34]. As per our PBE+SOC total energy calcula-
tion, these phases are nearly energy-equivalent with the
Heusler counterparts, differing by approximately 5 meV
per atom, which is beyond the numerical resolution of
DFT. This indicates that either phase has a chance of
forming at finite temperatures depending on the free en-
ergies and entropic contributions.

We find that Sr2BiAu, Ba2BiAu, and Ba2SbAu are
barely thermodynamically stable, having extremely lim-
ited regions (essentially single points) of phase stability
in the chemical potential space, an unfavorable sign for
synthesis. Their points of stability are µSr ≈ −0.94 eV,
µBi ≈ −0.81 eV, and µAu ≈ −0.63 for Sr2BiAu, and
µBa ≈ −0.67 eV, µBi ≈ −1.26 eV, and µAu ≈ −0.75 for
Ba2BiAu, and µBa ≈ −0.70 eV, µSb ≈ −1.49 eV, and
µAu ≈ −0.73 for Ba2SbAu. Sr2SbAu is the only com-
pound that may have a large region of phase stability
as shown in Fig. 6 provided that its precise free energy
is lower than that of the P21/m phase at finite tem-

a	 b	

FIG. 7. (Color online) a) An example of defective 2 × 2 ×
2 supercell with a Ba/SrAu antisite on a supercell’s (2 0 0)
lattice plane. The location of the defect is highlighted with
black squares. Ba/Sr atoms are in green, Bi/Sb atoms are
in blue, and Au atoms are in, well, gold. b) Charge-density-
difference between q = −2 and q = 0 supercells of Sr2SbAu,
where the extra negative charge (colored red) is distributed
predominantly to the Sr atoms surrounding the SbAu antisite.
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a	 b	 c	 d	

FIG. 8. (Color online) The formation energies of Bi/SrAu. The slopes of the lines indicate charge (q = −2−+1). The plots go
from the VBM (0 eV) to the CBM as determined by HSE+SOC. For Sr2SbAu, which has a large chemical-potential region of
phase stability, the Sb-and-Au-poor condition (solid blue lines) and the Sb-rich condition (dotted pink lines) are both shown.
The former condition must be targeted since it leads to higher SbAu defect formation energies.

peratures. Therefore, synthesis of Sr2SbAu pure phase
looks to be more probable at least compared to the other
three. It is worth mentioning that a P63mmc phase of
1:1:1 stoichiometry have been experimentally observed
[89], which may serve as a starting point for tuning the
chemical potentials.

B. Defects

Schematics of a supercell with a defect at the cell center
are shown in Fig. 7. The small magnitudes of the correc-
tion term Ecor (less than 0.1 eV for the charged defects)
reflect that high ε of the compounds inhibit strong elec-
trostatic interactions between charged defects and their
periodic images, validating the overall size-sufficiency of
the supercells used.

In all four compounds, all but one type of antisite de-
fect (see next paragraph) have high enough formation en-
ergies that they are irrelevant. All other antisite defect
formations require at least 1.5 eV. All vacancies forma-
tions require at least 3 eV. One trend to note is that the
defects involving Au are comparatively lower in forma-
tion energy than those that do not. This likely reflects
that, at their sites, Au atoms are very weakly bonded
in both compounds. After all, the weakly bonded na-
ture of Au and its vibrational independence is precisely
the phenomenon that leads to strong anharmonicity and
ultralow lattice thermal conductivity in the two com-
pounds.

By far the most energetically favored defect in all four
compounds is the BiAu or SbAu antisite defects, whose
formation energies are shown in Fig. 8. The charge-
neutral defect formation energy is 0.1 − 0.2 eV in the
Bi-compounds, though considerably higher at 0.7 − 0.9
eV in the Sb-compounds. The higher formation energies
in the Sb-compounds may arise from the size mismatch

between Sb and Au atoms, whereas Bi atoms are closer
in size to Au atoms. Typically, the pnictogen atoms may
accept up to three electrons whereas Au accepts one, for
a surplus of two.

Unfortunately, the BiAu and SbAu antisites have se-
vere consequences for n-dopability of the Heusler com-
pounds. Near the CBM, these defects favor nega-
tively charged states and hence are predicted to act
as electron traps (acceptors), significantly hampering n-
doping. The situation is particularly dire for Sr2BiAu
and Ba2BiAu [see Figs. 8a–b], where these antisite de-
fects exhibit strongly negative formation energies well be-
low the CBM. Therefore, we determine that n-doping of
the two Bi-compounds is unlikely due to BiAu compen-
sating defects.

On a brighter side, doping the Sb-compounds maybe
somewhat more achievable due to the considerably higher
formation energies of SbAu antisites. Though they are
still deep defects, ∆ESbAu

f reaches 0 eV only near the

HSE CBM in the Sb-and-Au-poor condition [see Figs.
8c–d]. A rough estimation of the SbAu concentration at
0.15 eV below the HSE CBM and at 300 K is ≈ 1019

cm−3, about the same as the optimal electron concentra-
tion of ne ≈ 1019 cm−3 [see Fig. 5]. Under this estimate,
roughly twice as much as n-dopant must be introduced to
counter the intrinsic SbAu defects. Finally, because the
formation energy further decreases and n-dopability ir-
reparably damaged under the Sb-and-Au-rich condition,
it is critical that Sr2SbAu is synthesized in the Sb-and-
Au-poor condition.

All things considered, while still not optimistic, n-
type Sr2SbAu may stand a chance at realization since
1) the optimum Fermi level for zT is appreciably be-
low the CBM for low doping, 2) the exact band gap and
band edge positions may still differ from the HSE+SOC
values, 3) temperature-effects such as phononic (vibra-
tional) contributions to the solubilities of defects and
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dopants are left unaccounted for, and 4) Sr2SbAu will
likely have by far the largest chemical-potential region
of phase stability, as long as the formation P21/m poly-
morph can be suppressed.

VI. CONCLUSION

In summary, the full-Heuslers in this study - espe-
cially Sr2BiAu - constitute a theoretical validation that
very high intrinsic thermoelectric performance across a
broad range of temperatures from 100 ∼ 1000 K is physi-
cally possible in real bulk compounds. The predicted zT
values are notably high at cryogenic-to-room tempera-
tures – the domain that generally lacks efficient thermo-
electric materials. Dispersive conduction band pockets
at two off-symmetry points (for a total of ten pockets
in the Brillouin zone) generate very high power factors
across all temperatures. However, due to the disparity
in the characters of the two pockets in terms of disper-
sion and dominant scattering mechanisms, performance
decays more quickly with temperature. Whether acci-
dentally degenerate pockets benefit thermoelectric per-
formance is therefore conditional upon the similarity of
the pockets and temperature of operation. If the pockets
are too dissimilar, then performance would benefit if the
lighter pocket were alone without the heavier pocket.

In spite of the high predicted thermoelectric perfor-
mances, we determine that realization of n-type Sr2BiAu
and Ba2BiAu is extremely unlikely if not impossible.
They are very limited in stability with respect to chemical

potentials (albeit within the limits of 0 K DFT energetics,
with no accounting for phononic effects) and extremely
vulnerable to formation of negatively-charged Bi/SbAu

antisite defects. The antisites have very low formation
energies, naturally drive the compounds to be p-type,
and would function as potent electron traps near the
CBM, compensating any n-doping. The Sb-compounds
fare better on the the antisite defects. Sr2SbAu appears
least pessimistic due to the potentially much more sizable
region of stability and comparatively high SbAu forma-
tion energies.
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moelectric power factor in intermetallic cosi arising from
energy filtering of electrons by phonon scattering,” Phys.
Rev. Appl. 11, 024017 (2019).

[60] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D.
Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner,
G. Ceder, and K. A. Perssson, “Commentary: The ma-
terials project: A materials genome approach to acceler-
ating materials innovation,” APL Mater. 1, 1002 (2013).

[61] G. Bergerhoff and I. D. Brown, “Inorganic crystal
structure database,” Crystallographic Databases , 77–95

(1987).
[62] A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch,

“New developments in the inorganic crystal structure
database (icsd): accessibility in support of materials re-
search and design,” Acta Crystallogr. B 58, 364–369
(2002).

[63] M. Hellenbrandt, “The inorganic crystal structure
databae (icsd) – present and future,” Crystallogr. Rev.
10, 17–22 (2004).

[64] G. Kresse and J. Hafner, “Ab initio molecular dynamics
for liquid metals,” Phys. Rev. B 47, 558–561 (1993).

[65] G. Kresse and J. Hafner, “Ab initio molecular-dynamics
simulation of the liquid-metal˘amorphous-semiconductor
transition in germanium,” Phys. Rev. B 49, 14251–14269
(1994).

[66] G. Kresse and J. Furthmüller, “Efficiency of ab-initio to-
tal energy calculations for metals and semiconductors us-
ing a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50
(1996).

[67] G. Kresse and J. Furthmüller, “Efficient iterative schemes
for ab initio total-energy calculations using a plane-wave
basis set,” Phys. Rev. B 54, 11169–11186 (1996).
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