
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Iconicity and Structure in the Emergence of Combinatoriality

Permalink
https://escholarship.org/uc/item/6wm332w1

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors
Hofer, Matthias
Levy, Roger

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wm332w1
https://escholarship.org
http://www.cdlib.org/


Iconicity and Structure in the Emergence of Combinatoriality
Matthias Hofer (mhofer@mit.edu), Roger Levy

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
43 Vassar St, Cambridge, MA 02139 USA

Abstract

One design feature of human language is its combinatorial
phonology, allowing it to form an unbounded set of mean-
ingful utterances from a finite set of building blocks. Re-
cent experiments suggest how this feature can evolve culturally
when continuous signals are repeatedly transmitted between
generations. Because the building blocks of a combinatorial
system lack independent meaning, combinatorial structure ap-
pears to be in conflict with iconicity, another property salient
in language evolution. To investigate the developmental tra-
jectory of iconicity during the evolution of combinatoriality,
we conducted an iterated learning experiment where partici-
pants learned auditory signals produced using a virtual slide
whistle. We find that iconicity emerges rapidly but is gradu-
ally lost over generations as combinatorial structure continues
to increase. This suggests that iconicity biases, whose pres-
ence was revealed in a signal guessing experiment, manifest in
nuanced ways. We discuss implications of these findings for
different ideas about how biases for iconicity and combinato-
riality interact in language evolution.
Keywords: phonology; language evolution; combinatorial
structure; iterated learning; iconicity

Introduction
Combinatorial phonology is an important design feature of
human language, allowing it to form an unbounded set of
novel, meaning-bearing words from a small set of building
blocks. How did it emerge in language? As part of a larger
research program that attempts to explain linguistic proper-
ties through biases operating during language acquisition and
use (Christiansen & Chater, 2016; Kirby, Cornish, & Smith,
2008), recent laboratory experiments have suggested how
combinatorial structure could have arisen from continuous
signals through a process called iterated learning (Verhoef,
Kirby, & de Boer, 2014; Giudice, 2012). But while combi-
natorial structure might confer a range of advantages to lan-
guage, it appears to be in conflict with another salient feature
of communication systems: iconicity. In order to participate
freely as primitives in larger composite forms that carry arbi-
trary meanings, the building blocks of a combinatorial system
should be meaningless (Dingemanse, Blasi, Lupyan, Chris-
tiansen, & Monaghan, 2015). Iconic signs, on the other hand,
are motivated by properties of the meanings they refer to.

Evidence suggests that iconicity plays an important role in
bootstrapping communication. In a study where subjects had
to develop novel communication systems, Fay, Arbib, and
Garrod (2013), found that gesture was preferentially adopted
over speech, and explained their findings in terms of gesture’s

Figure 1: Depiction of stimuli and virtual slide whistle used
in the iterated learning experiment to investigate the relation
between iconicity and combinatoriality. Visual referent stim-
uli are from Lewis and Frank (2016).

stronger affinity for iconic representation. On the above ac-
count, signals tend to eventually lose these iconic origins as
they develop into combinatorial systems. Goldin-Meadow
and McNeill (1999) have similarly argued that iconicity is
the default strategy and that combinatoriality is not adopted
for the benefits it provides but to compensate when iconic-
ity is not available. Consistent with this account, Verhoef,
Kirby, and de Boer (2016) found that the onset of combinato-
rial structure in an iterated learning experiment was delayed
when signal/referent mappings were scrambled between gen-
erations, making it harder for iconicity to develop, relative to
a condition where mappings were kept intact.

Despite the possible loss of iconicity in the emergence of
combinatorial phonology, many familiar forms of iconicity
such as onomatopoeia or sound symbolism continue to play
an important role in language (Dingemanse et al., 2015). How
do these various forms of iconicity develop as signals undergo
their transition from holistic to combinatorial structure? To
reconcile the existence of iconicity at different stages of lan-
guage evolution, we focus on a more subtle form of iconicity,
recently described by Lewis and Frank (2016), that exists be-
tween word length and conceptual complexity. In their anal-
ysis of monosyllabic words across 80 languages, the authors
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found that longer words are systematically associated with
more complex meanings. Whereas the languages considered
by Lewis and Frank (2016) are already fully combinatorial,
we examine whether this form of iconicity also arises in con-
tinuous signal spaces and use it to address questions about the
relationship between iconicity and combinatoriality. To this
end, we conducted an iterated learning experiment where sub-
jects evolved a set of signals through iterated reproduction.
Participants learned artificial languages consisting of whis-
tled signals that were paired with referents taken from Lewis
and Frank (2016). Both signals and referents varied in com-
plexity (Figure 1) but were paired in such a way that there was
no systematic relationship between simple and complex items
in the beginning. Based on the literature presented above,
we predicted that such a relationship, indicative of iconicity,
would emerge but eventually disappear as the communication
systems become more combinatorial.

Using the languages resulting from the iterated learning
study, we present results from a series of experiments de-
signed to answer the following questions:

1. Did the languages evolve combinatoriality? This was as-
sessed by asking subjects to rate the amount of combinato-
rial structure that existed in the languages.

2. Did the signals evolve iconicity? Iconicity, defined in terms
of congruent complexity associations between signals and
referents, was measured by collecting complexity judg-
ments for the evolved signals.

3. Which underlying cognitive structures support our infer-
ences about iconicity? Previous studies suggest the exis-
tence of strong biases for the development of combinato-
riality and iconicity (Lewis & Frank, 2016; Verhoef et al.,
2016). To better understand the role of iconicity biases and
how they manifest in our experiment, we devised a guess-
ing game where naive listeners were asked to choose the
most likely referent for each signal.

After presenting our results, we close by discussing how our
findings relate to different ideas about the evolution of iconic-
ity and combinatoriality.

Experiments
To investigate how iconicity develops during the emergence
of combinatorial structure, we conducted an iterated learning
experiment. Miniature artificial languages were repeatedly
acquired and subsequently transmitted by one ‘generation’ of
subjects to the next. This took place across several indepen-
dent transmission chains. We adopted the signal space used
in Verhoef et al. (2014), in which subjects produced signals
using a slide whistle instrument. Since we conducted the ex-
periment online, we developed an on-screen, virtual version
of the instrument, depicted in Figure 1. Pitch was controlled
by moving the plunger up and down using the mouse. Sounds
were produced by pressing down the space bar and contin-
ued until the space bar was released. Before the experiments

started, participants were given an opportunity to familiar-
ize themselves with this interface. Using the languages that
evolved during iterated learning, we subsequently conducted
four additional experiments to address the aforementioned
questions about the emergence of combinatorial structure and
iconicity.

Iterated learning experiment

The iterated learning experiment consisted of 15 independent
chains, each consisting of 10 generations. Per chain and gen-
eration, a single subject learned and later reproduced an artifi-
cial language. The first subject in each chain was given a lan-
guage constructed according to principles described below,
while subsequent generations learned the language produced
by the previous generation.
Materials Each language consisted of eight whistled
sounds paired with different referents. Figure 1 shows which
signals were used to initialize each experimental chain. The
signals were obtained from whistles recorded and subse-
quently rated for their complexity in a pilot experiment. The
signals were paired with unfamiliar visual objects selected
from a stimulus set used in Lewis and Frank (2016), which
was normed for complexity. Referents were categorized as ei-
ther simple or complex. For each chain, four simple and four
complex referents were selected at random from the stim-
uli depicted in 1 and assigned to signals with the constraint
of counterbalancing between signal and referent complexity
classes (half of the complex signals were paired with com-
plex referents and while the other half was paired with simple
ones and vice versa). This procedure ensured that the relation
between signal and referent complexity was initially fully un-
systematic.
Procedure Subjects were told that they had to learn an ar-
tificial language produced using a slide whistle with the goal
of teaching the language to a computer program. After fa-
miliarizing themselves with the instrument, subjects engaged
in five learning blocks, where they were shown each of the
eight signal/referent pairs in random order. Each trial first
displayed the visual referent, then the slide whistle playing
back the corresponding signal. The whistle then stayed on
screen and participants were instructed to repeat the signal.
No feedback was given during learning. Subjects were ad-
mitted to the reproduction phase if they reached a learning
criterion to assess how well they learned the language. The
criterion test consisted of eight 2-AFC trials. Each of the
eight signals was played to subjects once and they had chose
the correct referent from a set of two. The distractor item
was sampled from among the remaining three items of the
same complexity class, preventing participants to identify the
correct referent based on referent complexity alone. No feed-
back was given during these trials. To advance to the final
stage of the experiment, participants had to correctly identify
at least six of the eight items. Participants that reached the
learning criterion advanced to the reproduction phase, which
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was framed as a computer teaching paradigm. Subjects were
asked to record each signal for a computer program that will
attempt to learn the language from them. All referent stimuli
were presented simultaneously on screen and subjects could
chose the order in which they recorded signals by clicking on
the corresponding item.

While chosen to prevent subjects from producing the same
signal multiple times, the framing of the task as a teaching
paradigm did not fully prevent a loss of expressivity (see, e.g.,
Kirby et al., 2008). Throughout the experiment, 7% of signals
were identified as duplicates using a dynamic time warping-
based similarity measure, and replaced with signal versions
produced during learning with the constraint of being suffi-
ciently distinct from the remaining test phase signals. This
approach is conservative since signals produced during learn-
ing typically very closely resemble the input the participant
was given and thus limit the amount of change (relative to the
input) experienced by the next participant.

Subjects A total of 382 subjects were recruited on Ama-
zon’s Mechanical Turk. 250 subjects passed a prelimi-
nary headphone check (Woods, Siegel, Traer, & McDermott,
2017), implemented to ensure consistent listening conditions,
and were admitted to the main experiment. Of those, 164
subjects reached the learning criterion. Data from 14 subjects
was due to technical reasons, leaving us with 150 subjects,
one subject per chain and generation.

Quantification of combinatorial structure

To answer whether signals evolved combinatoriality, we con-
ducted a rating experiment. Naive participants were asked
to rate the amount of structure present in the languages from
the iterated learning experiment. Participants saw languages
from either one of two conditions: In the intact condition, lan-
guages were randomly selected from across chains and gen-
erations in the iterated learning experiment. Participants were
blind to which generation or chain a language came from. In
the scrambled condition, participants were shown languages
where signals from the different chains of each generation
were randomly mixed together. Including this baseline condi-
tion allows us to assess to what extent combinatoriality judg-
ment are about properties of the signals in the context of the
language they evolved in, or simply about the structure of sig-
nals irrespective of their relation to the other signals in their
language.

Subjects and Procedure Subjects were told that they had
to rate the amount of structure of different newly discovered
whistle languages. Structure was described as the existence
of building blocks or principles that are shared among the sig-
nals in a language. Signals were presented visually in a pre-
sentation format similar to Figure 3 (but in a single row). This
allowed subjects to make holistic judgments and facilitated
comparisons between items in the language. Subjects were
asked to report how structured a given language was, ranging
from least to most structured, using a continuous slider. A to-

tal of 314 subjects took part in the rating experiment and each
participant rated 24 items.

Quantification of signal complexity and iconicity
To address our second question, it was necessary to quantify
signal complexity in order to assess if signals developed to
match the conceptual complexity of their referents. Two ex-
periments were conducted, one where signals were presented
visually and one where they were presented auditorily.

Visual complexity ranking Similar to the previous exper-
iment, languages were presented in the form of a visual ar-
ray. Subjects were instructed to sort the signals from least to
most complex. Complexity was defined as signals that have
many parts and that are difficult to memorize or reproduce.
374 subjects took part in this part of the experiment and each
subject rated 16 items. After realizing that effect sizes of the
iconicity measure are likely too small and that the noise in-
troduced from using a perceptual modality different from the
original, auditory modality could potentially mask important
differences, we conducted a second rating experiment.

Auditory complexity rating experiment Focusing on just
the first five generations of iterated learning, in the second
complexity rating experiment, signals were presented sim-
ilar to the main experiment, with the slide whistle playing
back the recorded signals. Signals were randomly selected
from across chains and generations, which enabled us to ob-
tain absolute complexity judgments (compared to the rank-
level judgments obtained in the visual experiment). Subjects
judged the complexity of each signal from least to most com-
plex using a slider. 175 subjects took part in the experiment
and each subject rated 16 items.

Evaluation of signal iconicity
Finally, do people exhibit iconicity biases that explain their
productions during iterated learning? To develop further in-
sight into the nature of the biases that support iconicity, we
conducted a guessing game where subjects were presented
all eight signals from a language (in random order) and had to
identify the most likely referent per signal. Subjects were in-
structed that they should always choose the referent that they
thought most likely belonged to the signal, and that the same
referent could be chosen more than once. This allowed us
assess the existence, and to quantify the strength of iconicity
biases that exist in signal interpretation. 218 subjects took
part in the experiment and each subject rated 8 languages.

Results
Emergence of combinatorial structure
The first question we address in our analysis is whether lan-
guages developed combinatorial structure, as described in
prior experiments (e.g., Verhoef et al., 2014; Giudice, 2012).
In summary, we observe that signals in all chains develop
combinatorial structure. Figure 3 depicts a representative ex-
ample language from the final generation of chain 1, giving
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Figure 2: Results from the three experiments that we conducted to assess signal structure and complexity (visual and auditory),
and the derived iconicity measure. Error bars are 95% confidence intervals.

a qualitative impression of the emergence of shared building
blocks. Figure 2A shows the results from our combinatorial-
ity measure. Across both the intact (t(14) = 8.06, p < 0.001)
as well as the scrambled condition (t(14) = 5.59, p < 0.001),
languages are judged to increase in structure over genera-
tions1, but languages in the intact condition are judged to
increase more (t(14) = 2.5, p = 0.02). This difference can
only be explained by assuming that signals in the intact con-
dition are structurally more similar to each other, which re-
sults in higher combinatoriality ratings compared to mixing
languages across chains as in the scrambled condition.
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Figure 3: Set of stimuli from the last generation of chain 1.
The language appears to consists of three building blocks: a
short beep occurring at different pitch values, a long pitch
sweep, and a wiggly segment of alternating pitches.

Development of iconic signal structure
Turning to our second question, Figure 2B depicts the results
of the visual complexity ranking experiment where partici-
pants were asked to order signals from least to most complex
(coded as 0 to 7). The depicted mean complexity rank rep-
resents the average rank of the four signals that were asso-
ciated with complex referents. An at chance association be-
tween signals and referents corresponds to a mean rank of 3.5.
While nearly all chains in the first generation have an average
complexity rank of greater than 3.5, quantitatively this differ-
ence does not reach significance after correcting for multiple

1Analyses compare the regression coefficients fitted to the fifteen
chains to a zero slope.

comparisons (t(14) = 2.60, p = 0.02 before, p = 0.21 after
Holm-Bonferroni correction). Two features of the experimen-
tal measure could potentially mask this effect: the ranking
score only captures ordinal differences and not differences in
magnitude. Secondly, measurements may be noisy because
the experiment was conducted in the visual instead of the
auditory modality. While not posing a problem to the com-
binatoriality measure reported earlier (because of the larger
effect sizes), this might hinder detection of iconicity in the
languages.

To address these points, a second experiment collected
complexity ratings in the auditory domain, restricting our-
selves to the first five generations of iterated learning. Fig-
ure 2C shows the resulting ratings, grouped and averaged by
associated referent complexity. These data were used to de-
rive an iconicity measure, depicted in Figure 2D, by subtract-
ing the average complexity of signals associated with sim-
ple referents from signals associated with complex referents.
Positive values indicate the presence of iconicity in a con-
gruent direction. As suggested earlier, we find that iconic-
ity emerges immediately after initialization in generation one
(t(14) = 3.71, p = 0.002 before, p = 0.01 after correction).
While the return of the iconicity measure to chance is not sig-
nificant within the first five generations of the auditory mea-
sure (t(14) = −1.56, p = 0.14), the visual complexity mea-
sure from 2C strongly suggests that iconicity drops back to
chance in subsequent generations and thus, taken together, li-
censes the inference that iconicity eventually disappears from
the languages.

Relationship between iconicity and structure
The previous analyses have demonstrated that languages de-
velop both combinatoriality and iconicity over the course
of the experiment. To develop insight into state-dependent
trade-offs between iconicity and combinatoriality, we now
look at the development of iconicity as a function of com-
binatorial structure instead of generation. Figure 4A shows
the evolutionary trajectories of all fifteen languages in terms
of their combinatorial structure and their iconicity (based on
Figures 2A and D). The plots suggest that languages, while
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Figure 4: Visual representation of the evolutionary trajectories of all fifteen experimental chains, on the basis of which we con-
structed a vector field representation that shows inter-generational parameter changes for observed and hypothetical languages.

displaying common patterns, can vary substantially in terms
of their developmental time constant. We summarize these
data by constructing a vector field that shows extrapolated av-
erage magnitude and direction of inter-generational changes
on a grid (based on the behavior of nearby languages). The
model is constructed by considering all 75 vectors in Fig-
ure 4A that represent transitions from one generation to the
next. For each grid point, an average magnitude and direc-
tion is estimated by computing the weighted linear combi-
nation of vectors using their distance, obtained with a mul-
tivariate Gaussian kernel centered around the grid point, as
weights. Figure 4B shows the resulting vector space model.
The total sum of Gaussian weights per grid point, superim-
posed in grey, corresponds to the number of vectors nearby
that were used to construct the estimate. The model sum-
marizes in which direction, and how much, hypothetical lan-
guages would change in terms of combinatoriality and iconic-
ity, based on the observed data. Adding to the results reported
above, gains in iconicity or maintenance of already existing
iconicity is only observed when languages are still relatively
unstructured. Languages loose their iconic structure as com-
binatoriality increases further. More sporadically observed
‘extreme’ levels of iconicity and combinatoriality appear to
be unsustainable and eventually revert to lower levels.

Inductive biases for iconicity
Which underlying cognitive structures support our inferences
about iconicity? We asked naive subjects in a guessing game
to pick the most likely referent for each signal. Figure 5
shows the probability of listeners choosing a complex referent
as a function of signal complexity, indicating a strong ten-
dency for choosing referents that match the perceived com-
plexity of the signal. (Note that the ground truth referent
information in Figure 5 is displayed as additional informa-
tion and not part of the reported analysis.) Crucially, this

bias allowed subjects to reliably identify the correct referent
complexity class for signals that exhibited the most iconic-
ity (t(9) = 2.77, p = 0.024). We compared the probability of
choosing the correct referent class with chance performance
for the ten languages that scored highest in iconicity (measure
taken from Figure 2D).
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Figure 5: Results from the guessing game, conducted to quan-
tify the strength of iconicity biases for the evolved signals.

Discussion and Conclusion
We conducted an iterated learning experiment to investigate
how iconicity develops when combinatoriality emerges in ini-
tially unstructured, continuous signals. Signals gradually be-
came more combinatorial over the course of the experiment.
The emergence of iconicity, measured in terms of signals
matching the conceptual complexity of their referents, was
shown to develop immediately, but iconicity eventually dis-
appeared while combinatorial structure continued to increase.
This result is particularly strong because languages were ini-
tialized at a point of complete arbitrariness.

446



The largest increases in combinatoriality were seen in gen-
eration one. This is consistent with the idea that signal struc-
ture is a consequence of cognitive biases for combinatorial-
ity. Because of having selected a diverse signal set for initial-
ization, memory demands during learning and reproduction
were arguably the highest in the first generation. Since this
affords the greatest potential for prior biases to manifest, we
would expect the largest increase in structure here.

The loss of iconicity is consistent with the hypothesis that
iconicity is in complementary distribution with combinato-
rial structure (Verhoef et al., 2016; Goldin-Meadow & Mc-
Neill, 1999; Roberts, Lewandowski, & Galantucci, 2015),
since the building blocks of such a system must be stripped
of their iconicity when they participate in larger meaning-
bearing units. It is important to note, however, that it is not
clear why the particular kind of iconicity we investigated here
must be lost in order for combinatorial structure to arise. In
the transition from holistic to combinatorial structure, com-
plexity in the signal domain could be expressed equally well
in terms of number of building blocks (Lewis & Frank, 2016).
The observation that iconicity is nevertheless lost could, how-
ever, provide important insight into the nature of the transition
process. Zuidema and de Boer (2018) recently distinguished
between analytic and synthetic routes to combinatoriality. In
the synthetic route, preexisting signals are combined to form
larger combinatorial signals, while in the analytic route, po-
tentially overlapping parts of preexisting signals are used to
form new signal. The present findings are consistent with
the holistic account, which predicts that productive recom-
bination leads to new signals that are composite, therefore
complex, irrespective of the complexity of their referent but
simply due to the mechanics of recombination.

While our guessing game suggests that people have strong
biases for iconicity, our results indicate that these biases man-
ifest in subtle ways. Smith et al. (2017) presented evidence
that the strength with which cognitive biases manifest in cul-
tural evolution depend on a number of factors. The authors
focused on properties of the transmission paradigm, such as
how many different agents subjects learn from, which shapes
the input to learning. In the present study, we found evidence
that the manifestation of otherwise strong cognitive biases,
such as a bias for iconicity, can also depend on properties of
the input more directly, for instance, on how much structure
signals exhibit. Understanding how properties of the input
can modify the expression of biases more broadly is an av-
enue for future research. In addition, the novel vector field
analysis we present suggests the possibility of testing specific
combinations of iconicity and combinatoriality to develop a
more complete picture of trade-offs in parameter space.

One further aspect that is not addressed in our study is the
role of modality on the form of iconicity studied here. In work
that explored the structure of signals that subjects created
when more or less signal dimensions were available, Little,
Eryılmaz, and de Boer (2017) found strong modality effects
mediating the relationship between iconicity and combinato-

riality. Future work is needed to explore how our findings
generalize to other signal modalities.

Finally, we note that the combinatoriality measure obtained
via subject ratings is only an approximation to signal structure
that emerged in the experiment. To better understand the pat-
terns that exist in the evolved signals and how they are used
productively, it is necessary to develop computational mod-
els. In ongoing work, we are developing statistical models
of signal structure and learners’ underlying inductive biases
that will allow us to test more specific hypotheses about the
evolution of iconicity and combinatoriality in language.
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