
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Quality of service guarantees for FIFO queues with constrained inputs

Permalink
https://escholarship.org/uc/item/6wm911nz

Author
Blanc, Alberto P.

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wm911nz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Quality of Service Guarantees for FIFO Queues with Constrained Inputs

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Alberto P. Blanc

Committee in charge:

Professor Rene Cruz, Chair
Professor Elias Masry
Professor Ramesh Rao
Professor Stefan Savage
Professor Alex Snoeren

2006

Copyright

Alberto P. Blanc, 2006

All rights reserved.

The dissertation of Alberto P. Blanc is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

Chair

University of California, San Diego

2006

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

Acknowledgements . viii

Vita and Publications . ix

Abstract of the Dissertation . x

1 Introduction . 1

1.1 Widespread Use of FIFO Queues . 1

1.2 Existing and New Results . 5

1.3 Network Calculus Overview . 9

2 Service Curves for FIFO Queues . 11

2.1 Introduction . 11

2.2 QoS Bounds for a Single FIFO Queue with (σ, ρ) Envelopes 12

2.2.1 Maximum Delay . 15

2.2.2 Output Envelope . 17

2.2.3 Maximum Backlog . 20

2.3 Delay Bounds for two FIFO Servers in Tandem 21

2.3.1 Considering Each Node in Isolation 23

2.3.2 Convolution of two service curves . 23

2.3.3 Optimal Values of T1 and T2 for Worst Case Delay Computation . . 27

3 Service Mappings . 33

3.1 Introduction . 33

3.2 Service Models . 34

3.2.1 Minimum Service Mappings . 35

3.2.2 Shift Invariant Service Mappings . 36

iv

3.3 Quality of Service Guarantees for Shift Invariant Service Mappings 38

3.3.1 Linear Time Invariant Service Mappings 41

3.4 FIFO Multiplexers . 42

3.4.1 A Single FIFO Multiplexer . 42

3.4.2 FIFO Multiplexers in Tandem . 43

4 Worst Case Average Delay for a Single FIFO Queue 46

4.1 Introduction . 46

4.2 Problem Statement and Some Definitions 47

4.3 Preliminary Results . 48

4.3.1 An optimization problem . 49

4.3.2 Fixing the cross traffic and making some changes to the through traffic 61

4.4 Main Result . 74

5 Conclusions . 84

5.1 Open Problems . 85

Bibliography . 88

v

LIST OF FIGURES

Figure 2.1: The system . 11

Figure 2.2: ST
0 (x) if T < σ1

C . 13

Figure 2.3: ST
0 (x) if T = σ1

C . 14

Figure 2.4: ST
0 (x) if T > σ1

C . 14

Figure 2.5: Maximum horizontal distance between E0 and ST
0 16

Figure 2.6: Service curve when T = σ0+σ1
C . 17

Figure 2.7: F (t + τ) and ST
0 (τ) when T ≥ σ1

C and σ0
C−ρ0

− t < T 18

Figure 2.8: F (t + τ) and ST
0 (τ) when T ≥ σ1

C and σ0
C−ρ0

− t ≥ T 18

Figure 2.9: E0(τ) and ST
0 (τ) . 21

Figure 2.10: A simple two node system . 23

Figure 2.11: Convolution: Case 1 . 24

Figure 2.12: Convolution Case 2 . 24

Figure 2.13: Argument of the infimum . 26

Figure 2.14: Two service curves for Case 1 . 28

Figure 2.15: Sub-cases for Case 2 . 29

Figure 2.16: The different cases in the a1, a2plane 31

Figure 3.1: S-mapping: delay, backlog and output bounds 40

Figure 3.2: Service curves: delay, backlog and output bounds 42

Figure 3.3: Two nodes in tandem . 44

Figure 4.1: How to construct a better solution 52

Figure 4.2: Water-filling condition . 56

Figure 4.3: How to construct f ′(x) . 56

Figure 4.4: Constructing {T ′nm} by switching Tim1 and Tjm2 57

Figure 4.5: Definition of α and γ . 63

Figure 4.6: E1(t1)− Ct1 ≤ E1(t2)− Ct2 and E1(t3)− Ct3 ≥ E1(t4)− Ct4 . . 64

Figure 4.7: Construction of G(t) . 65

Figure 4.8: Construction of H(t) . 66

Figure 4.9: A sample RIII
0,in(t) and R*

0,in(t) . 71

vi

Figure 4.10: The intervals for {T IV
nm} with two weights: r1 ≥ r2 76

vii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Rene Cruz for his support as the chair of the

committee. Through multiple drafts his guidance and teachings have proved to be invalu-

able.

I would also like acknowledge all the professors from the Electrical and Computer

Engineering Department, the Computer Science and Engineering Department and the

Mathematics Department that have taught all the classes that I have taken at UCSD.

Their dedication and excellent technical preparation has greatly expanded my knowledge

and understanding of many different topics.

Chapter 3, in full, is a reprint of the material as it appears in Proceedings of the 2003

Allerton Conference on Communications and Control. Alberto Blanc and Rene Cruz,

2003. The dissertation author was the primary investigator and author of this paper.

viii

VITA

1998 ”Laurea”, cum laude, Politecnico di Torino, Italy

2001–2006 Research assistant, Department of Electrical and Comuter
Engineering, University of California San Diego

Summer 2003 Summer Internship
Wireless Telephone Switching Systems, Carlsbad, Califor-
nia

Summer 2004 Summer Internship
Sprint Advanced Technology Laboratory, Burlingame, Cal-
ifornia

2004 MSc in Electrical Engineering
University of California at San Diego, La Jolla, California

2006 PhD in Electrical Engineering
University of California at San Diego, La Jolla, California

PUBLICATIONS

Alberto Blanc, Yi-Kai Liu and Amin Vahdat, ”Designing Incentives for Peer-to-Peer Rout-
ing,” Proceedings of IEEE INFOCOM 2005, Miami FL, March 2005.

Alberto Blanc, Yi-Kai Liu and Amin Vahdat, ”Designing Incentives for Peer-to-Peer Rout-
ing,” Proceedings of the 2nd Workshop on the Economics of Peer-to-Peer Systems, Boston
MA, June 2004.

Rene L. Cruz and Alberto P. Blanc, ”A Service Abstraction with Applications to Network
Calculus,” Proceedings of the 2003 Allerton Conference on Communications and Control,
Monticello IL, September 2003.

FIELDS OF STUDY

Major Field: Computer Engineering
Studies in Quality of Service guarantees for packet switched networks
Professor Rene L. Cruz

Studies in peer-to-peer networks
Professor Amin Vahdat

ix

ABSTRACT OF THE DISSERTATION

Quality of Service Guarantees for FIFO Queues with Constrained Inputs

by

Alberto P. Blanc

Doctor of Philosophy in Electrical Engineering (Communication Theory and

Systems)

University of California San Diego, 2006

Professor Rene Cruz, Chair

First-In First-Out (FIFO) queues are widely used in packet switched communication

networks and they have been studied extensively, from a probabilistic point of view, in the

Queuing Theory field. The Network Calculus framework was proposed as an alternative

to the probabilistic approach and provides deterministic bounds provided the inputs do

satisfy deterministic constraints (envelopes).

In the first part of this dissertation we use service curves to analyze FIFO queues with

inputs constrained by sigma-rho envelopes. Using previously known results we show that

for the case of a single FIFO queue it’s possible to recover known and tight bounds for

different Quality of Service (QoS) metrics. For the case of two FIFO queues in tandem

we find the smallest possible end-to-end delay bound, with this approach, by choosing the

appropriate service curve at each node but we found that, in general, this bound is still

not achievable.

In order to find a better bound, we define a general service abstraction, which is

defined in terms of a “service mapping,” which is a monotone operator that maps an

arrival process to a lower bound on the corresponding departure process. For a network

element with a shift invariant service mapping, we obtain bounds on the maximum delay,

maximum backlog, and a traffic envelope for the departure process, assuming that the

arrival process to the network element conforms to a traffic envelope. Using the service

x

mapping abstraction to analyze a network of two FIFO queus in tandem, whose arrival

processes conform to traffic envelopes, we obtain achievable upper bounds on end-to-end

delay which are smaller than those that can be obtained with previously proposed methods.

In the second part we address the problem of worst case average delay for a single

FIFO queue with constrained inputs, where the average is over time. We show that if

a flow has a piecewise linear and concave envelope and shares a single FIFO queue with

another flow that has a concave envelope it’s possible to obtain a tight bound on the worst

case average delay.

xi

1

Introduction

1.1 Widespread Use of FIFO Queues

First-In First-Out (FIFO) queues have always been widely used in packet switched

communication networks. Most likely this popularity is due to the fact that this queuing

discipline is very simple to implement and manage. There is no need for any sort of

calculations, all that it is needed it is to keep track of the order in which packets arrived,

allowing simple implementations either in software or in hardware1.

Another noteworthy consequence of this simplicity is that there are virtually no con-

figuration parameters, a FIFO queue is completely described by the rate at which it serves

packets and the length of the buffer used to hold packets waiting to be served. Often these

two parameters are fixed at design time so that the operator does not need to configure

anything at all, simplifying the management of devices using this queuing discipline.

Naturally FIFO queues do have shortcomings, not surprisingly caused by the very

same simplicity that makes them attractive for ease of implementation and management.

Whenever packets belonging to two or more flows share the same FIFO queue the service

received by each flow depends on the characteristics of the other flows: the more traffic

the competing flow sends the worst the service is. In the worst case the competing flows

might be sending so much traffic that one or more flows could be completely starved, that

is they would be receiving no service at all because all their packets would be discarded
1Recently Chang has proposed an implementation that uses only optical components [10].

1

2

for lack of space in the buffer (in the case of an infinite buffer no packets are lost but the

delay is not bounded).

Another aspect of this dependence on the behavior of all the traffic sharing a FIFO

queue is the lack of fairness: the capacity of the server is not evenly divided among all the

flows using the queue, instead the more packets a flow is sending the more service it will

receive. Furthermore there are no mechanisms in place guaranteeing the stability of the

system. That is a single source that is sending too much traffic can cause arbitrary large

delays and packet losses for all the other flows sharing the same queue.

Because of these shortcomings FIFO queues with unregulated inputs cannot offer any

Quality of Service (QoS) guarantees and are not suitable for carrying traffic that may need

certain service guarantees like multimedia streams or other real-time traffic. To address

this issue many scheduling algorithm have been proposed from simpler ones like priority

queuing to more complicated ones like Packet-by-packet Generalized Processor Sharing

(PGPS) [25, 26] (also known as Weighted Fair Queuing [16]), Virtual Clock [32], Service

Curve Earliest Deadline (SCED), and SCED+ [15, 27], just to name a few. All these

scheduling algorithms offer some form of QoS guarantees and do protect each flow from

the behavior of the other flows sharing the same queue. This way, no matter what these

flows do, some minimum service will always be offered to each flow (the details about

these guarantees vary for each algorithm).

Using these more sophisticated scheduling disciplines it is possible to construct packet

switched networks capable of delivering different QoS guarantees to different flows. One

issue with this approach is that it requires each queue in the network to analyze each

incoming packet to determine to which flow it belongs so that it can be treated accordingly.

It is possible to simplify this problem by using a specific field in the header of each packet

containing a value that uniquely identifies a single flow, for example the Flow Label field

in the IPv6 header is specifically intended for this purpose. If such a field is not available,

as is the case in IPv4, then a collection of fields must be analyzed to determine to which

flow the packet belongs to. In the case of IPv4 five fields are usually used: source and

destination IP addresses, source and destination ports and protocol id. In either case a

certain amount of processing power and state information (with associated costs in terms

of time and memory usage) is required to perform these lookup operations.

Another issue with some of these algorithms is that each node needs to maintain a

3

certain amount of state information for each active flow. In addition each scheduling

decision can involve a non-negligible number of calculations. Often these shortcomings

become less and less relevant with advances in processor, memory and other technologies

allowing to limit their impact, but they are still present.

On the management and configuration side these algorithms have the disadvantage

that they all need some sort of configuration. Given that they can treat each flow in a

different way these algorithms have a series of parameters that need to be configured either

by an operator or by some automated signaling mechanism or by a combination of both.

Several signaling solutions have been proposed, one of them is the Resource Reservation

Protocol (RSVP) [6, 7] developed by the Integrated Services (IntServ) working group of

the Internet Engineering Task Force (IETF) [5,7,28–30]. One problem with this approach

is that it does not scale well as the number of flows increases. As their number grows

the requirements in terms of signaling, configuration and state information grow linearly.

Again technological advances might mitigate this problem but at least the signaling part

with the associated call admission control problem can be problematic: whenever two

nodes want to start a flow they need to signal this intention to the network and the

intermediate nodes (e.g. routers) need to decide whether they should admit the new flow

into the network or not. Especially in the case where a single flow needs to cross multiple

providers (as it is often the case in the Internet) this can be even more complicated

because each provider might have difference constraints and/or preferences in terms of

what flows to admit and how to route them. Also, allowing automated signaling between

different providers presents significant trust and security issues: each provider would have

to trust completely its peers, even though some of their nodes could be misconfigured or

compromised.

To address some of these issues the IETF created another working group called Dif-

ferentiated Services with the aim of introducing a much simpler solution. The basic idea

is that instead of dealing with each flow individually multiple flows would be grouped

together in a single “aggregate flow”, sometimes referred to as a clas or macro flow as

opposed to micro flows (as the individual flows are often called) [3, 17, 20, 21, 24]. All the

packets belonging to the same aggregate carry the same value in a specific field in the

header [24], in IPv4 the first six bits of the Type of Service field were used to create a new

field called DiffServ Codepoint (DSCP) while in IPv6 the first six bits of the Traffic Class

octet were redefined in the same way. Within each aggregate packets are served in FIFO

4

manner. Similarly when a flow joins an aggregate at a certain node this node will insert

these new packets into the aggregate using FIFO scheduling.

In a way, DiffServ is trying to combine the best of both worlds: the small number

of aggregates makes it scalable and more easily manageable while the fact that flows

are grouped in different macro flows allows service differentiation and QoS guarantees.

As the number of flows increases the number of macro flows does not and the fact the

FIFO is used within each aggregate means that that there is no need for extra state or

explicit configuration parameters every time a new flow is added. If, instead, IntServ

is used every newly admitted flow forces all the nodes involved to increase the amount

of state information kept, also each flow needs to specify certain number of configuration

parameters (like required rate). At the same time DiffServ does offer service differentiation

and can protect each macro flow from the behavior of the other macro flows sharing the

same queue, provided appropriate scheduling algorithms are used.

The small number of macro flows simplifies the management and signaling aspect as

well, but, unfortunately, it does not make this problem go away completely. One possible

solution is for human operators to configure all the parameters. Given that there is only

a small number of aggregates and that they are expected to be long lived makes this a

viable, albeit probably not optimal, solution. For example one macro flow could be used

for high-quality voice calls, another one for low-quality voice calls and a third one for video

conferencing.

So far we have glossed over the problem of how flows are admitted to each aggregate.

Clearly if there is no control at all and any node is allowed to join any macro flow sending

an arbitrary amount of traffic it is impossible to offer QoS guarantees to the other flows

using the same aggregate. Of course it is still possible to give certain guarantees to the

other aggregates (the details depends on the specific algorithms used), but this is not

enough. If we consider the example with the voice calls all the users using the high quality

voice aggregate would expect some QoS guarantee.

As described by the DiffServ standards [3] it is possible to do this by limiting the

amount of traffic that is allowed to join each aggregate. If all the flows sharing a FIFO

queue are such that certain constraints are met it is possible to find the worst case arrival

patterns, and corresponding worst case bounds, for different QoS metrics. Therefore,

at least in theory, it should be possible to provide specific guarantees to all the flows

5

sharing the same aggregate, provided that all the flows involved meet certain constraints.

In some cases these bounds might be known a priori (for example based on the specific

implementation of a certain user application) but, in general, it is always possible to

use shapers to make sure that all the flows joining a certain aggregate do meet all the

requirements that they are supposed to. Simplifying things a bit we could say that a shaper

is a network device that has as input an arbitrary flow and as output a flow that does

satisfy certain constraints. Typically the shaper will hold (delay) some of the incoming

packets until they can be transmitted without violating the constraints. In other cases

the shaper might simply drop non-conforming packets or mark them accordingly.

The details of the DiffServ architecture are beyond the scope of this work and the

interested reader is referred to [3, 24] and references therein for more details. What is

relevant to this work is that DiffServ uses FIFO scheduling to serve packets within the

same aggregate and that all the flows belonging to an aggregate can be forced to conform

to certain requirements. In the next section we formalize these requirements and introduce

some existing results.

1.2 Existing and New Results

Queuing theory is a vast and well-established field with a great number of well-known

works and results. The great majority of these works address the problem from a prob-

abilistic point of view and deal with random variables and associated distributions. In

order to apply these results it is vital to know the statistical properties of the incoming

work, whether it is customers to a bank, broken equipment to a repair shop or packets

in a communication network. Unfortunately, if the wrong assumptions are used for the

incoming traffic the results can be meaningless.

Another possible solution is to consider deterministic bounds: in [14] it is shown that,

as long as the inputs do satisfy certain constraints, one can obtain QoS bounds for a single

FIFO queue. Instead of dealing with random variable and probability distributions it is

possible to use simple constraints on the input flows, which are very reasonable for data

traffic.

Before we can precisely define these bounds we need to introduce some definitions:

let Rin(t) be a non-decreasing positive function representing the total amount of traffic

6

sent by a certain flow up to time t. We say that Rin(t) has envelope Ein(t) and write

Rin(t) ∼ Ein(t) if for any s ≤ t we have:

Rin(t)−Rin(s) ≤ Ein(t− s) ,

in other words we are upper bounding the amount of traffic that can be sent during a

certain time interval by a function that depends only on the length of this interval. One

envelope that is widely used because of its simplicity is the so called sigma-rho envelope,

in this case E(t) = σ + ρt. Often the notation (σ, ρ) is used to indicate this type of

envelope. Sometimes a maximum rate constraint is added so that E(t) = max{Ct, σ+ρt}
where C is the maximum rate allowed. Note that this simple envelope has an interesting

interpretation in the context of data traffic: the parameter σ implies an upper bound of

the burst size, that is the number of back to back packets that the flow can send.

From [14] we know that if all the inputs to a single FIFO queue satisfy an envelope

(each flow can have a different one) it is possible to derive some worst case bounds, among

these a worst case delay bound and a worst case output envelope. Furthermore these

bounds are tight, that is there exist arrival patterns that do achieve these bounds. At

the same time, at least in the case of delay, only some bits (or packets) will experience a

delay equal to the worst case bound, therefore it can be argued that these bounds give a

somewhat pessimistic representation of reality given that only a (possibly small) portion

of the data traffic will experience them, even in the worst case. Nonetheless these bounds

can be useful especially for traffic that has specific delay constraints, like, for example,

voice and video. In both cases if a packet is delivered too late it cannot be used therefore

it is useful to have a delay bound that can be used as a worst case.

As suggested in [12], it is possible to use the results in [14] to analyze networks of FIFO

queues. For example if we have two or more nodes in tandem and all the input flows have

envelopes we can consider each node in isolation and derive a worst case delay bound at

each hop, then simply add the delay bounds for all the nodes used by a certain flow. Note

that when a flow first enters the network we know its envelope and, knowing the envelopes

of all the other flows going through that node, we can find the output envelope as well.

Next, we can use this output envelope as the input envelope for the following hop. This

way we can analyze a vast class of networks (all those that do not have loops) but it is

not immediately clear whether the bounds obtained using this process are tight or not. In

particular if we consider a very simple network with two FIFO queues with one flow that

7

goes through both queues and two flows that go through only one hop (one at each node)

it seems impossible to construct an arrival pattern where at least one packet achieves the

sum of the worst case delays at each hop. Note that it is possible to construct arrival

patterns where different packets will achieve the worst case delay at each hop but this is

not enough to show that the end-to-end delay bound is tight. Of course the fact that no

one has been able to provide an arrival pattern that does achieves this end-to-end delay

does not mean that it does not exist but it justifies looking for a possibly smaller (and

hopefully tight) bound.

One possibility is to use service curves to obtain delay bounds. Service curves have

been introduced in [19] and are a formalism that allows, among other things, to find worst

case delay bounds, provided the flows in question do have envelopes (the following section

contains a brief overview of this topic). Even though service curves have been introduced

in the context of a specific scheduling algorithm they can be used to characterize other

queuing disciplines as well. In [15] Cruz shows that a single FIFO queue serving multiple

flows, each with an envelope, can be characterized by an infinite number of service curves.

In Chapter 2 we use this result to show that, in the specific case where all the envelopes

are (σ, ρ), it is possible to recover the results in [14] and that using some of the properties

of service curves it is possible to find a smaller end-to-end delay for the two queues case.

Yet, even for this smaller bound it seems that there is no arrival pattern achieving it, this

leads us to believe that there might exist a smaller bound.

As we just mentioned, from [15] we know that there exists an infinite number of service

curves that characterize a FIFO queue. Using this fact in Chapter 3 we introduce a new

service abstraction, which includes service curves as a special case, that allows us to derive

a smaller and achievable end-to-end delay bound for two FIFO queues in tandem.

So far we have been dealing with a bound of the worst case delay and, as noted above,

this bound could be overly pessimistic in the sense that even if it achievable only a fraction

of the traffic can achieve this delay even in the worst case. One way of addressing this

concern is to consider the average delay, where we are averaging over time. Of course it

is possible to use the worst case delay bound as a bound for the average delay: if every

packet cannot have a delay bigger than this bound obviously the average cannot be any

bigger. But it is natural to ask ourselves if it is possible to obtain a smaller bound. In [14]

Cruz shows that if a single flow, with an envelope, is served by a FIFO queue it is possible

8

to find such a bound that it is, in general, smaller that the worst case delay. In Chapter

4 we will generalize this result to the case where two flows share the same FIFO queue.

In the next section we will see that it is useful to have a point-wise lower bound on the

output of a network element. Such a bound can be used to obtain, among other things,

bounds on delay and output envelope. If Rin(t) represents the total amount of traffic

arrived up to time t at a certain network element and Rout(t) represents the total amount

of traffic that has left, a lower bound is a function L(t) such that Rout(t) ≥ L(t) for all

the Rin(t) that satisfy the envelope. Naturally we would like this bound to be as good

as possible, ideally we would like that for any arbitrary t there exist an arrival pattern

such that Rout(t) = L(t). But even if this is true, in most cases, this bound is not as

tight as it may seem: if we are interested in a time interval [t1, t2] it is not possible, in

general, to find an arrival pattern such that the output is exactly equal to L(t) for all

t ∈ [t1, t2]. Intuitively this is because the worst case can be achieved at different times but

not infinitely often. For example, in the case of a sigma-rho envelope the worst case delay

is achieved at the end of a burst of the maximum size but, because of the envelope, a burst

of size σ can occur at most every σ
ρ units of time, therefore if we want to achieve the output

bound at time t we cannot achieve it anywhere else in the interval [t − σ
ρ , t + σ

ρ]. This

shows that L(t) might not be a good representative for the class of all possible outputs,

it is simply a lower bound for this class.

At the same time the worst case average delay can be used to obtain a bound on the

area between Rin(t) and Rout(t). Given that this is not a point-wise bound it can be

achieved over arbitrary time intervals, and it can be used to better characterize the class

of all possible output patterns. In particular given any non-decreasing function f such

that f is consistent with the output envelope and Rin(t) ≥ f(t) ≥ L(t) we can reject f as

a possible output if the area between Rin(t) and f(t) is greater than the one prescribed

by the worst case average delay. Note that if f does not violate this constraint we cannot

guarantee that there exists an arrival pattern such that the output will be exactly equal to

f but this extra condition allows us to better characterize the set of all feasible outputs.

9

1.3 Network Calculus Overview

We conclude this chapter with a brief introduction on what it is often called “Network

Calculus;” for an exhaustive presentation the interested reader is referred to [9, 23] and

references therein. As we have previously mentioned, let Rin(t) and Rout(t), respectively,

represent the total amount of traffic that has arrived at (departed from) a certain network

element up to time t. These positive and non-decreasing functions are often referred to as

input and output processes.

We say that a network element offers a (minimum) service curve S if for any input

process Rin(t) the corresponding output process Rout(t) is such that

Rout(t) ≥ (Rin ∗ S)(t)

where

(Rin ∗ S)(t) = inf
u
{Rin(u) + S(t− u)}

is the convolution in the min-plus algebra.

If the process Rin(t) has envelope Ein(t) and it is fed to a network element that offers

a minimum service curve S(t) the delay through this element is upper bounded by the

maximum horizontal distance between the input envelope and the service curve. If this

distance is unbounded the corresponding system is not stable, that is the delay can be

arbitrarily large. Formally we can define this quantity by using the “delta” function

δ∆(t) =

0, if t ≤ ∆

∞, if t > ∆ .

It is easy to see that when we convolve a function with δ∆(t) we are simply shifting the

function to the right by ∆, that is f ∗ δ∆(t) = f(t −∆). We can combine this with the

fact that the maximum horizontal distance between the envelope and the service curve is

such that if we shift the envelope to the right by such distance this shifted version of the

envelope is less than or equal to the service curve. Formally we can express the bound on

delay as:

d̂ = inf{∆ : ∆ ≥ 0 and S(x) ≥ (Ein ∗ δ∆)(x)∀x ≥ 0} .

In the same scenario (network element offering service curve S to Rin(t) that has

envelope Ein(t)) the maximum vertical distance between the envelope and the service

10

curve is an upper bound for the amount of traffic stored at the network element. Formally

if we define the backlog b(t) as the difference between the input and output process at

time t we have that (for any t):

b(t) = Rin(t)−Rout(u) ≤ sup
u≥0

{Ein(u)− S(u)} .

Finally, again in the same scenario, we can find the output envelope Eout(t) as

Eout(t) = (Ein � S)(t)

where we have used the deconvolution operator in the min-plus algebra:

(F �G)(t) = sup
u≥0

{F (t + u)− g(u)} .

We conclude this brief overview with a result that is very useful for analyzing networks:

suppose the flow represented by the process Rin(t) goes through N elements each offering

a service curve Si, i = 1 . . . N . In this case, the entire network is equivalent to a single

node that offers the service curve Snet = S1 ∗ S2 ∗ · · · ∗ SN , that is by convolving the

service curves of each element we can reduce an entire network to a single element that

offers a “network” service curve Snet. Using this single service curve we can use all the

results that we have just presented, simplifying significantly the analysis of the network

case. Furthermore it is often the case that the bounds obtained using this network service

curve are better than those obtained by considering a collection of elements in isolation,

where the end-do-end bounds are obtained by adding the bound at each node.

2

Service Curves for FIFO Queues

2.1 Introduction

In the first part of this chapter we analyze a single FIFO queue (server) operating at

rate C using the service curves given in Theorem 4 of [15]. For the sake of simplicity we

consider only two streams entering the server as in figure 2.1. We are concerned with flow

0 described by the process R0 which has envelope E0. Flow 1 represents all the other

traffic entering the FIFO server (if more then two flows enter the system then all the

“other” flows can be combined in one bigger flow). Again for the sake of simplicity we

assume that both flows have a sigma-rho envelope.

For convenience this is Theorem 4 from [15] :

Theorem 2.1. Suppose two traffic streams enter a network element, where Ri,inand

Ri,outare the corresponding input and output streams, i = 0, 1. the aggregate input and

output streams are given by Rin = R0,in + R1,in and Rout = R0,out + R1,out. Suppose it is

known that R1,in is E1-smooth, and that the aggregate stream is guaranteed the minimum

R1,in ∼ E1

R0,in ∼ E0

R0,out + R1,out
rate C

FIFO server

Figure 2.1: The system

11

12

service curve S, i.e. Rout ≥ Rin ∗ S. If the network element serves packets among the two

streams in FCFS order, then for any fixed T ≥ 0, the first stream R0,inis guaranteed the

minimum service curve ST
0 , where

ST
0 (x) =

0, if x < T

[S(x)− E1(x− T)]+ , if x ≥ T .

As we are considering a FIFO server operating at rate C the service curve guaranteed

to the aggregate of flow 0 and 1 is S(x) = Cx .

Using these service curves we can recover the tight bounds on delay and output enve-

lope presented in [14], furthermore we can derive a previously unavailable upper bound on

the backlog for flow 0. Note that without using the service curves it is possible to obtain

an upper bound on the total backlog but not on the backlog of each flow.

In the second part of the chapter we will consider two FIFO queues in tandem, in this

case flow 0 goes through both servers and it is therefore called the “through traffic” while

at each server there is another interfering flow that uses only one server, not surprisingly

these other flows are often referred to as “cross traffic.” Using the results derived in the

first part of the chapter we find the best possible (i.e. smallest) end-to-end delay bound.

Given that an infinite number of service curves characterize each node we have to find the

“best” service curve for each node, that is the values for T1 and T2 that give the smallest

delay bound. Exploiting the linearity of sigma-rho envelope we can find a closed formula

expression for this optimization problem.

2.2 QoS Bounds for a Single FIFO Queue with (σ, ρ) En-

velopes

In this section we will use the service curves given by Theorem 4 when the input flows

are leaky bucket constrained, that is Ei(x) = ρix + σi. Note that we allow an infinite

incoming speed. Given those constrains the service curve S(x) guaranteed to flow 0 is:

ST
0 (x) =

0, if x < T

[x(C − ρ1)− σ1 + ρ1T]+ , if x ≥ T .
(2.1)

13

S(x)

T σ1
C

x(C − ρ1)− σ1 + ρ1T

xσ1−ρ1T
C−ρ1

> T

T < σ1
C

Figure 2.2: ST
0 (x) if T < σ1

C

It is easy to rewrite this expression without using the []+expression. It is enough to

consider two cases: if T ≤ σ1
C then ST

0 (x) = 0 for x < σ1−ρ1T
C−ρ1

which is greater than T and
σ1
C (if T < σ1

C) and (2.1) becomes:

ST
0 (x) =

0, if x < σ1−ρ1T
C−ρ1

x(C − ρ1)− σ1 + ρ1T, if x ≥ σ1−ρ1T
C−ρ1

,
(2.2)

Figure 2.2 shows the graph of ST
0 (x) if T < σ1

C .

If T ≥ σ1
C , (2.1) becomes:

ST
0 (x) =

0, if x < T

x(C − ρ1)− σ1 + ρ1T, if x ≥ T .
(2.3)

Note that whenever ST
0 (x) is non-zero it is a straight line with slope C − ρ1, independent

of the value of T . On the other hand, the value of the service curve for x = T is ST
0 (T) =

TC − σ1 and does depend on T . Figure 2.4 shows the graph of ST
0 (x) if T > σ1

C . Note

that in this case there is a discontinuity at x = T and that if T increases ST
0 (T) will move

on a line with slope C (more precisely this line is Cx− σ1
C and it is the dashed line in the

figure).

Finally Figure 2.3 shows the graph of ST
0 (x) if T = σ1

C . The graph is very similar to

the one in Figure 2.2; the only difference is that the there is no discontinuity for x = T .

This the “boundary” case between the two previous as (2.2) and (2.3) are identical when

T = σ1
C .

14

S(x)

x(C − ρ1)− σ1 + ρ1T

x

T = σ1
C

σ1
C

Figure 2.3: ST
0 (x) if T = σ1

C

S(x)

σ1
C

x(C − ρ1)− σ1 + ρ1T

x

T > σ1
C

T

Cx− σ1
C

TC − σ1

Figure 2.4: ST
0 (x) if T > σ1

C

15

The following proposition will be useful to simplify the search for QoS bounds:

Proposition 2.2. Let ST
0 (x) be defined as in (2.1) and let T1 be a value for the parameter

T such that T1 < σ1
C . For any such value it is possible to upper bound the corresponding

service curve ST1
0 (x) with ST2

0 (x) where T2 = σ1
C , that is ST1

0 (x) ≤ ST2
0 (x) for all x.

Proof. The fact that T1 < σ1
C implies that ST1

0 (x) is defined as in (2.2). Similarly T2 = σ1
C

implies that ST2
0 (x) is defined as in (2.3). Obviously ST1

0 (x) = ST2
0 (x) = 0 for x ≤ T1.

Also, as noted above, T1 < σ1
C implies that σ1−ρ1T1

C−ρ1
≥ σ1

C = T2 so that ST1
0 (x) = ST2

0 (x) = 0

for T1 ≤ x ≤ T2 as well. For T2 ≤ x ≤ σ1−ρ1T1

C−ρ1
from (2.2) we have ST2

0 (x) = 0. From (2.3)

we have ST2
0 (x) ≥ 0 (to see why this is true observe that ST2

0 (T2) = 0 and that ST2
0 (x)

is a straight line with slope C − ρ1 > 0). Hence ST1
0 (x) ≤ ST2

0 (x) in this case as well.

Finally for x ≥ σ1−ρ1T1

C−ρ1
both ST1

0 (x) and ST2
0 (x) are straight lines with slope C − ρ1 but

ST2
0 (σ1−ρ1T1

C−ρ1
) = 0 while ST2

0 (σ1−ρ1T1

C−ρ1
) > 0 as σ1−ρ1T1

C−ρ1
> σ1

C . Therefore in this case we also

have that ST1
0 (x) ≤ ST2

0 (x).

Combining the fact that f ≤ f̃ and g ≤ g̃ implies f ∗ g ≤ f̃ ∗ g̃ (see, for example II.8

in [11]) with Proposition 2.2 we have that for any input process R0,in(t) the output bound

obtained with a value for the parameter T1 ≤ σ1
C can be improved by using T2 = σ1

C given

that R0,in ∗ ST2
0 (t) ≥ R0,in ∗ ST1

0 (t) for any t.

2.2.1 Maximum Delay

It is known that the maximum delay for a flow with envelope E(x) served by a network

element that offers a minimum service curve S is given by (see for example Proposition 5

of [1]):

d̂ = inf{∆ : ∆ ≥ 0 and S(x) ≥ E ∗ δ∆(x)∀x ≥ 0}

that is the maximum delay is upper bounded by the minimum ∆ by which we need to shift

the input envelope E in order for S(x) to be greater then E for all x. This is equivalent

to the maximum horizontal distance between the input envelope and the service curve.

From Proposition 2.2 it follows that it is enough to consider only service curves with a

value of T ≥ σ1
C given that smaller values of T would give a bigger delay bound.

16

x(C − ρ1)− σ1 + ρ1T2

xT2

E0(x) = σ0 + ρ0x

T1

σ0

x(C − ρ1)− σ1 + ρ1T1

Figure 2.5: Maximum horizontal distance between E0 and ST
0

Assuming that the system is stable (i.e. ρ0 + ρ1 ≤ C) it is easy to see that the

maximum horizontal distance between the input envelope and the service curve is the

biggest between T and the x-value where S(x) = σ0. That is x(C − ρ1)− σ1 + ρ1T = σ0.

Which implies x = σ0+σ1−ρ1T
C−ρ1

. In one formula:

d̂ = max
{

T,
σ0 + σ1 − ρ1T

C − ρ1

}
. (2.4)

We need to take the maximum between the x-value and T because if T > σ0+σ1−ρ1T
C−ρ1

then

the maximum distance is not the x-value but T . Figure 2.5 shows the input envelope and

two sample service curves. Note how for the second one the maximum horizontal distance

is T2 and not the x-value.

Of the two arguments of the maximum in (2.4), the first one is an increasing function

of T while the second one is a decreasing function of T . Therefore the smallest possible

value for d̂ is obtained when

T =
σ0 + σ1 − ρ1T

C − ρ1
,

so that

T =
σ0 + σ1

C
.

Figure 2.6 shows the service curve ST
0 (x) when T = σ0+σ1

C . Obviously in this case the

worst case delay bound is d̂ = σ0+σ1
C which is the same as in [14].

17

x

E0(x) = σ0 + ρ0x

T = σ0+σ1

C

σ0

x(C − ρ1)− σ1 + ρ1
σ0+σ1

c

Figure 2.6: Service curve when T = σ0+σ1
C

2.2.2 Output Envelope

Using Proposition 8 of [1] we can calculate the output envelope for flow 0 as:

E0,out = (E0,in ∗ S)� S

where E0,in is the input envelope, S is the maximum service curve and S is the minimum

service curve guaranteed to flow 0. In our case E0,in(x) = ρ0x + σ0 and S(x) = Cx as the

server operates at rate C. Therefore for any t, τ such that t > τ R0,out(t) − R0,out(τ) ≤
C(t − τ). Similarly to what we did for the maximum delay we can use the fact that the

deconvolution is such that if f ≤ g then h�f ≥ h�g (see, for example, Theorem 3.1.12 in

[23]). Combining this with Proposition 2.2 we have that (E0,in∗S)�ST1
0 ≥ (E0,in∗S)�ST2

0 if

T1 < σ1
C = T2. Given that a smaller envelope is preferable we can concentrate our attention

on the case when T ≥ σ1
C so that the minimum service curve S is the same as in (2.3).

First we need to calculate E0,in ∗ S. Taking advantage of the fact that both functions

are concave for x ≥ 0. We can use Theorem 3.1.6 from [23] and define F (x) as:

F (x) = (E0,in ∗ S) = min{Cx, ρ0x + σ0} .

By the definition of deconvolution it follows that

E0,out = sup
τ

{
F (t + τ)− ST

0 (τ)
}

.

18

Cτ + Ct

F (t + τ)

τT
σ0

C−ρ0
− t

ST
0 (τ) = τ(C − ρ1)− σ1 + ρ1T

ρ0τ + ρ0t + σ0

Figure 2.7: F (t + τ) and ST
0 (τ) when T ≥ σ1

C and σ0
C−ρ0

− t < T

Cτ + Ct

ρ0τ + ρ0t + σ0

τT σ0
C−ρ0

− t

ST
0 (τ) = τ(C − ρ1)− σ1 + ρ1T

F (t + τ)

Figure 2.8: F (t + τ) and ST
0 (τ) when T ≥ σ1

C and σ0
C−ρ0

− t ≥ T

19

From Section 2.2 we know that ST
1 () has different forms depending on whether T > σ1

C or

T ≥ σ1
C . First we are going to consider the case where T ≥ σ1

C .

To calculate the supremum we have to further consider two cases, the first one when
σ0

C−ρ0
−t < T . Figure 2.7 shows the graph of F (t+τ) and ST

0 (τ). In this case t > σ0
C−ρ0

−T

and the supremum of the difference between F (t + τ) and ST
0 (τ) is F (t + T). To see why

this is true consider that F (t+ τ) is an increasing function, ST
0 (τ) = 0 for τ < T and that

the slope of ST
0 (τ) is C− ρ1 for τ ≥ T which is smaller than the slope of F (t+ τ) which is

ρ0 (recall that we are assuming a stable system, i.e. C ≥ ρ0 + ρ1). Therefore in this first

case we have:

sup
τ

{
F (t + τ)− ST

0 (τ)
}

= F (t + T) = ρ0t + σ0 + ρ0T . (2.5)

The second case is when σ0
C−ρ0

− t > T . Figure 2.8 shows the graph of F (t + τ) and

ST
0 (τ). In this case t ≤ σ0

C−ρ0
− T and the supremum is achieved either for τ = T or for

τ = σ0
C−ρ − t. To see why this is true consider that for τ ≤ T we have S(τ) = 0 and that

F (t + τ) is an increasing function. These facts imply that the supremum of the difference

between these two functions when τ ≤ T is achieved when τ = T . On the other hand, if

T ≤ τ ≤ σ0
C−ρ0

− t the slope of F (t+ τ) is C, which is greater than the slope of S(τ) which

is C − ρ1(again we are assuming a stable system). For τ ≥ σ0
C−ρ0

− t the opposite is true

given that the slope of F is ρ0 and the slope of S is still C − ρ1. So that we have:

sup
τ

{
F (t + τ)− ST

0 (τ)
}

= max
{

F (T)− S(T), F

(
σ0

C − ρ0
− t

)
− S

(
σ0

C − ρ0
− t

)}
= max

{
CT + Ct, t(C − ρ1) + σ1 − ρ1T +

ρ1σ0

C − ρ0

}

=

t(C − ρ1) + σ1 − ρ1T + ρ1σ0

C−ρ0
, if t ≤ t1

CT + Ct, if t1 ≤ t ≤ σ0
C−ρ0

− T
(2.6)

where t1 = σ1
ρ1

+ σ0
C−ρ0

− T (1 + C
ρ1

).

Note that if σ1
C ≥ σ0

C−ρ0
the second case is not possible (recall that T1 ≥ σ1

C). In this

case from (2.5) we have:

E0,out(t) =

0, if t < 0

ρ0t + σ0 + ρ0T, if t ≥ 0,

so that the bigger is T the bigger the output envelope. Given that a smaller output

envelope gives a better (smaller) output bound, we would like T to be as small as possible,

20

that is T = σ1
C . In this case the previous expression becomes:

E0,out(t) =

0, if t < 0

ρ0t + σ0 + ρ0
σ1
C , if t ≥ 0 .

If σ1
C < σ0

C−ρ0
then both cases are possible and the output envelope is:

E0,out(t) =



0, if t < 0

t(C − ρ1) + σ1 − ρ1T + ρ1σ0

C−ρ0
, if 0 ≤ t ≤ t1

CT + Ct, if t1 ≤ t ≤ σ0
C−ρ0

− T

ρ0t + σ0 + ρ0T, if t ≥ σ0
C−ρ0

− T .

(2.7)

Note that the final part of the envelope (when t ≥ σ0
C−ρ0

− T) is an increasing function of

T . That is greater values of T will give bigger and hence less desirable envelopes. Just as

in the previous case this means that T = σ1
C gives the smallest envelope. When T = σ1

C

we have t1 = σ0
C−ρ0

− σ1
C and:

E0,out(t) =


0, if t < 0

t(C − ρ1) + σ1 − ρ1
σ1
C + ρ1σ0

C−ρ0
, if 0 ≤ t ≤ σ0

C−ρ0
− σ1

C

ρ0t + σ0 + ρ0
σ1
C , if t ≥ σ0

C−ρ0
− σ1

C .

(2.8)

Using the same argument as in [14] we can take the minimum between (2.8) and Ct given

that the output of a FIFO server operating at rate C can grow only as fast as Ct. Using

this extra constraint we have:

E0,out(t) =

Ct, if 0 ≤ t ≤ Cσ0+ρ0σ1

C(C−ρ0)

ρ0t + σ0 + ρ0σ1

C , if t > Cσ0+ρ0σ1

C(C−ρ0) ,

which is the same as in [14]. Note that this way, we do not have to worry about the fact

that the second case in (2.7) is inversely proportional to T so that, at least for this case,

we would like T to be as big as possible. On the other hand in the other cases we would

like T to be as small as possible. But these cases are never used in the final solution.

2.2.3 Maximum Backlog

Using Proposition 7 from [2] we can compute an upper bound for the backlog for flow

0 as:

b0,max = sup
{
E0(τ)− ST

0 (τ)
}

.

21

E0(τ) = ρ0τ + σ0

τ

ST
0 (τ) = τ(C − ρ1)− σ1 + ρ1T

T

Figure 2.9: E0(τ) and ST
0 (τ)

As in the case of the output envelope we can use Proposition 2.2 and Theorem 3.1.12

in [23] to show that we only need to consider the case when T ≥ σ1
C .

Figure 2.9 shows the graph of E0(τ) and ST
0 (τ): the supremum of the difference of the

two functions is E0(T) given that for x ≤ T , ST
0 (x) = 0. On the other hand for x > T

the slope of ST
0 (x) is C − ρ1 which is greater than ρ0 (the slope of E0) by the stability

assumption. Therefore we have:

b0,max = ρ1T + σ1 ,

which is an increasing function of T so the smallest possible bound is when T = σ2
C . In

this case:

b0,max =
ρ1σ2

C
+ σ1 .

2.3 Delay Bounds for two FIFO Servers in Tandem

In this section we are going to consider a very simple network of two FIFO queues

in tandem where all the inputs have sigma-rho envelopes. We are interested in the worst

case delay for a flow that goes through both nodes. One possible solution is to consider

each node in isolation and use the bounds derived in the previous sections. For the first

server we know all the input envelopes so we can find the worst case delay for the first hop

and we can also find the output envelope for the flow that goes on to the second server.

Using this envelope and the one for the traffic that enters the network at the second hop

22

we can find the worst case delay at this hop and then add the two worst case delays (one

for each hop). If we could find an arrival pattern that does achieve this end-to-end delay

bound we would be done. Unfortunately nobody has ever been able to find such an arrival

pattern. Of course this does not mean that such a pattern does not exist but it leads us

to wonder about the existence of tighter bounds.

Another possible approach is to use the service curves presented at the beginning of

this chapter. It is known (for example, see Proposition 10 in [2]) that if the same flow

goes through two network elements, guaranteeing service curves S1 and S2, respectively,

then the entire network can be modeled as a single node guaranteeing the service curve

obtained by convolving the service curves at each hop: S1 ∗ S2. It is often the case that

the delay bounds derived using the single service curve obtained by the convolution are

smaller than the same bounds derived by considering each node in isolation.

In our example the problem is slightly more complicated because each node offers

an infinite number of service curves, each one characterized by a different value of the

parameter T . In order to find the smallest possible delay bound we will need to find the

optimal value for the parameter T for both servers.

At this point it is useful to introduce some definitions and give a precise description of

the problem we are addressing. Consider a simple two node system, as the one in Figure

2.10. Two flows enter the first server: flows 0 and 1. Flow 0 then goes to the second server

while flow 1 goes to another server, so that flow 1 can be viewed as the “cross traffic” at

the first server. Similarly at the second server flow 2 is the cross traffic.

Given that each flow is present at multiple points in the system (input and output

links) we will use the notation Rij where i is the “name” of the flow. That is a number

uniquely identifying each flow and where j is the number of hops that flow i has gone

through, so R00 represents flow 0 at the input link of the first node that it goes through

and R01 represents flow 0 at the output of the first node it uses. Note that this flow is

also the input flow for the next node. Similarly R02 represents flow 0 at the output of the

second node that it uses. It is also assumed that each input flow has a sigma-rho envelope,

that is for every t ≥ s Ri(t1, t2) ≤ σi + ρi(t − s), we will use Ei to indicate the envelope

of the i-th input flow.

23

rate C1

R10 ∼ E1

FIFO server FIFO server
rate C2

R00 ∼ E0

R01 R02

R20 ∼ E2

R11 R21

Figure 2.10: A simple two node system

2.3.1 Considering Each Node in Isolation

For the first node we have seen in the previous section that the worst case delay bound

is:

d̂1 =
σ0 + σ1

C1
(2.9)

(again this is the same whether we use the services curves or the results in [14]). Before

we can analyze the second node we need to find the output envelope for flow 0. Using

Theorem 4.4 from [14] it is easy to see that:

E01(t) =

C1t, if 0 ≤ t ≤ C1σ0+ρ0σ1

C1(C1−ρ0)

ρ0t + σ0 + ρ0σ1

C!
if t > C1σ0+ρ0σ1

C1(C1−ρ0) .

Combining this with the fact that E20(t) = σ2 + ρ2t we have that:

d̂2 =


σ2
C2

, if C1 + ρ2 ≤ C2

σ2
C2

+ (C1+ρ2−C2)(C1σ0+ρ0σ1)
C1C2(C1−ρ0) , if C1 + ρ2 > C2 .

(2.10)

Adding (2.10) and (2.9) we have:

d̂sn =


σ0+σ1

C1
+ σ2

C2
, if C1 + ρ2 ≤ C2

σ0+σ1
C1

+ σ2
C2

+ (C1+ρ2−C2)(C1σ0+ρ0σ1)
C1C2(C1−ρ0) , if C1 + ρ2 > C2

(2.11)

where the subscript sn stands for Single Nodes.

2.3.2 Convolution of two service curves

From section 2.2 we know that each node in Figure 2.10 can be characterized with a

service curve ST
i (x) (defined in (2.3)) characterized by the parameters ai = TiCi − σi and

mi = Ci−ρi, i = 1, 2. Also, from Proposition 2.2 we know that we can limit our attention

to the case where Ti ≥ σi
Ci

.

24

m1

xT1

a1

a2 a2

T2 T1 + T2

m2 m2

x x

ST1
1 (x) ST2

2 (x) S1 ∗ S2(x)

Figure 2.11: Convolution: Case 1

T1

a1

T2

a2

m2

x

m1

x

a1

T1 + T2 +
a2−a1

m1−m2

m2

m1

T1 + T2 x

S
T1
1 (x) S

T2
2 (x) S1 ∗ S2(x)

Figure 2.12: Convolution Case 2

As we have mentioned, it is known that the end to end service curve offered to flow

0 is the (min-plus) convolution of the service curve for each node. As discussed above,

the service curve for each server depends on the parameter T , which can take any value

greater than σi
C , where σi is the burstiness parameter for the cross traffic.

In this section we are going to compute the convolution of the two service curves.

There are four possible cases depending on the relationship between a1, a2, m1 and m2:

1. a1 ≥ a2 and m1 ≥ m2;

2. a1 < a2 and m1 ≥ m2;

3. a1 ≥ a2 and m1 < m2;

4. a1 < a2 and m1 < m2;

Note that, as the convolution is commutative, only the first two cases need to be examined

because cases 3 and 4 can be reduced to cases 1 and 2 by exchanging the two service curves.

Also note that when a1 = a2 Cases 1 and 2 are identical therefore the equal sign can put

in either one or both.

25

Claim 2.3. For Case 1 the convolution of the two service curves is:

S1 ∗ S2(x) =

0, if x < T1 + T2

a2 + m2(x− T1 − T2), if x ≥ T1 + T2 ,
(2.12)

and for Case 2 is:

S1 ∗ S2(x) =


0, if x < T1 + T2

a1 + m1(x− T1 − T2), if T1 + T2 ≤ x ≤ T1 + T2 + B

a2 + m2(x− T1 − T2), if x ≥ T1 + T2 + B

(2.13)

where B = a2−a1
m1−m2

, and (i = 1, 2)

Si =

0, if x < Ti

ai + mi(x− Ti), if x ≥ Ti .

Figures 2.11 and 2.12 show the service curves for the two different cases. Note that

for a1 = a2 the service curves in (2.12) and (2.13) are equal.

Proof. Recall that the definition of convolution of f(t) and g(t) is:

f ∗ g(t) = inf
0≤s≤t

{f(t− s) + g(s)} .

As noted above this operator is commutative therefore, without loss of generality, we can

choose S1 = f :

S1(t− s) =

a1 + m1(t− s− T1), if s ≤ t− T1

0, if s > t− T1 ,

and this holds for both cases. The rest of the proof is different depending on whether we

are in Case 1 or 2.

Suppose we are in Case 1 (i.e. a1 ≥ a2 and m1 ≥ m2). To find the value of

inf{S1(t − s) + S2(s)} we have two different sub-cases depending on the value of t (see

Figure 2.13):

1. 0 ≤ t < T1 + T2: (i.e. t− T1 < T2) in this case the infimum is 0.

26

a2

s

a1

a2

s

a1

t ≥ T1 + T2t < T1 + T2

m1

t− T1T2

S1(t− s) + S2(s)S1(t− s) + S2(s)

T2t− T1

m2

m2 −m1

m2

−m1

Figure 2.13: Argument of the infimum

2. t ≥ T1 + T2: (i.e. t− T1 ≥ T2) let g(s) = S1(t− s) + S2(s) then:

g(s) =


a1 + m1(t− s− T1), if 0 ≤ s < T2

s(m2 −m1) + a1 + m1(t− T1) + a2 −m2T2, if T2 ≤ s ≤ t− T1

a2 + m2(s− T2), if s > t− T1 .

(2.14)

Note that for 0 ≤ s < t−T1 g(s) is a decreasing function therefore the infimum over

this range will be achieved for s = T−2 . On the other hand for s > t − T1 g(s) is

increasing. Therefore the infimum, in this range, will be achieved for s = t−T+
1 . At

the same time g(T+
2) ≥ g(T−2), g(t−T−1) ≥ g(t−T+

1) and g(s) is non increasing (as

m1 ≥ m2) for T2 ≤ s ≤ t− T1. Therefore the infimum is achieved either at s = T−2

or at s = t− T+
1 . On the other hand we have:

g(T−2) = a1 + m1(t− T2 − T1)

≥ a2 + m2(t− T2 − T1)

= g(t− T+
1) ,

(recall that in this case a1 ≥ a2 and m1 ≥ m2). Hence

inf
0≤s≤t

{S1(t− s) + S2(s)} = g(t− T+
1)

= a2 + m2(t− T2 − T1) ,

and combining the two sub-cases we have (2.12).

Now suppose we are in Case 2 (i.e. a1 < a2 and m1 ≥ m2). Again depending on the value

of t we three sub-cases:

27

1. 0 ≤ t < T1 + T2: (i.e. t− T1 < T2) In this case the infimum is 0.

2. T1 + T2 ≤ t ≤ T1 + T2 + B, where B = a2−a1
m1−m2

: (in this case t− T1 ≥ T2) let g(s)be

defined as in (2.14). The same argument shows that again the infimum is achieved

either at s = T−2 or at s = t − T+
1 . In this case a1 < a2 and t ≤ T1 + T2 + B.

Therefore:

g(T−2) = a1 + m1(t− T2 − T1)

≤ a2 + m2(t− T2 − T1)

= g(t− T+
1) ,

and

inf
0≤s≤t

{S1(t− s) + S2(s)} = g(T−2)

= a1 + m1(t− T2 − T1) .

3. t ≥ T1 + T2 + B: Again let g(s) be defined as in (2.14). The same argument shows

that the infimum is achieved either at s = T−2 or at s = t−T+
1 . In this case a1 < a2

and t ≥ T1 + T2 + B therefore:

g(T−2) = a1 + m1(t− T2 − T1)

≥ a2 + m2(t− T2 − T1)

= g(t− T+
1) ,

and

inf
0≤s≤t

{S1(t− s) + S2(s)} = g(t− T+
1)

= a2 + m2(t− T2 − T1) .

Combining these three sub-cases we have (2.13).

2.3.3 Optimal Values of T1 and T2 for Worst Case Delay Computation

Given a service curve S(x) and an input envelope E0(x) the worst case delay d̂ is the

“minimum horizontal distance” between the two functions, formally:

d̂ = inf{∆ : ∆ ≥ 0 andS(x) ≥ E0 ∗ δ∆(x)∀x ≥ 0} .

28

a2

T ′
1 + T2 x

m2

T ′′
1 + T2

S1 ∗ S2(x)

Figure 2.14: Two service curves for Case 1

In this case Snet(x) = S1(x) ∗ S2(x) is the service curved offered to flow 0 by the

network comprised of the two FIFO queues with cross traffic R1 and R2. As discussed in

the previous section, the convolution of the two service curves depends on the parameters

T1 and T2 that can take any non negative value. Therefore different values of T1and T2

will result in different worst case delay bounds. In this section we are going to find the

values that give the smallest bound. Note that mi = Ci − ρi does not depend on Ti while

ai = TiCi − σi does, so that by changing the value of Ti one can only change the value of

ai but not that of mi.

Now assume, without loss of generality, that m1 ≥ m2. If this is not true we can

switch S1and S2 given that the convolution is commutative. From claim 2.3 we know that

the service curve is represented by different expressions depending on the values of ai. We

consider each case separately.

1. First consider the case where a1 ≥ a2. In this case we have:

T1 ≥ T2
C2

C1
+

σ1 − σ2

C1
,

and that the Snet is the same as in (2.12). Note that (2.12) is a decreasing function

of T1. Therefore if T ′1 and T ′′1 are such that T ′′1 ≤ T ′1 then S
T ′
1

1 ≤ S
T ′′
1

1 . If we let

S′net = S
T ′
1

1 ∗ ST2
2 and S′′net = S

T ′′
1

1 ∗ ST2
2 then S

T ′
1

1 ≤ S
T ′′
1

1 implies S′net ≤ S′′net so that

the delay bound obtained by using S′′net is smaller (better) than the one obtained

by using S′net (recall that the the delay bound is the maximum horizontal distance

between E0 and Snet, see Figure 2.14).

Therefore for any (fixed) value of T2 a smaller value of T1 will give a smaller delay

bound. In this case T1 has to be at least T2
C2
C1

+ σ1−σ2
C1

so if we pick T ′′1 = T2
C2
C1

+ σ1−σ2
C1

we will have the best possible bound for the case where a1 ≥ a2. Now suppose we

choose a particular value for T1, call it T ′1, such that T ′1 > T2
C2
C1

+ σ1−σ2
C1

. It is then

possible to find a “better” service curve if we choose T1 = T ′′1 = T2
C2
C1

+ σ1−σ2
C1

, which

29

S1 ∗ S2(x)

T1 + T2 T1 + T2 + B x

S1 ∗ S2(x)

σ0

T1 + T2 T1 + T2 + B x

S1 ∗ S2(x)

a1

slope ρ0
σ0

slope m1

slopbe m2

T1 + T2 T1 + T2 + B x

a1

slope m2

slope ρ0slope m1

a1

σ0

slope m1

slope ρ0

slope m2

Figure 2.15: Sub-cases for Case 2

is equivalent to a1 = a2. As noted above, when a1 = a2 cases 1 and 2 have the

same service curve, that is a1 = a2 is the “boundary” between the two cases and it

belongs to both. Therefore it suffices to consider only Case 2, as the optimal value

of d̂ for Case 2 will not be bigger than the one for Case 1.

2. Now consider the case where a1 ≤ a2, Figure 2.15 shows the three possible sub-cases

depending on the values of a1and c where c = (S1 ∗S2)(T1 + T2 + B) = a1 + m1B =
m1a2−m2a1

m1−m2
. Note that c ≥ a1 (as m1 ≥ 0).

(a) a1 ≥ σ0: That is T1C1 − σ1 ≥ σ0. In this sub-case d̂ = T1 + T2 and hence

the minimum in this sub-case is achieved when T1 and T2 are as small as

possible. In order to be in this case a1 = T1C1 − σ1 ≥ σ0, so that T1 ≥ σ1+σ0
C1

.

Similarly for T2 we have that in order to be in this case a2 ≥ a1 and therefore

a2 = T2C2−σ2 ≥ T1C1−σ1 = a1. Combining this with the fact that T1 ≥ σ1+σ0
C1

we have T2 ≥ σ2+σ0
C2

. Hence in this sub-case the minimum value of d̂ is achieved

for T1 = σ0+σ1
C1

and T2 = σ0+σ2
C2

so that

d̂ =
σ0 + σ1

C1
+

σ0 + σ2

C2
. (2.15)

30

(b) c ≥ σ0 ≥ a1: In this sub-case

d̂ = (S1 ∗ S2)−1(σ0)

= T1 + T2 +
σ0 − a1

m1

= T1

(
− ρ1

m1

)
+ T2 +

σ0 + σ1

m1
. (2.16)

The coefficient of T1 is negative, while the coefficient of T2 is positive, therefore

smaller values of T2 give better bounds. At the same time in this case c ≥ σ0,

that is a2 ≥ m2
m1

a1 + σ0 − m2
m1

σ0 and (using the definitions of a1 and a2):

T2 ≥
m2C1

m1C2
T1 +

σ0 + σ2

C2
− m2

m1

(
σ0 + σ1

C2

)
. (2.17)

Combining (2.16) and (2.17) we have:

d̂ ≥ T1

(
m2C1

m1C2
− ρ1

m1

)
+

σ0 + σ2

C2
− m2

m1

(
σ0 + σ1

C2

)
+

σ0 + σ1

m1
. (2.18)

This bound depends only on T1 and not on T2, but the coefficient of T1 can

be either positive or negative. If m2C1−ρ1C2

m1C2
> 0 the minimum value of d̂ is

achieved when a1 is as small as possible that is for a1 = 0. If a1 = 0 we have

T1 = σ1
C1

and substituting T1 = σ1
C1

in (2.18) we have:

d̂ =
σ1

C1
+

σ0 + σ2

C2
+

σ0ρ2

C2(C1 − ρ1)
. (2.19)

On the other hand if m2C1−ρ1C2

m1C2
< 0 the minimum value of d̂ is achieved for

a1 = σ0, that is T1 = σ1+σ0
C1

. Again substituting T1 = σ1+σ0
C1

in (2.18) we have:

d̂ =
σ0 + σ1

C1
+

σ0 + σ2

C2
(2.20)

which is the same value obtained in the previous sub-case. If m2C1−ρ1C2

m1C2
= 0

we have that:

d̂ =
σ0 + σ2

C2
+

ρ2(σ0 + σ1)
m1

.

Combining (2.19) and (2.20) we have that in this sub-case (provided
m2C1−ρ1C2

m1C2
6= 0) :

d̂ = min
{

σ1

C1
+

σ0 + σ2

C2
+

σ0ρ2

C2(C1 − ρ1)
,

σ0 + σ1

C1
+

σ0 + σ2

C2

}
.

31

a1

a2

σ0

σ0

a2 = m2
m1

a1 + σ0 − m2
m1

σ0

a2 = a1

case 2 (c)

case 1

case 2 (b)

case 2 (a)
a1 = σ0

Figure 2.16: The different cases in the a1, a2plane

(c) σ0 ≥ c ≥ a1: In this sub-case

d̂ = (S1 ∗ S2)−1(σ0)

= T1 + T2 + B +
σ0 − c

m2

= T1 + T2

(
− ρ2

m2

)
+

σ0 + σ2

m2
. (2.21)

The coefficient of T1 is positive while the coefficient of T2 is negative, therefore

bigger values of T2 will give a better bound. At the same time we know that

in this sub-case c = m1a2−m2a1
m1−m2

≤ σ0 so that

T2 ≤
m2C1

m1C2
T1 +

σ0 + σ2

C2
− m2

m1

(
σ0 + σ1

C2

)
.

Combining this with (2.21) we have:

d̂ ≥ T1 +
[
m2C1

m1C2
T1 +

σ0 + σ2

C2
− m2

m1

(
σ0 + σ1

C2

)](
1− C2

m2

)
+

σ0 + σ2

m2

= T1

(
m2C1

m1C2
− ρ1

m1

)
+

σ0 + σ2

C2
− m2

m1

(
σ0 + σ1

C2

)
+

σ0 + σ1

m1
. (2.22)

Note that (2.22) is the same as (2.18) but in this sub-case 0 ≤ a1 ≤ c ≤ σ0 while

in the previous sub-case 0 ≤ a1 ≤ σ0 (recall that a1 = T1C1 − σ1), therefore

the smallest possible value for (2.22) cannot be any smaller than the bounds

obtained in the previous sub-case.

Finally note that Case 1 and the three sub-cases of Case 2 cover the entire a1, a2

plane (for a1 ≥ 0 and a2 ≥ 0), as shown in Figure 2.16, therefore we can conclude that

32

the optimal (smallest) delay bound, which we can obtain by using the service curves, is

(assuming m1 ≥ m2):

d̂opt = min
{

σ1

C1
+

σ0 + σ2

C2
+

σ0ρ2

C2(C1 − ρ1)
,

σ0 + σ1

C1
+

σ0 + σ2

C2

}
. (2.23)

If m1 < m2 the previous argument holds if we switch S1 and S2 (again recall that the

convolution is commutative) and we have:

d̂opt = min
{

σ2

C2
+

σ0 + σ1

C1
+

σ0ρ1

C1(C2 − ρ2)
,

σ0 + σ1

C1
+

σ0 + σ2

C2

}
. (2.24)

We have compared the values of (2.23) and (2.24) with those of the same bounds

obtained when the each node is considered in isolation (2.11) by computing their values in

several specific instances: whenever C1 + ρ2 ≤ C2 (2.11) was smaller but if C1 + ρ2 > C2

then (2.23) or (2.24) (depending on whether m1 ≥ m2 in the specific case) were smaller

than (2.11). We conjecture that this is true in general and that the service curves approach

gives a smaller delay bound if C1 + ρ2 > C2.

At the same time we were not able to find an arrival pattern that does achieve this

smaller delay bound. This led us to look for a smaller bound. In the next chapter we will

show that indeed there exist such a smaller (and achievable) delay bound for this simple

network. This might be surprising given that in the first part of this chapter we showed

that for a single node service curves do give tight delay and burstiness bounds for FIFO

queues whose input flows have “sigma-rho” envelopes. But for two nodes the result in the

next chapter demonstrates that the approach in this chapter fails to give tight bounds.

3

Service Mappings

3.1 Introduction

Over the past several years, a deterministic theory for analysis of networks of queues

has been developed, now commonly termed as “network calculus.” We now briefly review

some of the important developments in this area of research. The interested reader is

referred to [9] and [23], which documents much of this work in detail.

Networks of queues operating with FIFO or fixed priority scheduling were analyzed

by Cruz using a deterministic traffic model in [12,14]. Subsequently, Parekh and Gallager

[25, 26] analyzed networks of queues operating with generalized processor sharing using

this deterministic traffic model, and thereby stimulated a large body of work by other

researchers on “fair queuing” scheduling algorithms [31]. A key concept in Parekh and

Gallager’s work was that of a “universal service curve.” This concept was extended to a

service abstraction for general network elements by Cruz in [13]. This service model was

refined independently by Le Boudec [22] and Sariowan [19]. Le Boudec formalized the

notion of the convolution and deconvolution operators, and C. S. Chang [8] first observed

that a service curve is analogous to an “impulse response” in the theory of linear time

invariant systems. Chang exploited this analogy to provide simple explanations for results

on traffic regulators developed in [14].

The insight obtained from these developments are apparent in a framework [5, 7] for

deterministic quality of service guarantees proposed for the Internet by the IntServ work-

33

34

ing group of the Internet Engineering Task Force (IETF). In the IntServ model, traffic is

managed on a per-flow basis, leading many researchers to question its capability to scale

to large networks. Another working group of the IETF, DiffServ, has aimed to address

scalability by developing a framework where traffic is managed at a coarser granularity

than the level of flow [24]. This led to a renewed interest in performance results for FIFO

queuing, since FIFO queues do not require per flow traffic management.

In [15], Cruz presented a service curve characterization for a FIFO multiplexer. In

this chapter, we generalize and explore this characterization further. As we will see, this

leads to a simplified understanding of previous results in network calculus, as well as the

tightening of bounds for delay in networks of FIFO queues for deterministic traffic models.

The remainder of this chapter is organized as follows. In the next section, we define

a general service abstraction for network elements. We derive performance bounds in

the context of this service abstraction. These performance bounds have a simple unified

graphical interpretation that we illustrate. We see that the service curve model is a special

case of this this general service abstraction, and the performance bounds we obtain reduce

to previously known results. In Section 3.4, we apply our service abstraction to the context

of FIFO multiplexing. We will see in Section 3.4.1 that our performance bounds for a single

FIFO multiplexer reduce to those tight bounds previously obtained in [14]. In Section

3.4.2 we apply the general service abstraction to analyze a tandem configuration of FIFO

multiplexers. We will see that this results in improved bounds to end-to-end delay which

are achievable.

3.2 Service Models

Consider a network element, which is an abstraction of a queuing system. For example,

the queuing system might represent a packet switch, or more generally an entire network.

In this chapter, a network element is an abstraction defined for the purposes of describing a

single stream of information passing through the associated queuing system. Specifically,

the network element has an arrival process and a departure process, described by two

functions of time Rin(·) and Rout(·), respectively. The value of Rin(t) is defined as the

number of bits that have arrived to the network element up to time t, and similarly Rout(t)

is the number of bits that have departed the network element up to time t. The backlog

35

B(t) of the network element at time t is defined as B(t) = Rin(t) − Rout(t), i.e. it is

the number of bits stored inside the network element at time t. The virtual delay of the

network element at time t is defined as D(t) = inf{d : d ≥ 0 and Rout(t + d) ≥ Rin(t)}.
For example, if the arriving bits depart the network element in first-in first-out (FIFO)

order, then a bit that arrives at time t waits no longer than D(t) seconds before departing

the network element.

In general, the departure process Rout(·) may not be determined solely by the arrival

process Rin, but also by external events in the associated queuing system. However, we

can partially characterize the network element by bounding the departure process in terms

of the arrival process. In general, we assume that the arrival process Rin(·) and departure

process Rout(·) can be arbitrary non-decreasing functions. Formally, Rin(·) and Rout(·) are

elements of M, which is defined as the set of all non-decreasing functions whose domain

is the set of all real numbers R and whose range is the extended set of real numbers

R∪ {+∞}.

3.2.1 Minimum Service Mappings

Let S : M→M be a given operator, which maps elements of M into elements of M.

Given functions of time F (·) and G(·), we use the notation F ≤ G if F (t) ≤ G(t) for all

t. We say that S is monotone if F ≤ G implies that S(F) ≤ S(G) for all F and G.

Definition 3.1. Suppose a network element is such that Rout ≥ S(Rin) for all possi-

ble arrival processes Rin, for some monotone operator S. In this case, say that S is a

(minimum) service mapping for the network element, and we write Rin → S → Rout.

The service model in the previous definition is composable in the sense that if several

network elements are configured in tandem, each being described by a service mapping,

then the composition of the service mappings is a service mapping of the entire system.

This is stated formally in the following theorem for the case of two network elements in

tandem.

Theorem 3.2. [Network Elements in Tandem] Suppose R0 → S1 → R1 and R1 → S2 →
R2. Then R0 → (S1 ◦ S2) → R2, where (S1 ◦ S2)(F) = S2(S1(F)).

36

Proof. Fix any t. We have

R2 ≥ S2(R1)

≥ S2(S1(R0))

= (S1 ◦ S2)(R0) .

The second inequality above follows since S2 is monotone.

3.2.2 Shift Invariant Service Mappings

An operator S is said to be time invariant if S(F) = G implies that S(F∆)) = G∆ for

all ∆ ∈ R, where F∆(t) = F (t−∆) and G∆(t) = G(t−∆) for all t. An operator S is said

to be space invariant if S(F) = G implies that S(k + F) = k + G for all constants k. An

operator S that is both time invariant and space invariant is called shift invariant.

An operator S is called additive if S(F1) = G1 and S(F2) = G2 imply that S(F1 ∧
F2) = G1 ∧ G2, where we use the notation H1 ∧ H2 to denote the function defined by

(H1 ∧H2)(t) = min{H1(t),H2(t)}. An operator that is both space invariant and additive

is said to be linear.

As an example, suppose that S(·) is a minimum service curve [15, 19, 22], as we now

define. The convolution of two functions F (·) and G(·), F ∗G, is first defined as

(F ∗G)(t) = inf
τ
{F (τ) + G(t− τ)}

for all t. The function S(·) is said to be a (minimum) service curve for the network element

if for any arrival process Rin we have Rout ≥ Rin ∗ S. This service model is special case

of a service mapping where the associated operator is both linear and time invariant.

Conversely, it can be seen that any service mapping that is both linear and time invariant

can be equivalently be described in terms of a service curve.

Although the space of service models which are linear is adequate for analyzing many

queuing systems of interest, in this chapter we make the proposition that non-linear service

models are useful as well. In particular, we will demonstrate how they can be used to

analyze networks of FIFO queues. For example, suppose that an arrival process Rin is

multiplexed in a FIFO manner with another arrival process Rx
in, such that the aggregate

arrival process Rin + Rx
in results in the aggregate departure process Rout + Rx

out with a

37

service curve of G, i.e. (Rout + Rx
out)(t) ≥ ((Rin + Rx

in) ∗G)(t) for all t. If Rx
in ≤ Rx

in ∗Ex,

it is known [15] that

Rout ≥ Rin ∗ ST

for all T ≥ 0, where

ST (t) =

 [G(t)− Ex(t− T)]+ if t ≥ T

0 otherwise.
(3.1)

where we use the notation x+ = max{x, 0}. In this case, in fact we have Rin → Ŝ → Rout,

where the operator Ŝ is defined for F ∈M as

Ŝ(F)(t) = sup
T :T≥0

[(F ∗ ST)(t)] . (3.2)

It can be verified that Ŝ is shift invariant, but not necessarily linear.

This motivates us to look at the class of service models characterized by shift invariant

service mappings. For generality, we do not necessarily assume that service mappings are

of the form given in (3.2). We shall obtain bounds on delay, backlog, and a traffic envelope

(defined below) for the departure process, in the context of service models characterized

by shift invariant service mappings.

To begin with, we first define the notion of a traffic envelope [14]. Given a function

E(·), and an arrival process R, we say that R has envelope E if R ≤ R ∗E. Note that the

inequality R ≤ R ∗ E is equivalent to

R(u) ≥ R(t)− E(t− u) for all u (3.3)

for any fixed value of t. In other words, if R has envelope E, then for any fixed t we have

R ≥ RE,t , (3.4)

where RE,t(u) = R(t) − E(t − u) for all u. Note that in general E(x) may be non-zero

for negative values of x, although it is common to assume that E(x) = 0 for x < 0. For

x < 0, the value of −E(x) represents a lower bound on the increments of a process over

any interval of length −x.

Before proceeding further, let us make a few definitions. First, given any function

E(·), define the “tilde” operator as follows:

Ẽ(t) = −E(−t) for all t. (3.5)

38

Given any R ∈ M, define Dt,k(R) = inf{d : d ≥ 0 and R(t + d) ≥ k}. Note that the

virtual delay in a system with arrival and departure processes Rin and Rout is D(t) =

Dt,Rin(t)(Rout). Finally, for any R ∈M, define D0(R) = D0,0(R).

3.3 Quality of Service Guarantees for Shift Invariant Service

Mappings

In this section we consider a single network element whose arrival process has envelope

E. We suppose the network element has a shift invariant service mapping and derive

bounds on virtual delay and backlog. We also find an envelope for the departure process.

Theorem 3.3. Suppose S is a shift invariant service mapping for a network element.

Suppose the arrival process to the network element has envelope E. Then the virtual delay

D(t) is upper bounded according to

D(t) ≤ D0(S(Ẽ)) for all t. (3.6)

Proof. Fix any t. We have

D(t) = inf{d : d ≥ 0 and Rout(t + d) ≥ Rin(t)}

= Dt,Rin(t)(Rout)

≤ Dt,Rin(t)(S(Rin))

≤ Dt,Rin(t)(S((Rin)E,t))

= Dt,Rin(t)(S(Rin(t)− E(t− ·)))

= Dt,Rin(t)(Rin(t) + S(−E(t− ·)))

= Dt,0(S(−E(t− ·)))

= Dt,0(S(−E(−(· − t))))

= D0,0(S(−E(−(·))))

= D0(S(Ẽ)) .

In the above sequence the first equality follows from the definition of virtual delay, the

second equality follows from the definition of Dt,k(R), the third inequality follows since

S is a minimum service mapping and Dt,k(R) is monotone decreasing in R. The fourth

39

inequality follows from (3.4) and the monotonicity of S. The remaining equalities follow

from the shift invariance of S.

Suppose S is a shift invariant service mapping for a network element. Suppose the

arrival process to the network element has envelope E. Then the backlog B(t) is upper

bounded according to

B(t) ≤ S̃(Ẽ)(0) for all t. (3.7)

Fix any t. We have

B(t) = Rin(t)−Rout(t)

≤ Rin(t)− S(Rin)(t)

≤ Rin(t)− S((Rin)E,t)(t)

= Rin(t)− S(Rin(t)− E(t− ·))(t)

= −S(−E(t− ·))(t)

= −S(−E(−(· − t)))(t)

= −S(−E(−(·)))(0)

= −S(Ẽ)(0)

= S̃(Ẽ)(0) .

In the above sequence the first equality follows from the definition of backlog, the second

equality follows since S is a minimum service mapping. The third inequality follows from

(3.4) and the monotonicity of S. The remaining equalities follow from the shift invariance

of S.

We say a network element is conservative if we always have Rout ≤ Rin.

Theorem 3.4. Suppose S is a shift invariant service mapping for a conservative network

element. Suppose the arrival process to the network element has envelope E. Then the

departure process has envelope Eout where

Eout = S̃(Ẽ) . (3.8)

40

delay bound

backlog bound
t

upside down output envelope = S(Ẽ(t)) = Ẽout(t)

input envelope = Ẽ(t)

upside down

Figure 3.1: S-mapping: delay, backlog and output bounds

Proof. Fix any s, t. We have

Rout(t)−Rout(s) ≤ Rin(t)−Rout(s)

≤ Rin(t)− S(Rin)(s)

≤ Rin(t)− S((Rin)E,t)(s)

= Rin(t)− S(Rin(t)− E(t− ·))(s)

= −S(−E(t− ·))(s)

= −S(−E(−(· − t)))(s)

= −S(−E(−(·)))(s− t)

= −S(Ẽ)(s− t)

= S̃(Ẽ)(t− s) . (3.9)

In the above sequence the first equality follows since the network element is conservative,

the second equality follows since S is a minimum service mapping. The third inequality

follows from (3.4) and the monotonicity of S. The remaining equalities follow from the

shift invariance of S.

Note that (3.8) can be rewritten as Ẽout = S(Ẽ), which has a simple intuitive appeal.

The theorems of this section are illustrated graphically in Figure 3.1.

41

3.3.1 Linear Time Invariant Service Mappings

We conclude this section by considering a service mapping S that is linear and time

invariant. In other words, the service mapping corresponds to a service curve guarantee,

i.e.

S(R) = R ∗ S

where S is a service curve for the network element. In this case we show that the theorems

of the previous subsection reduce to previously known results. We assume that the arrival

process conforms to the envelope E.

Observe that

S(Ẽ)(−x) = (Ẽ ∗ S)(−x)

= inf
y
{Ẽ(−x− y) + S(y)}

= inf
y
{−E(y + x) + S(y)}

= − sup
y
{E(y + x)− S(y)}

= −(E � S)(x) , (3.10)

where we use “�” to denote the deconvolution operator, i.e. (F � G)(x) = supy{F (x +

y)−G(y)} for all x.

First, consider the result of Theorem 3.4. The departure process has envelope Eout

where Eout = S̃(Ẽ). In view of (3.10), we have Eout = E�S, which agrees with the result

in [2].

Second, consider the result of Theorem 3.3. The backlog is upper bounded by−S(Ẽ)(0).

In view of (3.10), we thus have B(t) ≤ (E � S)(0) = supy{E(y) − S(y)}, which agrees

with the result in [2].

Third, consider the result of Theorem 3.3. Using (3.10), the virtual delay D(t) is upper

42

t

backlog bound

delay bound

output envelope = (E � S)(t)

Figure 3.2: Service curves: delay, backlog and output bounds

bounded as follows:

D(t) ≤ D0(S(Ẽ))

= inf{d : d ≥ 0 and S(Ẽ)(d) ≥ 0}

= inf{d : d ≥ 0 and − (E � S)(−d) ≥ 0}

= inf{d : d ≥ 0 and − sup
y
{E(y − d)− S(y)} ≥ 0}

= inf{d : d ≥ 0 and sup
y
{E(y − d)− S(y)} ≤ 0}

= inf{d : d ≥ 0 and E(y − d) ≤ S(y) for all y} ,

which agrees with the result in [2], i.e. the delay in upper bounded by the “maximum

horizontal distance” between the graphs of E and S.

These results are illustrated graphically in Figure 3.2 in the context of the graph of

E � S.

3.4 FIFO Multiplexers

In this section, we apply the results in the previous section to the case in which network

elements correspond to FIFO multiplexers. First, in the next section, we consider a single

FIFO multiplexer.

3.4.1 A Single FIFO Multiplexer

Consider two arrival streams incident on a FIFO multiplexer, described by Rin and

Rx
in, with traffic envelopes E and Ex, respectively. The multiplexer serves data in a

43

FIFO manner as fast as possible with a maximum service rate of C bits per second.

From the point of view of the aggregate arrival stream, Rin + Rx
in, a service curve of G

is provided, where G(x) = Cx if x ≥ 0 and G(x) = 0 otherwise. In other words, if the

corresponding departure streams are denoted as Rout and Rx
out, then we have Rout+Rx

out ≥
G ∗ (Rin + Rx

out).

If we assume that packets are served non-preemptively, then if we have non-zero packet

sizes (i.e. a non-fluid model), then bits might not depart in exactly FIFO order. Therefore,

for simplicity we assume a fluid model, which corresponds to “L = 0” as discussed in [14].

In this case, from Theorem 4.1 of [14], it is known that the delay for stream Rin is

upper bounded by D̄FCFSMUX, i.e. Rout(t + D̄FCFSMUX) ≥ Rin(t) for all t, where

D̄FCFSMUX =
1
C

max
u≥0

[E(u) + Ex(u)− Cu] . (3.11)

Since the system is FIFO, we have using the result from [15] that Rout ≥ Rin ∗ ST

holds for any T ≥ 0, with ST given in (3.1). Thus we have Rin → Ŝ → Rout holds, with

Ŝ given in (3.2). It can be shown that D0(Ŝ(Ẽ)) ≤ D̄FCFSMUX. In fact, equality holds

here since the delay bound from [14] is the best possible. Thus, in some sense Theorem

4.1 of [14] is a special case of Theorem 3.3.

Furthermore, from Theorem 4.4 of [14], it is known that Rout has envelope Eout, where

Eout(x) = max
∆≥0, D≥0

[min{E(x + D), E(x + D + ∆) + Ex(∆)− C(∆ + D)}] . (3.12)

We can show that in fact Theorem 3.4 reduces to this result in this case. For brevity we do

not include the details here, but we note that we assumed continuity of E(x) and Ex(x)

for x > 0. We conjecture that this assumption is un-necessary, however.

Thus, we assert that Theorems 3.3 and Theorem 3.4 here are more general than

Theorems 4.1 and Theorem 4.4 of [14].

3.4.2 FIFO Multiplexers in Tandem

In this section we consider the system illustrated in Figure 3.3, where each arrival

processes Ri has an envelope Ei of the form Ei(t) = σi + ρit. We are interested in an

upper bound for the total delay for flow 0, which is the sum of the delay through each

node. We assume that the system is stable, that is ρ0 + ρ1 ≤ C1 and ρ0 + ρ2 ≤ C2,

44

R2
2

R1
0

R1

R0

R1
1

R2

R2
0

FIFO server FIFO server
rate C1 rate C2

Figure 3.3: Two nodes in tandem

which ensures that the delay is bounded. We use the notation Ŝ1 and Ŝ2 to denote the

corresponding minimum service mappings for flow 0 at the first and second multiplexer,

respectively, as implied by (3.1) and (3.2).

It can be shown that

Ŝ1(Ẽ0(t)) =


ρ0t− σ0 − ρ0

σ1
C1

, if t ≤ σ1
C1

C1t− σ1 − σ0, if σ1
C1
≤ t ≤ σ1+σ0

C1

0, if t ≥ σ1+σ0
C1

.

Moreover, it can be shown that if C2 − ρ2 ≥ C1 we have

Ŝ2

(
Ŝ1(Ẽ0(t))

)
=


ρ0

(
t− σ2

C2
− σ1

C1

)
− σ0, if t ≤ σ1

C1
+ σ2

C2

C1

(
t− σ2

C2
− σ1

C1

)
− σ0, if σ1

C1
+ σ2

C2
≤ t ≤ σ1+σ0

C1
+ σ2

C2

0, if t ≥ σ1+σ0
C1

+ σ2
C2

,

whereas if C2 − ρ2 ≤ C1 we have

Ŝ2

(
Ŝ1(Ẽ0(t))

)
=


ρ0

(
t− σ2

C2
− σ1

C1

)
− σ0, if t ≤ σ1

C1
+ σ2

C2

C2C1
C1+ρ2

(
t− σ2

C2
− σ1

C1

)
− σ0, if σ1

C1
+ σ2

C2
≤ t ≤ σ1

C1
+ σ2

C2
+ σ0(C1+ρ2)

C2C1

0, if t ≥ σ1
C1

+ σ2
C2

+ σ0(C1+ρ2)
C2C1

.

The upper bound on the end-to-end delay as given by Theorem 3.2 and Theorem 3.3

is: D = D0((Ŝ1 ◦ Ŝ2)(Ẽ0)) = D0

(
Ŝ2(Ŝ1(Ẽ0))

)
. Carrying out this calculation, it can be

verified that our upper bound D on end to end delay is given by

D =


σ0+σ1

C1
+ σ2

C2
, if C2 − ρ2 ≥ C1

σ1
C1

+ σ2
C2

+ σ0(C1+ρ2)
C2C1

= σ1
C1

+ σ2
C2

+ σ0
C2

+ σ0ρ2

C2C1
, if C2 − ρ2 ≤ C1 .

(3.13)

These bounds are indeed achievable. To see why this is true when C2 − ρ2 ≤ C1

consider the following arrival pattern: R0(t) = R1(t) = 0 for t < 0; R0(t) = σ0 and

45

R1(t) = σ1 for t ≥ 0. That is both flows at the first server have a burst at time 0. Suppose

that flow 1 is served before flow 0, then suppose that R2(t) = 0 for t < σ1
C1

and that

R2(t) = ρ2(t− σ1
C1

)+σ2 otherwise. Under these assumptions the last bit of the burst from

flow 0 will experience a total delay given by (3.13). If C2 − ρ2 ≤ C1 the arrival pattern

for flow 0 and 1 is the same while in this case R2(t) = 0 for t < σ1+σ0
C1

and R2(t) = σ2

otherwise; again the last bit of the burst from flow 0 will experience a total delay given

by (3.13).

4

Worst Case Average Delay for a

Single FIFO Queue

4.1 Introduction

In the previous chapters we have dealt with point-wise bounds, that is bounds that

hold at any given time. They can never be violated no matter what the inputs are (as

long as they satisfy the corresponding envelopes). At the same time, in most cases, these

bounds cannot be achieved over arbitrary time intervals. They can only be achieved for

a limited number of specific time instants within each interval. In other words given any

arbitrary value t it is often possible to find an arrival pattern so that the delay bound,

for example, is achieved exactly at that time. But, if we are interested in a time interval

[t1, t2], it is not possible, at least in general, to find an arrival pattern such that the delay

bound is achieved for all t ∈ [t1, t2].

In some specific cases this might be possible. For example if a single FIFO queue with

two inputs with sigma-rho envelopes is such that C = ρ0 + ρ1, where C is the capacity of

the server and ρ0 and ρ1 are the long term rates for the two inputs, then the output and

delay bounds can be achieved over arbitrary time intervals. But this is somewhat of an

extreme case on the verge of instability and the bounds can be achieved if the inputs are

greedy, that is they follow the envelope sending as much traffic as possible, causing only

one unbounded busy period.

46

47

Note that these issues are not caused by the fact that some of these bounds are not

tight. The reason is that they are point-wise bounds, as such they have to be true for any t.

As an example consider a FIFO queue with inputs that have sigma-rho envelopes (for the

sake of simplicity assume that all the envelopes have the same parameters): the worst case

delay bound can be achieved at an arbitrary time instant, but after this bound is achieved

it will take at least σ/ρ units of time before the input traffic can send another maximum

size burst without violating the envelope. Therefore if the delay bound is achieved at time

t it cannot be achieved anywhere else in the interval [t− σ
ρ , t + σ

ρ].

One bound that does not have this shortcoming is the worst case average delay, where

the average is taken over time. In this case the bound can be achieved over arbitrary time

intervals, note that this is not a point-wise bound but rather a bound that has to be true

for any time interval.

Theorem 4.7 in [14] gives a bound for the worst case average delay for a FIFO queue

serving a single input flow satisfying an envelope. We would like to extend this result to

the case where there are two input flows and not just one. A similar problem has been

analyzed in [18] but in a probabilistic setting using Palm probabilities.

4.2 Problem Statement and Some Definitions

Consider a single FIFO server with capacity C serving two flows R0,in and R1,in with

envelopes E0 and E1 respectively, such that the system is stable1 and such that E0 and

E1 are concave and E1 is piecewise linear. We are interested in finding an upper bound on

the average delay for flow R0, where the average is taken over time. In order to rigorously

define this quantity we first define the “ingress” and “egress” time for the bit of the i-th

input flow arriving after y units of traffic have arrived from the same input:

ti,in(y) = inf {t : Ri,in(t) ≥ y} , ti,out(y) = inf {t : Ri,out(t) ≥ y}

where Ri,in and Ri,out are generic input and output pairs. Note that Rin(t) ≥ Rout(t) ∀t
implies that tout ≥ tin. The delay for this bit is defined as:

di(y) = ti,out(y)− ti,in(y) ,

1That is the delay is bounded.

48

and the average delay as:

di,avg =
1
B

∫ B

0
di(y)dy

where B is the total amount of data sent by flow i.

We will show that there does exist a worst case arrival pattern for R0,in and R1,in so

that we can use the average delay for this specific case as an upper bound. The main

idea is that, exploiting the concavity of E1 and E0, we can start from an arbitrary arrival

pattern for both flows and then modify them in such a way that the average delay can

only increase (or stay the same). Dealing with the cross traffic it is fairly easy: we will

show that flow 1 should simply send as much traffic as the envelope allows starting from

the beginning of each busy period.

For flow 0 the argument is more complicated but the basic idea is fairly simple; given

that E1 (the cross traffic envelope) is concave there exist a time α at which the backlog due

to flow 1 is maximized if flow 1 were the only input to the server (we will give a rigorous

definition for all the quantities involved in the remainder of this chapter). Flow 0 should

try to send all its traffic as close as possible to time α without violating its envelope. We

will show that “best” way of sending this traffic (i.e. the arrival pattern with the worst

case average delay) is to use the biggest slope of E0 around time α (E0 is piecewise linear),

then use the second biggest slope in two different intervals one to the left of α and one

to the right of α, and so on for the other slopes of E0. We will show that this optimal

solution has a certain property that we will call “water-filling”, because the length of each

interval is the solution of a problem that is somewhat equivalent to pouring water in a

convex bowl and letting the water reach an uniform level.

4.3 Preliminary Results

Before proving the main theorem that gives a bound for the average delay we are

going to present some preliminary results that will be used later on. First we consider

an optimization problem that will appear in the proof of the main theorem and that

introduces the water filling condition. Next we turn our attention to the problem at hand

and we show how we can modify arbitrary arrival patterns for R0,in and R1,in in order

to increase the average delay. The basic idea is to consider the “cross traffic” first (R1)

and then the “through traffic” (R0). In a first lemma we show that for any (fixed) R0,in

49

it is possible to upper bound d0(y) by considering the case where R1,in is greedy (that is

it follows the envelope) starting at the beginning of the system busy period containing

t0,in(y). Throughout the proofs we will use roman numeral superscripts (RI
0,in, RII

0,in) to

distinguish between specific realizations of the same process corresponding to different

scenarios. Similarly let dI
0(y) (resp. dII

0 (y)) be the delay for the bit entering the server

at time t0,in(y) when the inputs are RI
0,in and RI

1,in (resp. RII
0,in and RII

1,in). Furthermore

we define a system busy period as each of the maximal-size (longest) time intervals over

which the total backlog is non-zero.

4.3.1 An optimization problem

Suppose we are given a function f(x) that is concave for x > 0 and such that f(x) is

decreasing for all x ≥ α for some α ≥ 0. We will assume the α is the smallest such value,

that is

α = inf{u ≥ 0 : f(x1) ≥ f(x2)∀x2 ≥ x1 ≥ u} .

Note that the definition of α and the fact that f is concave imply that f is increasing for

x ≤ α and decreasing for x ≥ α. We will also assume that f(x) = 0 for x < 0.

Furthermore assume that we are given a collection of N “weights” rn ≥ 0 (n = 1 . . . N),

and “lengths” Ln ≥ 0 (n = 1 . . . N). Let Tnm = (τnm, tnm) (tnm > τnm ≥ 0 ∀n, m)

be a collection of (non overlapping) intervals whose individual length we will define as

lnm = tnm− τnm, let Mn be the number of intervals whose first index is n. Based on these

definitions, we would like to solve the following optimization problem:

max
τnm,tnm

N∑
n=1

rn

∫
S

m Tnm

f(x)dx , (4.1)

subject to the constraints:

Tij ∩ Tnm = ∅ ∀i, j, n, m (4.2)

Mn∑
m=1

lnm = Ln n = 1 . . . N . (4.3)

One possible interpretation of this problem is that we would like to maximize the weighted

sum of integrals (rn are the weights) over a certain collection of intervals. Each interval

is associated with a weight and we can place these intervals anywhere we want as long

50

as they are non-overlapping and the sum of the lengths of all the intervals associated

with wight n is exactly Ln. Note that the the fact that f(x) ≤ f(α) for any x implies

that f is bounded so that
∫
(τnm,tnm) f =

∫
[τnm,tnm] f . Note as well that the definition of

α and the fact that f is concave imply that f(α) = sup{f(x)}, unless α = 0 and f is

discontinuous at 0, in this case sup{f(x)} = limx→0+ f(x). It is also useful to define the

following quantities:

τmin = min
n,m

{τnm}

tmax = max
n,m

{tnm}

ξ = min{f(τmin), f(tmax)}

L =
N∑

n=1

Ln .

Before we examine the general case it is useful to point out that there is one trivial

case. Let

β = sup{u ≥ α : f(u) ≥ f(α} ,

it is possible that β > α, this happens if f is “flat” for values of x between α and β, if

β > α and L ≤ β − α then we can distribute the weights in any way we want as long as

α ≤ τmin < tmax ≤ β, any solution satisfying this condition will have the same cost and

will achieve the maximum.

The next three lemmas show that the optimal solution for (4.1) needs to satisfy three

properties. The first one says that there are no “holes” in the collection of intervals, that

is for every n and m there exist i and j such that τnm = tij (except for the very first

interval). The second one deals with the location of τmin and tmax in the optimal solution

and the third one shows that in the optimal solution weights are distributed around the

point α according to a specific property.

Lemma 4.1. The optimal solution of (4.1) is such that for every n and m there exist i

and j satisfying τnm = tij unless τnm = τmin.

Proof. By contradiction: suppose there exist an optimal solution {Tnm} with i,j, k, p such

that

(tij , τkp)
⋂(⋃

n,m

Tnm

)
= ∅ ,

51

that is there are no intervals between tij and τkp. Assuming tij ≥ α, it is then possible to

construct a new set of intervals T ′nm as follows:

τ ′nm =

τnm, if τnm ≤ τkp

τnm − (τkp − tij) if τnm > τkp

t′nm =

tnm, if tnm < tkp

tnm − (τkp − tij) if tnm ≥ tkp .

That is all the intervals after τkp are moved to the left (closer to α) by τkp − tij . Let

A = {(n, m) : τnm ≤ τij} and B = {(n, m) : τnm ≥ τkp} so that (
⋃

a∈A Ta) ∪ (
⋃

b∈B Tb) =⋃
n,m Tnm and taking the difference between the two solutions we have:∫

S
m Tnm

f(x)dx−
∫

S
m T ′

nm

f(x)dx =
∫

S
a∈A Ta

+
∫

S
b∈B Tb

−
∫

S
a∈A T ′

a

−
∫

S
b∈B T ′

b

(4.4)

=
∫

S
b∈B Tb

−
∫

S
b∈B T ′

b

(4.5)

=
∑

(n,m)∈B

∫ tnm

τnm

f(x)dx−
∑

(n,m)∈B

∫ t′nm

τ ′nm

f(x)dx (4.6)

=
∑

(n,m)∈B

∫ tnm

τnm

f(x)dx (4.7)

−
∑

(n,m)∈B

∫ tnm−(τkp−tij)

τnm−(τkp−tij)
f(x)dx (4.8)

≤ 0 . (4.9)

In (4.4) we did not include the weights rn because Tnm and T ′nm have the same weight

assignment. The only difference between the two solutions is the some of the intervals

in T ′nm are shifted to the left. The first equality (4.4) follows from the definitions of A

and B. Similarly it follows from the definition of A that
∫S

a∈A Tnm
=
∫S

a∈A T ′
nm

as ∀a ∈ A

Ta = T ′a (all the intervals with τnm ≤ τij are not moved) and hence (4.5). As f is

continuous we can rewrite (4.5) as the sum of the integrals over each interval to obtain

(4.6). From the definition of B we have that ∀(n, m) ∈ B t′nm = tnm − (τkp − tij) and

τ ′nm = τnm−(τkp−tij) and hence (4.7). Finally the fact that tij ≥ α and the definition of B

imply that ∀(n, m) ∈ B τnm ≥ α and τnm− (τkp− tij) ≥ α so that f(x) ≤ f(x− (τkp− tij))

for any x ∈ (τnm, tnm) such that (n, m) ∈ B, as f is a decreasing (non-increasing) function

52

L

L

α x2 tmax
τmin xx1

f(x)

f(τmin)

f(tmax)

Figure 4.1: How to construct a better solution

for x ≥ α, hence ∫ tnm

τnm

f(x)dx ≤
∫ tnm−(τkp−tij)

τnm−(τkp−tij)
f(x)dx∀(n, m) ∈ B ,

from this (4.9) follows immediately which is a contradiction because we were assuming

that {Tnm} is an optimal solution but we have constructed a better one.

So far we were assuming that tij ≥ α, if this is not the case a similar argument holds.

If tij ≤ α simply shift all the intervals before tij to the right by τkp − tij and leave all the

others unchanged. if tij ≤ α ≤ τkp shift all the intervals before tij to the right by τkp− tij

and all those after tij to the left by the same amount. In both cases a similar argument

shows that the value of the integral over each interval is going to increase given that f is

increasing for x ≤ α and decreasing for x ≥ α.

Lemma 4.2. Let f(0+) = limx→0+ f(x), if f(0+) ≤ f(L) the optimal solution of (4.1) is

such that

f(τmin) = f(tmax) ,

while if f(0+) > f(L) the optimal solution is such that

τmin = 0, tmax = L .

Proof. First let us consider the case where f(0+) ≤ f(L) and suppose that there exists an

optimal solution {Tnm} such that f(τmin) > f(tmax) (see Figure 4.1). From Lemma 4.1

53

we know that the optimal solution is such that tmax− τmin = L. Given that f(0+) ≤ f(L),

and that f is continuous there exist x1 and x2 such that x1 ≤ α ≤ x2, x2 − x1 = L and

f(x1) = f(x2), note that we also have x1 ≤ τmin and x2 ≤ tmax.

Let A = {(n, m) : τnm ≤ x2} and B = {(n, m) : τnm ≥ x2} that is all the intervals

to the left and to the right of x2, respectively, in the original solution. Next construct a

new solution {T ′nm} by moving all the intervals in B to the left of τmin without changing

their relative ordering. If τij < x2 < tij for some i, j then divide this interval into two

new intervals: (τij , x2) and (x2, tij) and leave the first one in the set A and add the second

one to the set B, this way we will have one more interval than the original solution and

M ′
i = Mi + 1 and B′ = B ∪ (τiM ′

i
= x2, tiM ′

i
= tij). Formally:

τ ′nm =


τnm, if (n, m) ∈ A

τnm − (tmax − x1), if (n, m) ∈ B

x2 − (tmax − x1), if n = i and m = M ′
i

t′nm =



tnm, if (n, m) ∈ A and (n, m) 6= (i, j)

tnm − (tmax − x1), if (n, m) ∈ B

x2, if n = i and m = j

tij − (tmax − x1) if n = i and m = M ′
i .

Note that τ ′min = x1 and t′max = x2 so that f(τ ′min) = f(t′max).

54

Taking the difference between the two solutions and letting δ = (tmax − x1) we have:∫
S

m Tnm

f(x)dx−
∫

S
m T ′

nm

f(x)dx =
∫

S
a∈A Tnm

+
∫

S
b∈B Tnm

−
∫

S
a∈A T ′

nm

−
∫

S
b∈B′ T ′

nm

(4.10)

=
∫

S
b∈B Tnm

+
∫

(x2,tij)
−
∫

S
b∈B T ′

nm

−
∫

(x2−δ,tij−δ)

(4.11)

=
∑

(n,m)∈B

∫ tnm

τnm

f +
∫ tij

x2

f (4.12)

−
∑

(n,m)∈B

∫ t′nm

τ ′nm

f −
∫ tij−δ

x2−δ
f

=
∑

(n,m)∈B

∫ tnm

τnm

f +
∫ tij

x2

f (4.13)

−
∑

(n,m)∈B

∫ tnm−δ

τnm−δ
f −

∫ tij−δ

x2−δ
f

≤ 0 . (4.14)

Similarly to what we did for the proof of Lemma 4.2 in (4.10) we did not include the

weights rn because Tnm and T ′nm have the same weight assignment. The only difference

between the two solutions is the some of the intervals in T ′nm are shifted to the left. The

first equality (4.10) follows from the definitions of A and B. For (4.11) it follows from the

definition of A that∫
S

a∈A Tnm

=
∫

S
a∈A\(i,j) Tnm

+
∫

(τij ,x2)
+
∫

(x2,tij)
=
∫

S
a∈A T ′

nm

+
∫

(x2,tij)
,

as ∀a ∈ A\(i, j) Ta = T ′a (all the intervals with τnm ≤ τij are not moved) and the interval

(τij , tij) is changed to (τij , x2) in T ′nm. From the definitions of B and B′ we have that∫
S

b∈B′ T ′
nm

=
∫

S
b∈B T ′

nm

+
∫

(x2−(tmax−x1),tij−(tmax−x1))
.

As f is continuous we can rewrite (4.11) as the sum of the integrals over each interval

to obtain (4.12). From the definition of B we have that ∀(n, m) ∈ B t′nm = tnm − δ and

τ ′nm = τnm − δ and hence (4.13). The concavity of f and the definition of α and the

facts that x1 ≤ τmin and that x2 ≤ tmax imply that ∀u ∈ (x1, τmin) and ∀v ∈ (x2, tmax)

55

f(u) ≥ f(v) so that: ∫ tnm

τnm

f(x)dx ≤
∫ tnm−δ

τnm−δ
f(x)dx∀(n, m) ∈ B∫ tij

x2

f(x)dx ≤
∫ tij−δ

x2−δ
f(x)dx .

From this we have (4.14) and a contradiction.

So far we have been assuming that f(0+) ≤ f(L) and f(τmin) > f(tmax); if f(0+) ≤
f(L) and f(τmin) < f(tmax) a similar proof works with the only difference that now all

the intervals to the right of x1 are in the set A and all those to the left are in set B and

these will be shifted to the right by x1 − τmin. If f(0+) > f(L) a similar proof works as

well with x1 = 0 and x2 = f(L), in this case all the intervals between x2 and tmax are in

the set B and they will be shifted to the left by tmax−x1 to construct a new solution with

a bigger value than the original one.

Before the next lemma we need to introduce the definition of the “water-filling” con-

dition: ∀w ∈ [ξ, f(α)] define

x1 =

sup{u : f(u) ≤ w and u ≤ α}, if w ≥ f(0+)

0, if w < f(0+)
(4.15)

x2 =

inf{u : f(u) ≤ w and u ≥ α}, if w ≥ f(0+)

f−1(w), if w < f(0+) .
(4.16)

Note that these two quantities are always well defined and that f(x1) = f(x2) if w ≥ f(0+).

Also, define

K = {n : ∃m such that x1 ≤ τnm and tnm ≤ x2}

Q = {n : ∃m such that tnm ≤ x1 or τnm ≥ x2}.

We say that a solution {Tnm} does satisfy the water-filling condition if ∀k ∈ K and

∀q ∈ Q we have rk ≥ rq. Intuitively if this condition is true it means that the weights

rn are distributed around α in such a way that the heavier weights are closer to α (see

Figure 4.2). The name for this condition was inspired by the fact that f can be thought

as an “upside down” bowl and in the case of a single weight the optimal solution is the

same as if a certain amount of water was poured in the bowl until the water level was such

56

w

x2 x

f(x)

αx1

heavier weights rk

lighter weights rq

Figure 4.2: Water-filling condition

t1 x

f(x)

ατ1

f(τ1) =
f(t1)

x

f ′(x)

t′j

cut

move

τ ′
j τi

Figure 4.3: How to construct f ′(x)

that f(τmin) = f(tmax) with “gravity” pulling the water up. Note that the analogy is not

perfect because the amount (volume) of water is not fixed a priori, what it actually fixed

is the length of the stable solution L = tmax − τmin. In the case of multiple weights the

analogy is not perfect as well but we can construct an iterative algorithm that considers

one weight at a time. Starting with heavier weight ri find the optimal solution if ri was

the only weight, this will give τi and ti appropriately centered around α, next consider the

second heaviest weight rj and construct a new “bowl” f ′(x) built as follows (see Figure

4.3):

f ′(x) =

f(x), if 0 ≤ x ≤ τi

f(x + ti − τi), if x ≤ τi ,

then use this new “bowl” to find the water filling solution assuming rj was the only weight.

57

{Tnm}

{T ′
nm}

τjm2τim1 τim1 + ljm2 tim1 tjm2

τ ′
jm2

=

τim1

τ ′
im1

=
τjm2

t′iM ′
i

=

tim1

t′jm2
=

τim1 + ljm2

= τ ′
iM ′

i

t′im1
=

tjm2

Figure 4.4: Constructing {T ′nm} by switching Tim1 and Tjm2

This solution gives τ ′j and t′j , such that f ′(τ ′j) = f ′(t′j). We can use these values to construct

a solution for the original f by dividing [τj , tj] in two intervals: [τj1 = τ ′j , tj1 = τi] and

[τj2 = ti, tj2 = ti + t′j − τi], in other words every weight, other than the biggest one, will

have two different intervals associated with it, one to the left of α and one to the right.

Using this definition we can introduce the next lemma about the properties of the

optimal solution.

Lemma 4.3. The optimal solution of (4.1) is such that the water-filling condition does

hold.

Proof. Again by contradiction: suppose that there exist an optimal solution {Tnm} that

violates the water-filling condition, therefore there must exist a w̄ ∈ [ξ, f(α)] with the

corresponding x1, x2, K and Q such that for some i ∈ K and j ∈ Q ri ≤ rj . Let (i,m1)

and (j, m2) be the indices corresponding to the intervals that violate the water-filling

condition. First we will consider the case where lim1 ≥ ljm2 and τim1 ≥ α. Once more we

will construct a new solution {T ′nm}, which is better than {Tnm}, moving the “heavier”

interval Tjm2 closer to α by replacing with it the first part of the interval Tim1 . As this

interval is going to be split in two the new solution has one more interval than the original

one. We are going to switch the first part of Tim1 , specifically (τim1 , τim1 + ljm2), with

Tjm2 while the second part (τim1 + ljm2 , tim1) will be the new extra interval in {T ′nm} so

58

that M ′
i = Mi + 1 (see Figure 4.4). Formally:

τ ′nm =



τnm if n 6= i, j and m 6= m1,m2,M
′
i

τim1 if n = j and m = m2

τjm2 if n = i and m = m1

τim1 + ljm2 if n = i and m = M ′
i

(4.17)

t′nm =



tnm if n 6= i, j and m 6= m1,m2,M
′
i

τim1 + ljm2 if n = j and m = m2

tjm2 if n = i and m = m1

tim1 if n = i and m = M ′
i .

(4.18)

As we are considering the case where ljm2 ≤ lim1 and given the fact that lim1 = tim1−τim1

we have:

ri

∫ tim1

τim1

f(x)dx = ri

∫ τim1
+ljm2

τim1

f(x)dx + ri

∫ tim1

τim1
+ljm2

f(x)dx . (4.19)

Combining (4.19) withe the fact that {Tnm} and {T ′nm} are identical if n 6= i, j and

m 6= m1,m2,M
′
i it is easy to see that by taking the difference of the two solutions we have

(4.20):∑
n

rn

∫
S

m Tnm

f −
∑

n

rn

∫
S

m T ′
nm

f = ri

∫ τim1
+ljm2

τim1

+ri

∫ tim1

τim1
+ljm2

+rj

∫ tjm2

τjm2

(4.20)

− ri

∫ t′im1

τ ′im1

−ri

∫ tiM′
i

τiM′
i

−rj

∫ t′jm2

τ ′jm2

= ri

∫ τim1
+ljm2

τim1

+ri

∫ tim1

τim1
+ljm2

+rj

∫ tjm2

τjm2

− ri

∫ tjm2

τjm2

−ri

∫ tim1

τim1
+ljm2

−rj

∫ τim1
+ljm2

τim1

(4.21)

= (ri − rj)
∫ τim1

+ljm2

τim1

−(ri − rj)
∫ tjm2

τjm2

= (ri − rj)

(∫ τim1
+ljm2

τim1

−
∫ tjm2

τjm2

)
≤ 0 , (4.22)

in (4.11) we have used the definitions of τ ′nm and t′nm from (4.17) and (4.18) respectively.

To see why (4.22) is true consider that by the definition of x1 and x2 and the concavity

59

of f , for all u ∈ [x1, x2] and v such that v ≤ x1 or v ≥ x2 it is true that f(u) ≥ f(v);

by assumption (τim1 , τim1 + ljm2) ⊂ [x1, x2] while (τjm2 , tjm2) is outside [x1, x2], hence for

any u ∈ (τim1 , τim1 + ljm2) and v ∈ (τjm2 , tjm2) we have f(u) ≥ f(v) and:∫ τim1
+ljm2

τim1

f(x)dx ≥
∫ tjm2

τjm2

f(x)dx .

At the same time ri ≤ rj again by assumption so that (4.22) is true and we have a

contradiction because {T ′nm} is a better than the optimal solution {Tnm}.

Incidentally if Tim1 and Tjm2 were the only two intervals violating the water-filling

condition {T ′nm} does satisfy the condition. Furthermore if there are other intervals that

violate the condition the same construction can be used as the basis of an algorithm

that will build the optimal solution starting from any solution satisfying the conditions of

Lemmas 4.1 and 4.2.

So far we have considered the case where lim1 ≥ ljm2 and τim1 ≥ α, for the case where

lim1 ≥ ljm2 and τim1 ≤ tim1 ≤ α a similar argument holds with the difference that the

interval (τjm2 , tjm2) is moved to (tim1 − ljm2 , tim1) that is at the end of the Tim1 interval

while the beginning of the original interval Tim1 is left unchanged, in this case the previous

solution (moving Tjm2 to the beginning of Tim1) would still give a better solution but this

solution would still violate the water-filling condition given that the remaining part of

Tim1 that is T ′iM ′
i

would have a lighter weight than T ′jm2
but it would be closer to α. If

lim1 ≥ ljm2 and τim1 ≤ α ≤ tim1 Tjm2 should be moved to (x3, x4) where x3 and x4 are

such that x3 ≤ α ≤ x4, x4 − x3 = ljm2 and f(x3) = f(x4), it is possible that x3 ≤ τim1 ,

in this case Tjm2 should be moved to (τim1 , τim1 + ljm2), similarly if x4 ≥ tim1move Tjm2

to (tim1 − ljm2 , tim1); note that it is never possible that x3 ≤ τim1 and at the same time

x4 ≥ tim1 given that we are assuming lim1 ≥ ljm2 .

For the case where lim1 ≤ ljm2 and α ≤ τjm2 a similar argument holds if we exchange

(τjm2 , τjm2 + lim1) with (τim1 , tim1) while if lim1 ≤ ljm2 and α ≥ tjm2 we should switch

(tjm2 − lim1 , tjm2) with (τim1 , tim1). Note that τjm2 ≤ α ≤ tjm2 is impossible otherwise

{Tnm} would satisfy the water-filling condition and we are assuming it is not.

The last three lemmas have established necessary conditions for a solution to be the

optimal one. The next lemma shows that any two solutions satisfying the water filling

condition have the same cost and therefore the conditions expressed by the previous three

lemmas and necessary and sufficient condition for optimality.

60

Lemma 4.4. Let {Tnm} and {T ′nm} be two different solutions of (4.1) such that both do

satisfy the water filling condition as well as Lemmas 4.1 and 4.2, then:

N∑
n=1

rn

∫
S

m Tnm

f(x)dx =
N∑

n=1

rn

∫
S

m T ′
nm

f(x)dx ,

that is both solutions have the same (optimal) cost.

Proof. First we will show that for any w ∈ [ξ, f(α)] both solutions are such that

N∑
n=1

rn

∫
(

S
m Tnm)

T
[x1,x2]

f(x)dx =
N∑

n=1

rn

∫
(

S
m T ′

nm)
T

[x1,x2]
f(x)dx (4.23)

where x1 and x2 are defined as in (4.15) and (4.16), in other words the value of the

sum of the integrals between x1 and x2 is the same for both solutions. Note that this

does not imply that the solutions are identical, each solution can have a different number

of intervals, but they have to distribute the weights in the same way, more precisely:⋃
m Tnm =

⋃
m T ′nm for every n ∈ [1, N].

To see why (4.23) is true suppose it is not, that is the two solutions are such that

there exist at least two time intervals such that each solution assigns a different weight

to the two intervals. Let w̄ be the biggest value of w such that the corresponding [x1, x2]

contains one of the two intervals over which the two solutions differ. Let t1 and t2 be the

extremes of this interval such that x1 ≤ t1 < t2 ≤ x2 and(⋃
m

Tim

)⋂
[t1, t2] =

(⋃
m

T ′jm

)⋂
[t1, t2] ,

that is solution {Tnm} assigns weight ri to the interval (t1, t2) while solution {T ′nm} assigns

weight rj to the same interval. For the two solutions to be different it must be true that

ri 6= rj , therefore either ri > rj or ri < rj .

Given that both solutions do satisfy the constraints (4.2) and (4.3) Li and Lj are the

same for both solutions, therefore if {Tnm} assigns ri to (t1, t2) it means that it has to

assign rj to other intervals, outside (x1, x2), whose total length is t2 − t1 (recall that w̄ is

the biggest value of w such there is a difference between the two solutions so that the other

differences must be outside (x1, x2)). Now suppose that ri < rj then this would contradict

the water filling condition because rj > ri and rj is assigned to an interval outside (x1, x2)

while it should be assigned to one inside (x1, x2). So {Tnm} cannot satisfy the water filling

61

condition and we have a contradiction. Similarly if ri > rj then it is {T ′nm} that cannot

satisfy the water filling condition. Therefore (4.23) must be true.

Given that (4.23) is true for any w ∈ [ξ, f(α)] it has to be true for w = ξ but in this

case x1 ≤ τmin and x2 ≥ tmax so that

N∑
n=1

rn

∫
S

m Tnm

f(x)dx =
N∑

n=1

rn

∫
(

S
m Tnm)

T
[x1,x2]

f(x)dx

=
N∑

n=1

rn

∫
(

S
m T ′

nm)
T

[x1,x2]
f(x)dx

=
N∑

n=1

rn

∫
S

m T ′
nm

f(x)dx .

Combining this with the fact that {Tnm} and {T ′nm} satisfy Lemmas 4.1, 4.2 and 4.3 we

have that they both have the same optimal cost.

4.3.2 Fixing the cross traffic and making some changes to the through

traffic

Now we consider again the original problem of maximizing the worst case average

delay for flow 0. We first turn our attention to the cross traffic R1,in. In the first lemma

we show that the worst case is when R1,in is greedy (i.e. it follows the envelope) from the

beginning of each busy period. Next we turn our attention to R0,in but, before we can

show how to modify RI
0,in(t) in order to increase the average delay, we need to introduce

some new functions that will be used to construct the modified version of RI
0,in(t). We

will also show that these functions have several properties that will be exploited later on.

Lemma 4.5. Given any (fixed) RI
0,in(t), RI

1,in(t) and ȳ; let τ be the beginning of the

system busy period containing t0,in(ȳ) (if t0,in(ȳ) is not contained in any busy period let

τ = tin(ȳ)) also let RII
0,in(t) = RI

0,in(t) and

RII
1,in(t) =

RII
1,in(t), t < τ

E1(t− τ) + RI
1,in(τ), τ ≤ t ≤ t0,in(ȳ)

(4.24)

(given that we are interested in d0(ȳ) how we define R1,in(t) for t > t0,in(ȳ) is irrelevant).

Then dI
0(ȳ) ≤ dII

0 (ȳ).

62

Proof. For the sake of simplicity we will assume that all input process are continuous

processes, the following argument holds for the non continuous case as well but the notation

is somewhat cumbersome. Let bI(t) and bII(t) be the total backlog (from both flows) at time

t for the two scenarios described above. By definition of backlog for any τ ≤ t ≤ t0,in(ȳ)

we have b(t) = R0,in(t)−R0,in(τ) + R1,in(t)−R1,in(τ)− C(t− τ) so that

bI(t) = RI
0,in(t)−RI

0,in(τ) + RI
1,in(t)−RI

1,in(τ)− C(t− τ)

≤ RI
0,in(t)−RI

0,in(τ) + E1(t− τ)− C(t− τ)

= RII
0,in(t)−RII

0,in(τ) + RII
1,in(t)−RII

1,in(τ)− C(t− τ)

= bII(t) .

(4.25)

The first inequality follows from the fact that R1,in has envelope E1 and the last two

equalities follow from the definitions of RII
1,in and bII. Under the continuity assumption for

R0,in we have d0(ȳ) = b(t0,in(ȳ))/C so that (4.25) implies dI
0(ȳ) ≤ dII

0 (ȳ).

Note that RII
1,in as defined in (4.24) might be inconsistent with the envelope E1 but it

can still be used to obtain a, possibly non-achievable, upper bound on the average delay.

Later we will show that it is actually always possible to construct arrival processes such

that these bounds are achieved for all values of ȳ. Also note that by changing RI
1,in to RII

1,in

we might increase the length of the busy period containing ȳ by joining the busy period

containing ȳ in the original scenario (I) with one or more of the busy periods immediately

following it. At the same time we are not changing the beginning of the busy period,

only it is size. Furthermore given that the system is stable the size of any busy period is

bounded.

Next we need to introduce some new definitions. First of all we need to assume that

E1(t) is concave for t ≥ 0, this is not a terribly restrictive hypothesis considering that

some of the most frequently used envelopes like “sigma-rho” envelopes (with or without

an additional maximum rate constraint) do satisfy this condition. For concave envelopes

such that limt→∞(E1(t) − Ct) < 02 the following quantities are always well defined (see

Figure 4.5):

γ = sup
t≥0

{E1(t)− Ct} , α = inf {t ≥ 0 : E1(t)− Ct ≥ γ} . (4.26)

If E1(t) ≤ Ct for t ≥ 0 let γ = α = 0.
2That is if E1 is the only input to a fixed rate server with capacity C the system is stable.

63

α

γ
Ct

t

E1(t)

maximum vertiacl distance

Figure 4.5: Definition of α and γ

Based on the definition of γ and α it is possible to show the following lemma that will

be useful later on.

Lemma 4.6. Let γ and α be defined as in (4.26) and let w be such that E1(w) = Cw

(because the system is stable w is always well defined) then for any t1, t2 such that 0 ≤
t1 ≤ t2 ≤ α we have that E1(t1)−Ct1 ≤ E1(t2)−Ct2, conversely for any t3, t4 such that

α ≤ t3 ≤ t4 ≤ w we have that E1(t3)− Ct3 ≥ E1(t4)− Ct4.

Proof. See Figure 4.6. From the definition of γ it follows that E1(α)−Cα ≥ E1(t1)−Ct1

and hence

E1(α)− E1(t1) ≥ Cα− Ct1 , (4.27)

while from the fact that E1 is concave we have that E1((1− λ)t1 + λα) ≥ (1− λ)E1(t1)−
λE1(α)∀λε(0, 1). For any t2 such that t1 ≤ t2 ≤ α we can set λ = t2−t1

α−t1
(note that because

t1 ≤ t2 ≤ α λε(0, 1)) to obtain:

E1(t2) ≥ E1(t1) +
t2 − t1
α− t1

[E1(α)− E1(t1)]

≥ E1(t1) +
t2 − t1
α− t1

C(α− t1)

= E1(t1) + Ct2 − Ct1 (4.28)

where the first inequality follows from the concavity of E1 and the second inequality follows

from (4.27). Finally rearranging (4.28) we have E1(t1)− Ct1 ≤ E1(t2)− Ct2.

64

t2

γ
Ct

t

E1(t)

t3 t4t1 α

Figure 4.6: E1(t1)− Ct1 ≤ E1(t2)− Ct2 and E1(t3)− Ct3 ≥ E1(t4)− Ct4

Similarly from the definition of γ we have (4.27) E1(α)− Cα ≥ E1(t4)− Ct4 so that

E1(t4)− E1(α) ≤ Ct4 − Cα, (4.29)

from the concavity of E1 we have that E1(λα + (1 − λ)t4) ≥ λE1(α) − (1 − λ)E1(t4)

∀λε(0, 1), note that in this case we use λ as the coefficient for the left end-point (α) and

1 − λ as the coefficient for the right end-point (t4). For any t3 such that α ≤ t3 ≤ t4 we

can set λ = t4−t3
t4−α (note that because α ≤ t3 ≤ t4 λε(0, 1)) to obtain:

E1(t3) ≥ E1(t4)−
t4 − t3
t4 − α

[E1(t4)− E1(α)]

≥ E1(t4)−
t4 − t3
t4 − α

C(t4 − α)

= E1(t4)− Ct4 + Ct3 (4.30)

where the first inequality follows from the concavity of E1 and the second inequality follows

from (4.29). Finally rearranging (4.30) we have E1(t4)− Ct4 ≤ E1(t3)− Ct3.

Under the concavity assumption for E1 the next lemmas shows that it is possible to

increase the average delay if we force all the traffic from flow R0,in to concentrate around

τ + α, where τ is the beginning of the system busy period being examined. The idea is

to keep constant the amount of traffic that arrives before and after time τ + α: the traffic

that arrives before τ + α it is moved so that RIII
0,in follows a “partial upside down inverted

65

τ τ + α te

R0,in(t)

t

R0,in(u)− E0(u− t)

R0,in(τ)

Figure 4.7: Construction of G(t)

envelope” rooted at RII
0,in(τ + α), while the traffic that arrives after that time it is moved

so that RIII
0,in sends as much traffic as possible without violating the envelope. In other

words we are not changing the amount of traffic sent by RII
0,in we are simply moving it

around so that it arrives as close as possible to time τ + α without violating the envelope.

We first need to define two functions that will be used to construct the modified R0,in.

The first function deals with the traffic that arrives between τ and τ + α, as such we do

not need to define it for any other values of t:

G(t) = max
{

sup
τ+α≤u≤te

{RII
0,in(u)− E0(u− t)}, RII

0,in(τ)
}
∀t ∈ [τ, τ + α] (4.31)

where te is the end of the busy starting at τ , when the inputs are RII
0,in and RII

1,in, see

Figure 4.7.

The idea behind the definition of G is that we can use the values of RII
0,in(t) after time

τ + α to find a lower bound for the values for RII
0,in(t) before time τ + α. Given that

RII
0,in(t) has envelope E0(t) (recall that RII

0,in(t)= RI
0,in(t)) we know that for any t1 ≤ t2 we

have RII
0,in(t2)−RII

0,in(t1) ≤ E0(t2− t1) and hence RII
0,in(t1) ≥ RII

0,in(t)−E0(t2− t1), letting

t1 ≤ τ + α ≤ t2 and taking the supremum over all t2 ∈ [τ + α, te] we have (4.31).

Now that we have a lower bound for RII
0,in(t) for t ∈ [τ, τ + α] we can use it to build

an upper bound for RII
0,in(t) for t ∈ [τ + α, te]. The idea is the same we used for G, given

that RII
0,in(t) has envelope E0 we can use it to find an upper bound for RII

0,in(t) using G(t)

66

τ τ + α te

R0,in(t)

t

G(v)− E0(t− v)

R0,in(τ)

R0,in(te)

G(t)

Figure 4.8: Construction of H(t)

as the starting point. For any t ∈ [τ + α, te] we can define G(t) as (see Figure 4.8):

H(t) = min
{

inf
τ≤v≤τ+α

{G(v) + E0(t− v)}, RII
0,in(te)

}
∀t ∈ [τ + α, te] . (4.32)

The following lemma shows that, indeed, G(t) is a lower bound for RII
0,in(t) while H(t) is

an upper bound.

Lemma 4.7. Let G(t) and H(t) be defined as in (4.31) and (4.32), respectively, then

∀t ∈ [τ, τ + α] G(t) ≤ RII
0,in(t) while ∀t ∈ [τ + α, te] RII

0,in(t) ≤ H(t).

Proof. Let us first consider the case where G(t) = RII
0,in(τ): given that RII

0,in(t) ≥ RII
0,in(τ)

for t ∈ [τ, te] the claim is true. If G(t) 6= R0,in(τ) from the definition of G(t) we have that

∀ε > 0 there exist a u∗ ∈ [τ +α, te] such that G(t)− ε ≤ RI
0,in(u

∗)−E0(u∗− t) and hence:

G(t) ≤ RII
0,in(u

∗)− E0(u∗ − t) + ε

≤ RII
0,in(t) + ε . (4.33)

For (4.33) we have used the fact that RII
0,in(t) has envelope E0(t) and therefore RII

0,in(u
∗)−

RII
0,in(t) ≤ E0(u∗ − t), finally the claim follows from the fact the ε is arbitrary.

Turning our attention to H(t) we have that RII
0,in(t) ≤ RII

0,in(te) for t ∈ [τ, te] so that

the claim is true if H(t) = RII
0,in(te). If this is not the case from the definition of H(t) we

have that ∀ε > 0 there exist a v∗ ∈ [τ, τ + α] such that G(v∗) + E0(t− v∗) ≤ H(t) + ε so

67

that

H(t) ≥ G(v∗) + E0(t− v∗)− ε

≥ RII
0,in(t)− E0(t− v∗) + E0(t− v∗)− ε (4.34)

≥ RII
0,in(t)− ε .

To see why (4.34) is true consider that from the definition of G we have

G(v∗) = sup
τ+α≤u≤te

{RII
0,in(u)− E0(u− v∗)}

≥ RII
0,in(t)− E0(t− v∗) ,

given that in this case t ∈ [τ + α, te]. Again the final claim follows from the fact that ε is

arbitrary.

As in Lemma 4.5 we consider two scenarios (II and III) with the first one (II) equal to

the second scenario in Lemma 4.5. In this new scenario we use G and H to define RIII
0,in(t)

as follows:

RIII
0,in(t) =



RI
0,in(t), if t ≤ τ

G(t), if τ ≤ t < α

RI
0,in(α), if t = α

H(t), if α < t ≤ te .

(4.35)

Before we move to the lemma showing that the average delay increases if we change RII
0,in(t)

into RIII
0,in(t) we will present two lemmas that deal with properties of RIII

0,in(t) that will be

used later on. The first lemma shows that, as long as t ∈ [τ, te], RIII
0,in(t) does satisfy the

envelope E0(t). The second lemma shows that if we divide RIII
0,in(t) for t ∈ [α, te] into

several intervals and we consider an arbitrary permutation of these intervals the resulting

function will still satisfy the envelope.

Note that this does not imply that RIII
0,in(t) does satisfy the envelope for all t ≥ 0, given

that there might exist t1 ≤ τ ≤ t2 such that RIII
0,in(t2) − RIII

0,in(t1) > E0(t2 − t1) but this

does not prevent us from using RIII
0,in(t) as a bound as shown in Lemma 4.7. Later on we

will use the fact that RIII
0,in(t) does not violate the envelope between τ and te to build a

specific arrival pattern such that RIII
0,in(t) does conform to the envelope for all values of t.

Lemma 4.8. Let RIII
0,in(t) be define as in (4.35) then for any t1 and t2 such that τ ≤ t1 ≤

t2 ≤ te we have RIII
0,in(t2)−RIII

0,in(t1) ≤ E0(t2 − t1). Furthermore there exist τ ′ and t′e such

68

that τ ≤ τ ′, t′e ≤ te, G(t) = RII
0,in(t) if τ ≤ t ≤ τ ′, H(t) = RII

0,in(te) if t′e ≤ t ≤ te and

RIII
0,in(t′e)−RIII

0,in(τ ′) = RII
0,in(te)−RII

0,in(τ) = E0(t′e − τ ′).

Proof. Let us start with the case where τ ≤ t1 ≤ t2 ≤ τ + α this implies that RIII
0,in(ti) =

G(ti), i = 1, 2. Using the definition of G(t) and the fact that RII
0,in(t) does satisfy the

envelope we have:

G(t2)−G(t1) ≤ RII
0,in(u2)− E0(u2 − t2) + ε−G(t1) (4.36)

≤ RII
0,in(u2)− E0(u2 − t2) + ε−RII

0,in(u2) + E0(u2 − t1) (4.37)

= E0(u2 − t1)− E0(u2 − t2) + ε

≤ E0(t2 − t1) + ε , (4.38)

where from the definition of G(t) (4.32) we know that for every ε > 0 there exist a u2 such

that RII
0,in(u2)−E0(u2 − t2) ≥ G(t2)− ε and hence (4.36). From the definition of G(t) we

also have that G(t1) ≥ RII
0,in(u2)−E0(u2−t1) and therefore (4.37). For (4.38) we have used

the fact that E0 is concave and therefore sub-additive so that E0(u2− t1)−E0(u2− t2) ≤
E0(t2 − t1).

If t1 ≤ τ + α ≤ t2 then RIII
0,in(t1) = G(t1) and RIII

0,in(t2) = H(t2), from the definition of

G(t) (4.32) by choosing v = t1 we have that

H(t2) ≤ G(t1) + E0(t2 − t1) ,

which implies that H(t2)−G(t1) ≤ E0(t2 − t1). Finally the case where α + τ ≤ t1 ≤ t2 is

very similar to the first case:

H(t2)−H(t1) ≤ H(t2)−G(v1)− E0(t1 − v1) + ε (4.39)

≤ G(v1) + E0(t2 − v1)−G(v1)− E0(t1 − v1) + ε (4.40)

= E0(t2 − v1)− E0(t1 − v1) + ε

≤ E0(t2 − t1) + ε (4.41)

where (4.39) follows from the definition of H (∀ε > 0 there exist a v1 such that G(v1) +

E0(t1 − v1) ≤ H(t1) + ε), again using the definition of H and choosing v = v1 we have

H(t2) ≤ G(v1) + E0(t1 − v1) and hence (4.40). For (4.41) we have used the fact the E0 is

sub-additive.

For the second part of the claim consider that ∀u ∈ [τ + α, te] and ∀t ∈ [τ, τ + α]

RII
0,in(u) − E0(u − t) is a non-decreasing function; given that G(t) is the supremum of

69

non-decreasing functions it is non-decreasing as well, a similar argument holds for H(t) as

well given that it is the infimum of non-decreasing functions. Given that G(t) and H(t)

are monotone functions we can define

τ ′ = inf
τ≤u≤τ+α

{G(u) ≥ RII
0,in(τ)} (4.42)

t′e = sup
τ+α≤u≤te

{H(u) ≤ RII
0,in(te)} . (4.43)

From the definitions of H and G it follows immediately that G(t) = RII
0,in(t) if τ ≤ t ≤ τ ′

and that H(t) = RII
0,in(te) if t′e ≤ t ≤ te. As a consequence of this ∀v ∈ [τ, τ ′] we have:

G(v) + E0(τ ′ + T − v) = G(τ ′) + E0(τ ′ + T − v) (4.44)

≥ G(τ ′) + E0(T) (4.45)

where (4.44) follows from the fact that G(v) is constant for v ∈ [τ, τ ′] while v ≤ τ ′ and

the fact that E0 is non-decreasing imply (4.45). If τ ′ ≤ v ≤ τ + α the same is true, to see

why this is the case we first need to consider the following inequalities:

G(v)−G(τ ′) ≥ G(v)−RII
0,in(u

∗) + E0(u∗ − τ ′)− ε (4.46)

≥ RII
0,in(u

∗)− E0(u∗ − v)−RII
0,in(u

∗) + E0(u∗ − τ ′)− ε (4.47)

= E0(u∗ − τ ′)− E0(u∗ − v)− ε (4.48)

≥ E0(θ)− E0(τ ′ + θ − v)− ε . (4.49)

From the definition of G(t) (4.32) we know that for every ε > 0 there exist a u∗ such that

RII
0,in(u

∗) − E0(u∗ − τ ′) ≥ G(τ ′) − ε and hence (4.46). Again from the definition of G(t)

we also have that G(v) ≥ RII
0,in(u

∗) − E0(u∗ − v) and therefore (4.47). Given that E0 is

concave for t > 0 if u1 ≥ u2 then E0(u1 − τ ′) − E0(u1 − v) ≥ E0(u2 − τ ′) − E0(u2 − v),

that is the bigger values of u∗ give smaller values of (4.48). By the definition of τ ′ (4.42)

it is easy to see that u∗ − τ ′ ≤ θ where

θ = E−1
0 (RII

0,in(te)−RII
0,in(τ)) , (4.50)

if this is not the case, i.e. if u∗ − τ ′ > θ, then G(τ ′) = RII
0,in(u

∗)− E0(u∗ − τ ′) ≤ RII
0,in(τ)

(given that RII
0,in(u

∗) − RII
0,in(τ) ≤ RII

0,in(te) − RII
0,in(τ) ≤ E0(θ)) which contradicts the

definition of τ ′. This implies that (4.48) is minimized when u∗ = τ ′ + θ and hence (4.49).

Now that we have established (4.49) we can write:

G(v) + E0(τ ′ + θ − v) ≥ E0(θ)− E0(τ ′ + θ − v) + G(τ ′) + E0(τ ′ + θ − v) (4.51)

= E0(θ) + G(τ ′) (4.52)

70

where (4.51) follows from (4.49) and (4.52) is the same as (4.45). Therefore we have

established that (4.45) holds for all values of v ∈ [τ, τ + α]. Combining this with the

definition of H(t) we have:

H(τ ′ + θ) = inf
τ≤v≤τ+α

{G(v) + E0(τ ′ + θ − v)} (4.53)

≥ E0(θ) + G(τ ′) (4.54)

= E0(θ) + RII
0,in(τ) (4.55)

= RII
0,in(te) (4.56)

where (4.53) is the definition of H(t), (4.54) follows from (4.45) and (4.52); (4.55) and

(4.56) follow from the definitions of τ ′ (4.42) and θ (4.50) respectively. Combining (4.56)

with the definition of t′e (4.43) we have that τ ′+θ ≥ t′e that is t′e− τ ′ ≤ θ. However, at the

beginning of this proof, we have shown that RIII
0,in(t), which is the concatenation of G and

H, does not violate the envelope, this implies that t′e− τ ′ ≥ θ. Therefore we can conclude

that t′e − τ ′ = θ. To show that RIII
0,in(t

′
e)−RIII

0,in(τ
′) = RII

0,in(te)−RII
0,in(τ) we can consider

the following equalities:

RIII
0,in(t

′
e)−RIII

0,in(τ
′) = H(t′e)−G(τ ′) (4.57)

= RII
0,in(te)−G(τ ′) (4.58)

= RII
0,in(te)−RII

0,in(τ) (4.59)

where (4.57) follows from the definitions of RIII
0,in(t) (4.35), combining (4.56) with the fact

that H(t) ≤ RII
0,in(te) (this follows immediately from the definition of H (4.31)) we have

that H(τ ′ + θ) = H(t′e) = RI
0,in(te) and hence (4.58). From the definition of τ ′ it follows

that G(τ ′) = RII
0,in(τ) and hence (4.59). Finally from the definition of θ (4.50) we have

RII
0,in(te)−RII

0,in(τ) = E0(t′e − τ ′) and this concludes the proof.

For the following lemma we need to consider what would happen if we divide [τ, te]

into N intervals Tn = [τn, tn], associating the corresponding section of RIII
0,in(t) with each

interval and then rearrange these sections to construct a new realization of R0,in(t). The

idea is to cut RIII
0,in(t) into different pieces and then recombine them in a different order

with the constraint that the beginning of each piece has to coincide with the end of the

one that comes immediately before. In other words we can define

f̃n(t) =

RIII
0,in(t + τn)−RIII

0,in(τn), if 0 ≤ t ≤ δn

0, otherwise ,

71

τ1 t1 = τ2 τ3t2 = τ3

RIII
0,in(t)

t

l1 l2 t

f̃1(t) f̃2(t) f̃3(t)

l3

y2

y1

τ ′
1 t′1 = τ ′

2 τ ′
3t′2 = τ ′

3

R∗
0,in(t)

t

y3

tt

Figure 4.9: A sample RIII
0,in(t) and R*

0,in(t)

where ln = tn − τn. One way of describing f̃n(t) is the n-th section of RIII
0,in(t) shifted

vertically so that f̃n(τn) = 0 and horizontally to the origin. We are also going to assume

that
⋃

n Tn = [τ, te] and define yn = RIII
0,in(tn)−RIII

0,in(τn) as the increment of RIII
0,in(t) over

thn-th interval . Using this partition we can construct a new version of RIII
0,in(t), let us

call it R*
0,in(t), by changing the order of the intervals with the corresponding f̃n. More

precisely let T ′i = [τ ′i , t
′
i] (i = 1, . . . , N) be such that

⋃
i[τ

′
i , t

′
i] = [α, te] and for every i

li = ln for some n, that is the new set of intervals is simply a permutation of the original

ones with, let π(n) = i be this permutation, that is the interval that was in position n

in the original partition is now going to be in position π(n). We can construct the new

process by defining how each f̃n(t) is moved, let

h∗i=π(n) =

f̃n(t− τπ(n)) +
∑π(n)

k=1 yπ(k) , if τπ(n) ≤ t ≤ tπ(n)

0, otherwise .

Using h∗i we can construct R*
0,in(t) as

R*
0,in(t) =

N∑
i=1

h∗i (t) , (4.60)

see Figure 4.9 for an example. The next lemma shows that no matter how we rearrange

these intervals the resulting R∗
0,in(t) will still satisfy the envelope.

72

Lemma 4.9. Let R*
0,in(t) be defined as in (4.60), if E0(t) is concave then for any permu-

tation π it is always true that R*
0,in(t) ∼ E0(t).

Proof. From the definition of RIII
0,in(t) (4.35) we know that it is the concatenation of G(t)

and H(t), furthermore G is the supremum of convex functions (E0 is concave so that −E0

is convex) and therefore convex itself. While H is concave given that it is the infimum of

concave functions. This implies that RIII
0,in(t) is convex for t ∈ [τ, τ + α] and concave for

t ∈ [τ + α, te].

Let t1 and t2 be such that τ ≤ t1 ≤ t2 ≤ te, we would like to show that R*
0,in(t2) −

R*
0,in(t1) ≤ E0(t2 − t1). Let A = {n : tn ≤ τ + α} that is the set of all n such that the

corresponding interval is to the left of τ + α in the original permutation. For the sake of

simplicity we will assume that tj = τj+1 = τ +α for some j ∈ [1, N]. If this is not the case

it is always possible to divide the interval containing τ+α in two new intervals constructing

a new partition that does satisfy this condition. Similarly let B = {n : τn ≥ τ + α}. All

the intervals such that t1 ≤ t′i and τ ′i ≤ t2 are such that either π−1(i) ∈ A or π−1(i) ∈ B,

let A′ = {i : π−1(i) ∈ A} and B′ = {i : π−1(i) ∈ B} in other words A′ contains the indices

of all the intervals that were to the left of τ + α in the original permutation and that now

are between t1 and t2, let L1 be the total length of all these intervals; similarly B′ contains

the indices of all the intervals that were to the right of τ + α in the original permutation

and that now are between t1 and t2, let L2 be the their total length. Formally:

L1 =
∑
k∈A′

lk

L2 =
∑
k∈B′

lk .

Given that τm1 ≤ t1 ≤ tm1and τm2 ≤ t2 ≤ tm2 for some m1 and m2, we can write:

R*
0,in(t2)−R*

0,in(t1) =
∑

k∈A′/(m1,m2)

yk +
∑

j∈B′/(m1,m2)

yj

+ f̃m1(lm1)− f̃m1(tm1 − t1) + f̃m2(t2 − τm2)− f̃m2(τm2) ,

that is R*
0,in(t2)−R*

0,in(t1) is the sum of all the yk of the intervals completely between t1

and t2 plus a part of the increment over the two extreme intervals, containing t1 and t2

themselves. As all the yk come from intervals that were to the left of τ + α in the original

permutation and whose total length is L1 we can upper bound their sum by observing

73

that they all came from G, which is a non-decreasing convex function therefore
∑

yk ≤
G(τ+α)−G(τ+α−L1). Similarly we can exploit the fact that all the yj come from intervals

that were to the right of τ + αand whose total length is L2. These intervals all came from

H, which is non-decreasing and concave, therefore
∑

yj ≤ H(τ + α + L2) − H(τ + α).

Note that m1 and m2 belong either to A′ or B′ so that these upper bounds hold for the

partial increments at both ends. Therefore, letting δ1 = tm1 − t1 and δ2 = t2 − τm2 we

have:

R*
0,in(t2)−R*

0,in(t1) ≤ RIII
0,in(τ + α + L2 − δ2)−RIII

0,in(τ + α− L1 + δ1)

≤ E0(L2 − δ2 + L1 − δ1) (4.61)

= E0(t2 − t1) (4.62)

where (4.61) follows from Lemma 4.8 (RIII
0,in(t) ∼ E0(t)) and (4.62) from the fact that

L2 − δ2 + L1 − δ1 = t2 − t1 by construction.

We conclude this section with the lemma that shows how changing RI
0,in(t) into RIII

0,in(t)

does, indeed, increase the average delay.

Lemma 4.10. Given any (fixed) RI
0,in(t), RI

1,in(t) and ȳ (such that t0,in(ȳ) and t0,out(ȳ)

are finite), let τ be the beginning of the system busy period containing t0,in(ȳ) (if t0,in(ȳ)is

not contained in any busy period let τ = t0,in(ȳ)). Let E1(t) be concave for t ≥ 0 so that α

can be defined as in (4.26). As in Lemma 4.5 let RII
0,in(t) = RI

0,in(t) and let RII
1,in(t) be as

in (4.24). Let ytot be the total amount of traffic sent by RII
0,in in the busy period containing

t0,in(ȳ) and let te be the end of this busy period when the inputs are RII
0,in and RII

1,in, so

that ytot = RII
0,in(te)−RII

0,in(τ). If RIII
0,in(t) is defined as in (4.35), then ∀y ∈ [y0, y0 + ytot]:

dII
0 (y) ≤ dIII

0 (y)

where y0 = RI
0,in(τ).

Proof. For the sake of simplicity we are going to assume that RII
0,in(t) is a continuous

function, if this is not the case the same argument does apply but the notation is somewhat

cumbersome.

For any fixed y ∈ [y0, y0 + ytot] by definition of b(t) we have:

b(tin) = R0,in(tin)−R0,in(τ) + R1,in(tin)−R1,in(τ)− C(tin − τ) .

74

Let tIIin(y) (resp. tIIIin (y)) be the ingress time for the bit arriving after y units of traffic have

arrived from flow 0 when the inputs are RII
0,in and RII

1,in (resp. RIII
0,in and RIII

1,in). We will

often use the shorter notation tIin = tIIin(y) and tIIIin = tIIIin (y). Given that R1,in(t) is the

same in both scenarios we have R1,in(tin)−R1,in(τ) =E1(tin − τ) (from Lemma 4.5) and

bII(tIIin) = RII
0,in(t

II
in)−RII

0,in(τ) + E1(tIIin − τ)− C(tIIin − τ)

bIII(tIIIin) = RIII
0,in(t

III
in)−RIII

0,in(τ) + E1(tIIIin − τ)− C(tIIIin − τ) .

By definition tIIin and tIIIin are such that RIII
0,in(t

II
in) =RIII

0,in(t
III
in), while by definition RIII

0,in is

such that RIII
0,in(τ) =RII

0,in(τ), therefore

bIII(tIIIin)− bII(tIIin) = E1(tIIIin − τ)− C(tIIIin − τ)−
[
E1(tIIin − τ)− C(tIIin − τ)

]
. (4.63)

If we define y1 = RII
0,in(τ + α)−RII

0,in(τ) and y2 = RII
0,in(te)−RII

0,in(τ + α) this implies that

for any y ∈ [y0, y0 +y1] tIIIin (y) ≥ tIIin(y), while for any y ∈ [y0 +y1, y0 +ytot] tIIIin (y) ≤ tIIin(y),

note that all the traffic in [y0, y0 + y1] arrives before time τ + α both in scenario II as well

in scenario III, while the traffic in [y0 + y1, y0 + ytot] arrives after time τ +α again in both

scenarios. Therefore we can use Lemma 4.6 to conclude that:

E1(tIIIin − τ)− C(tIIIin − τ) ≥ E1(tIIin − τ)− C(tIIin − τ) . (4.64)

Combining (4.64) with (4.63) we have that bII(tIIin) ≤ bIII(tIIIin). Therefore dII
0 (y) ≤ dIII

0 (y)

for any y such that y0 ≤ y ≤ y0 + ytot, given that under the continuity assumption

d0(y) = b(tin(y))/C.

4.4 Main Result

We will now use the previous results to find an upper bound for the worst case average

delay. First by using Lemma 4.5 we can fix the cross traffic; then to find the worst possible

R0,in we divide the original arrival pattern in small intervals so that during each interval

R0,in can be well approximated with a linear function. This approximation will allow us

to use the optimization problem that we have introduced in section 4.3.1.

As previously mentioned we are assuming the E0 is piecewise linear. Let rn and Ln

75

be the slopes and lengths of its linear segments. That is E0 can be written as:

E0(t) =



0 if t ≤ 0

r1t if 0 ≤ t ≤ L1

r2t + r1L1 if L1 ≤ t ≤ L2

. . .

rnt +
∑n−1

i=1 riLi if Ln−1 ≤ t ≤ Ln

. . .

rN t +
∑N−1

i=1 riLi if t ≥ LN .

(4.65)

Theorem 4.11. Let R0,in(t) ∼ E0(t) and R1,in(t) ∼ E1(t) be the inputs to a FIFO server

with capacity C such that the system is stable, if E1(t) is concave for t ≥ 0 then, for any

B > 0:

1
B

∫ B

0
d0(y)dy ≤ D∗

where

D∗ = sup
β>0

{
1

Cβ

(∑
n

rn

∫
S

m T IV
nm

[E1(x)− Cx]dx +
β2

2

)}
(4.66)

and {T IV
nm} is such that:

f(τ1) = f(t1)

τ1 ≤ α ≤ t1

t1 − τ1 = L1

τi,1 = ti+1,1

ti,2 = τi+1,2

f(τi,1) = f(ti,2)

f(ti,1) = f(τi,2)

τi,1 ≤ ti,1 ≤ α

α ≤ τi,2 ≤ ti,2

tmax − τmin = E−1
1 (β)

ti,1 − τi,1 + ti,2 − τi,2 = Li

and all the rn and Ln are those from E0, see Figure 4.10.

76

l1

l2,1

α x

f(x)

l2,2

τ1 =
t2,1

τ2,1 t2,2t1 =
τ2,2

f(τ1) = f(t1) =
f(t2,1) = f(τ2, 2)

f(τ2,1) = f(t2, 2)

Figure 4.10: The intervals for {T IV
nm} with two weights: r1 ≥ r2

The idea behind {T IV
nm} is that it satisfies Lemmas 4.1, 4.2 and 4.3. In particular the

water filling condition implies that each segment of length Li is split in two different pieces

whose length is dictated by the water filling condition. One piece is placed to the left α

while the other one is placed to the right of α. Furthermore given that E0 is concave

ρi+1 ≤ ρi so that ρ1 is the biggest slope and will be centered around α.

Proof. Let a′ be the set of all system busy periods and T > 0 such that R0,in(T) = B.

Define:

a = {A ∩ [0, T] : A ∈ a′} .

Note that the cardinality of the set a′ is at most countably infinite. Let J1, J2, . . . be the

elements of a. Based on this definition Jk is a busy period for all k except for possible

one value of k as one of the Jk may consist of only the initial portion of a busy period

(the one containing T). Since Ri,in(t) = 0 for t < 0 it is not possible that one of the Jk

consists of only the final part of a busy period. Let Bk = [ys
k, y

e
k]

3 be the amount of traffic

sent during the k-th busy period, note that
∑

k Bk ≤ B.

Based on this decomposition of the interval [0, B] we will first look at a single busy

period and find an upper bound for the average delay during this (arbitrary) busy period.
3The superscripts s and e are meant to refer, respectively, the start and the end of the busy period.

77

For any Jk letting y0 = ys
k and yk,tot = ye

k − ys
k we have that:∫

Bk

d0(y)dy =
1
C

∫
Bk

b(y)dy (4.67)

=
1
C

∫
Bk

[
RI

1(t
I
in(y))−RI

1(τ) + y −RI
0(τ)− C(tIin(y)− τ)

]
dy (4.68)

=
1
C

∫
B′

k

[
RI

1(t
′I
in(y)) + y′ − Ct′

I
in(y)

]
dy′ (4.69)

=
1
C

{∫
Bk

[
RI

1(t
I
in(y))− CtIin(y)

]
dy +

y2
k,tot

2

}
(4.70)

≤ 1
C

{∫
Bk

[
E1(tIIin(y))− CtIIin(y)

]
dy +

y2
k,tot

2

}
(4.71)

≤ 1
C

{∫
Bk

[
E1(tIIIin (y))− CtIIIin (y)

]
dy +

y2
k,tot

2

}
(4.72)

=
1
C

{∫
Bk

f(tIIIin (y))dy +
y2

k,tot

2

}
. (4.73)

In (4.67) we have used the fact that d0(y) = b(y)/C, that is the delay for the y-th bit from

flow 0 is equal to the total backlog seen by that bit divided by C. In (4.68) we have used

the definition of backlog: b(y) = R1(tin(y))− R1(τ) + R0(tin(y))− R0(τ)− C(tin(y)− τ)

and the fact that R1(tin(y)) = y by definition of tin(y). Given that we are considering

the k-th busy period of a FIFO server what happened before the beginning of this busy

period (τ) it is irrelevant, therefore, without loss of generality, we can assume that the

the k-th busy period started at time 0 and that there was no traffic before that time. To

this effect in (4.69) we introduce the new variable y′ = y −R0(τ), t′in(y) = tin(y)− tin(y0)

and B′
k = [0, ytot], from (4.70) on we rename y′, t′in(y) and B′

k as y, tin(y) Bk in order

to simplify the notation. From Lemma (4.5) we know than the delay and backlog are

maximized when R1 is greedy starting at the beginning of the busy period. Hence (4.71)

where we have changed tIin into tIIin to indicate that we are now considering scenario II,

recall that in scenario II R0 unchanged while R1 is greedy starting from the beginning of

the busy period. Similarly from Lemma 4.10 we know that if we change RII
0,in into RIII

0,in

the average delay is going to increase, hence (4.72). Finally, defining f(x) = E1(x)− Cx,

we have (4.73).

At this point we would like to use the optimization problem introduced in section

4.3.1 but before we can do that we need to approximate the arrival process R0(t) with

a piecewise linear function, note that this is always possible and that by increasing the

78

number of segments it is possible to obtain an arbitrarily good approximation.

As in (4.67)-(4.73) we will focus our attention on the k-th busy period. Let ε = ytot/N

where N is some fixed number. In other words we are dividing the traffic arriving in the

k-th busy period into N intervals each of size ε. Using this subdivision we can write:∫
Bk

f(tin(y))dy =
N∑

n=1

∫ nε

(n−1)ε
f(tIIIin (y))dy . (4.74)

For sufficiently large N , R0(t) is going to be well approximated by a linear function in

each interval yn = [(n−1)ε, nε]. Furthermore from Lemma 4.8 we know that RIII
0,in(t) does

satisfy the envelope E0 therefore we can choose the slope of each segment from one of the

slopes of E0 (recall that E0 is piecewise linear, see (4.65)). If we let rn be the slope of this

linear approximation in each subinterval then, again from Lemma 4.8, we also know that

the the total length of all the segments that use a certain slope (say ri) is at most Li so

that the linear approximation will satisfy the envelope as well.

We can define the endpoints of each interval as follows:

τ III
n = lim

∆→0+
tIIIin ((n− 1)ε + ∆)

tIIIn =tIIIin (nε) .

We need to use the limit in the definition of τ III
n to deal with the case when the traffic

arriving in two consecutive intervals yn−1 and yn is separated by a period of inactivity4

so that tIIIn < τ III
n . Using this linear approximation we have that ∀y ∈ [(n− 1)ε, nε]:

tIIIin (y) = tIIIn−1 +
y − (n− 1)ε

rn
,

so that we can define z = tIIIin (y) and operate a change of variable in each element of the

sum in (4.74). Given that dy = rndz we have∫ nε

(n−1)ε
f(tIIIin (y))dy = rn

∫ tIIIn

τ III
n

f(z)dz . (4.75)

Combining (4.74) with (4.75) we obtain:∫
Bk

f(tin(y))dy =
N∑

n=1

rn

∫ tIIIn

τ III
n

f(z)dz . (4.76)

4This is not the case for RIII
0in : given that it is greedy there are no periods of inactivity; in a more

general case, though, this could happen.

79

Given that the right hand side of (4.76) has the same formulation as the optimization

problem (4.1), presented in section 4.3.1, and that all the other hypothesis are met, we can

upper bound
∫
Bk

f(tin(y))dy by using the optimal solution of (4.1). Let T IV = {τ IV
n , tIVn }

be the optimal solution of the optimization problem associated with (4.76). This solution

corresponds to a unique arrival pattern RIV
0,in(t) which is going to be piecewise linear.

Furthermore T IV and therefore RIV
0,in(t) satisfy Lemmas 4.1, 4.2, 4.3. From Lemma 4.9 we

know that RIV
0,in(t) does satisfy the envelope E0(t). Formally we have:

∫
Bk

f(tIIIin (y))dy =
N∑

n=1

rn

∫ tIIIn

τ III
n

f(z)dz

≤ sup
τn,tn

{
N∑

n=1

rn

∫ tn

τn

f(z)dz}

=
N∑

n=1

rn

∫ tIVn

τ IV
n

f(z)dz. (4.77)

The only parameter that we need to know in order to explicitly compute RIV
0,in(t) (other

than E0 and E1) is the size of the busy period Bk. In order to solve this problem we can

take the supremum over all possible busy period sizes:∫
Bk

d0(y)dy ≤ 1
C

{∫
Bk

f(tIIIin (y))dy +
y2

k,tot

2

}
(4.78)

=

{
1

Cyk,tot

(∫ yk,tot

0
f(tIIIin (y))dy +

y2
y,tot

2

)}
yk,tot (4.79)

≤ sup
β>0

{
1

Cβ

(∫ β

0
f(tIIIin (y))dy +

β2

2

)}
yk,tot (4.80)

≤ sup
β>0

{
1

Cβ

(
N∑

n=1

rn

∫ tIVn

τ IV
n

f(z)dz +
β2

2

)}
yk,tot (4.81)

= sup
β>0

{
1

Cβ

(∑
n

rn

∫
S

m T IV
nm

[E1(x)− Cx]dx +
β2

2

)}
yk,tot (4.82)

= D∗yk,tot (4.83)

where the first inequality (4.78) is the same as (4.73). In (4.79) we have simply multiplied

and divided by yk,tot (recall that yk,tot is the size of the k-th busy period yk,tot = R0,in(te)−
R0,in(τ)). In (4.80) we take the supremum over all positive β to upper bound (4.79). (4.81)

follows immediately from (4.77); (4.82) and (4.83) follow immediately from the definition

of tIVin and D∗(4.66).

80

Using the bounds that we have derived so far we can write:∫ B

o
d0(y)dy ≤

∫
S

Bk

d0(y)dy (4.84)

=
∑

k

∫
Bk

d0(y)dy (4.85)

≤
∑

k

D∗yk,tot (4.86)

= D∗
∑

k

yk,tot (4.87)

= D∗B (4.88)

the first inequality (4.84) follows from the definition of Bk. Equation (4.85) follows from

the fact that the cardinality of a is at most countably infinite. (4.86) follows from (4.83)

and (4.81) follows from the fact that D∗ does not depend on k. Finally using the definition

of B we have (4.88).

Corollary 4.12. There exist arrival patterns R∗
0,in and R∗

1,in that achieve the average

delay D∗ defined in (4.66).

Proof. For the sake of simplicity assume that both envelopes are such that the quantity

λi = lim
t→∞

Ei(t)
t

is well defined for both flows (i = 0, 1). Note that if E0 is piecewise linear λ0 is simply rN .

If this is not the case it is still possible to construct R∗
0,in and R∗

1,in but their analytical

representation it is going to be more complicated. Let β∗ be the optimal busy period

size, that is the β that achieves the supremum in (4.66). If the supremum is not achieved

the same reasoning applies but again the notation is more complicated so we are going

to assume that this is not the case. Clearly every β∗/λ0 units of time flow 0 can send a

burst of size β∗ without violating the envelope. At the same time, in order to achieve the

worst case, we also need the cross traffic (R1,in) to be able to be greedy for the duration

of the busy period. It is easy to obtain an upper bound for the amount of time needed

by R1,in to be able to send a burst of the appropriate size. From the definition of D∗ in

(4.66) we know that the flow 0 will send its traffic around α. We also know that the burst

from flow 0 will last exactly E−1
0 (β∗) units of time. The worst it can happen is for the

optimal solution to be such that flow 0 will start sending traffic at α (we know it cannot

81

start any later) and stop at time α+E−1
0 (β∗) in this case flow 1 will have to burst for the

same amount of time, sending a total of E−1
1 (α + E−1

0 (β∗)) units of traffic. Therefore we

can define:

ϕ = max
[
β∗

λ0
,

E−1
1 (α + E−1

0 (β∗))
λ1

]
so that if both sources do not send any traffic for ϕ units of time both of them will be

“fresh.” That is they will be able to burst as much as needed in order to achieve D∗ no

matter what they did in the past (before the resting period).

Based on this observation we can construct a periodic version of Ri,in(t), where ϕ

is the period. Starting at time 0 (assuming there was no traffic before that time) both

streams are “fresh” and can follow the envelope until the times dictated by the definition

of D∗. By solving the optimization problem (4.1), when the size of the busy period is β∗,

we can find τmin and tmax. From the proof of Theorem 4.11 we know that flow 0 should

start sending traffic according to RIV
0,in(t) at time τmin until time tmax. Then, if it does not

send any traffic until α + E−1
0 (β∗) + ϕ, we know that it can send another burst of size β∗

without violating the envelope. Flow 1 should start sending traffic at time 0 until time

tmax following the envelope E1 then, just like flow 0, it will be ready to start a new period

at time α + E−1
0 (β∗) + ϕ. Given that both flow are periodic with the same period ϕ we

have Ri,in(t) = Ri,in(t + ϕ) and over the first period:

R0,in(t) =


0, if 0 ≤ t < τmin

RIV
0,in(t), if τmin ≤ t ≤ tmax

RIV
0,in(tmax), if tmax < t ≤ α + E−1

0 (β∗) + ϕ

R1,in(t) =

E1(t), if 0 ≤ t ≤ tmax

E1(tmax), if tmax < t ≤ α + E−1
0 (β∗) + ϕ .

If both flows keep following this pattern every ϕ units of time the resulting busy periods

will all have average delay D∗ and hence the average delay for the whole process will be

D∗.

Example 4.13. When both E0 and E1 are “sigma-rho” envelope (that is Ei(t) = σi +ρit)

82

it can be shown that the upper bound on the average delay given by Theorem 4.11 is:

Davg =
ρ1σ0

Cρ0

(√
C − (ρ0 + ρ1)

C − ρ1
− 1

)
+

σ0

ρ0

(
1−

√
C − (ρ0 + ρ1)

C − ρ1

)
+

σ1

C
. (4.89)

In this case the notation used in Theorem 4.11 does not apply because E0 is not

continuous at time 0 and does not fit the model in (4.65) but the same argument does

hold. In this case α = 0 so that the function G is not used and H(t) = σ0 + ρ0t. The

water filling condition is trivial because E1 has only one slope and α = 0.

More precisely the arrival pattern is as follows: both flows are greedy starting at time

0 but flow 1 sends its burst of size σ0 right after the cross traffic does so that the cross

traffic will be served first. Then both flows send traffic at rate ρi until the end of the busy

period. Just as in (4.66) we have to find the optimal busy period size β∗. In this specific

case it is easy to see that:

d0(y) =


y
C + σ1

C , if 0 ≤ y ≤ σ0

1
Cρ0

[y(ρ0 + ρ1)− ρ1σ0 + C(σ0 − y) + ρ0σ1] , if σ0 ≤ y ≤ σ0 + ρ0
σ0+σ1

C−ρ0−ρ1

(4.90)

where σ0+σ1
C−ρ0−ρ1

is the maximum length of a system busy period so that σ0 + ρ0
σ0+σ1

C−ρ0−ρ1

is the maximum amount of traffic that R0,in(t) can send in a single busy period. Using

(4.90) we can find the optimal size of the busy period by solving the following optimization

problem:

sup
β>0

1
β

∫ β

0
d0(y) . (4.91)

Given that d0(y) is a linear function of y we can calculate the value of the integral in

(4.91), which will be a quadratic function of β. Then we can find the optimal value of β

by taking the first derivative and setting it equal to zero. Using this value for β we can

compute Davg = 1
β

∫ β
0 d0(y) and the corresponding value is (4.89).

We conclude this chapter with another corollary to Theorem 4.11. It is easy to see

that all the proofs that we have presented continue to hold if we are interested in finding

an upper bound for g(d0(y)) where g is a nondecreasing function.

Corollary 4.14. Let R0,in ∼ E0, R1,in ∼ E1, as in Theorem 4.11. Let g be a non

decreasing function then for any B > 0:

1
B

∫ B

0
g(d0(y))dy ≤ D∗

83

where

D∗ = sup
β>0

{
1
β

g

(
1
C

∑
n

rn

∫
S

m T IV
nm

[E1(x)− Cx]dx +
β2

2C

)}
.

If we pick g as:

gδ(x) =

0, if x ≤ δ

1, if x > δ,

we can use this corollary to obtain a lower bound on the delay distribution for flow 0.

Similarly to what we did for the delay we are going to consider the specific case where

both envelopes are sigma-rho envelopes. Again the notation used in Theorem 4.11 and

corollary 4.14 does not apply because E0 does not fit the model in 4.65. But we can use

the same argument to show that in this case the worst case arrival pattern is the same

and the expression for d0(y) in the worst case and it is the same as in (4.90).

In this case we are interested in finding the values of y such that d0(y) > δ for any

δ ≥ 0. It is easy to see that if δ ≤ σ1
C then d0(y) > δ if 0 ≤ y < min{β, ξ} where

ξ =
Cσ0 + ρ0σ1 − Cρ0δ − ρ1σ0

C − ρ0 − ρ1
,

and β is the size of the busy period. While, if σ1
C ≤ δ ≤ σ0+σ1

C then d0(y) > δ if

δC − σ1 < y < min{β, ξ}. We still have to find the optimal value for β:

sup
β>0

∫
gδ(d0(y))dy =

supβ

∫ min{β,ξ}
0 dy, if 0 ≤ δ ≤ σ1

C

supβ

∫ min{β,ξ}
δC−σ1

dy, if σ1
C ≤ δ ≤ σ0+σ1

C .

Given that
∫ min{β,ξ}
0 dy = min{β, ξ} and that supβ[min{β, ξ}] = ξ we have:

1
B

∫ B

0
gδ(d0(y) ≤

1, if 0 ≤ δ ≤ σ1
C

C2δ−Cδρ1−Cσ0+ρ1σ0−Cσ1+ρ1σ1

Cδρ0−Cσ0+ρ1σ0−ρ0σ1
, if σ1

C ≤ δ ≤ σ0+σ1
C .

(4.92)

Given that 1
B

∫ B
0 gδ(d0(y) represents the fraction of bits that have a delay of at least

δ, 1 − 1
B

∫ B
0 gδ(d0(y) is the fraction of bits that have a delay of at most δ. Therefore

1− 1
B

∫ B
0 gδ(d0(y) is a lower bound for the delay distribution for an arbitrary sample path.

Combining this fact wtih (4.92) we have a lower bound for the delay distribution:

F (δ) = Pr[delay ≤ δ] ≥ δC(ρ0 − C + δρ1) + Cσ1 − ρ0σ1 − ρ1σ1

Cδρ0 − Cσ0 + ρ1σ0 − ρ0σ1
.

5

Conclusions

Using the previously known fact that a single FIFO queue is characterized by an infinite

family of service curves we have shown that in the case of a single FIFO queue with inputs

that have sigma-rho envelopes it is possible to recover previously known and tight QoS

bounds. Furthermore this approach allowed us to derive a previously unavailable upper

bound on the backlog of a single flow. Using the same approach for two FIFO queues in

tandem (with all the inputs having sigma-rho envelopes) we were able to obtain an end-

to-end bound that, at least in some cases, it is better than the one obtained by considering

each node in isolation. At the same time we were not able to find an arrival pattern that

does achieve this bound. Subsequently we derived a tighter bound, which implies that the

first bound is not achievable.

In order to find an achievable end-to-end delay bound we have introduced a new

service abstraction that generalizes the widely used service curve framework. This new

model is defined in terms of a “service mapping” which is a monotone operator that maps

an arrival process to a lower bound on the corresponding output process. We considered

service mappings that are shift invariant and we have shown how to obtain QoS bounds

(worst case delay, maximum backlog and output envelope) for any network element offering

a shift invariant service mapping.

Using this new service model we have been able to obtain a new end-to-end delay

bound for two FIFO queues in tandem. In this case we were also able to find a set of

arrival processes (one for each input) such that this worst case bound is indeed achieved,

proving that it is a tight bound.

84

85

In both cases (single and multiple queues) we now have an achievable delay bound,

at the same time only a fraction of the traffic will experience such a delay (unless we are

dealing with some extreme cases on the verge of instability). This led us to consider the

worst case average delay, where the average is taken over time.

We considered a single FIFO queues with two input flows, one with a piecewise linear

and concave envelope, the other with a concave envelope. For this setting we derived an

achievable bound for the worst case average delay for the flow with the piecewise linear

envelope. Exploiting the concavity of the cross traffic envelope we showed that the through

traffic should concentrate its traffic around specific points in time. Furthermore how the

traffic should be distributed around these points in time is dictated by a condition that

we called “water filling,” because it is somewhat similar to the way water would distribute

itself in a convex bowl. We were also able to show that it is always possible to construct

an arrival pattern that does achieve this worst case average delay, proving that this bound

is tight.

These new results have also brought our attention to some new and interesting prob-

lems and we conclude this dissertation with a brief discussion about some of them.

5.1 Open Problems

As we have mentioned in the introduction one of the motivations for this work was

the work of the DiffServ group of the IETF. Yet, as a first step, we only considered FIFO

queues. As such, even the two FIFO queues in tandem cannot be considered a non-trivial

DiffServ network. At the same time this problem might help us shed some light on a

related problem where we have multiple aggregates being served according to some other

scheduling algorithm and where each packets belonging to the same aggregate are served

in a FIFO manner. For example if the algorithm used to serve the aggregates offers a

service curve to the aggregate the service mapping approach should apply as well. Recall

that the theorem in [15] holds whenever the aggregate of the two (or more) flows is offered

an arbitrary service curve. In our case we used Ct as the service curve but it should be

easy to extend these results to other service curves. In particular if PGPS is used the

modifications should be minimal: this algorithm has a so called “rate latency” service

curve which is basically the same as Ct shifted to the right by the latency term [23].

86

Another possible extension deals with the network topology: the example with two

FIFO queues can be trivially extended to the case where there are more queues with one

flow going through all of them (the through traffic) and a series of cross traffic flows, one

per queue, each sharing only one queue with the through traffic. But there are other similar

scenarios that present more challenges. For example, if some of the cross traffic flows share

multiple queues with the through traffic we could partition the nodes in multiple subsets

so that each subset can be analyzed using one of the known cases. Most likely, though, we

would not be able to obtain tight delay bounds this way. This is similar to what happened

when we tried analyzing the two node case as two nodes in isolation. Hopefully the results

we have derived can be used as a starting point and should give some insight on similar,

but more complicated, scenarios.

In the case of the worst case average delay there are many related problems as well.

Probably the first one that comes to mind, similar to what we did in the first part, is to

consider the multiple node case, again each node can be considered in isolation but most

likely this approach will, once more, fail to give an achievable bound.

Another variation of this problem is when the through traffic is given (i.e. known a

priori) but the cross traffic is arbitrary. In this case it would still be interesting to obtain a

bound on the worst case average delay for the specific realization of the through traffic. As

an analogy consider the service mapping (and service curves) model. In that case if Rin(t)

is known it is possible to obtain a lower bound for the output, and different realizations

of Rin(t) will give different bounds. The idea is that Rin(t) might be such that it is not

the worst case, therefore it is not possible to achieve the worst case with this specific

realization so it would be useful to know what the worst case average delay would be in

this case. This is similar to the “adversarial queuing theory” [4], where it is assumed that

the cross traffic is under the control of an adversary trying to delay the through traffic

as much as possible. The best case for the adversary is when he knows what the through

traffic will do (even in the future). Of course this is not always possible but, being the

best the adversary can hope for, it is still an interesting question.

Finally, as we mentioned in the introduction, the worst case average delay bound can

be used to better characterize the set of all possible output processes: this value can be

used to bound the area between the arrival and departure processes. Therefore any feasible

output process is such that the area between the input and output is less than or equal

87

to this bound. Unfortunately it can still be the case that a certain output process does

satisfy all the known constraints (output lower bound, output envelope and area between

input and output) and still not be feasible, in the sense that no arrival pattern (for the

through and cross traffic) would ever produce this specific output realization.

It might be possible to extend this idea to construct a new service and traffic charac-

terization that would give a “better” description of the set of all possible outputs. Given

that the average delay can be achieved over an arbitrary time interval, and not only point-

wise as the service mappings (and service curves) output bounds, the hope is that this

approach could give bounds that are representative of the output process over longer time

periods.

These are just some of the possible extensions of the work presented in this dissertation

and by no mean an exhaustive list. Even though FIFO queues are so widespread and the

algorithm itself is simple their analysis of their behavior and performance is far from

trivial. Even though several problems have been solved there are many interesting and

relevant open problems.

Bibliography

[1] R. Agrawal, R. L. Cruz, C. M. Okino, and R. Rajan. A framework for adaptive
service guarantees. In Proceedings Allerton Conf. on Comm, Control, and Comp.,
Monticello, IL, Sept. 1998.

[2] R. Agrawal, R.L. Cruz, C. Okino, and R. Rajan. Performance bounds for flow control
protocols. IEEE/ACM Transactions on Networking, 7(3):310–323, 1999.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Service. RFC 2475 (Informational), December 1998. Updated by
RFC 3260.

[4] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.
Williamson. Adversarial queuing theory. J. ACM, 48(1):13–38, 2001.

[5] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview. RFC 1633 (Informational), June 1994.

[6] R. Braden and L. Zhang. Resource ReSerVation Protocol (RSVP) – Version 1 Message
Processing Rules. RFC 2209 (Informational), September 1997.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Pro-
tocol (RSVP) – Version 1 Functional Specification. RFC 2205 (Proposed Standard),
September 1997. Updated by RFCs 2750, 3936, 4495.

[8] C.S. Chang. On deterministic traffic regulation and service guarantee: A systematic
approach by filtering. IEEE Transactions on Information Theory, 44:1096–1107,
1998.

[9] C.S. Chang. Performance Guarantees in Communcation Networks. Springer Verlag,
New York, 2000.

[10] C.S. Chang, Y.T. Chen, and D. S. Lee. Constructions of optical fifo queues.
IEEE/ACM Transactions on Networking, 14(SI):2838–2843, 2006.

[11] C.S. Chang and R.L. Cruz. A time varying filtering theory for constrained traffic
regulation and dynamic service guarantees. In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 1, pages 63–70, New York, NY, 1999.

88

89

[12] R. L. Cruz. A calculus for network delay, part II: Network analysis. IEEE Transac-
tions on Information Theory, 37, 1:132–141, 1991.

[13] R. L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE
Journal on Selected Areas in Communications, 13(6):1048–1056, 1995.

[14] R.L. Cruz. A calculus for network delay, part I. network elements in isolation. IEEE
Transactions on Information Theory, 37(1):114–131, 1991.

[15] R.L. Cruz. SCED+: efficient management of quality of service guarantees. In INFO-
COM ’98. Seventeenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, volume 2, pages 625–634, San Francisco,
CA, 1998.

[16] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In SIGCOMM ’89: Symposium proceedings on Communications architec-
tures & protocols, pages 1–12, New York, NY, USA, 1989. ACM Press.

[17] D. Grossman. New Terminology and Clarifications for Diffserv. RFC 3260 (Informa-
tional), April 2002.

[18] F.M. Guillemin, N. Likhanov, R.R. Mazumdar, and C. Rosenberg. Extremal traffic
and bounds for the mean delay of multiplexed regulated traffic streams. In INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, volume 2, pages 985–993, June 2002.

[19] H. Sariowan. A Service-Curve Approach to Performance Guarantees in Integrated
Service Networks. PhD thesis, University of California, San Diego, 1996.

[20] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. RFC 2597 (Proposed Standard), June 1999. Updated by RFC 3260.

[21] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding PHB. RFC 2598
(Proposed Standard), June 1999. Obsoleted by RFC 3246.

[22] J. Y. Le Boudec. Application of network calculus to guaranteed service networks.
IEEE Transactions on Information Theory, 44(3), May 1998.

[23] J.Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag LNCS 2050, 2001.

[24] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard),
December 1998. Updated by RFCs 3168, 3260.

[25] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow
control in integrated services networks: the single-node case. IEEE/ACM Transac-
tions on Networking, 1(3):344–357, 1993.

[26] A. K. Parekh and R. G. Gallagher. A generalized processor sharing approach to
flow control in integrated services networks: the multiple node case. IEEE/ACM
Transactions on Networking (TON), 2(2):137–150, 1994.

90

[27] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Sced: a generalized scheduling policy
for guaranteeing quality-of-service. IEEE/ACM Trans. Netw., 7(5):669–684, 1999.

[28] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed Quality of
Service. RFC 2212 (Proposed Standard), September 1997.

[29] S. Shenker and J. Wroclawski. General Characterization Parameters for Integrated
Service Network Elements. RFC 2215 (Proposed Standard), September 1997.

[30] J. Wroclawski. Specification of the Controlled-Load Network Element Service. RFC
2211 (Proposed Standard), September 1997.

[31] H. Zhang. Service disciplines for guaranteed performance service in packet-switching
networks. In Proceedings of the IEEE, 83(10), October 1995.

[32] L. Zhang. Virtual clock: a new traffic control algorithm for packet switching net-
works. In SIGCOMM ’90: Proceedings of the ACM symposium on Communications
architectures & protocols, pages 19–29, New York, NY, USA, 1990. ACM Press.

