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Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To system-

atically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 prima-

ry tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in

42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-

specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal

expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle im-

pact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted

and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in

imprinting between genes, individuals, and tissues.

[Supplemental material is available for this article.]

Imprinting is an epigenetic mechanism that leads to parent-of-or-
igin effects via imbalanced expression of maternally and paternal-
ly inherited copies of a gene. It plays a role in several Mendelian
diseases and there is growing evidence for its role in common
diseases as well as cancer. It is a dynamic mechanismwith varying
degrees of monoallelic expression between tissues and develop-
mental stages (Wolf et al. 2008; Kong et al. 2009; Skaar et al.
2012; Lawson et al. 2013; Peters 2014). While previous studies
have catalogued imprinted genes and shed light on patterns and
mechanisms of imprinting, these data are derived from heteroge-

neous sources, often covering only specific loci, tissues, and devel-
opmental stages, especially in humans. Systematic estimation of
differences between tissues and developmental phases are thus
far known mostly from model organisms (Prickett and Oakey
2012).

Effective high-throughput screening of imprinted genes has
been a continuing challenge for the community, due to both the
biological complexity of the phenomenon and technical caveats.
Most of our knowledge about imprinting therefore originates
from special breeding designs in mouse, comparing transcrip-
tion between parthenogenotes and androgenotes (Nikaido et al.
2003; Morison et al. 2005; Ruf et al. 2006) and from transcriptome
sequencing of embryos resulting from reciprocal crosses (Babak19These authors contributed equally to this work.
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et al. 2008; Gregg et al. 2010; Crowley et al. 2015), but some of this
work has been shown to suffer from a high false-positive rate
(DeVeale et al. 2012). This highlights the need to guard against bi-
ological and experimental artifacts when studyingmonoallelic ex-
pression in sequencing data.

In humans, genome-scale approaches have been even more
challenging, since the ideal data sets of large family samples with
allelic epigenome and transcriptome data from multiple tissues
and developmental stages currently do not exist. Sequence-based
computational screens for features characteristic for imprinted
genes (Luedi et al. 2007) have rarely been validated experimental-
ly, and they cannot detect stage-specific or tissue-specific imprint-
ing patterns. Genome-wide scans for epigenetic signatures of
imprinting, such as chromatin marks (Nag et al. 2013) and DNA
methylation (Court et al. 2014) have provided valuable infor-
mation of imprinted loci, but the relationship between parental
epigenetic modifications and monoallelic expression is not fully
known, and the genomic resolution can be low. Additionally,
the tissue diversity in epigenetic studies has been limited. Finally,
the monoallelic expression in imprinted loci can be detected from
allele-specific transcription levels, estimated from hybridization
of both DNA and cDNA to chips (Lo et al. 2003; Pant et al. 2006;
Bjornsson et al. 2008; Morcos et al. 2011; Barbaux et al. 2012),
by allele-specific binding of RNA polymerase II (Maynard et al.
2008), and more recently by analysis of RNA-sequencing data (Li
et al. 2012), which is the approach of this study as well.

In this study, we characterized imprinting in a diverse set of
adult human tissues by examining allele-specific expression (ASE)
data from three studies with mRNA-sequencing (RNA-seq) and ge-
notypedata frompopulation samples (Table 1; Supplemental Table
S1). The Genotype-Tissue Expression data (GTEx) (The GTEx
Consortium 2015) contains 1582 RNA-seq samples from46 tissues
from 178 adult post-mortem donors. The GenCord (GC) data set
(Gutierrez-Arcelus et al. 2013)has three cell types from179 individ-
uals and also methylation array data. The Geuvadis data set (GD)
(Lappalainen et al. 2013) has lymphoblastoid cell line (LCL) data
from 462 individuals (Methods). These data were complemented
by validation data from three tissues of family samples, microflui-
dics-multiplex PCR followed by sequencing, long-read RNA-seq,
and methylation array data. In order to identify imprinted genes
from ASE data, we developed a novel statistical framework that
addresses known biological and technical issues with previous
approaches that might otherwise lead to false positives (DeVeale
et al. 2012). This method and software provides a practical tool
for future analysis of imprinting in systematic large-scale studies
of the imprintome from population-scale RNA-seq data. Together,
these data allowed for characterization of imprinting in an unprec-
edented diversity of adult tissues. In addition to identifying novel
imprintedgenes andcharacterizing tissue specificityof imprinting,
our imprintingmapof adulthuman tissues adds to theunderstand-
ing of imprinting as a biological phenomenon.

Results

We first retrieved RNA-seq allelic counts over heterozygous SNPs
identified from genetic data (Lappalainen et al. 2013). In principle,
imprinting (silencing or repression) of one parental copy will
result inmonoallelic expression of the other copy, and for each in-
dividual, RNA-seq reads would all contain the reference or nonre-
ference allele depending on which allele was inherited from the
expressed parent (Fig. 1A).We analyzed allelic counts via a filtering
and likelihood-based approach based on probabilistic generative

models for the different scenarios of allelic balance, imbalance,
and monoallelic expression (Methods). We modeled and filtered
for confounding factors (Supplemental Table S2; Proudhon and
Bourc’his 2010; DeVeale et al. 2012), including biological process-
es of strong cis-eQTLs (The GTEx Consortium 2015) or nonsense-
mediated decay (Rivas et al. 2015), and technical biases including
genotyping error, phasing error, and allelic mapping bias of RNA-
seq reads (Fig. 1; Supplemental Figs. S2–S4; Lappalainen et al.
2013; Panousis et al. 2014).

Random monoallelic expression (RME) suppresses expres-
sion in one of the two haplotypes of a cell without regard to parent
of origin, and over a heterogeneous collection of cells, both hap-
lotypes are likely to be expressed (Chess 2012). In clonal cell
lines, RME can cause monoallelic expression (Morcos et al. 2011),
and we observed increased clonality (estimated from the X
Chromosome) in a substantial proportion of LCL samples but not
in GTEx primary tissues (Supplemental Fig. S5). To avoid a false
positive call due to the increased clonality, the HM13 gene that
was imprinted only in Geuvadis LCLs was omitted from our list
of imprinted genes. Otherwise, we included LCLs in our analyses
but placed little weight on them in interpretation of the results,
and known RME genes such as antigen and olfactory receptor
genes (Gimelbrant et al. 2007) were filtered from consideration
(Supplemental Fig. S2). These results demonstrate the importance
of primary tissues compared to cell line samples in imprinting
analyses.

Table 1. Tissue abbreviations

Tissue Abbreviation

Adipose - subcutaneous ADPSBQ
Adipose - visceral (omentum) ADPVSC
Adrenal gland ADRNLG
Artery - aorta ARTAORT
Artery - coronary ARTCRN
Artery - tibial ARTTBL
Brain (subregions pooled) BRAIN
Breast - mammary tissue BREAST
Colon - transverse CLNTRN
Esophagus - mucosa ESPMCS
Esophagus - muscularis ESPMSL
Cells - transformed fibroblasts FIBRBLS
Fallopian tube FLLPNT
Heart - atrial appendage HRTAA
Heart - left ventricle HRTLV
Kidney - cortex KDNCTX
Cells - EBV-transformed lymphocytes LCL
Liver LIVER
Lung LUNG
Muscle - skeletal MSCLSK
Nerve - tibial NERVET
Ovary OVARY
Pancreas PNCREAS
Prostate PRSTTE
Pituitary PTTARY
Skin - not sun exposed (suprapubic) SKINNS
Skin - sun exposed (lower leg) SKINS
Stomach STMACH
Testis TESTIS
Thyroid THYROID
Uterus UTERUS
Vagina VAGINA
Whole blood WHLBLD
Geuvadis-LCL GD-LCL
GenCord-LCL GC-LCL
GenCord-T cell GC-TCELL
GenCord-fibroblast GC-FIBRBLS

Baran et al.

928 Genome Research
www.genome.org



To identify genes with a pattern ofmonoallelic expression in-
consistent with technical or biological factors other than imprint-
ing, we looked for strong monoallelic expression that is consistent
among individuals, evenly distributed between reference and non-
reference alleles across different individuals, and occurs in genes
that lack strong eQTLs and known RME. We focus on imprinted
genes with (nearly) full silencing of one allele instead of those
with “partial imprinting” or heterogeneous imprinting between
individuals (Fig. 1C; Wolf et al. 2008; Morcos et al. 2011). We
chose conservative criteria in order to minimize false positives
that would affect downstream analysis of properties of imprinted
genes, and thus the main list of imprinted genes analyzed in this
paper should not be considered to represent a full catalog of im-
printed genes in humans. In addition to the genes that passed
our strict criteria, we provide a complete catalog of evidence for im-
printing in all genes studied. We cannot exclude a nonparental
reason for monoallelic expression in novel imprinted genes that
were not covered by our family validation data (see below), and
these genes should thus be considered putatively imprinted. For
the sake of brevity, we refer to all genes expressed in a putatively
imprinted manner as imprinted.

After removing genes with sparse data (Methods), we were
able to analyze 19,156 genes.We first classified genes as imprinted
(IMP), biallelic (BI), or unknown (UN) in each of the GTEx tissues
with >35 samples, GC, and GD data sets (Supplemental Table S1).
The genes identified as IMP in at least one tissue were then fur-
ther classified in all the tissues and data sets as consistent with
imprinting (cIMP) or consistent with biallelic expression (cBI) ac-
cording to nonsignificant but consistent patterns. Finally, degree
of monoallelic expression was quantified by a parameter τ, the av-
erage ratio of the higher expressed allele to the total read count

over all SNPs and individuals. Previously
identified imprinted human genes and
their maternal/paternal expression were
obtained from the Otago database (Mori-
son et al. 2001) and other sources (Sup-
plemental Text). Furthermore, since the
human gene annotation is not perfect,
for all novel imprinted genes wemanual-
ly verified that coverage and splicing
in RNA-sequencing data was consistent
with annotated genes, rather than am-
biguous transcription in the locus.

Identification of imprinted genes

We identified 42 likely imprinted genes
in 27 loci (Table 2; Fig. 2; Supplemental
Tables S3–S6; Supplemental Data S1, S2;
Supplemental Figs. S6, S7) after removing
five genes that failed quality control (see
below and Supplemental Text). Of these
genes, 26 and four have confident or pro-
visional previous evidence of imprinting,
respectively (Supplemental Tables S3,
S6), including well-known loci in Chr
11 with IGF2 and H19, and the Prader-
Willi syndrome-associated locus in Chr
15 with multiple imprinted genes. Of
the 12 novel genes, LPAR6, MEG9, and
SNHG14 are within previously known
imprinted loci. Overall, the expression

and imprinting of novel loci are restricted to fewer tissues, which
may explain why they have not been previously detected (Supple-
mental Fig. S8). Of our 42 genes, 19 have been described as im-
printed in the mouse, although sometimes with an inconsistent
tissue-specific pattern between the two organisms (Supplemental
Fig. S9; Morison et al. 2001).

Of 107 previously identified confidently imprinted genes in
humans according to the Otago database (Morison et al. 2001),
28 genes lacked data in our analysis, including 12 small RNA
genes that cannot be analyzed from mRNA data (Supplemental
Table S6; Supplemental Data S3, S4). Of the remaining 79 genes
with data, 26 and 20 are imprinted or consistent with imprinting
in≥1 tissue, respectively. However, asmany as 31 geneswere never
consistent with imprinting andwere classified as biallelic in≥1 tis-
sue (Supplemental Table S6; Supplemental Figs. S10, S13C). The
lack of support for imprinting status in our data can be due to sev-
eral factors: the catalogs are derived from heterogeneous sources
and can include some false positives, the imprinted tissue may
not be present or well covered by our data, and early developmen-
tal phases are not captured in our adult samples. One example of
these patterns is the complex GNAS locus that has been reported
to have cell-type specific imprinting (Bastepe 2007), and thus
themixture of cell types in theGTEx tissues, lack of the key tissues,
and inability to distinguish overlapping transcripts can contribute
to the biallelic expression signal. Some genes, such as CDKN1C,
COPG2, and DLX5 have too low a coverage for proper analysis.
We also do not classify highly heterogeneous genes such as RB1
as imprinted, since only a fraction of individuals shows mono-
allelic expression. Altogether, our results suggest that previous cat-
alogs of human imprinting imperfectly capture imprinting in
adults.

A

D E

B C

Figure 1. Examples of allelic expression patters. In panels A and B, each dot represents RNA-seq hap-
lotype counts of an individual, summed up over phased heterozygous sites across the gene, and in C–E,
each dot is a SNP in an individual. (A) The strong monoallelic expression of DLK1 supports its previously
known status as an imprinted gene. (B)MEST is almost fully imprinted in lung but biallelic in testis. (C) In
PAX8, some individuals show (nearly) monoallelic expression, while others are biallelic. It is an example of
a gene that has been excluded from our list of imprinted genes due to the high heterogeneity of allelic
expression, which could be due to variable imprinting, cis-regulatory variants, or other effects. (D)
MAP2K3 in Geuvadis LCLs has substantial monoallelic expression without additional genotype quality fil-
ters on 1000 Genomes data. In fact, many of the SNPs are likely to be truly homozygous, since they fail
the HWE test, and are removed from the final analysis. (E) UQCRFS1 in Geuvadis LCLs shows a pattern
where all monoallelic sites have only the alternative allele present. This pattern is not consistent with im-
printing, and the gene will be filtered out by the “flip test” requiring observation of monoallelic expres-
sion of both alleles.

Imprinting across human tissues
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In addition to the 42 genes that passed our strict criteria of im-
printing, we identified 30 genes with suggestive signs of imprint-
ing (Supplemental Table S4), of which DLGAP2, GPR1, LRRTM1,
and RTL1 are previously implicated imprinted genes in human
or mouse. In addition to genes on this list, several genes have
heterogeneous patterns of monoallelic expression between indi-
viduals, which can indicate true inter-individual variation in im-
printing, uneven mixture of cell types with imprinting and
biallelic expression, or other effects such as eQTLs, NMD, or other
confounders. Examples of such genes include TPO, PAX8,
CACNA1H, DNAH17, ERICH1, EVC, NUDT12, POU5F1, SCRN1,
AC096579.7, SERPINA5, and FAM118A.

Validation of imprinted genes

To validate parental inheritance of monoallelic expression, we
used familial exome and RNA-seq data from 10 trios with RNA-
seq data from whole blood and nasal epithelium and six trio/duo
families with RNA-seq data from muscle. We required at least

80% of RNA-seq reads from the respec-
tive allele for classification as maternal-
ly/paternally expressed.

Imprinting in these family data sets
was generally consistent with the respec-
tive GTEx tissues, with the exception of
KCNQ1 inmuscle, awell-known imprint-
ed gene that is biallelic in the muscle trio
data but monoallelic in GTEx and sup-
ported by higher maternal than paternal
expression nasal epithelium trio data (P
< 0.008). Its variable imprinting in GTEx
data suggests that the differences may
be driven by biological variation between
the specific cell typesor individuals in the
two data sets. We also found evidence
of imprinting in the PSCA gene in nasal
epithelium, which was borderline sig-
nificant in the GTEx tissues colon (trans-
verse), prostate, and stomach. Several
HLA-DR and HLA-DQ genes were mono-
allelic in both GTEx and family samples.
These genes and other known suspects
for random monoallelic expression were
excluded from final analysis (see above
and Methods), and indeed, the family
data did not show consistent parental
direction of monoallelic expression. The
previously identified provisional gene
NLRP2 (Bjornsson et al. 2008) hadmono-
allelic expression in both whole blood
and nasal epithelium but contained
bothmaternallyexpressed andpaternally
expressed individuals and was therefore
removed from downstream analyses.

Overall, the family validation data
confirmed imprinting of 11 genes, in-
cluding previously provisional ZNF331
and novel UTS2 (Supplemental Table
S7). In tissues and genes lacking famil-
ial validation data, parental origin of
monoallelic expression is not confirmed,
and thus the previously uncharacterized

genes with monoallelic expression in our data should be consid-
ered candidate imprinted genes that need future validation.

Allelic ratios from RNA-seq data are often derived from rela-
tively low read counts, and so we sought to validate the ratio esti-
mates by mmPCR-seq (Zhang et al. 2014) assays for 89 SNPs in 23
genes, which yielded amedian read coverage of 647. The allelic ra-
tios were consistent overall (rho = 0.81 for sites with ≥8 reads)
(Supplemental Fig. S11), as well as separately for each gene (data
not shown). For further validation of transcript structure and cor-
rect read alignment, especially of the novel/provisional genes, we
examined GTEx strand-specific long-read RNA-seq data (2 × 250
bp) in 34 samples from five individuals (Supplemental Fig. S7).
Monoallelic expression in ASE data was fully concordant with the
original data (rho = 0.99 for sites with≥20 reads) (data not shown),
which indicates that lackof strand informationandallelicmapping
bias are unlikely confounders in the primary results. However, four
genes were removed based on ambiguous annotation, and INPPF5
was reclassified as INPPF5_V2. Other genes were consistent with
the initial analysis (Supplemental Text; Supplemental Fig. S7).

Table 2. Imprinted genes detected in this study, with the number of tissues in each category
of imprinted or biallelic expression

Imprinted
Consistent

with imprinted Biallelic
Consistent
with biallelic Ambiguous

Total
tissues

with data

CPA4 2 1 8 4 2 17
CST1 1 2 0 3 0 6
DIRAS3 2 15 0 7 3 27
DLK1 7 3 0 1 1 12
FAM50B 11 25 0 1 0 37
GRB10 1 0 28 3 1 33
H19 30 4 0 1 0 35
IGF2-AS 1 7 0 4 0 12
IGF2 21 4 3 2 3 33
INPP5F_V2 3 0 23 10 0 36
KCNQ1 10 4 13 3 6 36
KIF25 1 0 0 7 0 8
L3MBTL1 20 6 0 1 4 31
LPAR6 3 0 6 25 0 34
MAGEL2 1 5 0 1 0 7
MAGI2 2 1 20 9 0 32
MEG3 30 3 0 0 0 33
MEG8 4 7 0 0 0 11
MEG9 5 20 0 0 2 27
MEST 7 12 2 8 4 33
NAP1L5 19 14 0 0 0 33
NDN 4 25 0 0 0 29
NTM 1 0 11 11 0 23
PEG10 13 13 0 1 3 30
PEG3 24 7 0 1 0 32
PLAGL1 28 3 3 0 0 34
PPIEL 4 20 1 3 7 35
PRSS50 1 3 2 16 0 22
PWRN1 3 6 0 1 0 10
RP11-

7F17.7
1 4 2 2 2 11

SGK2 1 8 7 4 3 23
SNHG14 29 7 0 1 0 37
SNRPN 31 5 0 0 1 37
SNURF 25 8 0 1 0 34
SYCE1 1 9 0 10 1 21
THEGL 1 3 1 0 0 5
UBE3A 1 1 11 18 0 31
UGT2B4 1 1 0 1 1 4
UTS2 2 2 0 11 1 16
ZDBF2 21 11 0 2 0 34
ZNF331 13 1 7 13 2 36
ZNF597 4 23 1 1 0 29
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Tissue map of imprinted genes

The multitissue data of this study provides an unprecedented op-
portunity to examine the tissue specificity of imprinting. The
total number of imprinted genes in different tissues is similar,
with the exception of a lower number of imprinted genes in testis,
especially of paternally expressed ones (Bonferroni-corrected Fisher
P = 2.4 × 10−4 for comparison of cIMP+ IMP and cBI + BI) (Supple-
mental Fig. S12). GTEx testis samples have up to 60–70% of germ-
line cells (The GTEx Consortium, pers. comm.), which suggests
that the pattern is driven by removal of parental marks and the es-
tablishment of new, paternal marks in male germline cells in a pro-
cess that may differ for maternally and paternally expressed genes.

We find that 34 of our 42 genes were biallelic in at least one
tissue (Supplemental Fig. S13). Most of the imprinted genes we
identified were imprinted in the vast majority of the tissues,
some were imprinted in only one or two tissues, and few were in-
termediate. This U-shaped pattern is consistent with a previous
suggestion in mouse (Prickett and Oakey 2012) and the pattern
of tissue specificity of regulatory variants and gene expression
(TheGTExConsortium2015).Maternally expressed genes showed
a putative trend of being imprinted in fewer tissues than paternal
ones (P = 0.062 from 100,000 permutations of parental labels) (Fig.
3A). Nearly all the genes had consistent imprinting patterns across
the 13 brain subregions, but L3MBTL1 appears biallelic in some
subregions and imprinted in others (Supplemental Fig. S14).

We find two imprinted genes with different parents-of-origin
in different tissues. The growth regulatory gene IGF2 is one of the
most famous imprinted genes, implicated in various disorders,
and canonically considered to be paternally expressed in most tis-
sues and biallelic, e.g., in liver (Bergman et al. 2013). Our data
shows—for the first time—that the human brain consistently ex-

presses theopposite allele thanother tissues, indicatingmaternal ex-
pression (Fig. 4; Supplemental Fig. S15). Other genes in the locus, in
particular H19, that has been thought to be expressed from the
opposite allele of IGF2, do not show a corresponding change in
the expressed allele. Furthermore, our observation raises the ques-
tion if the reported biallelic expression in the brain subregions lep-
tomeninges and choroid plexus (Ohlsson et al. 1994) could be a
result of mixture of maternally and paternally expressing cells.
The Database of Transcriptional Start Sites (Yamashita et al. 2012)
does not indicate differentTSSs for IGF2 inbrain versus other tissues,
even though a different TSS can be seen for the biallelically ex-
pressed liver (data not shown). Another gene with tissue differences
in the expressed allele is GRB10, where imprinting is known to be
transcript- and tissue-specific, with reported paternal expression in
brain and maternal in placenta (Blagitko et al. 2000; Monk et al.
2009). We observe that muscle and blood display biallelic expres-
sion that is imbalanced towards the opposite allele than in brain,
suggesting partialmaternal expression, possibly driven by differenc-
es in transcript choice between tissues (Supplemental Figs. S16, S17).
The GRB10 result in particular demonstrates how analysis of multi-
ple tissues from the same individual yields very high resolution to
detect even small effects of tissue specificity of the imprinted allele.

Imprinting also exhibits inter-individual variation. Reliable,
in-depth quantification of variable imprinting in the absence of
family data would be very challenging due to confounding by,
e.g., rare genotyping errors, eQTLs, and variation in cell-type com-
position, and as discussed above, ourmethod deliberately removes
genes with substantial variation to avoid false positives. However,
after strict filters, a few genes in theGTEx data show suggestive var-
iation between individuals (Fig. 3C; Supplemental Fig. S18). To an-
alyze its potential causes, we correlated imprinting levels (τ) per
individual with age and sex. In skeletal muscle, a tissue with pro-
nounced gender differences in anatomy, males show a signifi-
cantly higher level of imprinting (τ) than females (Bonferroni-
correctedMann-Whitney U test P = 0.013), especially in growth re-
pressors ZNF331 and ZDBF2 (Fig. 3B; Supplemental Fig. S19). This
shows that parental effects from imprinting can differ between
genders, but the phenomenon does not appear very widespread.
Donor age did not correlate with imprinting, with the caveat
that only adult samples are included in the GTEx study.

Expression and methylation of imprinted genes

Expression levels of our 42 imprinted genes were higher in tissues
with a role in endocrine metabolism (Supplemental Fig. S20),
which is consistent with imprinted genes often being growth reg-
ulators (Skaar et al. 2012; Lawson et al. 2013). Without dosage
compensation, silencing of one allele via imprinting should halve
expression levels (Susiarjo et al. 2013). However, we observe no
trend of lower expression levels in tissues where the genes are im-
printed, versus biallelic (P = 0.80 from a paired Mann-Whitney U
test for gene expression median RPKM) (Fig. 3D; Supplemental
Fig. S20), which suggests that other regulatory mechanisms than
imprinting have major impacts on tissue-specific expression lev-
els. We found no significant correlation betweenmaternal and pa-
ternal imprinting and differential expression between males and
females (Supplemental Fig. S22).

Allele-specific methylation of differentially methylated re-
gions (DMRs) is the primary epigenetic mechanism of imprinting,
controlling monoallelic expression (Supplemental Fig. S6; Skaar
et al. 2012; Court et al. 2014). Analysis of the methylation array
data in the GenCord data set showed that imprinted genes had a

Figure 2. Imprinting across tissues for the 42 genes detected as imprint-
ed. The color denotes τ, the average ratio of the higher expressed allele to
the total read count. See Table 1 for tissue abbreviations. (∗∗) Previously
confidently imprinted genes, (∗) provisionally identified imprinted genes.
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significant enrichment of semimethylation (mid-range methyla-
tion proportion of 0.3≤ β≤ 0.7) both in their promoters and gene
bodies, with an even stronger signal in the known DMRs (Supple-
mental Fig. S23; Court et al. 2014). However, since methylation
array data does not provide data of allelicmethylation, distinguish-
ing DMRs and putative imprinting control regions is challenging.
This is demonstrated by examples of methylation landscapes in
the imprintedMEST and SNRPN loci, with highly variable patterns
(Supplemental Fig. S24). Thus, although epigenetic studies are im-
portant for understanding molecular mechanisms of imprinting,
detecting imprinted genes from methylation array data alone
(Smith et al. 2003) would be difficult, highlighting the value of al-
lelic expression analysis from RNA-seq data and future large-scale
bisulfite-sequencing studies where allelic methylation can be dis-
tinguished (Kuleshov et al. 2014).

Discussion

Although imprinting was discovered 30 yr ago (McGrath and
Solter 1984; Surani et al. 1984), many of its properties still remain
unclear. This study is the first systematic multitissue survey of the
imprintome in humans, providing an important resource to the
genetics community with many advantages over candidate gene-
based data and analysis. Our novel approach to detect imprinting

from RNA-sequencing data is more pow-
erful and robust than earlier methods by
utilizing genotype data, analyzing genes
instead of individual SNPs, explicitly ac-
counting for different sources of false
positives, and allowing partial and vari-
able imprinting between individuals
and tissues. Analyzing a large number
of samples provides powerful ways to fil-
ter for many sources of error that may
cause monoallelic expression only in
one or few individuals (Castel et al.
2015). Given that large collections of
family samples from a wide variety of tis-
sues do not currently exist, our approach
that can utilize diverse RNA-sequencing
data from projects such as GTEx provides
unprecedented data of imprinting.

We would also like to point out the
limitations of our approach and future
directions for analysis of imprinting in
humans. First, imprinting results from
population-based analysis need to be val-
idated in large-scale family-based data to
(1) formally prove that detected effects
are truly parental and not driven by tech-
nical or biological confounders, (2) allow
detection of subtle imprinting that does
not lead to (nearly) monoallelic expres-
sion, and (3) enable formal analysis of
sensitivity versus specificity. Our ap-
proach is conservative because we priori-
tized a low number of false positives, but
it is likely to miss some true effects in-
cluding any heterogeneously imprinted
genes. The quality of previous catalogs
of imprinted genes is not well known,

since the same sources of error can replicate in several studies.
Monoallelic but nonparental expression of NLRP2 is a good exam-
ple of an apparently false-positive signal picked up by multiple
studies. We anticipate that large family data sets will eventually al-
low joint models to quantify genetic, epigenetic, and technical
sources of allelic expression.

Standard RNA-sequencing data from tissue samples has its
limitations as well. Our poly-A-mRNA data does not capture
many noncoding RNAs, and in some loci, the lack of strand infor-
mation and long reads covering full transcripts limits resolution.
Furthermore, the RNA samples are derived from tissues that are
mostly unknown mixtures of different cell types. This can poten-
tially affect estimates of variation between tissues and between in-
dividuals. Future analysis of imprinting in specific cell typeswill be
of importance to profile the cell-type specificity of imprinting.
Finally, the low sample size in many tissues in the GTEx pilot
data set and low RNA-seq coverage of lowly expressed genes limits
the statistical power.

While many studies have characterized imprinting in early
development and its functional role, for example, in placental
function and fetal growth, our results shed light on patterns of im-
printing in adults, whichhave been shown tohave functional con-
sequences as well (Ubeda and Gardner 2011; Dent and Isles 2014).
The patterns of imprinting discovered in this study provide addi-
tional empirical data for evaluating theories for evolutionary

A B

DC

Figure 3. Variation in imprinting. (A) The number of tissues in which genes are imprinted or biallelic for
maternally and paternally expressed genes. (B) Sex-specific imprinting in muscle, where females have
lower median τ than males, measured across all genes identified as imprinted in muscle. Each data point
corresponds to an individual. (C) An example of variation of imprinting between individuals in ZNF331,
with color denoting τ (see Fig. 2). (D)Median expression level of genes in tissues where they are imprinted
versus biallelic (see also Supplemental Fig. S20). Only genes with both imprinted and biallelic tissues are
shown.
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causes for imprinting (Bartolomei and Ferguson-Smith 2011;
Patten et al. 2014). While our aim was not to catalog all imprinted
genes in humans, the modest number of confidently imprinted
genes suggests that estimates of hundreds of imprinted genes
may be inflated. However, our results demonstrate how a deep sur-
vey of diverse human tissues can still uncover novel genes not cap-
tured by previous studies. Additional assays to characterize
molecularmechanismswill be important to obtain a complete pic-
ture of imprinting in these loci and themechanismsof its variation
across tissues and developmental stages. Finally, in addition to the
intriguing evolutionary andmolecular aspects, imprinting has im-
portant consequences in disease. Better models of parent-of-origin
effects can improve the power of genome-wide association studies
(GWASs), and rare variant studies should consider the possibility
that heterozygous recessive variants are exposed by monoallelic
expression.

Methods

Population-scale RNA-sequencing samples

The primary data used in this study come from three stud-
ies (Gutierrez-Arcelus et al. 2013; Lappalainen et al. 2013; The
GTEx Consortium 2015), summarized in Supplemental Table S1.
The GTEx data are in dbGaP (http://www.ncbi.nlm.nih.gov/
gap) under accessions phs000424.v3.p1, phs000424.v5.p1, and
phs000424.v6.p1. Briefly, theGTEx samples are collected fromvar-
ious tissues of post-mortemdonors. In this analysis, we used 11 tis-
sues with >35 samples, of which the brain sample is pooled by
summing up the reads from different brain subregions per individ-
ual. While the GTEx samples have the advantage of being
from primary tissues, they often contain multiple cell types, the
proportion of which can vary between samples. All the GTEx sam-
ples are fromadults,with the same age distribution inmales and fe-
males. The testis samples are estimated to have up to 60–70% of
germline cells (The GTEx Consortium, pers. comm.), and they are
collected from 13 testis donors with a median age of 54. The
Geuvadis RNA-seq data is from lymphoblastoid cell lines of the
1000 Genomes samples (Lappalainen et al. 2013); it is of note
that some of the cell lines are tens of years old and have gone

through a high number of passages. The Geuvadis data, including
the processed ASE data, are available in ArrayExpress (http://www.
ebi.ac.uk/arrayexpress/) under accession E-GEUV-1. We also used
data from the GenCord project (Gutierrez-Arcelus et al. 2013) of
three cell types; themain advantage of this data set is the availabil-
ity ofmethylation data (see below). TheGenCorddata are available
in the European Genome-phenome Archive (https://www.ebi.ac.
uk/ega/) under accession EGAS00001000446.

Genotype data

The genotype data is summarized in Supplemental Table 1, and a
full description is available in the respective papers. Briefly, the
GTEx genotypes are based on the Illumina Omni 5M SNP array
and imputed using 1000 Genomes Phase 1 as the reference (The
1000 Genomes Project Consortium 2012). Additionally, we re-
moved heterozygous sites in the imputed data that were called ho-
mozygous in exome sequencing data. The Geuvadis data for 421
samples is from the 1000 Genomes Phase 1 release. For 41 samples
in Geuvadis, and all GenCord samples, we imputed Illumina
Omni 2.5M SNP array genotypes with the 1000 Genomes Phase
1 data. Only SNPs are used in the analyses of this study, and all
the genotype data in this study are phased as in the original
studies.

RNA-seq data

The GTEx and Geuvadis mRNA-seq data are from Illumina HiSeq
sequencing of 75-bp paired-end reads at the median coverage of
45Mand 80Mmapped reads, respectively. TheGenCordmRNA-se-
quencing data are 50-bp paired-end data from Illumina GAII and
HiSeq with a median coverage of 34M reads. GTEx data were
aligned with TopHat (Trapnell et al. 2009), Geuvadis data with
GEM (Marco-Sola et al. 2012), and GenCord data with BWA (Li
and Durbin 2009), and gene expression level quantifications
were obtained from the original studies. Gencode v12 annotation
and its gene nomenclature are used, with the exception of separat-
ing INPP5F_V2 as its own gene. Further details are available in the
respective papers.

Validation data

In order to determine which of the parental haplotypes is ex-
pressed in the imprinted loci and to replicate the allele-specific
expression in the imprinted genes, we examined RNA-seq data
from three tissues in two different family cohorts with a total
of 16 trios/duos. To validate monoallelic expression, we analyzed
targeted mmPCR-seq and stranded long-read RNA-seq data (2 ×
250 bp) from GTEx samples, and to characterize the relationship
between imprinting and methylation, we examined methylation
chip data from theGenCord study. A complete description of these
data is provided in the Supplemental Text. The whole exome data
from the muscle disease families can be found in dbGaP under ac-
cession phs000655.v1.p1.

Method overview

The identification of imprinted genes from RNA-sequencing and
genotyping data in unrelated individuals is a specialized search
for monoallelic expression. Complete monoallelic expression is,
in principle, straightforward to infer. RNA-seq reads covering a
heterozygous SNP will all have the reference allele and never the
alternate allele or vice versa. Consider an individual with an
A/T genotype, where the A was inherited paternally and the T

Figure 4. Tissue differences in the expressed allele. The figure shows
comparison of the reference allele ratios of the same SNPs in the same in-
dividuals in brain andmuscle. ZDBF2 is an example of the typical pattern of
the same expressed allele in the two tissues; in IGF2, brain expresses a dif-
ferent allele thanmuscle, andGRB10 is strongly imprinted only in brain but
has a slight signal of muscle expression from the opposite allele than in the
brain. All the correlations are significant (p < 0.005).
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was inheritedmaternally. In a paternally imprinted/maternally ex-
pressed gene, which exhibits complete monoallelic expression, all
reads overlapping this A/T SNPwill contain the T allele. This idea is
the underlying principle for our approach.

There are several complicating and potentially confounding
factors that prevent identification of imprinted genes via a direct
search for complete monoallelic expression (see Supplemental
Table S2 for a summary). These factors fall into two categories,
functional and technical, which we describe in detail and address
via specific filtering and statistical modeling approaches. The
functional category consists of biological factors that complicate
identification of imprinted genes. The most important of these
factors is partial imprinting, in which there are parent-of-ori-
gin-based differences in expression of the two copies of the
gene, but neither is completely silenced. In the example above,
this would result in modest expression of the A allele in the
A/T SNP (see, for example, the expression of INPP5F_V2 in fib-
roblasts) (Supplemental Fig. S1). Partial imprinting has been pre-
viously documented (Wolf et al. 2008; Morcos et al. 2011).
Without knowledge of the parental inheritance pattern, there is
a limit to how partial the imprinting can be before it is undetect-
able with unrelated individuals, as we are attempting in this
work.

The other functional factors include common cis-regulatory
variants (expression quantitative trait loci or eQTLs), nonsense-
mediated decay (NMD), and random monoallelic expression, all
of which are alternative biological mechanisms that could give
rise to monoallelic expressions. Regulatory variants in cis cause
haplotypes carrying different alleles to be higher- or lower-ex-
pressed but only in individuals heterozygous for the variant,
and the effect size is rarely strong enough to cause monoallelic ex-
pression (Supplemental Fig. S3; The GTEx Consortium 2015).
Nonsense-mediated decay is a mechanism that decays transcripts
that carry a premature stop codon—and again individuals who
are heterozygous for a nonsense variantmay showmonoallelic ex-
pression—but such variants typically have very low population
frequencies (Rivas et al. 2015). In RME that affects some genes of
the immune system, olfactory receptors, and some other gene cat-
egories, one gene copy is randomly silenced per cell (Gimelbrant
et al. 2007; Eckersley-Maslin and Spector 2014). As an illustration
of the latter type, Supplemental Figure S2 exemplifies the monoal-
lelic expression created by RME. If other, as yet unknown, mecha-
nisms for inducing monoallelic expression exist, they could also
confound our approach.

The technical category consists of experimental artifacts that
lead to interpretation of monoallelic expression when the gene is,
in fact, biallelically expressed. These include genotyping errors, se-
quencing errors, mapping errors, and phasing errors. If an individ-
ual is homozygous but incorrectly genotyped as heterozygous, all
RNA-seq reads will contain only one allele and the individual will
appear to exhibit monoallelic expression. Sequencing errors may
result in the appearance of heterozygous genotypes in the RNA-
seq reads in a truly monoallelic, imprinted locus. Mapping errors
refer to the incorrect alignment of RNA-seq reads. This could result
in both heterozygous reads appearing in a monoallelically ex-
pressed site and vice versa, but themost difficult errormode for im-
printing analysis is allelic mapping bias in sites where RNA-seq
reads carrying the reference allele align correctly but the nonrefer-
ence reads do not, causing false allelic bias (Degner et al. 2009;
Panousis et al. 2014). Finally, phasing errors can result in the incor-
rect appearance of biallelic expression when combining informa-
tion across multiple SNPs in the same gene. Our approach

addresses each of the elements via filtering and statistical model-
ing steps.

Filtering steps

The input to ourmodel is the genotypes (genotyped and imputed)
of each individual and the counts of RNA-seq alleles overlapping
each SNP in each individual.We first apply a series of filtering steps
to address several of the technical and functional confounders de-
scribed above. These include filtering RNA-seq reads according to
quality, all SNPs with a Hardy-Weinberg P-value < 10−3, SNPs in
genes where an individual is heterozygous for a premature stop co-
don, and most importantly, all SNPs failing our “flip test,” which
verifies that the pattern of monoallelic expression is consistent
with imprinting: We assume that with imprinting, the reference
or alternative alleles are independent of parent-of-origin, and
therefore themonoallelically expressed allele in a given individual
has an equal probability of being either of them.Genotyping error,
RNA-seq sequencing error, eQTLs, and allelic bias in RNA-seqmap-
ping are unlikely to flip randomly between the alleles and will,
therefore, fail this test. We observe that this filter removes many
genotyping and mapping errors. Figure 1E depicts an example of
a gene that shows signs of imprinting before the flip test is applied
but not afterwards.

Statistical model

We model the status of a gene in a given individual and tissue as
being classified into one of three allelic expression classes:

(a) BAL (balanced) The gene is expressed biallelically and evenly
from both gene copies.

(b) IMB (imbalanced) The gene exhibits allelic imbalance, i.e., one
gene copy has a moderately higher expression level than the
other. Such imbalancemay result, for example, from an eQTL.

(c) IMP (imprinted) The gene exhibits imprinting, i.e., one gene
copyhas a considerably higher expression level than the other,
potentially depending on the parental origin.We assume that,
in this scenario, one of the copies is nearly completely silenced.

Each allelic expression class is characterized by a beta distribu-
tion, from which the levels of allelic imbalance are drawn for the
relevant heterozygous sites; by the level of imbalance, we refer to
the expected fraction of read counts generated from the overex-
pressed allele out of the total counts for that site. In balanced
genes, this fraction will be close to 0.5, while in imprinted genes,
close to 1. Given the expression class, our model assumes that
the allele counts of the gene’s heterozygous sites in a given individ-
ual are generated as follows:

1. The levels of allelic imbalance are drawn from the relevant beta
distribution, independently for each site. We assume indepen-
dent sampling, as opposed to a constant imbalance level along
the gene, so as to account for isoform-specific silencing, splic-
ing QTLs, and other biological effects that may cause inconsis-
tency in allelic expression patterns in proximal sites, as well as
for overdispersion due to technical artifacts.

2. For the imbalanced and imprinted classes, the identity of the
overexpressed haplotype is randomly drawn; each haplotype
may be overexpressed with a probability of 0.5.

3. If phasing was perfect, all the overexpressed alleles would re-
side on the same haplotype and all the underexpressed on
the other. In reality, phasing errors are common, and to
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account for them, the identity of the overexpressed allele is
flipped with probability Pp = 0.2, independently for all sites.
As a result, our model utilizes phasing information but also
maintains power in cases where standard phasing errors occur.
In the presence of abnormally frequent phasing errors, the
method will lose power.

4. Finally, given the allelic imbalance level, the identity of the
overexpressed allele and the total count data in a given site,
the reference allele counts are drawn from the corresponding bi-
nomial distribution.

The above steps provide a complete generative model for the
allele count data given the total read counts, the genotypes, and
the phasing information. A full description of the model, as well
as the procedure for estimation of the beta parameters, appears
in the Supplemental Material.

Characterization of imprinting status

Using thismodelwe compute, for every tissue, a set of per-gene sta-
tistics over all individuals, as well as per-gene, per-individual statis-
tics. These statistics are used to classify the gene into each of
the categories of expression: balanced, imbalanced, and imprint-
ed. In order to reduce the possibility of false positives, stringent
thresholds are used, and thus it is likely that additional imprinted
genes are excluded from our final list. For genes with external
evidence of imprinting from previous studies, we used a relaxed
threshold. Novel putatively imprinted genes meeting a relaxed
threshold are summarized in Supplemental Table S4. Genes with
evidence of heterogeneity between individuals were removed.
All statistics for all genes are provided in Supplemental Table S5
for comparison with other existing and future studies. The full
details of computation of the provided statistics are given in the
Supplemental Material.

Simulations

In order to examine the edge properties of ourmethod,we simulat-
ed read-count data for 1000 genes for five individuals and two
SNPs. We simulated an average read depth of 8, 16, 50, 100, 200,
and 500 reads and a degree of imprinting (i.e., allelic imbalance
ratio) of 0, 0.01, 0.025, 0.05, 0.075, 0.10, 0.15, 0.2, 0.25, 0.3, 0.4,
and 0.5, with 0 being complete monoallelic expression and 0.5
being complete biallelic expression. Phasing and genotyping er-
rors were included according to the parameters described in the
Supplemental Material.

We observed that for five individuals and two SNPs, our min-
imum requirement for attempting to classify a novel gene, no in-
dividuals were classified as imprinted at a read depth of 200 at
any imbalance level, although they were all classified as putatively
imprinted at a read depth of 16 and a degree of imprinting≤0.1. At
a read depth of 500, all individuals were classified as imprinted
when the degree of imprinting was ≤0.025. This demonstrates
the conservative nature of our test and the amount of evidence re-
quired for de novo classification of imprinting when five individ-
uals and two SNPs are present. It also shows the potential formany
of the genes in our putatively imprinted list (Supplemental Table
S4) to be confirmed as imprinted in future studies.

Software availability

The software implementing all methods described in this study is
in Supplemental Data file 5 and is available at GitHub (https://
github.com/zaitlenLab/RNA_Imprinting).
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