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Purpose: To facilitate investigations into the impacts of acquisition and reconstruction parameters

on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open-

source implementation of a conventional weighted filtered backprojection reconstruction called

FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation

of a model-based iterative reconstruction method using coordinate descent optimization, called

FreeCT_ICD.

Methods: Model-based iterative reconstruction offers the potential for substantial radiation dose

reduction, but can impose substantial computational processing and storage requirements.

FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that

provides a reasonable tradeoff between these requirements. This was accomplished by adapting a pre-

viously proposed method that allows the system matrix to be stored with a reasonable memory

requirement. The method amounts to describing the attenuation coefficient using rotating slices that

follow the helical geometry. In the initially proposed version, the rotating slices are themselves

described using blobs. We have replaced this description by a unique model that relies on trilinear

interpolation together with the principles of Joseph’s method. This model offers an improvement in

memory requirement while still allowing highly accurate reconstruction for conventional CT geome-

tries. The system matrix is stored column-wise and combined with an iterative coordinate descent

(ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the

Linux platform using C++ libraries and released under the open-source GNU GPL v2.0 license. The

software is capable of reconstructing raw projection data of helical CT scans. In this work, the soft-

ware has been described and evaluated by reconstructing datasets exported from a clinical scanner

which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan.

Results: For the ACR phantom, image quality was comparable to clinical reconstructions as well as

reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded

acceptable results. In addition, we did not observe any deleterious impact in image quality associated

with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in

storage requirements and computational demands.

Conclusion: FreeCT_ICD is an open-source implementation of a model-based iterative reconstruc-

tion method that extends the capabilities of previously released open-source reconstruction software

and provides the ability to perform vendor-independent reconstructions of clinically acquired raw

projection data. This implementation represents a reasonable tradeoff between storage and computa-

tional requirements and has demonstrated acceptable image quality in both simulated and clinical

image datasets. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/

mp.13026]
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1. INTRODUCTION

In previous work,1 we presented a technical note describing a

free and open-source implementation of a commonly used

reconstruction concept—specifically, weighted filtered back-

projection (wFBP)—for third-generation, helical, multi-slice

CT. The purpose of that work was to provide a set of tools for

offline reconstruction of raw projection data (i.e., sinogram

data) for CT imaging research. These tools have enabled the

development of reconstruction pipelines that are not depen-

dent on the availability of clinical CT scanners, can be config-

ured to operate in high-throughput batch modes, can

incorporate simulated dose reduction techniques2,3 and there-

fore can produce a large collection of image datasets that rep-

resent a wide range of acquisition and reconstruction settings

such as different slice thicknesses and reconstruction kernels

used in wFBP. The results of these reconstruction pipelines

have contributed to the growing list of investigations evaluat-

ing the robustness of quantitative imaging, radiomics, and

CAD methods across a range of scanner platforms, acquisi-

tion conditions and reconstruction parameters.2,4–9

While this previous work was valuable and informative, it

was limited to conventional wFBP reconstructions. Modern

scanners offer advanced image reconstruction techniques that

use some form of statistical or iterative reconstruction. These

advanced image reconstruction methods are an important

clinical technique for reducing radiation doses in CT, but

require further investigation for their effects on quantitative

imaging, radiomics, and CAD performance.

This work extends the previous technical note by describing

a model-based iterative reconstruction method that offers

potential for dose reduction for vendor-independent reconstruc-

tion of clinically acquired raw projection data. This method

provides a complementary set of tools to the wFBP tool

already available and could be incorporated into the recon-

struction pipelines described above. While open-source recon-

struction packages exist for FBP, to the authors’ knowledge

there are no packages available that can directly reconstruct

clinical datasets using model-based iterative reconstruction

methods. The aim of this work was to fill this gap with soft-

ware that can provide this capability. A complementary initia-

tive is underway to provide the community with freely

available raw data from clinical scanners.10 The primary goal

of this work is to introduce the software, provide sample

results highlighting the package’s ability to reconstruct data

acquired from a clinical CT scanner, and provide a high-level

evaluation indicating its fitness for use in a research setting.

Rigorous evaluation of the core concepts underpinning the

reconstruction approach, as well as their impacts on image

quality, have been previously performed in other work.11–15

Model-based iterative reconstruction offers the potential

for substantial radiation dose reduction,16 but comes with a

challenging computational burden. Part of this burden lies in

the size of the system matrix, which for a typical CT scan can

be 1000 times larger than system memory for a typical desk-

top computer. Standard approaches avoid storing the system

matrix by focusing on the evaluation of matrix-vector

products on the fly, but this limits the choice of system matrix

(or forward projection model) to that which can be quickly

computed. Model-based iterative reconstruction depends on

the accuracy of the CT system model; more detailed models

of the x ray source or detector responses may lead to

improved resolution and image quality. Storing the system

matrix offers the potential for modeling these higher order

effects, obviating the need to re-calculate them on the fly at

each iteration, at high computational expense. Previously

published work proposed reconstructing on rotating slices to

exploit helical symmetry, enabling the re-use of the system

matrix from view to view, which results in practical storage

requirements.12,17,18 In this work, we used this stored-system-

matrix approach together with iterative coordinate descent

(ICD) optimization. A penalized-least-squares objective func-

tion, with a quadratic or edge preserving penalty term as a

regularizer, is minimized voxel-by-voxel, sequentially iterat-

ing along the axial direction first, followed by the transaxial

direction. Eight in-plane (transaxial) neighbors are used for

the calculation of the regularizer. Iterations are accelerated

with multi-CPU OpenMP libraries.19,20

There exist many ways to define the system matrix while

exploiting helical symmetry through the use of rotating slices.

Xu et al.12 used a blob representation of the object, which led

to matrix sizes of about 27 GB for a clinical reconstruction.

Guo and Gao21 recently described a more memory efficient

method that calculates exact intersection lengths between vox-

els and rays as in Siddon’s method22 rather than using blobs

for computing ray paths, which led to matrix sizes on the order

of 6.6 GB. It is known, however, that Siddon’s method is more

prone to generating images with discretization errors compared

to models using linear interpolation such as Joseph’s

method.13,23,24 In this work, we have used a unique approach

that involves trilinear interpolation across rotating slices in

combination with the principles of Joseph’s method. This

approach offers a compromise between the accuracy offered

by blobs and the lower memory requirement offered by Sid-

don’s approach. This compromise provides a reasonable trade-

off for an implementation of ICD that can be incorporated into

a CT image reconstruction pipeline.

The source code is freely available and can be used and

extended by the research community. In Section 2, we

describe the features of our specific implementation of ICD

including some background of the method and specific fea-

tures we have built into the software such as user configura-

tions. In Section 3, results from clinical reconstructions

involving both the ACR CT accreditation phantom and a

pediatric chest patient are presented. This includes compar-

isons between conventional wFBP reconstructions and our

iterative reconstruction approach. Section 4 provides further

discussion of the method’s potential, limitations and planned

future work. An Appendix is included in which we provide

some of the mathematical details of the unique aspects of our

approach. More information, including documentation,

detailed licensing, and source code, can be found via

FreeCT’s website25 (http://cvib.ucla.edu/freect), or the FreeCT

Github page (https://github.com/freect).
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2. ALGORITHM DESCRIPTION AND SOFTWARE
FEATURES

The FreeCT_ICD software performs statistical iterative

reconstruction posed as an optimization problem of the form

x̂ ¼ argmin
x

1

2
y� Axð ÞTW y� Axð Þ þ R xð Þ

� �

where y is the sinogram raw data, x is the reconstructed

image, W is the statistical weights, A is the system matrix,

and R xð Þ is the regularization term.11 Although typically

understood as volumes, x and y are represented in this equa-

tion as one-dimensional vectors. The system matrix A relates

x and y together and can physically be understood to be for-

ward projection. The diagonal matrix W contains statistical

weights that can be chosen as the inverse variance of the mea-

surements or as uniform weights (employed in this work)

when the noise level is similar across the measurements. In

ICD, the reconstructed image x is optimized by sequentially

optimizing one element at a time.

2.A. System matrix definition

As mentioned earlier, our ICD implementation uses a stored

system matrix. To make the size of this matrix practical, we

have adopted the concept of Xu et al.,12which exploits the heli-

cal symmetry through the use of rotating slices. Within this

concept, there exists many ways to define the system matrix

elements. We have used a unique method that can be briefly

described as follows. We start as in Ref. [12] by picturing a

number of slices along the patient bed direction, with fixed dis-

tance from slice to slice that is chosen as a multiple of the dis-

tance covered by the source over two successive readings.

Next, within each slice, we picture a 2D system of Cartesian

coordinates that is centered on the rotation axis with an orienta-

tion that changes from slice to slice to follow the helical geome-

try. Within each slice, we use this system to define a grid of

uniformly distributed samples. Then, we decide that the object

value at any location can be estimated in three steps: (a) two

neighboring slices are identified; (b) bilinear interpolation is

performed across the samples within each neighboring slice to

obtain an approximate object value above and below the loca-

tion of interest (in the patient bed direction); (c) the two

obtained values are linearly interpolated in the slice direction.

Using this approximation concept, any line integral can now be

evaluated by summing the trilinearly interpolated object values

over the ray path. Such an evaluation may be seen as a straight-

forward extension of the bilinear method described by Hahn

et al.26 for 2D fan-beam tomography. However, as presented in

Ref. [22], the size of the system matrix corresponding to this

approach turns out to be much larger than that offered by

Joseph’s method while yielding very similar image quality. To

avoid this disadvantage in our implementation, we decided to

further refine our model by employing the steps that enable

reducing the bilinear method to Joseph’s method in 2D. A com-

plete mathematical description of this unique forward projec-

tion model is given in Appendix. Note however that this

description does not cover the overarching concept that yields a

practical system matrix size through exploitation of the helix

geometry with rotating slices; for explanations on this aspect,

we refer the reader to Xu et al.12

Our system matrix approach provides results that are very

similar to those one might expect using Joseph’s method in

3D on a conventional Cartesian grid. We have verified this

aspect using computer simulation with the FORBILD head

phantom (for brevity, this is not reported here). We expect the

blob approach of Xu et al.12 can provide results with fewer

discretization errors, particularly in the absence of a regular-

izer, but this advantage comes with a much higher memory

requirement. Compared with the intersection length based

approach of Guo and Gao,21 the opposite effect is expected:

fewer discretization errors at the cost of an increase in mem-

ory requirement. We did not consider employing a Siddon-

based approach as our experience in 2D fan-beam tomogra-

phy is that Siddon’s approach is suboptimal for practical CT

geometries. This experience of ours is in agreement with the

analysis in Refs. [20] and [21].

2.B. Additional features/key aspects of the program

The program includes a penalty term in the objective func-

tion as a regularizer, with two choices for the potential func-

tion: quadratic or Fair potential.15 In the quadratic case, the

single coordinate optimization problem is solved analytically;

in the Fair potential case, it is solved via the bisection

method. The program sequentially iterates along the axial

direction first, followed by the transaxial direction, so that the

elements of the stored system matrix need only be accessed

once per iteration. Eight transaxial neighbors are used to cal-

culate the penalty term. Iterative coordinate descent does not

lend itself easily to GPU parallelization, so the system matrix

calculations and iterations are performed on a normal desktop

CPU architecture. However, individual iterations are acceler-

ated with multicore CPU OpenMP libraries,19 which pro-

duces up to a factor of 5 speed-up.

One key offering of FreeCT_ICD is that it can be initial-

ized from a filtered backprojection reconstruction using

FreeCT_wFBP, which dramatically reduces the number of

iterations required to achieve a converged solution. As long

as the potential is strictly convex and differentiable (like the

quadratic or Fair potential currently offered in our implemen-

tation), the objective function is strictly convex and differen-

tiable, and therefore admits a unique minimizer. In such a

setting, the ICD method is known to converge to this mini-

mizer for any initial input image.27 To take advantage of

wFBP initialization, users will have to install FreeCT_wFBP

and have a suitable GPU. For the requirements of

FreeCT_wFBP, readers are referred to the FreeCT_wFBP

technical note1 and the FreeCT_wFBP documentation.25

2.C. Software features common to FreeCT_wFBP

Several similarities to FreeCT_wFBP are described here.

FreeCT_ICD also reconstructs helical data from third-
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generation multidetector CT scanners. This software also

does not reconstruct axial scans or helical scans with gantry

tilt. In the current implementation, there is some flying focal

spot capability (in-plane flying focal spot has been imple-

mented and others are under development and should be

available in the near future).

Like FreeCT_wFBP, FreeCT_ICD uses raw projection

data. The data provided to FreeCT_ICD should be the

post-log attenuation data (i.e., not raw count data) with any

desired physical corrections applied, since FreeCT_ICD

does not perform any projection domain corrections in an

effort to remain vendor-independent. While these data are

not always readily available from clinical scanners, there

are efforts to develop a recently proposed vendor neutral

raw data format based on the DICOM standard.10 The

reader library packaged with FreeCT_wFBP is capable of

directly reading this open-format DICOM raw data as well

as binary files of floating-point data. The reader library for

FreeCT_wFBP and FreeCT_ICD (“FreeCT_Reader”) does

not read directly from vendor-specific proprietary data for-

mats. Exact specifications for how data are read into the

software can be found in the documentation,25 further pro-

viding users the opportunity to supply their own raw data

through simulation or other means.

# ======================================

# Sample parameter file for a FreeCT_ICD

reconstruction

# Paths

sinogram_path:./n_ffs_short_acr.bin

output_dir: ./

output_file: n_ffs_short_acr.img

. . .

# Scanner Geometry

acquisition_fov: 50.0

n_channels: 736

num_views_per_turn_without_ffs: 1152

focal_spot_radius: 59.5

. . .

# Recon Geometry

recon_fov: 25.0 # Diameter of

nx: 512

. . .

# Iterative recon parameters

wfbp_initialize: 1

penalty: edge-preserving

. . .

num_iterations: 100

# =======================================

Listing 1: Excerpts from a configuration file for Free-

CT_ICD indicating the types of parameters users must spec-

ify for a reconstruction, as well as what can be modified to

adapt FreeCT_ICD to other system geometries. Configura-

tion files are written in YAML. The “#” denotes commented

lines that are not parsed for configuration; “. . .” indicates

regions that have been removed for brevity.

The software was designed so that it could be imple-

mented into a high-throughput computational pipeline that

would be useful for reconstruction of a large number of

cases with different reconstruction settings. Therefore,

reconstructions with the software can be configured using

parameter files such as those described in Ref. [1]. List-

ing 1 provides an excerpt of one of the configuration

files used to initialize FreeCT_ICD for reconstruction.

Many of the parameters required are geometry specifica-

tions common to third-generation helical CT scanners

(e.g., source to isocenter distance, source to detector dis-

tance, fan angle, number of detector channels, etc.). Other

parameters specify how the scan was acquired such as

collimation, pitch, and usage of flying focal spots.

Finally, the user must specify “standard” reconstruction

specific parameters such as range of locations to recon-

struct and reconstruction grid dimensions, as well as iter-

ative-specific parameters such as which penalty to utilize,

number of iterations, and whether or not to initialize the

reconstruction with a FreeCT_wFBP reconstruction. A

full sample input file for the software can be found at

https://github.com/FreeCT/FreeCT_ICD/blob/master/

resources/sample_prm.yaml.

2.D. Requirements and dependencies

In this subsection, we provide a brief overview of the

resources needed to run FreeCT_ICD. For a full description

of the hardware and software requirements please refer to the

documentation.25

2.D.1. Software

FreeCT_ICD was developed on Linux (Ubuntu 14.04LTS,

Canonical, Ltd, London, UK) and should compile and run on

all modern Linux distributions with little to no modification.

Only two major external dependencies for building and run-

ning the software are required: (a) the Boost uBLAS C++

library (http://www.boost.org) and (b) the “yaml-cpp” library

(https://github.com/jbeder/yaml-cpp). The Boost libraries

come preinstalled on most Linux systems and/or are easily

available through the distribution’s package manager along

with the YAML-cpp library. More information on installing

these two dependencies can be found in the online documen-

tation.25

2.D.2. Hardware

Recommended system specifications for running Free-

CT_ICD are: a Linux computer with at least 8 GB of RAM,

a 4-core CPU, and at least 10 GB of free hard drive space.

Resources in excess of this, in particular additional CPU

cores, will help FreeCT_ICD run faster or will allow the user

to reconstruct larger datasets.

Because the stored system matrix approach utilized for

FreeCT_ICD necessitates substantial data storage, effort

has been made to limit FreeCT_ICD’s RAM requirements
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to run on any system that has at least 8 GB installed. This

has been accomplished through the periodic flushing of

system matrix data to the hard drive. The amount of hard

drive space required for storage of the system matrix is

specific to the raw projection data being reconstructed and

desired reconstruction (namely the number of pixels in

each slice). However, for reference, the matrix sizes for

the reconstructions of clinical data shown in this work

were ~7–15 GB. Sparse storage approaches are utilized to

reduce requirements, which becomes substantially more

important as the number of detector rows increases and/or

flying focal spots are employed. During reconstruction (as

opposed to the matrix generation step), the system matrix

is only read one column at a time (~10–100 MB) and thus

RAM requirements for the entire program are typically

less than 2 GB.

FreeCT_ICD benefits greatly from running on a multi-

core system but is capable of running on a single core

only. The fastest configuration to run FreeCT_ICD is using

the maximum number of cores available on the computer,

although it should be noted that threading and hyperthread-

ing of cores can cause apparent drops in performance when

using values below the maximum. By default, FreeCT_ICD

is configured to use all available cores of the system up to

a total of 12.

2.E. Licensing

Similar to FreeCT_wFBP, FreeCT_ICD is freely dis-

tributed under GNU GPL v2.0 in an effort to encourage

further research and education using diagnostic CT. Licens-

ing under the GPL v2.0 means that users are free to copy,

distribute and modify the software provided changes are

identified and dated in the source code and any modifica-

tions are made freely available under the same license.

FreeCT_ICD will be maintaining individual, versioned

releases through the website and GitHub, which will pro-

vide a consistent “history” needed for reproducibility. For

those interested in developing or modifying the software,

FreeCT_ICD, along with FreeCT_wFBP, is an ongoing

effort open to feedback, suggestions, and contributions from

the larger community.

3. SOFTWARE EVALUATION

In this section, we report on reconstructions of datasets

acquired on a clinical scanner (Definition AS 64, Siemens

Healthineers, Forchheim, Germany) at UCLA that were

carried out to evaluate image quality and to demonstrate

the software’s ability to correctly reconstruct data from a

clinical diagnostic CT scanner. Reconstructions are pro-

vided for both the phantom from the American College of

Radiology (ACR) CT Accreditation Program and a pedi-

atric thoracic scan. In both cases, the raw projection data

was collected from the scanner and then image data was

reconstructed using FreeCT_ICD. These are described

below.

3.A. ACR CT accreditation phantom

The ACR CT accreditation phantom was scanned on the

clinical scanner using a helical scan protocol with acquisition

parameters described in Table I. The raw data was captured

from the scanner and reconstructed using both wFBP and the

ICD algorithm using wFBP initialization. The reconstruction

parameters used are also described in Table I. Figures 1 and

2 shows images through the reconstructed ACR phantom

from the ICD reconstruction.

Below are the results from the CT number module, the

uniformity module, the low-contrast module, and the resolu-

tion module.

3.A.1. CT number module results

Using the image shown in Fig. 1, the CT number of all

materials was evaluated according to ACR CT Accreditation

Program instructions.28 The results are shown in Table II. All

reconstructed CT number values were within the acceptable

ranges as defined in the accreditation instructions.

3.A.2. Low-contrast module results

The low-contrast module reconstruction gave a CNR of

3.83, primarily due to a very low standard deviation value of

1.73. For adult abdomen protocols, the accreditation program

guidelines specify that the CNR should be >1.0, so this value

is acceptable (it should be noted that there is no CNR specifi-

cation for a routine chest protocol). It should be noted that

the CNR is affected by the reconstruction kernel in FBP, and

by a number of parameters in the iterative reconstruction

TABLE I. Acquisition and reconstruction parameters for both the ACR

phantom scan and the pediatric thoracic scan (including penalty term and

edge-preserving parameters).

Scan ACR phantom Pediatric chest

Acquisition parameters

Tube voltage [kV] 120 100

CareDose4D Off On

Quality Reference mAs — 180

Effective mAs 100 73

Collimation 16 9 1.2 mm 16 9 1.2 mm

Pitch 1.0 1.0

Flying focal spot Off Off

Rotation time [s] 0.33 0.33

Reconstruction

(ICD) parameters

wFBP initialization wFBP initialization

Voxel grid dimensions 512 9 512 9 132 512 9 512 9 163

Voxel size [mm] 0.58 9 0.58 9 1.5 0.98 9 0.98 9 1.5

FOV radius [mm] 300 500

Edge-preserving parameter 0.005 0.005

Penalty term parameter 0.1 0.1

System matrix size [GB] 8.5 14.6

Iterations 50 50

Medical Physics, 0 (0), xxxx
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algorithm. Depending on the selection of these parameters,

the apparent CNR can be increased or decreased. The CNR

for the FreeCT_wFBP initializer reconstruction was 2.21,

demonstrating that FreeCT_ICD improves the CNR relative

to the wFBP reconstruction alone. This is in addition to the

improved spatial resolution demonstrated in Section 3.A.4.

3.A.3. Uniformity module results

For the uniformity module, the maximum difference from

center was 1.1 HU, indicating acceptable uniformity in the

reconstructed image. The ACR specifies a range of �5 HU as

acceptable. For the FreeCT_wFBP initializer reconstruction,

maximum observed difference from center was 0.9 HU.

3.A.4. Resolution module

For the resolution module, the image in Fig. 1 indicates a

resolution of 8 lp/cm was achieved with our reconstruction.

The ACR no longer requires this evaluation, but does require

resolution evaluation as part of annual QC testing. While there

is no limiting resolution value stated for adult head protocols,

the adult abdomen protocol limiting resolution is 6 lp/cm.

Therefore, this resolution can be judged to be acceptable.

To emphasize the differences between the conventional

wFBP reconstruction (which served as the initial condition to

the ICD) and the ICD reconstruction, Fig. 3 shows some addi-

tional images of module 4 which evaluates spatial resolution.

This figure shows the resolution section reconstructed from

FIG. 1. Images from the FreeCT_ICD reconstructions of the ACR accreditation phantom using the acquisition and reconstruction parameters described in Table I

with the edge preserving penalty function. This figure shows from left to right: the CT number module; the low-contrast module; the uniformity module and the

spatial resolution module. Each image has been windowed and leveled to the values recommended by the ACR; labels correspond to the module numbers identi-

fied by the ACR.28 Left to right (W/L specified in HU): 400/0, 100/100, 100/0, 100/1050.

FIG. 2. Coronal (left) and sagittal (right) reformats of the FreeCT_ICD reconstructions of the ACR phantom using the edge preserving penalty function. Module

numbers are labeled according to ACR specifications. Shown with window/level of 400/0 HU.

TABLE II. Results from CT number evaluations of the ACR CT accreditation phantom shown in Fig. 1. Equivalent ROI results are provided for the

FreeCT_wFBP initializer.

Material Acceptable range [HU] Reconstructed value: FreeCT_ICD [HU] Reconstructed value: FreeCT_WFBP [HU]

Polyethylene �107 to �84 �89 �89

Bone 850 to 970 864 863

Water �7 to 7 �2 �3

Acrylic 110 to 135 123 122

Air �1005 to �970 �988 �987

Medical Physics, 0 (0), xxxx
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both wFBP with a medium filter as well as with the ICD algo-

rithm with the edge-preserving penalty term. These images are

shown at both the window and level the ACR recommends for

evaluation of the bar patterns (approx. L = 1100/W = 100) as

well as a window/level setting that is closer to a soft tissue win-

dow, which allows us to evaluate both the noise level (evalu-

ated through standard deviations in each image) as well as the

reduced streaking artifacts observed in the ICD image. Thus,

these images demonstrate that ICD is indeed providing compa-

rable resolution at reduced noise compared to wFBP, as well

as a reduction in the streak artifacts caused by the bar patterns.

These images are meant to be illustrative and not definitive of

the advantages of ICD over wFBP; it is recognized that the

parameters selected (including those for wFBP) will have sig-

nificant bearing on any comparisons of resolution, noise and

image quality in general.

3.B. Clinical dataset—pediatric thoracic scan

A clinically indicated thoracic scan was performed on a

pediatric (7-year-old) patient on the same multidetector CT

(Definition AS 64, Siemens Healthineers, Forchheim,

Germany). The raw projection data was obtained and anon-

ymized under IRB approval at our institution. Our pediatric

chest scans are performed with very low doses (CTDIvol for

the 32 cm phantom for this scan was 2.5 mGy). Figure 4 repre-

sents a coronal image reconstructed from this pediatric thoracic

scan using conventional wFBP (with a smooth reconstruction

filter) as well as ICD using first a quadratic penalty term and

then ICD using an edge preserving penalty term. In both ICD

cases, the wFBP was used as the initialization. However, each

ICD image can be shown to provide more detail than the wFBP

(with smooth kernel) as evidenced by the clearer representation

of fine details such as fissures and vascular markings. In this

figure, the quadratic penalty term results in noisier images

(higher standard deviation) than the edge preserving penalty

term, although in general the resolution and noise characteris-

tics depend on the specific parameters used in the regularizer.15

3.C. Reconstruction times and initialization with
FreeCT_wFBP

Using wFBP as an initial condition is expected to provide

robust benefits, especially in terms of reconstruction time

FIG. 3. Module 4 (resolution module) of the ACR phantom reconstructed with both wFBP (medium kernel) and ICD (edge preserving penalty term). The top

row displays the images at the Window and Level settings similar to soft tissue (window: 200 HU, level: 0 HU) windows to demonstrate the reduced streak arti-

facts and reduced image noise resulting from ICD reconstructions. The bottom row displays a zoomed region of the above images with a window of 100 HU and

level 1040 HU, and shows the comparable resolution provided by ICD (even at reduced noise level).
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required for ICD, primarily through the reduction in the num-

ber of iterations required to obtain acceptable results. This is

illustrated in Fig. 5 which shows the results of reconstruc-

tions of the uniformity module of the ACR phantom (Sec-

tion 3) both without initialization (initial conditions are that

all voxels are 0 attenuation) and with initialization using

wFBP image of the same section.

Reconstruction times are strongly dependent on both

the geometry of the scanner from which the projection

data originates (i.e., number of rows, number of channels,

usage of flying focal spots, etc.), as well as the geometry

of the reconstructed volume (i.e., field of view, number of

voxels per slice, etc.). For both the pediatric reconstruction

and ACR phantom FreeCT_ICD reconstruction examples

shown in this work, reconstructions required approximately

12 hours of compute time on a 6-core CPU workstation.

More discussion of run-time and possible strategies to

leverage FreeCT_ICD for research are provided in the next

section.

4. DISCUSSION

This technical note describes FreeCT_ICD, which is

model-based iterative reconstruction software for helical CT

images that uses an iterative coordinate descent approach.

This method represents a reasonable tradeoff in computation

time and memory requirements for practical implementation

of offline reconstructions. This tool was designed to facilitate

CT imaging research such as investigations into the effects of

radiation dose reduction and reconstruction method and

parameter selection on CT image quality, quantitative imag-

ing and CAD performance. The offline (i.e., away from the

clinical scanner) capabilities provided, coupled with standard

representation formats for raw projection (sinogram) data,10

may provide advantages in terms of the breadth and depth of

investigations that can be performed. This tool was intended

as a complement to the weighted filtered backprojection tool

already developed and made available1 via the FreeCT web-

site. It is hoped FreeCT_ICD be a useful addition for the

FIG. 4. Coronal reformat image of a pediatric thoracic CT exam from the same raw projection data to illustrate the differences in reconstructions. The top row

shows images displayed at lung windows for: (a) wFBP using a smooth reconstruction kernel, (b) ICD using a quadratic penalty term and (c) ICD using an edge

preserving penalty term. The bottom row shows the same images but displayed at soft tissue windows and with a region of interest (ROI) within a homogeneous

area in the liver which demonstrates the similarity in mean values across reconstructions as well as differences in standard deviation values across reconstructions.

The order of images is the same as the row above: (d) wFBP using a smooth reconstruction kernel, (e) ICD using a quadratic penalty term and (f) ICD using an

edge preserving penalty term. (a)–(c) are shown with window/level of 1600/600 HU. (d)–(f) are shown with window/level of 400/40 HU.
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medical physics community and the broader research

community.

The approach described here is a model-based iterative

reconstruction method that incorporates the stored-system-

matrix approach together with iterative coordinate descent

(ICD) optimization and has been based on a previously pro-

posed method that performs reconstruction on rotating slices

to exploit helical symmetry and reduce the storage require-

ments for the CT system matrix. The approach described

incorporates a penalized-least-squares objective function with

both a quadratic and edge-preserving penalty term. The for-

ward problem is modeled via a unique approach that combi-

nes trilinear interpolation with the principles of Joseph’s

method to enable accurate reconstruction with low storage

requirements. Iterations are accelerated with multi-CPU

OpenMP libraries. The result is a reasonable balance between

storage requirements and computational performance that

leverages this computer architecture.

FreeCT_ICD differs from other iterative reconstruction

approaches in that it stores the system matrix directly. To fit

within memory, it is necessary to employ a rotating grid. The

combination of stored system matrix and rotating grid has

also been analyzed and studied in Ref. [12]. Our work differs

from that work in that it has been verified with experimental

and clinical data, uses ICD for optimization rather than the

alternating direction method of multipliers (ADMM), uses a

different representation of the system matrix, and will be

released as an open-source, free package. In our implementa-

tion, we have used a CPU approach to make the software

available to a wider community.

The final stored system matrix size is strongly influenced

by reconstruction and acquisition parameters (e.g.,

collimation, reconstructed field of view, pitch, etc.). System

matrix sizes for this work fell roughly between 10 and 20 GB

using the modified Joseph’s method described above. Taking

into account the reconstruction and acquisition parameters,

our matrix sizes were larger than those achieved by Guo

et al.21 (roughly 1–10 GB, Siddon-based), however, smaller

than those achieved by Xu et al.12 (roughly 27 GB, Blob-

based approach). Based on the size of our stored system

matrix and the recent analysis provided by Matenine et al.,29

an efficient GPU refinement of our code may be possible in

the near future for high end GPU cards. This warrants further

investigation and development.

While it is known that Joseph’s method13 outperforms Sid-

don’s method,22 it may be possible to use yet more sophisti-

cated projectors with the stored system matrix approach.

Distance-driven projectors30 or separable footprints31 have

the potential to offer more detailed modeling of the system

geometry. However, past methods have been limited to what

could be practically computed on the fly. With a precomputed

matrix, there would be no need to, for example, make the

approximation that the projector footprint is separable. Like-

wise, non-voxel representations could be used32 without

the restriction that the choice of image representation be

calculated quickly.

A challenge with a rotating grid is the inclusion of a volu-

metric regularizer. The images presented in this work used

only an in-plane regularizer. Because the voxels in each axial

plane are rotated with respect to each other, the implementa-

tion of the regularizer becomes more complex and less uni-

form. A variety of approaches could be considered, but it is

not clear which approach is best. For example, the strength of

the regularizer could be inversely proportional to the distance

FIG. 5. Figure demonstrating the effects of initialization using wFBP image data using the ACR uniformity module (module 3). The top row shows reconstruc-

tions of this module when no initialization (all voxels start as 0 attenuation value) is used. The bottom row shows reconstructions of this module when the wFBP

image data is used as the initial condition and how much faster the image converges to the expected answer. All images shown with window/level of 100/0 HU.
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between pixels up to a predetermined maximum distance; or,

interpolation of voxels could be used. The full implementa-

tion of 3D regularizers is left to future work, however, it is

expected to largely involve identifying the equivalent Carte-

sian points on the rotated slices, and implementing an effi-

cient interpolation scheme. It has been argued33 that iterative

reconstruction derives a great level of benefit from volumetric

smoothing, so this choice is important. A separate complica-

tion of the rotating grid is that the final dataset must be inter-

polated back to a fixed grid for display or archival. This

requires a rotational transformation of most slices to be con-

sistent with the traditional Cartesian representation. Because

much of the ongoing research in iterative reconstruction

focuses on regularization/penalty function selection and

design, FreeCT_ICD has been coded with a specific file dedi-

cated to penalty functions (“penalties.cpp”) making the

extension and modification of the current implementation or

the addition of new regularizers as straightforward as possi-

ble; users simply need to add a new C++ function describing

the penalty function desired. More information on

penalty functions in FreeCT_ICD can be found in the

documentation.25

The choice to pursue a stored system matrix implementa-

tion was based on our belief in the long-term viability of this

approach for detailed, accurate, and efficient reconstruction.

We are not claiming in this work that using the stored system

matrix approach together with the Joseph-style forward pro-

jector is necessarily optimal. The benefits/advantages of

using a stored system matrix are likely to be realized when a

more detailed modeling of system geometry and physics (fo-

cal spot size, detector element size, etc.) will be considered.

The issue of more accurate modeling is the subject of further

improvements of the software.

Further improvements we are planning for the future are

more accurate modeling of the finite focal spot and detector

size, acceleration of the reconstruction process, and extension

of the regularizer to 3D. In addition, we believe that other

popular projectors, such as distance-driven or separable foot-

prints, could be extended into the rotating slice geometry and

incorporated into FreeCT_ICD in future updates. We hope

that releasing FreeCT_ICD as free, open-source software will

lower the barrier to the testing of different and potentially

novel projection models with simulated or clinical diagnostic

CT data, since the rest of the code infrastructure has already

been established.

To provide some preliminary evaluations, images were

reconstructed of a standard phantom (ACR CT accredita-

tion phantom) and a clinical case of a pediatric thoracic

scan. Image quality was evaluated for each set of images

and demonstrated to provide faithful reconstructions of

mathematical phantoms as well as images that were com-

parable to those available from clinical CT scanner recon-

structions for the ACR phantom and the pediatric

thoracic scan. Images were provided to indicate both the

benefits of initializing ICD with wFBP reconstructions as

well as to indicate the differences between these two

reconstructions.

As mentioned previously, FreeCT_ICD benefits immen-

sely from running on multicore workstations, and can be

easily modified to leverage more or less CPU power than the

preconfigured usage of up to 12 CPU cores. While the cur-

rent reconstructions times limit FreeCT_ICD primarily to

research purposes, running the software on a computing clus-

ter, via tools such as HTCondor (https://research.cs.wisc.edu/

htcondor/) or Amazon Web Services (https://aws.amazon.c

om/) can achieve many reconstructions in a short period of

time, making it viable for investigations requiring an offline,

high-throughput alternative to clinical, scanner-based recon-

structions. In addition, methods to accelerate the current

implementation are under investigation, primarily the porting

of certain code portions to GPU and careful memory-access

optimizations.

These investigations provide a basis for continuing work

including improvements in both computational performance

as well as image quality improvement. Specific future devel-

opments will include investigations into the utility of extend-

ing the regularization into the third (longitudinal or “z”)

dimension, which may include incorporating a longitudinal

direction penalty term as well as ensuring that interpolated

values are aligned in the longitudinal direction.

5. CONCLUSION

This technical note describes a software package dedi-

cated to reconstructing helical, third-generation CT data

using an iterative model-based reconstruction method. This

method is intended to serve as a complement to the previ-

ously released FreeCT_wFBP and offers many of the same

advantages: a configurable reconstruction software capable

of handling various third-generation helical CT scanner

geometries via simple modifications to a human-readable

configuration file (e.g., Listing 1). Like FreeCT_wFBP, this

package does not represent the exact reconstruction algo-

rithms employed by clinical CT scanners, however, an initial

assessment demonstrated that FreeCT_ICD does provide

acceptable performance on the ACR phantom as well as

accurate reconstruction of attenuation values. While Free-

CT_ICD does not represent the exact clinical scanner recon-

structions, it represents a key iterative reconstruction

extension of the FreeCT project, which is in line with the

overarching goal of FreeCT to provide reconstruction

research tools for clinical diagnostic CT data. Free-

CT_ICD’s CPU implementation allows for reasonable speed

for reconstruction of clinical CT data and is well suited to

large-scale explorations of reconstruction parameter space.

Since the software is command line based and configured

through parameter files, FreeCT_ICD can easily be auto-

mated (e.g., via Bash, Python) to perform large numbers of

reconstructions without the need for user intervention or

extensive access to clinical scanners.

More information, including documentation, detailed

licensing, and source code, can be found via FreeCT’s web-

site (http://cvib.ucla.edu/freect), or the FreeCT Github page
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(https://github.com/freect). The website also hosts contact

information for bug reporting, a list of any known bugs, as

well as a list of planned updates, and version history.25
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APPENDIX (1)

DESCRIPTION OF THE FORWARD PROJECTOR

In this appendix, we provide a detailed mathematical

description of the unique forward projector model we have

used for our ICD implementation. Let f(x) be the function to

be reconstructed with x = (x,y,z). Our approach amounts to

first approximating f(x) by a linear combination of basis func-

tions, which may be described as follows. Let

b1ðtÞ ¼
1� jtj if jtj\1

0 otherwise

�

(1)

be the B-spline of order 1, which is the basis function for lin-

ear interpolation in 1D; and let

wðxÞ ¼ b1ðx=DxÞ b1ðy=DyÞ b1ðz=DzÞ (2)

where Dx, Dy and Dz are sampling steps in x, y and z, respec-

tively. Thus, w(x) is the basis function corresponding to trilin-

ear interpolation in 3D. To create a forward projector with

rotational symmetry, we enforce Dx = Dy; and we introduce

a rotated version of w with the rotation taking place around

the z-axis by an angle /, namely

wrðx;/Þ ¼ wðx � /; x � /?; zÞ (3)

with / = ( cos /, sin /,0), /? ¼ ð� sin/; cos/; 0Þ. Now,
consider the following uniformly-distributed samples in x, y

and z:

xi ¼ iDx; i ¼ �N=2; . . .;N=2

yj ¼ jDy; j ¼ �N=2; . . .;N=2

zk ¼ z0þk Dz; k ¼ 0. . .;Nz � 1

(4)

The approximate expansion of f(x) we seek through iterative

reconstruction is

faðxÞ ¼
X

i;j;k

ci;j;k wrðx� xi;j;k;/kÞ: (5)

This expansion corresponds to applying the interpolation pro-

cess discussed in section 2A. The quantities ci,j,k represent

the unknowns, and

xi;j;k ¼ xi /k
þ yj /

?
k
þ zk ez (6)

with /k = /0 + k D/, k = 0,. . .,Nz�1, and ez ¼ ð0; 0; 1Þ.
Thus, for each k, the basis functions wrðx� xi;j;k;/kÞ are cen-
tered on an (x,y) grid that rotates with index k. The angular

shift D/ and the separation between slices Dz are related to

the angle Dk between the readings by the equations

Dz ¼
P

2p
ðmNFFS DkÞ

D/ ¼
2p

P
Dz

8

>

<

>

:

(7)

where P is the table feed per turn, NFFS is the number of fly-

ing focal spot positions, and m is an integer.

Equation (7) for Dz implies that Dz needs to be an integer

multiple, m, of P
2p
ðNFFSDkÞ. In other words, this means that

we require that the final reconstructed slice thickness is an

integer multiple of the z distance traveled by the x-ray source

when moving from one reading to the next reading with the

same flying focal spot position (in the specific case of no fly-

ing focal spots, this is simply the distance between consecu-

tive source positions; with one flying focal spot direction,

e.g., in-plane or longitudinal, every other source position;

with two flying focal spot directions, e.g. in-plane and longi-

tudinal, every fourth). This requirement is essential to create

the rotational symmetry leveraged by our system matrix;

exploiting this symmetry leads to the substantial size reduc-

tion in the system matrix12.

Because it is typically non-trivial for the user to directly

specify such a particular value for Dz, in our program we let

the user freely specify an initial Dz (the desired reconstructed

slice thickness), then convert this to the nearest Dz value that

satisfies the form of Eq. (7) by rounding the potentially non-

integer value of m up to the nearest integer value. For exam-

ple, if a user requests a slice thickness of 1.0 mm and this

yields m = 18.5, m would be rounded to 19, yielding a final

reconstructed slice thickness and spacing of 1.027 mm

returned to the user.

At this stage, we are ready to describe the system matrix.

Consider the problem of computing the line integral of f

along the line of direction a through a point s, i.e.,

gðs; aÞ ¼

Z 1

�1

f ðsþ taÞ dt: (8)

We first substitute fa of Eq. (5) for f in this expression to

obtain
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gðs; aÞ ’

Z 1

�1

faðsþ taÞ dt: (9)

Next, using the expression of fa, we get

gðs; aÞ ’
X

i;j;k

ci;j;k

Z 1

�1

wrðsþ ta� xi;j;k;/kÞ dt: (10)

In this equation, the multiplier of ci,j,k represents one element

of the system matrix. By varying s and a to cover all mea-

sured line integrals in the helical geometry, we obtain a set of

multipliers that form one column of the system matrix. By

enforcing the above relations between D/, Dz and Dk, rota-

tional symmetry is induced so that the columns of the system

matrix that correspond to the elements defined with k = 0

identify all columns of the system matrix.

Although we could exactly compute the multiplier of

ci,j,k, we found it advantageous to approximate it using the

principle of Joseph’s method, as explained hereafter. The

sought advantage is equivalent to that observed between

Joseph’s method and the bilinear interpolation method in

[31]: a reduction of about 50% in system matrix size with

little impact on image quality (this is because each inter-

polated value in (x,y,z) is obtained from 4 rather than 8

neighbor voxels, which effectively halves the number of

elements on each row of the system matrix; see [31] for

more details). The approximation is as follows. First, we

test whether a is closer to /
k
or /?

k
. The first case occurs

when ja � /
k
j [ ja � /?

k
j. In this case, we perform a

change of variable to replace t by a projected coordinate u

along /
k
. This corresponds to writing

sþ t a� xi;j;k ¼ u/
k
þ v/?

k
þ wez; (11)

which gives

u ¼ ðsþ t aÞ � /
k
� xi ;

v ¼ ðsþ t aÞ � /?
k
� yj;

w ¼ ðsþ t aÞ � ez � zk:

(12)

From the first equation, we get the link between u and t.

Inserting this link in the other two equations, we get v

and w as functions of u. The change of variable followed

by a simple rectangular-rule approximation of the integral

leads to
Z 1

�1

wrðsþ ta� xi;j;k;/kÞ dt ’
Dt

ja � /
k
j
wrðv/

?
k

þ w ez;/kÞ
�

�

u¼0
: (13)

In the alternative case, when ja � /
k
j\ ja � /?

k
j, a similar

approach is followed using the link between v and t instead of

that between u and t.
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