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Abstract
We explore how adults learn counterintuitive causal relation-
ships, and whether they discover hypotheses by revising their
beliefs incrementally. We examined how adults learned a novel
and unusual causal rule when presented with data that initially
appeared to conform to a simpler, more salient rule. Adults
watched a video of several blocks placed sequentially on a
blicket detector, and were then asked to determine the under-
lying causal structure. In the near condition the true rule was
complex, but could be found by making incremental improve-
ments to the simple and salient initial hypothesis. The distant
condition was governed by a simpler rule, but to adopt that rule
participants had to set aside their initial beliefs, rather than
revising them incrementally. Adults performed better in the
near condition, despite this rule being more complex, provid-
ing some of the first evidence for an explore-exploit trade-off
in inference, analogous to the trade-off in active learning.
Keywords: causality, Bayesian inference, hypothesis search,
process model

Background
Any time we make plans, predict the future, or attempt to
understand why events occurred in the past, we are rely-
ing on causal knowledge. In acquiring this knowledge, we
must draw conclusions from sparse, noisy, and ambiguous
evidence. We gain the ability to make sense of this limited in-
formation at an early age, with causal thinking showing signs
of emergence even in infancy (Sobel & Kirkham, 2006; 2007;
Walker & Gopnik, 2014). By adulthood, our frameworks for
interpreting causal phenomena become much more complex
and able to accommodate diverse areas of knowledge (Kemp,
Goodman, & Tenenbaum, 2007).

Despite its usefulness, sometimes our ability to generalize
from past causal inferences can lead us astray, as in the case
where we encounter a new causal relationship that is rare or
strange by the standards of our past experience. For instance,
we might expect that either of two switches will turn on a
lamp, when in fact the lamp turns on when the switches are
in matched positions. While our causal learning process is
generally accurate and adaptive (e.g., Griffiths & Tenenbaum,
2005), in the current paper we claim – in the spirit of pre-
vious “rational process” models (e.g. Sanborn, Griffiths, &
Navarro, 2010) – that human causal beliefs are updated in a
limited or local fashion that is efficient but subject to system-
atic failures under certain conditions. This is especially true
when the initial hypothesis is at a local optimum – the best
hypothesis within reach, but not the best overall – and when
the true causal structure is distant from our initial hypothesis

in some hypothesis space. Suppose you break out in a rash
every time you buy your favourite candy bar from a vending
machine. After searching for the proper cause, you would
probably conclude that you are allergic to the candy as soon
as it comes to mind. You may be unlikely to consider that you
are actually reacting to the coins used to purchase the candy
bar, even if this is indeed the case. In this case, discovering
the real cause requires abandoning your working hypothesis,
rather than just incrementally refining it.

Bayesian Models of Causal Inference

Several researchers have attempted to explain learning of
novel causal relationships using hierarchical Bayesian mod-
els of inference (e.g. Griffiths, Sobel, Tenenbaum, & Gopnik,
2011; Griffiths, Kemp, & Tenenbaum, 2008). Recent evi-
dence demonstrates that adults and children can successfully
modify their causal beliefs in light of new and surprising ev-
idence in a manner that suggests Bayesian inference strate-
gies (e.g., Griffiths, Sobel, Tenenbaum, & Gopnik, 2011; Lu-
cas, Bridgers, Griffiths, & Gopnik, 2014). Through this pro-
cess, learners also create and update higher-level models of
how causal relationships operate in general. Regardless of
whether human cognition functions exactly this way, hier-
archical Bayesian models have accurately predicted human
causal learning (Kemp, Goodman, & Tenenbaum, 2007; Lu,
Yuille, Lijeholm, Cheng, & Holyoak, 2006; Lucas & Grif-
fiths, 2010; Ullman, Goodman, & Tenenbaum, 2012).

Although Bayesian models accurately capture many as-
pects of human causal reasoning, they may not fully ac-
count for adults’ relative difficulties in learning more unusual
types of causal relationships. Specifically, Lucas and col-
leagues (2014) found that young children were more likely
than adults to discover an unusual conjunctive causal rela-
tionship. Children and adults were tasked with inferring a
causal principle after viewing a machine that activated when
certain blocks or block combinations were placed on top of
it. Even after viewing evidence that blocks only activated
the machine in specific pairs (and not individually), adults
had more difficulty than children with generalizing this prin-
ciple to new blocks. One possibility for this finding is that
adults are more biased by prior experiences—as they have
observed that conjunctive relationships are relatively rare—
which leads them to demand strong evidence before they in-
fer a conjunctive relationship is present. Indeed, if cogni-
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tion operates via Bayesian principles, there are conceivably
instances in which rigid commitment to a prior may preclude
learners from uncovering the true nature of a causal relation-
ship. However, this may not apply in novel causal situations
with which adults have limited experience. Moreover, adults
are cognitively different than children beyond simply having
more experience, so differences in causal reasoning may in
fact be the by-product of some developmental change.

As an alternative to simply having different priors, adults’
relative difficulty with conjunctive causal relationships may
be explained in terms of the process by which they explore
and weigh new hypotheses in light of their current beliefs.
It is typically impossible to evaluate all potential hypothe-
ses (of which there may be an infinite number). Bayesian
inference is often intractable in practice for complex prob-
lems, so human inferences must sometimes depart from the
Bayesian ideal. Nonetheless, there is evidence that people
may be resource rational observers, making approximately
Bayesian inferences in ways that make efficient use of limited
time and memory (Bonawitz, Denison, Gopnik, & Griffiths,
2014; Sanborn, Griffiths, & Navarro, 2010). As for possi-
ble processes underlying these approximations, some empir-
ical phenomena, such as order effects, offer clues. If learners
make inferences from a complete set of data, as traditional
Bayesian models assume, then they should not be influenced
by the order in which stimuli are presented. Nevertheless, hu-
mans are sensitive to presentation order (Danks & Schwartz,
2006; Sanborn, Griffiths, & Navarro, 2010). One explana-
tion for these order effects is that people arrive at solutions
by considering a small number of hypotheses at any single
moment in time, and updating or replacing them sequentially
with more data – sometimes losing information and leading to
small but systematic errors. More recently, Bayesian process
models have been proposed to explain these patterns of errors
by drawing analogies to Monte Carlo sampling methods that
permit tractable and efficient inference in applied statistics
and machine learning (Abbott, Hamrick, & Griffiths, 2013;
Shi, Griffiths, Feldman, & Sanborn, 2010).

Inference techniques are often modelled using Monte Carlo
methods that update sequentially and incrementally. These
methods allow hypotheses to be revised by sampling from
the posterior, without computing the posterior distribution in
its entirety. Markov chain Monte Carlo sampling is a popu-
lar and efficient subclass of Monte Carlo methods, and it is
marked by a degree of stickiness or inertia, in which people
hew more closely to their initial hypotheses than a truly opti-
mal Bayesian learner would. This family of models predicts
that individuals will tend toward inferences that are similar to
their prior beliefs. For example, one study showed that when
people made inferences about a causal system, they tended
toward solutions that required the fewest single edits to their
initial hypothesis, where a single edit is an addition, subtrac-
tion, or reversal of a causal link (Bramley, Dayan, Griffiths,
& Lagnado, 2017). Therefore, causal process models can ac-
count for multiple limitations on causal learning, and have re-

cently been shown to explain phenomena such as classical an-
choring (Lieder, Griffiths, Huys, & Goodman, 2017). Learn-
ers can be constrained not only by priors, but also the similar-
ity of candidate hypotheses to their current beliefs, perhaps
precluding them from finding too-distant hypotheses.

The Explore-Exploit Trade-off in Inference
These findings could reflect a cognitive tradeoff in develop-
ment that affects how learners search through hypotheses.
When presented with a wide range of possibilities, individ-
uals must often decide whether to employ a general, shallow
search or a narrow, deep one. This decision is analogous to
the explore-exploit tradeoff, whereby decision-makers must
allocate cognitive resources to either exploit previous knowl-
edge or explore alternatives (Sutton & Barto, 1998). Adults
may be more inclined to exploit, by searching nearby solu-
tions extensively—and less likely to explore hypotheses that
require unusual, low-probability edits to the current hypoth-
esis. With limitations on the number of hypotheses a learner
can consider, exploitation-biased adult learners could plausi-
bly benefit from focusing cognitive resources on hypotheses
that are refinements of an initial proposal that is plausible and
informed by long experience. This will increase efficiency
of finding adequate solutions but potentially limit access to
distant alternatives. Conversely, exploration-focused learners
(young children, perhaps) may spread out their search over a
more diverse range of possibilities. Although this approach
sacrifices the ability to efficiently refine already-reasonable
hypotheses, it may grant access to unusual solutions that
would be unreachable with a more conservative search.

Thus, the inferential explore-exploit trade-off may have in-
teresting implications for the process of selecting between
competing hypotheses. This selection process has been mod-
elled using Bayesian algorithms for both children and adults
(Bonawitz, Denison, Gopnik, & Griffiths, 2014; Denison,
Bonawitz, Gopnik, & Griffiths, 2013; Lieder, Griffiths, &
Goodman, 2012; Sanborn, Griffiths, & Navarro, 2010), but
relatively little previous work has examined adults’ poten-
tial tendencies toward exploitation. As one possible exam-
ple of how hypothesis search may reflect an exploitation bias,
Gopnik and colleagues have likened human belief updating to
simulated annealing; just as the heating and gradual cooling
of metal can increase its malleability, so can a gradual “cool-
ing” of an inference method corresponding to an increasingly
conservative search policy lead to better inferences (Gopnik,
Griffiths, & Lucas, 2015; Lucas, Bridgers, Griffiths, & Gop-
nik, 2014). For instance, while young children may use high-
temperature searches, considering a wide range of hypotheses
with relatively equal probability, adults’ searches are “cooler”
and more narrow in scope. Although commitment to priors
may still matter, simulated annealing allows us to examine
which types of hypotheses are considered. High-temperature
searches are more likely to discard adequate hypotheses, but
may allow individuals to escape local optima and discover
unlikely solutions that are potentially better. In contrast, low-
temperature searches can quickly converge to good solutions
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if fewer low-probability edits are required to get there, but
may otherwise get trapped in local optima. With this in mind,
adults may have more difficulty discovering unusual causal
relationships because their search is too focused and too close
to their initial guesses to accommodate distant ideas.

The purpose of our current studies is to test the hypothesis
that belief updating in adults is exploitation-biased. To ac-
complish this, we designed a task encouraging participants to
generate a particular initial hypothesis about a novel causal
relationship. Evidence that contradicted this hypothesis was
then presented, causing participants to modify their beliefs.
The true causal structure took one of two forms correspond-
ing to two experimental conditions. In the near condition, the
correct causal structure was closer to the initial hypothesis but
designed to be relatively complex. In the distant condition,
the correct causal structure was simpler but possibly harder to
reach when making incremental changes from the initial hy-
pothesis, which is a local optimum. Thus, we hoped to deter-
mine the breadth of hypotheses that participants were willing
to entertain. If adults’ search process is more exploitation-
biased, we should expect the near-hypothesis solution would
be more easily found than the distant one, even if both rules
are a priori equally unlikely. However, if adults’ failure to
infer unlikely causal relationships is simply due to the low
prior probability that they place on these relationships, then
they should be equally unlikely to consider either solution.

Experiment 1: Investigating the
Explore-Exploit Tradeoff in Inference

Participants Participants were 90 adult US residents, re-
cruited through Amazon Mechanical Turk and paid a base
rate of $1 for their time. An additional $1 bonus was given
to the top 10% performers as an additional incentive. Partici-
pants were divided randomly among near (n = 45) and distant
(n = 45) conditions. Six participants from the near condition
and seven from the distant condition were excluded due to
failure to correctly answer attention manipulation tasks.

Materials and Procedure The methods used in this study
are similar to those used in previous blicket tasks (e.g. Gop-
nik & Sobel, 2000), except that animated video stimuli were
presented online using Qualtrics survey software (similar to
Buchsbaum et al., 2012). Participants were asked to examine
several blocks and determine which blocks are blickets. They
were informed that blickets are blocks that activate the blicket
detector, and were shown a video of an animated blicket de-
tector activating and not activating. Participants then watched
a five-minute animation depicting 20 blocks being consecu-
tively placed onto the blicket detector. If the block was a
blicket, the detector lit up and a sound played. The blocks
were sorted into blicket/non-blicket categories and left on
screen for participants to study.

Whether a block was a blicket depended on specific aspects
of the block pattern. Each block had a coloured background
(red or blue) and several small red or blue triangles in a fixed
pattern (see Figures 1 and 2). The block pattern was such

Figure 1: Examples of blickets in the near condition (left) and
the distant condition (right).

that the background colour was the most obvious and visu-
ally striking feature. For the first 15 blocks (the initial rule-
consistent blocks), the background colour appeared to deter-
mine whether the blocks activated the machine—i.e. blocks
with one background colour consistently activated the ma-
chine, while the others did not. Inspired by an experimental
manipulation in Williams and Lombrozo (2010; 2013), this
was designed to lead participants to an initial causal hypoth-
esis based on the objects’ most salient feature. The final five
blocks (the initial rule-violating blocks), however, violated
this initial hypothesis; the blocks that did and did not activate
the machine had the opposite background colour as before.
Thus participants needed to modify their initial hypothesis to
capture the optimal solution.

The true rule separating blickets from non-blickets var-
ied based on condition. This true rule determined whether
a block was a blicket 100% of the time. In the near condition,
the background colour was related to whether a block was
a blicket, whereas in the distant condition the background
colour was unrelated. Each block had five binary features
(Figure 1), which could vary by colour on each block (back-
ground, corners, centre-left triangle, centre-right triangle, and
border), giving a total of 32 different colour combinations. In
the near condition, blocks were blickets based on a combina-
tion of the background colour and the colour of two secondary
features. In the distant condition, only the colour of these two
secondary features determined whether a block was a blicket,
while the background colour was irrelevant.

Thus, the five features could be labeled as follows: one
primary feature (A), two relevant secondary features (B and
C), and two irrelevant secondary features (D and E). In the
distant condition, the optimal rule for determining whether a
block is a blicket—that is, the simplest rule that perfectly ex-
plains the data—can be written as R = (B == C), whereas
the optimal rule in the near condition can be written as R =
(A ∩ ¬B) ∪ (¬A ∩ ¬C). These rules were designed to seem
arbitrary to naı̈ve participants and minimize the role of the
participants’ prior knowledge. In the near condition, there is a
consistently-improving path of single edits to transition from
the initial hypothesis, R = A, to the correct rule, where a sin-
gle edit consists of adding or subtracting a variable or chang-
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ing an operator (e.g. changing R = A to R = A ∩ ¬B; Good-
man & Tenenbaum, 2008 use a similar approach for searching
a hypothesis space). In the distant condition, the single-edit
path to the correct rule requires edits that initially worsen the
hypothesis (e.g. removing A as a relevant variable). Partici-
pants must therefore ignore the ineffectiveness of these local
edits and keep exploring to find the correct solution. Thus, if
adults use a Bayesian single-edit search process with an ex-
ploit bias, participants should be less likely to abandon R=A,
and thus should perform more poorly in the distant condition,
where R = A is the local optimum.

The lists of blocks seen by participants in the near and dis-
tant conditions were generated randomly with the following
constraints: a) there were ample block feature combinations
that participants did not see, so that they could be tested on
these blocks later, and b) the rules and edit paths conformed
to the specifications in the previous paragraph. Thus, the fi-
nal sets of blocks were as follows: near condition participants
saw 11 blickets (3 initial rule-violating) and 9 non-blickets (2
initial rule-violating), whereas distant condition participants
saw 10 blickets (2 initial rule-violating) and 10 non-blickets
(3 initial rule-violating). The differences in block numbers
were necessary due to the constraints of the conditions.

Following the presentation of all of the blickets, partici-
pants saw a blicket rating task, in which they were asked
to judge whether a randomized series of eight blocks were
blickets. For each block, participants rated how certain they
were that it was, or was not, a blicket, on a seven-point Lik-
ert scale ranging from “definitely a blicket” to “definitely
not a blicket”. Blocks were balanced by background colour,
blicket/non-blicket status, and whether they had already been
presented in the observation stage. Participants received a
score between -3 and 3 for each block based on accuracy and
certainty, and the sum of these scores determined their final
score for this task. Next, participants completed a forced-
choice task, where they chose which of two blocks was more
likely to activate the blicket detector, for a series of four
pairs. Blocks were selected randomly such that there were
an equal number of initial rule-consistent and initial rule-
violating blocks, and blocks in each pair differed from each
other in background colour and whether they were a blicket.
Participants received a point for each correct block judgment.

Afterwards, the participants were asked to describe the
causal rule they had inferred. They were then told to imagine
that a new rule was suggested by a friend, and asked if they
preferred this rule over their own. This rule always repre-
sented the correct causal structure. The purpose of this ques-
tion was to ensure that any differences between the two condi-
tions were not due to participants finding the near rule inher-
ently more plausible or likely than the distant one. The par-
ticipants’ rule preference was measured using a seven-point
scale. Finally, each participant received questions to test their
task comprehension and an instructional manipulation task
to control for inattention, similar to the one used by Oppen-
heimer, Meyvis, and Davidenko (2009).

Results and Discussion If adults’ hypothesis search strat-
egy is exploitation-biased, participants in the near condi-
tion will perform better on both tasks than those in the
distant condition. The results supported our predictions.
For the forced-choice task, a 2x2 ANOVA was run with
condition (distant/near) and rule consistency (initial rule-
consistent/violating) as factors (see Table 1 for a score sum-
mary). Near condition participants outscored those in the dis-
tant condition, F(1, 84) = 6.46, p = .01, MSE = 0.26. Par-
ticipants also scored higher for initial rule-consistent blocks,
than for rule-violating blocks, F(1, 84) = 226, p < .001, MSE
= 0.34. There was no significant interaction effect, F(1, 84) =
0.154, p > .69, MSE = 0.34.

For the blicket rating task, a 2x2 mixed ANOVA (condition
x rule consistency) was run (see Table 2 for a score summary).
The analysis found that participants were much more likely to
confidently identify initial rule-consistent blocks than initial
rule-violating blocks F(1, 84) = 131, p < .001, MSE = 15.32,
suggesting that the salience manipulation was effective and
participants were influenced by the background colour. Sup-
porting our forced-choice results, there was a marginally sig-
nificant effect of condition, F(1, 84) = 3.77, p = .06, MSE =
11.87, with a mean score of 7.51 for the near condition and
4.63 for the distant condition (scores ranged from -24 to 24).

Intriguingly, and unlike in the forced-choice task, there was
also a significant interaction effect, F(1, 84) = 3.34, p = .04,
MSE = 15.32. This is a result of participants in the near con-
dition performing better than those in the distant condition
on initial rule-consistent blocks, but equally poorly on initial
rule-violating blocks. To assess whether this interaction was
due to differences in confidence for some blocks, an addi-
tional 2x2 mixed ANOVA (condition x rule consistency) was
run to investigate participants’ certainty ratings when evaluat-
ing blocks. The analysis showed no main effect of condition,
F(1, 84) = 2.30, p > .13, MSE = 0.69. Mean confidence rat-
ings were relatively near ceiling in both conditions (greater
than 2 out of 3), which may partially explain the lack of a
main effect. However, participants were more certain of their
answers when rating initial rule-consistent blocks than when
rating rule-violating blocks, F(1, 84) = 22.0, p < .001, MSE
= 0.32. There was also a highly significant interaction effect
between condition and rule-consistency, F(1, 84) = 13.1, p
< .001, MSE = 0.32, driven by participants in the near con-
dition having more certainty for initial rule-consistent blocks
than for rule-inconsistent blocks, suggesting that while partic-
ipants in the near condition were better able to correctly cat-
egorize both initial rule-violating and initial rule-consistent
blocks, they were most confident about the latter.

Additional one-sample t-tests examined whether partici-
pants scored better than would be expected by chance. For
the forced-choice task, participants correctly classified blocks
as blickets and non-blickets significantly better than chance
in the near condition, t(42) = 5.82, p < .001, but not in the
distant condition, t(42) = 1.31, p = 0.20. In the blicket rat-
ing task, however, participants classified blocks better than
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Table 1: Mean scores and SE for forced-choice task. Total
scores range from 0 to 4, and scores for initial rule-consistent
and initial rule-violating blocks range from 0 to 2.

Condition Near Distant
Total score 2.53(±0.10) 2.24(±0.12)
Rule-consistent 1.90(±0.08) 1.82(±0.07)
Rule-violating 0.77(±0.13) 0.42(±0.07)

Table 2: Mean scores and SE for blicket rating task. Total
scores range from -24 to 24, and scores in each sub-category
range from -12 to 12.

Condition Near Distant
Total score 8.00(±1.04) 4.87(±1.26)
Rule-consistent 9.59(±0.51) 6.39(±0.72)
Rule-violating -1.59(±1.01) -1.53(±1.06)

chance in both the near condition, t(42) = 7.69, p < .001, and
the distant condition t(42) = 4.13, p < .001. The at-chance
performance of distant condition participants in the forced-
choice task may simply reflect the low number of trials com-
pared to the blicket rating task.

Finally, we looked at participants’ preference for the cor-
rect rule over their own. Participants in the distant condition
significantly preferred the correct friend’s rule over their own
rule, t(42) = 4.78, p < .001, while participants in the near con-
dition did not, t(42) = 1.55, p = .13. Participants in the distant
condition also preferred the friend’s rule significantly more
than those in the near condition, t(75) = 2.09, p = .04. This
supports our hypothesis that participants in the distant con-
dition had not previously considered the distant rule, rather
than that they considered it, but dismissed it as unlikely.

Experiment 2: A priori rule preference
Although the main study compared the extent to which par-
ticipants preferred the correct rule over their own, it did not
examine the rules in both conditions side-by-side. This study
investigated adults’ a priori preference for either the near or
the distant rule without differentiating data. This was to con-
firm that differences in causal learning and rule preference
between conditions in Experiment 1 were not due to an intu-
itive preference for the near rule before seeing any data.

Participants Participants were 51 adult US residents, re-
cruited through Amazon Mechanical Turk (MTurk) and paid
a base rate of $0.50 for their time.

Materials and Procedure As in the previous study, partic-
ipants were told that blickets were blocks that activated the
blicket detector, and saw an animated blicket detector acti-
vating and not activating. Unlike the previous study, how-
ever, participants only saw one block placed on the machine,
causing it to activate. They were then told the two possible

rules, and that both rules accurately described this block, but
that only one rule was the correct rule for identifying blocks
that activate the machine. Participants were asked to choose
which rule they thought was more likely to be correct. These
rules were identical to the near rule and the distant rule from
the previous study, and the blicket that participants saw was
chosen from a set of blocks that conformed to both rules. Fi-
nally, after selecting a rule, participants explained why they
chose that rule and rated their confidence in their decision,
ranging from 1 (just guessing) to 7 (completely certain). This
confidence rating was turned into a score ranging from -7
(completely certain the near rule is correct) to 7 (completely
certain the distant rule is correct) for statistical analysis.

Results and Discussion Of the 51 participants, 22 pre-
ferred the near rule and 29 preferred the distant rule, p = .41,
exact binomial test. A one-sample t-test demonstrated that
the rule preference scores, M = 0.25, SE = 0.50, did not sig-
nificantly differ from chance, t(49) = 0.71, p = 0.48. Thus,
participants did not prefer one rule over the other, suggesting
that it was not an a priori preference for the near rule driving
the results of Experiment 1.

General Discussion
The findings obtained by these studies lend support to
the exploitation-biased search hypothesis. We expect that
exploitation-biased searches of the hypothesis space will be
more likely to discover rules close to the initial hypothesis,
and less likely to discover more distant rules, even if they are
less complex. As predicted, participants were more accurate
at classifying blocks in the near condition than the distant
condition. This is especially notable given that participants
in Experiment 2 found both rules equally a priori plausible,
which supports that the near rule is at least as complex as
the distant rule. This in turn makes it less likely that the dif-
ferences between conditions can be explained by differently-
weighted prior probabilities. Participants performed better in
the near condition, where the true rule was arguably more
complex, but was comparatively easier to discover from the
salient starting point due to the consistently-improving edit
path, than in the distant condition, where the true rule was
simpler, but where the salient rule was a local optimum. This
suggests that adults are searching through their hypothesis
space in an exploitation-biased manner.

Nevertheless, participants were better able to identify ini-
tial rule-consistent blocks than initial rule-violating ones in
both tasks. This suggests that the strength of one’s priors
may still play a role in conjunction with the exploitation
bias. However, this difference in performance suggests in-
triguing future research avenues—in particular, the finding
in the blicket rating task that participants in the near condi-
tion scored higher than those in the distant condition on ini-
tial rule-consistent but not initial rule-violating blocks. This
seems to be driven largely by participants’ relative certainty
toward initial rule-consistent blocks in the near condition,
rather than their accuracy at categorizing the blocks (as mea-
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sured by the forced choice task). Future studies might assess
how nearness to an initial hypothesis affects the certainty of
judgments of causal relationships.

It is still unclear, however, if these difficulties in discov-
ering certain causal relationships are the result of a devel-
opmental process. Consequently, we plan to expand this
study to directly compare adults with children, to examine
whether children possess these same search-related difficul-
ties. If these findings are the result of a developmental shift
toward exploitation-based search strategies, then exploration-
oriented children could perform just as well—if not better—
than adults in tasks such as those in this study. Children
should also perform equally well in both experimental con-
ditions, or perhaps even better in the distant condition than
in the near one. Particularly, this may be the case if children
see the near rule as a priori less likely. When comparing chil-
dren’s and adults’ performance, it may also be useful to note
differences in time spent on each task, as it might generate
additional insights about their hypothesis search process. Al-
though participants in the current studies had unlimited time
to complete each task, timing data were not recorded.

In the future, it may be useful to develop a more explicit
process model to measure hypothesis distance. Although the
near-hypothesis rule is closer to the salient hypothesis, in that
adding and subtracting particular predicates improves the hy-
pothesis toward the correct rule, this may not accurately rep-
resent how individuals process locality. In other words, we
lack a precise model for how people move between rules, and
thus exactly how far R = (B == C) is from R = A, and how
much harder it is to find R = (A ∩ ¬B) ∪ (¬A ∩ ¬C). In fu-
ture experiments, this process model will need to be clarified.

Overall, our results demonstrating that adults are able to
discover a true causal structure nearer to an initial hypoth-
esis more readily than a distant causal structure of equal or
greater complexity provides compelling initial evidence for
an explore-exploit trade-off in causal inferences. This may
help inform future research on how individuals generate new
hypotheses about everyday causal interactions.
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