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Aquifer Management with Logistic Recharge

Hugo A. Lóaiciga and Roy B. Leipnik, University of California,
Santa Barbara,California,USA

Abstract: Theoretical principles of sustainable aquifer management are laid out in this work. The

premise of our treatment is that groundwater is a renewable, although exhaustible, natural resource.

The theory of this work is aimed at aquifers with a relatively homogeneous recharge that can be approxi-

mated by a logistic growth function. Sustainable aquifer exploitation occurs when the rate of ground-

water extraction is equal to or less than the natural rate of groundwater replenishment for any level of

aquifer storage. There can be many levels of sustainable aquifer exploitation depending on the level of

aquifer storage, but there may be only one that maximizes economic returns under a variety of economic

and aquifer conditions. Different strategies for sustainable exploitation are derived depending on whether

or not the analysis considers tradeoffs among: (i) current and future exploitation; (ii) constant and

dynamic aquifer storage conditions; and (iii) regulated and unregulated aquifer exploitation. Key

factors affecting sustainable exploitation strategies include: (1) the market price of groundwater; (2)

the cost of groundwater extraction; (3) the aquifer storage and natural replenishment characteristics;

(4) institutional and environmental regulations on groundwater extraction; and (5) the real discount

rate. An example of sustainable groundwater exploitation in Santa Barbara, California, illustrates the

methods of this article.

Keywords: Aquifer storage, recharge, logistic function, groundwater management, discount rate,

net revenue.

Introduction

Sustainable aquifer exploitation occurs when, at any
level of desirable aquifer storage, the rate of aquifer ex-
ploitation does not exceed the natural rate of groundwater
replenishment. This definition of sustainability does not in-
clude any criteria of economic performance, but it does
not preclude any either. It will be shown later that sustain-
able criteria can be made compatible with economic crite-
ria in determining desired rates of optimal aquifer
exploitation. This study focuses on homogeneous aquifers,
with a strong hydraulic connection to the surface hydro-
logic cycle (i.e., with an effective groundwater recharge
mechanism), and well-delimited recharge and discharge
areas. These aquifers are important water sources for small
communities and agricultural enclaves throughout the
United States and many other regions of the world and
their overall contribution to harnessed water resources
serving urban and agricultural areas is significant (Solley
et al., 1993; Maddock and Hines, 1995). Coastal aquifers
which serve small communities (less than 100,000 people)
along the California coast are examples of the prototypical
aquifer considered in this work (California Department of
Water Resources, 1993; Loáiciga and Leipnik, 2000).

Starting with the premise that groundwater is a re-
newable resource, sustainable aquifer exploitation strate-

gies are developed and analyzed considering: (1) economic
factors such as the market price of groundwater and the
real discount rate; (2) institutional regulation of ground-
water extraction, perhaps motivated by environmental or
legal concerns; (3) groundwater extraction costs; (4) time
horizons of aquifer exploitation; and (5) the natural ground-
water storage and replenishment of aquifers. A case study
illustrates the principles of sustainable aquifer exploitation
presented in this work. It should be noted that there is a
vast literature on the subject matter of groundwater man-
agement (e.g., good summaries in Willis and Yeh, 1987;
Fetter, 2001). However, analytical/graphical solutions for
sustainable aquifer management, as advanced in this ar-
ticle, have received much less attention in the groundwa-
ter management literature.

Aquifer Storage Dynamics
with Logistic Recharge

Groundwater Storage and Recharge
Consider an aquifer of storage X(t) (units of volume)

at time t, driven by an exploitation rate E[X(t)] (units of
volume per unit time) and by a natural rate of replenish-
ment G[X(t)] (units of volume per unit time). The  time
evolution of storage is governed by the following ordinary
differential equation:
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If the rate of groundwater exploitation is equal to the
natural rate of replenishment, i.e., E = G[(X(t)], then the
aquifer storage remains constant. The rate of groundwa-
ter exploitation is the decision or management variable:
one seeks to determine E so as to meet stated objective
goals. The rate of natural aquifer replenishment depends
on the climatic regime and aquifer characteristics (i.e.,
hydrostratigraphy, hydraulic conductivity, groundwater stor-
age, and hydraulic head distribution).

The four-year evolution of groundwater storage in a
confined coastal aquifer (located in Santa Barbara, Cali-
fornia, USA, see Figure 1 for a general location map) from
an almost depleted condition in 1991 (i.e., 1,000 acre-foot
of groundwater storage remaining, where 1 acre-foot = 1
AF = 1,233 m3) to near full-storage recovery (i.e., 80 per-
cent of full groundwater storage or 4,000 AF) in 1995 was
found to be well described by a logistic function (e.g.,
France and Thornley, 1994). During 1991 to 1995, no
groundwater was extracted from the aquifer. The fitted
logistic function was (where storage is expressed in thou-
sands of acre-feet, i.e., X = 1 means that groundwater
storage is 1,000 AF; and time is expressed in years)

t ≥ 0; a > 0 ; β ≥ 1; λ > 0 (2)

in which the parameters are α = 5; β = 4 (from Equation
2;  and λ =  0.69315. From Equation 2 it is straightforward
to establish that the parameter α equals the maximum aqui-
fer storage (α = X

max
), and that β = (X

max
 – X

0
)/X

0
, i.e., it is

the normalized difference between maximum storage and

initial storage (X
0
 = X[t=0]). In general, if data on aquifer

storage X(t) are available as a function of time t during
periods in which the aquifer is not being mined, then the
parameters in Equation 2 are estimable by statistical meth-
ods (e.g., Anderson, 1971; Balakrishnan, 1992).

In the absence of groundwater extraction, the slope
(dX(t)/dt) of the function in Equation 2, represents the
rate of groundwater storage recharge. The shape of the
function in Equation 2, which is a special case of a logistic
function (Balakrishnan, 1992), encapsulates rather well the
key mechanisms of ground recharge in the Santa Barbara
confined aquifer. Although Equation 2 must not be inter-
preted as a general model describing time-dependent aqui-
fer recharge, it appears to be adequate and useful under
specific hydrologic conditions. The logistic model is just
one possible function suitable for modeling the groundwa-
ter recharge mechanism. Its parameters can be calibrated
to represent a wide range of observed time-storage ground-
water data. The logistic model of Equation 2 is adopted
herein as a practical model of groundwater recharge, be-
cause, in addition to its easy-to-calibrate nature and ac-
ceptable fit to our data, it greatly simplifies the analytical
treatment of sustainable aquifer exploitation, which can
then be posed in rather general terms, as shown below.

In the absence of groundwater extraction, groundwa-
ter storage is driven by its natural rate of recharge, G[X(t)].
Assuming that Equation 2 describes the time evolution of
storage under no-pumping conditions, then, the time-rate
of change of storage dX(t)/dt = G[X(t)] satisfies the fol-
lowing equation

X ≤ a (3)

in which it is understood that the aquifer storage X is a
function of time t.

The Dynamic Ground Storage Equation
Substitution of Equation 3 in the right-hand side of

Equation 1, followed by factorization of the resulting ex-
pression yields the following differential equation for aqui-
fer storage evolution:

A<X ≤ a (4)

with initial condition X(t
1
) = X

1
 , and where

E < (aλ)/4 (5)

and

E < (aλ)/4  (6)

Figure 1. Location map of the Santa Barbara aquifer.
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Equation 4 implies that if the aquifer storage X(t) is
outside the interval [A, B], then its rate of change is nega-
tive; that is, storage decreases as long as that condition
persists. On the other hand, if X(t) is inside the interval [A,
B], then its rate of change is positive, and aquifer storage
will increase as long as this condition persists. The condi-
tion E < (aλ)/4  appearing in Equations 5 and 6 is a math-
ematical necessity in order to keep the variables A and B
real. However, it can be established from Equation 3 that
the largest rate of natural replenishment is precisely equal
to (aλ)/4 (this occurs at storage level X = a/2). There-
fore, the condition E < (aλ)/4 prevents the exploitation
rate from exceeding the largest natural replenishment rate.

The next step in the analysis of aquifer storage is to
separate variables in Equation 4, followed by integration
from time t

1
 to time t, to obtain an expression for aquifer

storage X(t)

t ≥ t
1
 ;  A < X(t) ≤ a (7)

in which |( )| denotes absolute value. All variables in Equa-
tion 7 have been previously defined. The right-hand side
of Equation 7 tends to zero as t → ∝ . Therefore, if aquifer
storage starts at a value larger than B, then it would tend
to B as t → ∝ . If aquifer storage starts at B, then it would
remain at that value for all t. Furthermore, if storage starts
at a value between A and B, then it would also tend to B
for large t. The nature of aquifer storage as described by
Equation 7 for large t pre-empts aquifer storage from tak-
ing values equal to or less than A, thus the condition A<
X(t) in Equation 7.

Solving for aquifer storage in Equation 7 yields the
following explicit expression for X(t)

t ≤  t
1
 ;  A < X(t)≤ α (8)

where  ∈  = 1 when X(t) is outside the interval [A, B] or
else ∈  = -1. Equation 8 shows that aquifer storage X(t)
depends in a rather complex fashion on aquifer param-
eters a and λ, on the initial aquifer storage X

1, 
on the elapsed

time t-t
1
, and on the exploitation rate E (which enters in

the variables A and B, see Equations 5 and 6).
A special solution for Equation 4 arises when the ex-

ploitation rate E takes the value (aλ)/4, which makes the
variables A and B (see Equations 5 and 6, respectively)
equal to each other. In this case, the evolution of aquifer
storage can be shown  to be given by the following equa-
tion

t≥ t
1
; X(t)>A (9)

implying that X(t) → α/2 for t→ ∝ .

Once the storage evolution is known as a function of
time and of the exploitation rate, it is possible to formulate
aquifer exploitation strategies that meet pre-specified cri-
teria as shown in a later section.

Sustainable Exploitation: Constant-Storage Case

Let E(X) represent the rate of aquifer exploitation at
any level of aquifer storage X (in units of groundwater
storage per unit time). With this and previous definitions, a
fundamental conclusion may be now stated about the sus-
tainable rate of aquifer exploitation: for any level of aqui-
fer storage X there is one, and only one, rate of sustainable
aquifer exploitation which is given by E(X) = G(X). (Note
that G(X) is given by Equation 3.) Consequently, a sus-
tainable rate of aquifer exploitation must be equal to the
natural rate of groundwater replenishment, for any level
of aquifer storage. If the rate of aquifer exploitation ex-
ceeds the natural rate of replenishment, then the aquifer
storage will decline. Conversely, if the rate of aquifer ex-
ploitation is less than the rate of natural replenishment,
then aquifer storage will be replenished. From the results
of the previous section it is known that the rate of sustain-
able aquifer exploitation may not exceed the rate G

M
 =(a

λ)/4, and it can be as low as zero.
Sustainable aquifer exploitation as defined in this sec-

tion implies that aquifer storage either remains at (an ac-
ceptable) constant level for a given rate of aquifer
exploitation, and this must not be confused with an optimal
rate of aquifer exploitation, E*, which may involve criteria
of economic efficiency or environmental constraints not
yet discussed. Let us consider the situation that arises when
an aquifer is not exploited at sustainable rates. Consider
Figure 2, and assume that an aquifer is at storage level X

A
.

Assume further, that the rate of aquifer exploitation is set
at the level E

A 
(= G

B
), which exceeds the sustainable rate

G
A
. Aquifer storage recedes until it reaches the value X

B

in Figure 2. At that point, the rate of aquifer exploitation
equals the natural rate of replenishment G

B
: aquifer stor-

age will remain at storage level X
B
 if the exploitation rate
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is maintained at the level E
A
, in which case this rate of

exploitation becomes sustainable. A somewhat asymmet-
ric situation takes place when, starting at storage X

C
, an

exploitation rate E
A
 is imposed below the natural replen-

ishment rate G
C
 . Aquifer storage will increase until it

reaches the level X
B
, at which point the exploitation rate

exactly matches the natural replenishment rate G
B
. If the

rate of aquifer exploitation remains at level E
A
 it is sustain-

able and the aquifer storage stays at X
B
. A third case

arises when, starting at aquifer storage X
H 

 in Figure 2, a
non-sustainable rate E

H
 is imposed which is larger than

the natural rate of replenishment G
H
. Aquifer storage drops

until it reaches minimum storage X
0
, when the rate of aqui-

fer exploitation must drop to the level of the natural rate of
groundwater replenishment G

0
. Notice that in this third

case, the non-sustainable exploitation rate cannot remain
at E

H
 indefinitely, but rather, it declines as the minimum

storage level is approached.

Analysis Without Future Tradeoffs Considered

Unregulated Sustainable Exploitation
Let us consider first the case where the future impact

of current groundwater exploitation is not taken into ac-
count. Assume that the market price for groundwater is P
($/unit of groundwater) and that the cost of groundwater
extraction as a function of aquifer storage is C(X) (in $/
unit of time). It is reasonable to make the cost of aquifer
exploitation dependent on its storage, since it is well-known,
for example, that groundwater extraction costs rise as
aquifer storage drops (Willis and Yeh, 1987). The total
revenue accruing from exploiting G(X) units of groundwa-
ter is TR = P ⋅ G(X) (in $/unit of time). Therefore, the total

revenue curve is simply the natural rate curve G(X) scaled
by the price P, as shown in Figure 3. Notice that by defin-
ing revenue as being equal to TR = P × G(X), it is implied
that the exploitation rate equals the natural replenishment
rate, i.e., E(X) = G(X), thus implying sustainable exploita-
tion. The total cost curve TC is also shown in Figure 3, TC
= C(X) (in $/time). The net revenue from extracting and
selling groundwater is defined as F (X) = TR - TC = P ⋅
G(X) - C(X). The storage value which maximizes net rev-
enue is found by setting the first derivative of the profit
function with respect to X equal to zero and then solving
for the value of X that meets that condition. This is the
same as solving the equation

(10)

The solution of Equation 10 is equivalent to finding an
aquifer storage at which, simultaneously, the slopes of the
total cost and the total revenue curves are the same, that
is, when the marginal cost and the marginal revenue are
equal. The TC curve in Figure 3 was drawn so that the
maximizing storage is X*. It can be graphically verified
from Figure 3 that the slope of the TR curve at X* equals
the slope of the TC curve at that same storage value. X*
happens to be in this case, by mere coincidence, larger
than α/2, which is the aquifer storage for which the natu-
ral rate of replenishment is greatest. Instead, in this in-
stance, the aquifer storage which maximizes the net
revenue from aquifer exploitation requires a sustainable
exploitation rate equal to E(X*) = G(X*), as shown in
Figure 3. By choosing such an exploitation rate the follow-
ing is achieved: (1) the aquifer storage will remain at the
level X*; (2) the exploitation rate is sustainable; and (3)
the maximum possible revenue is attained and is given by
F(X*) = P ⋅ G(X*) - C(X*). The solution meeting these
three previous conditions is herein called the optimal, un-
regulated, and sustainable aquifer exploitation. By unregu-
lated it is meant that no conditions, other than the natural
replenishment dynamics of the aquifer and the cost and
price schedules, influence the choice of the exploitation
rate.

Interesting situations arise when groundwater is ex-
ploited above sustainable rates in the unregulated case.
Take for example the case where, starting at aquifer stor-
age α/2, groundwater is exploited at a rate E larger than
G(a/2), as illustrated in Figure 3. At this point, a profit is
made since the total revenue exceeds the total cost. How-
ever, aquifer storage begins to decline due to the non-sus-
tainable exploitation rate imposed on it. As aquifer storage
declines, extraction costs rise. In addition, the non-sus-
tainable exploitation rate begins to decline hampered by
the increasing adverse extraction conditions encountered
as aquifer storage drops. Eventually, the non-sustainable
exploitation path intersects the aquifer storage X

E
, at which
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Figure 2. Graphical representation of the relationship among the rate

of aquifer replenishment (G(X)), and a sustainable exploitation rate

(E(X)), and the aquifer storage (X).
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(14)

Analysis with Future Tradeoffs Considered

Assume a nominal discount rate r (in units of 1/year)
that reduces future assets to present worth. If a unit of
aquifer storage is extracted during the current time period,
that will trigger a future loss of potential revenue that could
have accrued if the unit of groundwater would have been
preserved for future use rather than being consumed at
present. But current consumption of that unit of ground-
water also generates a revenue now, which is given by P
- C*(X), where P is the market unit price of groundwater
(in $/unit of groundwater) and C*(X) (in $/unit of ground-
water) is the unit cost of groundwater extraction at stor-
age level X. Therefore, a revenue maximizing strategy that
considers the tradeoff between foregone future revenue
and current revenue must be such that the present worth
of the change in future revenue caused by consumption
today exactly matches the current revenue stemming from
an additional unit of groundwater consumed today. Math-
ematically (and noticing that C(X) = C*(X) ⋅ G(X))

The left-hand side of Equation 11 represents the present
worth of foregone net revenue due to a unit of consump-
tion today (assuming an indefinitely long future impact).
The right-hand side of Equation 11 is the net revenue per
unit consumption enjoyed presently. Note that in Equation
11 the exploitation rate is sustainable, and equal to G(X).
The value of storage X* which satisfies Equation 11 yields
the net-revenue maximizing sustainable exploitation rate
E(X*) = G(X*). Regulatory restrictions on exploitation
may be imposed on the fundamental rule expressed by
Equation 11, just as it was done for the case where future
discounting  was not included (see previous section).

In the event that inflation, f, is included in the determi-
nation of optimal exploitation rates, then one must intro-
duce the real discount rate, r*, which is given by . When
the inflation rate is small the real discount rate is approxi-
mated by the nominal discount rate minus the inflation rate,
r* » r-f. In either case, r* replaces r in Equation 11. Car-
rying out the differentiation of Equation 11, the following
rule is obtained for profit maximization with sustainable
(i.e., E(X) = G(X)) aquifer exploitation considering present-
worth discounting

(12)

The storage value, X*, that satisfies Equation 12 pro-
vides the profit maximizing, sustainable, exploitation rate
E(X*) = G(X*). The fundamental rule for optimal and
sustainable groundwater exploitation as written in Equa-
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Figure 3. Graphic representation among the rate of aquifer replenish-
ment (G), sustainable exploitation rates (E), total cost of groundwater
extraction (TC), total revenue from groundwater sales (TR), and aqui-
fer storage.

total cost of exploitation equals total revenue. To the left
of storage X

E
 in Figure 3, and along the non-sustainable

groundwater path which started at point E, groundwater
exploitation proceeds but incurring a net loss.

Regulated Sustainable Exploitation
Let us now see what is the effect of regulation in the

choice of an aquifer exploitation rate. Suppose that two
types of regulations are imposed: (1) one of environmen-
tal origin, whereby the aquifer storage  is not allowed to
fall below, say, the level α/2 in order to prevent land sub-
sidence, groundwater quality deterioration, and, protect
vegetation; and (2) another of institutional origin, whereby
the agency managing the aquifer is required to exert aver-
age-cost pricing of groundwater, that is, groundwater must
be sold so as to exactly recoup all extraction costs. Let us
pursue this problem using Figure 3. It can be seen in that
figure that the sustainable exploitation rate meeting these
two regulatory conditions is that corresponding to aquifer
storage X**, that is, E(X**) = G(X**), for a zero net
revenue since TR(X**) = TC(X**), as required by aver-
age-cost pricing. Note that average-cost pricing may be
attained also at storage level X

E
 and exploitation rate E(X

E
)

= G(X
E
), but this level of exploitation violates the mini-

mum  storage restriction.
Another common type of regulation prescribes that

the exploitation rate may not exceed the sustainable rate
by more than a certain percentage. Once a pre-set aqui-
fer storage is reached, the exploitation rate must drop to
sustainable levels. This would entail, for example, follow-
ing the exploitation path from A to B in Figure 3 and then
drop to the sustainable rate along the G(X) curve.

(11)
�
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tion 12 assumes that the following are known: (1) the func-
tion G(X); (2) the marginal cost function C*(X) and the
market price of groundwater P; and (3) the (annual) dis-
count rate r*. Regulatory constraints may be imposed on
Equation 12 as was already illustrated by graphical analy-
sis.

Equation 12 represents the most general formulation
of the constant-storage, sustainable, aquifer exploitation
problem. In this study we shall consider linear cost-func-
tions for aquifer pumping (Loáiciga and Leipnik, 2000).
Thus,

(13)

in which b and d are parameters to be identified from
pumping cost data, as shown in the Case Study section
below.

Upon substitution of Equation 3, for G(X), and Equa-
tion 13 into Equation 12, one obtains a quadratic Equation
in terms of aquifer storage. The quadratic equation is

in which the coefficients M and N are expressible in terms
of model parameters as follows

(15)

where the parameters b, d, P, r*, α, and l have all been
previously defined (see Case Study below for numerical
values)

(16)

The solutions to Equation 14 under our modeling con-
ditions are given by

(17)

Once the optimal sustainable storage X* from Equa-
tion 17 is found, the optimal sustainable rate is G(X*),
which is given by Equation 3 and expresses the natural
rate of groundwater recharge at a storage level X*. Equa-
tion 17 represents an unconstrained solution to the aquifer
management problem formulated in this work. Constraints
on aquifer and/or pumping rate levels can be introduced in
several ways to obtain constrained solutions to the sus-
tainable aquifer exploitation problem posed in this work. It
will be shown in the Case Study that it is advantageous
and expeditious to combine (unconstrained) solutions de-
rived from Equation 17 with graphical analysis in the quest

for constrained solutions to the aquifer management prob-
lem.

Sustainability Revisited:
Variable Storage Case and Random Effects

General Formulation
Let us examine now the more complex case in which

the aquifer storage is allowed to vary with time within
certain bounds stemming from environmental and/or insti-
tutional constraints. We must now broaden the definition
of sustainable exploitation rates to include those which
maintain aquifer storage in the short and long runs within
admissible bounds. When the exploitation rate is sustain-
able and, in addition, meets optimality criteria, then it be-
comes an optimal exploitation rate for given aquifer
conditions, groundwater extraction costs, groundwater
market price, and real discount rates.

Consider the present value of the net revenue, R, that
accrues from sales of groundwater exploited at a rate E
during a period of time t

1 
 to t. The market price of ground-

water is P, the unit cost of groundwater extraction is C*(X),
and the (instantaneous) real discount rate is s, and

(18)

where the storage X is given by Equation 8. In a determin-
istic context one would seek to find the exploitation rate
that maximizes net revenue in Equation 18. Deterministic
solutions require perfect knowledge of all variables ap-
pearing in Equation 18. This is a rather strong assumption.
Fluctuations in discount rates over a long period of time,
thirty years for example, may introduce appreciable sta-
tistical uncertainty in the level of net revenue to be real-
ized under a chosen aquifer exploitation scheme. If the
probability distribution function for the real discount rate
s, f

S 
(s), is known, then the solution for the optimal exploi-

tation rate calls for the maximization of the present value
of the expected net revenue with respect to the exploita-
tion rate.

The Rayleigh probability distribution function has been
used to  model the long-term variations of interest rate in a
variety of economic studies (e.g., Arrow and Intriligator,
1986). The Rayleigh distribution is given by

s ≥ 0 (19)

in which g and j  are distribution parameters, and G is the
gamma function. The maximum present value of the ex-
pected net revenue from groundwater sales, R*, is then
given by

(20)
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where the pumping cost function is explicitly shown to
depend on aquifer storage X(t), and aquifer storage is given
by Equation 8.

The right-hand side of Equation 20 represents the
maximum present value of the expected net revenue as-
sociated with groundwater exploitation, where the expec-
tation is with respect to the real discount rate s. The
maximization of R* in Equation 20 may be subject to con-
straints on storage and exploitation rate.

The Net Revenue in the Case of a Finite
Management Time Horizon

In the case of a finite-time horizon (t ≤ ∝ ), the inte-
gration of Equation 20 leads to the following expression
for the present value of expected net revenue

(21)

where J is given by the following equation

(22)

and Z denotes the following integral
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In addition, the following definitions apply in Equation
22:

(24)

(25)

(26)

and, lastly,

(27)

In Equation 27, ∈ = 1 when X(t) is outside the interval
[A, B] or else Î = -1. Since r, , D, and M

0
 depend on the

pumping rate E, it is clear from Equation 21 that the net
revenue R* is a nonlinear function of the pumping rate.
On the other hand, Equation 21 shows that the net rev-

enue is linear on the market price of water P, and on the
cost parameters b and d. Constraints (on storage, pump-
ing rate) can be attached to Equation 21 to define a con-
strained aquifer management problem.

The Net Revenue in the Case of an Infinite
Management Time Horizon

A case of particular interest herein is the behavior of
net revenue when the management horizon t ® µ in Equa-
tion 21. In practical terms this implies a sufficiently long
time horizon during which an exploitation rate is exerted,
eventually leading to steady-state aquifer storage. In this
case, the present value of the (expected) net revenue,
which is now denoted by R

µ
 * , takes the following form

(28)

in which
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where all terms have been previously defined. The
integral in the right-hand side of Equation 29 can be ap-
proximated by numerical integration. Alternatively, the in-
tegral is expressible in term of tabulated incomplete gamma
functions G(y, z) (e.g., Gradshteyn and Ryzhik, 1980) by
using Stieltjes generalized transforms (Erdelyi, 1954). The
maximization of the net revenue in Equation 28 with re-
spect to the pumping rate, subject to constraints on aquifer
storage and pumping rate, can be pursued by mathemati-
cal methods and assisted by graphical analysis. These tech-
niques are illustrated in the Case Study below.

The Special Case When the Exploitation Rate E = aλ/λ/λ/λ/λ/4
It was shown in Equation 9 that when the exploitation

rate takes the maximum value aλ/4, then the aquifer stor-
age evolves in a manner different to that dictated by Equa-
tion 8. Using Equation 9 to describe the aquifer storage in
Equation 20, and carrying out the integration in Equation
20 when the time horizon t → ∝ , one obtains the present
value of the (expected) net revenue that would accrue
when the pumping rate is aλ/4

(30)

where 
2
F

1
 denotes the hypergeometric function

(Gradshteyn and Ryzhik, 1980), which is evaluated as 
2
F

1

[1;1;γ+2; 1-(ϕ k
2
)/k

1
], with, k

1
 = 1/(X

1
 - α/2), k

2
 = λ/a,

and Γ(·) denotes the gamma function (e.g., Gradshteyn
and Ryzhik, 1980).
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Case Study

General Information
The results on optimal sustainable exploitation will be

examined in light of empirical observations in the ground-
water basin of the City of Santa Barbara, California, cen-
tered approximately at 30° 26´ north latitude and 119° 38´
west longitude. The groundwater basin of Santa Barbara
lies within a narrow lowland along the southern slope of
the Santa Ynez mountains, a rugged linear range that rises
steeply from sea level to crestal altitudes of nearly 1,200
m. The lowland strip consists in most places of elevated
terraces that generally lie within 0.5 km to 5 km from the
Pacific Ocean coastline, and are separated from it by an
alluvial plain. The Santa Barbara area is characterized by
a Mediterranean climate of warm, dry, summers and mild,
rainy, winters with little frost hazard. Annual mean pre-
cipitation in Santa Barbara is about 46 cm. There is a sig-
nificant increase in precipitation caused by the orographic
gradient as altitude raises from sea level to the top of the
Santa Ynez mountains, where annual mean precipitation
is approximately 76 cm.

Nearly all of the groundwater recharge and surface
runoff are derived directly from rainfall. The principal aqui-
fer in Santa Barbara is formed by unconsolidated deposits
of Quaternary age (Martin, 1984; Martin and Berenbrock,
1986). These deposits are of marine origin and include
fine to coarse sand, silt, clay, with interbedded occasional
gravel layers. Sources of groundwater replenishment to
the aquifer are seepage from streams, direct infiltration
from rainfall, subsurface flow from adjacent mountains,
subsurface flow from neighboring groundwater basins, and
possible upwelling (and highly mineralized) groundwater
from underlying Tertiary bedrock (Freckleton, 1989;
McFadden et al., 1991).

From 1987 through 1991, the State of California in
general, and the Santa Barbara area in particular, experi-
enced the second worst drought of the century (Loáiciga
et al., 1993; Lawrence et al., 1994; Loáiciga and Renehan,
1997). This forced intense mining of the groundwater ba-
sin as surface water sources dwindled. The groundwater
basin was nearly exhausted by 1991 as groundwater lev-
els dropped significantly, groundwater quality deteriorated,
and seawater began encroaching into the coastal aqui-
fers. The water balance in Santa Barbara changed rapidly
after 1991, as unusually wet winters followed the dry years
(e.g., the 1994 to 1995 rainy season brought in 2.5 times
the annual mean annual precipitation in the study area).
During the 1991 to 1995 (four-year) interval the ground-
water basin was “rested” and during that period its stor-
age rose from X(t=1) = 1 unit to X(t = 4)

 
 = 4 units [1 unit

of groundwater storage = 1,000 acre feet = 1,000 AF =
1.233 x 106 m³]. The parameters of the time-storage func-
tion (see Equation 2) for the Santa Barbara aquifer were
calculated earlier as a = 5; b = 4; and l =  0.69315. The
market price of groundwater has been determined to be P

= $ 1,000,000/unit of groundwater, while the unit cost (in
$) per unit of groundwater is C*(X) = d - b X = 106 -
105×X (Loáiciga and Renehan, 1997).

Optimal Sustainable Exploitation Rates: Constant-
Storage Case

Aquifer Storage
The solution to Equation 17 yields the optimal con-

stant aquifer storage, which, in turn, defines the optimal
sustainable pumping rate, as explained previously. Our
results are presented graphically for a number of condi-
tions which illustrate the sensitivity of results to important
model parameters.

Figure 4 displays the optimal aquifer storage as a func-
tion of the unit price, P, of groundwater and the cost-slope
parameter, b, when the real (annual) interest rate is 0 per-
cent. It is seen in Figure 4 that, for a fixed value of the
cost-slope parameter, the optimal groundwater storage
declines as the unit price increases. In other words, for a
fixed cost of groundwater extraction, there is an incentive
to extract larger amounts of water, thus leading to lower
optimal groundwater storage. It is also seen in Figure 4
that, for a fixed price of groundwater, the optimal ground-
water storage tends to decrease as the cost-slope param-
eter decreases, when the price of groundwater is over
$1,200,000/unit. This means that as the cost of extracting
groundwater increases (i.e., b decreases), more ground-
water is extracted in order to offset pumping costs, thereby
leading to relatively lower groundwater storage. However,
when groundwater prices fall below $1,200,000/unit, Fig-
ure 4 shows that, for fixed P, the aquifer storage increases
as the cost-slope parameter decreases. In other words,
when the price of groundwater is low, increases in the
cost of groundwater extraction call for higher aquifer stor-
age. Notice that any restrictions on aquifer storage level
can be immediately outlined graphically in Figure 4, thereby
barring inadmissible aquifer levels. For example, no stor-

Figure 4. Aquifer storage, X, as a function of pumping cost slope and
unit price of groundwater, for a real interest (annual) rate of 0 percent.
Minimum contour line is at level X = 2.6 x 103 AF and higher ones are
drawn with a contour interval of 0.2 x 103 AF (1AF = 1,233 m3).
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age below 2.6 units is allowed, then the region to the left
of the lowest contour line would be eliminated from the
feasible set of solutions displayed in Figure 4. Restrictions
on pumping rates can be translated to restrictions on aqui-
fer storage at once, as there is a one-to-one relationship
between the sustainable pumping rate and optimal aquifer
storage, embodied by Equation 3.

Figure 5 displays the relationship among optimal aqui-
fer storage, cost-slope parameter, and the unit price of
groundwater, just as done in Figure 4, except that Figure 5
results correspond to a real interest (annual) rate of 50
percent. The intention here is to contrast groundwater
management strategies when the rate of change in the
value of money is zero (interest rate is zero), and those
that are derived under high rates of change in the value of
money over time. The latter are of interest in inflation-
ridden economies, which typically exhibit volatile interest
rates. The general pattern of the optimal aquifer storage
as a function of b and P in Figure 5 resembles that ob-
served in Figure 4, except that the storage values in Figure
5 are lower than those shown in Figure 4 for any combina-
tion of the cost of groundwater extraction (represented by
the parameter b) and the price of groundwater. This is an
important reflection of the fact that, as the real interest
rate rises, there is a stronger tendency to mine more of
the groundwater resource in the present, thus lowering
aquifer storage to lower levels than would otherwise be
called for.

Pumping Rates
Let us examine now the behavior of pumping rates in

terms of the cost of groundwater extraction and ground-
water price. In Figure 6 we show the dependence of the
sustainable, and optimal, pumping rate as a function of the
cost-slope parameter, b, and the unit price of groundwater
P, when the real interest rate is zero percent. It can be

seen in figure 6 that for fixed P, the pumping rate tends to
decline as the cost of groundwater extraction rises (i.e., b
decreases). Notice, though, that as the price of ground-
water rises above $1,200,000/unit, the pumping rate be-
comes insensitive to the cost of groundwater extraction.
It is also evident in Figure 6 that, for a fixed value of the
cost-slope parameter, the optimal (and sustainable) pump-
ing rate increases as the unit price of groundwater in-
creases. The latter pattern of association is intuitive, since
it is expected that for a fixed cost of groundwater mining,
the pumping rate should increase as the market price of
groundwater rises. Figure 7, shows, however, that simple
intuition can be misleading when the real (annual) interest
is high, say, as high as 50 percent. Figure 7 shows, suc-
cinctly, that, for a fixed cost of groundwater extraction
(i.e., b is constant), the optimal pumping rate increases
sharply as the price of groundwater increases, provided
that the groundwater price falls below $1,200,000/unit.
These high pumping rates corroborate our previous con-
clusion of high aquifer depletion and present groundwater
mining when the real interest rate becomes rather large.

Figure 5. Aquifer storage, X, as a function of pumping cost slope and
unit price of groundwater, for a real interest (annual) rate of 50 per-
cent. Minimum contour line is at level X = 1 x 103 AF and higher ones
are drawn with a contour interval of 0.5 x 103 AF (1AF = 1,233 m3).

Figure 6. Pumping rate, G, as function of pumping cost slope and
unit price of groundwater, for a real interest (annual) rate of 0 percent.
Minimum contour line is at level G = 0, and higher ones are drawn
with a contour interval of 0.05 x 103 AF (1AF = 1,233 m3).

Figure 7. Pumping rate, G, as function of pumping cost slope and
unit price of groundwater, for a real interest (annual) rate of 50 per-
cent. Minimum contour line is at level G = 0, and higher ones are
drawn with a contour interval of 0.05 x 103 AF (1AF = 1,233 m3).
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Interestingly, Figure 7 shows, on the other hand, that, for a
fixed cost of groundwater extraction and when the ground-
water price exceeds $1,200,000/unit, the optimal pumping
rate actually declines as the price of groundwater rises.
Consequently, the high cost of groundwater extraction at
low aquifer levels forces a drop in pumping rates. It has
been established in Figure 5 that those declining pumping
rates are associated with very low levels of aquifer stor-
age, and are very likely to be precluded by environmental
restrictions on aquifer levels.

Net Revenue
Figure 8 depicts the dependence of net revenue on

the market price of groundwater and the cost of ground-
water extraction for a real interest rate of zero percent. It
is seen in Figure 8 that, for a fixed cost of groundwater
extraction, the net revenue increases monotonically as the
market price of groundwater rises.. Figure 8 indicates, in
addition, that, for a fixed price of groundwater, the net
revenue increases as the cost of groundwater extraction
drops (i.e., b increases). The largest values of net rev-
enue that theoretically do accrue are on the  order of
$4,000,000 (on an annual basis). Note that not all of the
[b, P] domain shown in Figure 8 is feasible, as some com-
binations of the cost-slope parameter and market price of
groundwater lead to inadmissible aquifer storage and/or
pumping rates. This has been demonstrated in our previ-
ous discussion of Figures 4 through 7. Ignoring constraints
on aquifer storage and pumping rates, our calculations
show that the highest net revenue that accrues for a real
interest rate of zero percent corresponds to b = 2 x 105

and P = $ 5,000,000/unit. The corresponding aquifer stor-
age (see Figure 4) is 2.638 units of groundwater (2,638
AF), for a pumping rate of 0.864 units (864 AF/year, see
Figure 6).

Figure 9 shows the net revenue as a function of the
cost of groundwater pumping and the market price of
groundwater for a real (annual) interest rate of 50 per-
cent. The general pattern of association among the net
revenue, cost of groundwater pumping, and market price
of groundwater observed in Figure 9 is similar to that of
Figure 8 corresponding to a real interest rate of zero per-
cent. It is evident from Figures 8 and 9, though, that the
levels of revenue generated at a 50 percent (annual) inter-
est rate are much lower than those obtained when the real
interest rate is zero percent. Our calculations indicate that
the largest net revenue generated when r* is 50 percent
(i.e., $ 1.9 million) corresponds to b = 2 x 105 and P = $
5,000,000, with an associated aquifer storage of 0.775 units
(775 AF, see Figure 5) and pumping rate of 0.454 units
(454 AF/year, see Figure 7). Even though the pumping
rates calculated for r* equal to 50 percent exceed in some
instances those obtained when r* is zero percent, the aqui-
fer storages associated with the former tend to be lower
than those associated with the latter. Ultimately, the com-
plex interplay between cost of groundwater extraction and
revenue from groundwater marketing favors aquifer ex-
ploitation under low interest rates: it produces higher stor-
ages with healthy pumping rates and larger economic
benefits.

Optimal Sustainable Exploitation Rates: The
Dynamic-storage Case

Figure 10 shows the behavior of the present value of
expected net revenue in terms of optimal pumping rates,
for selected values of initial storage, X

1
. The results of

Figure 10 were developed by solving Equation 28 with: (i)
the market price groundwater set at P = $1,000,000/unit;
(ii) the cost parameters b = 105 and d = 106; (iii) the dy-

Figure 8. Present value of net revenue from groundwater mining as a
function of the cost of groundwater extraction and the market price of
groundwater for a real interest (annual) rate of 0 percent. Minimum
contour of net revenue is at zero level, and higher ones are drawn with
a contour interval of 2 x 105 ($). (1AF = 1,233 m3).

Figure 9. Present value of net revenue from groundwater mining as a
function of the cost of groundwater extraction and the market price of
groundwater for a real interest (annual) rate of 50 percent. Minimum
contour of net revenue is at zero level, and higher ones are drawn with
a contour interval of 1 x 105 ($). (1AF = 1,233 m3).
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namic aquifer parameters a = 5 and l = 0.69315; and (iv)
the Rayleigh distribution parameters (which define the dis-
tribution of the real interest rate) g = 0.5625 and j = 15.625
(these imply an average discount rate of 10 percent and
standard deviation of 8 percent). The initial storage was
varied between its maximum value of five units (=5,000
AF) and a minimum of just above zero, while the pumping
rate ranged from its theoretical maximum of 866 AFY (=
al/4) to zero.

Figure 10 shows that: (1) for a given initial storage,
the present value of expected revenue increases with in-
creasing pumping rate up to a level of about 800 AFY,
provided that the initial storage exceeds two units (2,000
AF); thereafter, the net revenue falls as the pumping rate
approaches its theoretical or feasible maximum; (2) for a
given pumping rate, the present value of expected net rev-
enue increases with increasing initial storage; and (3) the
maximum pumping rate which is physically realizable for
a fixed initial storage decreases with the level of that ini-
tial storage. Thus, for example, with an initial storage of
five units, the maximum pumping rate  equals the theoreti-
cal maximum of 866 AFY, while for an initial storage of
one unit the maximum feasible pumping rate is on the or-
der of 550 AFY. For a given initial storage and pumping
rate, the present values of expected net revenue shown in
each of the graphs of Figure 10 are generated over a time
period that starts when pumping begins (t

1
) and lasts in-

definitely. Each feasible combination of initial storage and
pumping rate defines a trajectory of aquifer storage which
converges asymptotically to a steady-state value. The
steady-value depends on the pumping rate, but not the ini-

tial storage, and is equal to the variable B, which is defined
by Equation 6. The actual trajectories of dynamic storage
depend on the initial storage and pumping rate (as well as
other model parameters, such as b, d, P, etc., which are
fixed), and can be simulated by means of Equation 8 or
Equation 9, as explained before. Each of the net revenue
maximizing combinations of initial storage and pumping
rate shown in Figure 10 must, therefore, be examined to
ensure that restrictions on aquifer storage are not violated.
All the mathematical tools needed for this purpose have
been developed in this article.

Conclusion

This article has developed an analytical/graphical
method for examining the relationship among: (1) economic
benefits; (2) groundwater recharge dynamics; (3) ground-
water pumping rates; (4) sustainability criteria; (5) cost of
groundwater pumping; (6) market price of groundwater;
(7) real interest rates, and (8) initial and steady-state val-
ues of aquifer storage.

The goal of this work was to examine the cited, com-
plex, relationship in a parsimonious manner, using as few
parameters as possible while attempting to capture the
essential aspects of the groundwater management prob-
lem. The analysis was carried out for constant aquifer
storage and dynamic aquifer storage, and general results
were obtained for each case, both summarized by objec-
tive functions to be optimized in terms of the groundwater
pumping rate and a set of key model parameters, while
meeting possible constraints.

The theory developed in this work was then illustrated
via a case study featuring a specific aquifer, which under-
lies the City of Santa Barbara and is an important drought
back-up water source. Our results elucidated the very highly
nonlinear interaction between economic factors and
groundwater dynamics, and produced an insight on the
way in which the cost of groundwater extraction, market
price of groundwater, groundwater recharge, real interest
rates, and pumping rates interact to yield economic ben-
efits in the constant-storage case. The specific findings in
this respect are too many to repeat here. Nevertheless, a
key finding points to the deleterious effect that high real
interest rates have on aquifer storage and net revenue
accruing from groundwater extraction.

An important set of curves relating the present value
of net revenue, pumping rate, and initial storage were de-
veloped for the groundwater management problem in the
case of dynamic aquifer storage. Perhaps the most impor-
tant findings derived in this case were: (1) that net rev-
enues do not increase monotonically with increasing
pumping rates, but, rather, that they decline after the pump-
ing rates exceed specific thresholds, which are, in turn, a
function of initial aquifer storage; and (2) the paramount
role that initial aquifer storage has on optimal groundwa-
ter management strategies. Initial storage strongly influ-
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Figure 10. Present value of expected net revenue as a function of the
optimal pumping rate, for selected initial aquifer storage, calculated
with the dynamic storate model. A Rayleigh distribution was used to
describe the real interest rate. The intial storage, X

1
, is given in thou-

sands of AF (1 AF = 1 acre feet - 1,233 m3).
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ences the levels of expected net revenue, as well as the
feasibility of groundwater pumping rates.

The theory, methods of analysis, and findings of this
work hold promise of becoming useful tools for the pre-
liminary screening of groundwater management strategies
which consider a variety of economic and hydrogeologic
factors.
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