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regulation of catagen formation in the hair follicle (16). IL-6,

which shows upregulation in balding DPCs, compared with non-

balding DPCs, may be a key factor in inhibition of hair growth.

Anagen-to-catagen transition, characterized by apoptotic cell death

in epithelial cells in the hair bulb and outer root sheath, is driven

by factors such as TGF-b1 and TGF-b2 (17–20). Recombinant

human DKK-1 has been reported to inhibit growth of ORSCs and

trigger apoptotic cell death (21). IL-4, IL-6, TGF-b1, TGF-b2 and

DKK-1 can be expressed in cultured sebocytes.

Involvement of several members of the FGF family in regula-

tion of the hair growth cycle has also been reported (10,22). Both

FGF-1 and FGF-2 stimulated DPCs to release factors that induce

DNA synthesis in ORSCs. FGF-5 has been reported to inhibit hair

growth and induce catagen in hair follicles of mice and to attenu-

ate DPCs-mediated ORSCs proliferation through blockade of the

effect of FGF-1 (23). FGF-5 is known to be associated with

reduction in hair density.

In this study, treatment with NSS-conditioned medium resulted

in a decrease in the survival rate of ORSCs and DPCs and inhibi-

tion of hair growth. Gene expression of Wnt10b, Lef1, TGF-ß1

and TGF-ß2 showed a decrease in cultured NSS. In addition,

increased gene expression of FGF-5, which was also revealed by

microarray, as well as IL-4, IL-6 and DKK-1, was observed in

cultured NSS.

The authors believe that differences in expression of bioactive

markers of NSS from NS may be a causative factor in inhibition

of terminal hair growth. In addition, cellular activities and expres-

sion of bioactive markers of conventional two-dimensional cell

culture differ from those of three-dimensional culture; therefore,

further studies using three-dimensional NSS culture are needed to

achieve better understanding of hair growth inhibition in nevus

sebaceus (24).
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Abstract: In terrestrial animals, the epidermal barrier transitions

from covering an organism suspended in a liquid environment

in utero, to protecting a terrestrial animal postnatally from air and

environmental exposure. Tight junctions (TJ) are essential for

establishing the epidermal permeability barrier during embryonic

development and modulate normal epidermal development and

barrier functions postnatally. We now report that TJ function, as

well as claudin-1 and occludin expression, change in parallel

during late epidermal development. Specifically, TJ block the

paracellular movement of Lanthanum (La3+) early in rat in vivo

prenatal epidermal development, at gestational days 18–19, with
concurrent upregulation of claudin-1 and occludin. TJ then

become more permeable to ions and water as the fetus approaches

parturition, concomitant with development of the lipid epidermal

permeability barrier, at days 20–21. This sequence is recapitulated

in cultured human epidermal equivalents (HEE), as assessed both

by ultrastructural studies comparing permeation of large and

small molecules and by the standard electrophysiologic parameter

of resistance (R), suggesting further that this pattern of

development is intrinsic to mammalian epidermal development.

These findings demonstrate that the role of TJ changes during

epidermal development, and further suggest that the TJ-based and

lipid-based epidermal permeability barriers are interdependent.

Abbreviations: TJ, tight junctions; TER, transepithelial resistance; ENaC,

epithelial sodium channel; SC, stratum corneum; SG, stratum granulosum;

HEE, human epidermal equivalents; TEWL, transepidermal water loss.

Key words: epidermal development – epidermal permeability barrier –

tight junction – transepithelial resistance
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Background
Epidermis must transition from a prenatal epithelium, in which reg-

ulated water and ion flux may be beneficial, to a postnatal epidermis

that must provide an essentially impermeable barrier to water, ions

and toxins or bacteria. Defective epidermal permeability function is

devastating, especially for premature infants (<33 weeks gestation),

whose skin cannot yet protect against water, calorie and electrolyte

loss (15,17) or sepsis owing to microbial invasion (22).

The relative roles of tight junctions (TJ) and the lipid-based

barrier in maintaining the epidermal permeability barrier have

been the subject of recent intense interest (24), with some studies

supporting a primary role for the lipid-based barrier in postnatal

epidermis (2,3,7–13,18,19,25,27), while others show that TJ are

essential for perinatal survival and normal epidermal function

(4,14,21,23,26,28–31).

Questions addressed
We hypothesized that TJ form the major water and ion barrier

early in development and that this function changes when the

lipid barrier is established. Further, we hypothesized that the bar-

rier function of TJ would change during development, blocking

water and ions early, but only larger molecules once the lipid

barrier was in place.

Experimental design
Rat fetuses were harvested from day 17 to day 22 of gestation. Cell

culture, immunoblotting, electron microscopy, light and confocal

microscopy were performed using standard methods (see Support-

ing Information).

Results
TJ Expression and function change during rat embryonic
development
Mirroring mice and humans (5), the rat epidermal lipid-based

barrier consistently develops late in rat gestation, around gesta-

tional day 20–21 (rats are born gestational day 22) (1,16). Relative

claudin-1 and occludin protein expression levels peaked at day 18/

19, then decreased at days 20–21 (Fig. 1a), the period during

which the lipid barrier is established (16). La3+, an electron dense

element with a hydrated radius (0.4 nm) similar to that of Na+

(0.3 nm), was blocked at sites of TJ in the SG at day 18 (Fig. 1b

and Figures S1a,b) but permeated through TJ sites in the SG and

was blocked instead at the location of the epidermal lipid barrier,

at the base of the SC, after the lipid-based permeability barrier

was formed postnatally (Fig 1c and Figure S1d). Secreted lipid

processed into bilayers was noted in postnatal epidermis (16),

denoting a functional lipid barrier in this epidermis. These experi-

ments demonstrate that TJ were able to block ion and water flux

through the epidermis transiently in utero, but lost this ability late

in gestation. Conversely, a lipid-based barrier was not formed

early in gestation, but developed late in gestation and was able to

block ion and water flux postnatally.

(a)

(b) (c)

Figure 1. Tight Junction Formation in in vivo Rat Fetal Development. (a) Tight
Junction protein expression in epidermis during the perinatal period. Western blots
demonstrate that both claudin-1 and occludin expression peak at gestational day
18/19 and diminish as the fetal rat barrier is formed (day 20) and approaches
parturition (day 22). Claudin-1 then peaks postnatally (PN), while occludin remains
low. (b) La3+ permeation at fetal day 18. La3+ permeates the viable epidermis until
its diffusion is blocked by TJ between the lateral borders of the SG cells (arrow). (c)
La3+ permeation at postnatal day 3. In contrast to panel B, La3+ permeates through
the lateral borders of the SG (arrows) and is blocked not at the SG, but instead is
blocked at the SG/SC interface. SC = Stratum Corneum. SG = Stratum
Granulosum. N = 2–3 pups. Scale bar = 1 lm.
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TJ Changes are recapitulated in a human epidermal
equivalent model
Human epidermal equivalents (HEE) are useful models of epider-

mal differentiation, as they reproduce both the epidermal differen-

tiation and the lipid barrier seen in skin and can be used for

electrical measurements, because they do not contain hair follicles,

eccrine glands or dermis.

Morphology and TJ protein expression was similar in HEE and

rat fetal epidermis, with development of a functional lipid-based

barrier by 11–12 days (Figure S2). EM micrographs revealed struc-

tures typical of tight junctional complexes in cultures at days 5–6
(Figure S3). La3+ perfusion was blocked at TJ sites in the SG at

days 5–6 (Figure S2c and S3), when relative claudin-1 and occlu-

din expression was high (Figure S2b), corresponding with days 18

–19 in rat skin. Likewise, La3+ permeated through these sites and

was instead blocked at the SG/SC interface by the lipid barrier at

day 11 (Figure S2f and S4), as seen in postnatal rat skin (compare

to Fig. 1c). Because La3+ permeation cannot measure the global

permeability barrier function of the epidermis, we additionally

measured electrical parameters (6). Transepithelial resistance

(TER) peaked at day 7 (Fig. 2), when La3+ permeation was

blocked at TJ sites (Figure S2c). TER dropped precipitously until

day 9, corresponding to decreases in occludin expression. How-

ever, TER then peaked again at day 10–11 (Fig. 2), correlating

with the development of a SC, secreted and processed lipid, and a

competent lipid-based barrier that blocked La3+ permeation at the

SC/SG interface (Figure S2g).

TJ Block paracellular movement of macromolecules later in
development
TJ have been noted to block larger molecules, such as biotin, in

postnatal epidermis (20). HEE impeded passage of biotin at TJ

sites, even as they no longer blocked La3+ flux (Figure S5). These

experiments suggest that TJ function changes as the epidermis

matures. The evolution of TJ permeability likely corresponds to

different physiologic requirements for TJ’s at various stages of

epidermal development.

Conclusions
TJ are essential for establishing the epidermal permeability barrier

during embryonic development and modulate normal epidermal

development and barrier functions postnatally. TJ block the para-

cellular movement of Lanthanum (La3+) early in rat in vivo prena-

tal epidermal development and early in HEE differentiation,

concurrent with upregulation of claudin and occludin. TJ then

become more permeable to ions and water as the lipid epidermal

permeability barrier develops. However, TJ continue to block

paracellular access by large molecules, even though they become

permeable to ions, suggesting an important role for these struc-

tures in postnatal epidermis. These findings demonstrate that the

role of TJ changes during epidermal development and further sug-

gest that the TJ-based and lipid-based epidermal permeability bar-

riers are interdependent.
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