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Functional data analysis for predicting pediatric
failure to complete ten brief exercise bouts

Nicholas Coronato, Donald E. Brown, Yash Sharma, Ronen Bar-Yoseph MD, Shlomit Radom-Aizik, and
Dan M. Cooper MD

Abstract— Physiological response to physical exercise
through analysis of cardiopulmonary measurements has
been shown to be predictive of a variety of diseases.
Nonetheless, the clinical use of exercise testing remains
limited because interpretation of test results requires expe-
rience and specialized training. Additionally, until this work
no methods have identified which dynamic gas exchange or
heart rate responses influence an individual’s decision to
start or stop physical activity. This research examines the
use of advanced machine learning methods to predict com-
pletion of a test consisting of multiple exercise bouts by a
group of healthy children and adolescents . All participants
could complete the ten bouts at low or moderate-intensity
work rates, however, when the bout work rates were high-
intensity, 50% refused to begin the subsequent exercise
bout before all ten bouts had been completed (task failure).
We explored machine learning strategies to model the rela-
tionship between the physiological time series, the partic-
ipant’s anthropometric variables, and the binary outcome
variable indicating whether the participant completed the
test. The best performing model, a generalized spectral ad-
ditive model with functional and scalar covariates, achieved
93.6% classification accuracy and an F1 score of 93.5%.
Additionally, functional analysis of variance testing showed
that participants in the ’failed’ and ’success’ groups have
significantly different functional means in three signals:
heart rate, oxygen uptake rate, and carbon dioxide uptake
rate. Overall, these results show the capability of functional
data analysis with generalized spectral additive models to
identify key differences in the exercise-induced responses
of participants in multiple bout exercise testing.

Index Terms— machine learning, generalized spectral ad-
ditive models, time series, cardiopulmonary exercise test-
ing, CPET

I. INTRODUCTION

THE human cardiovascular and associated systems are
dynamic and highly interrelated. A major goal of car-

diopulmonary exercise testing (CPET or CPX) is to identify
physiological variables using nondestructive and minimally
invasive protocols that enable the clinician or researcher to
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make predictions about an individual’s particular condition or
level of physical fitness. Standard exercise testing procedures
produce outputs that must be interpreted by trained practition-
ers with an understanding of the underlying physiology and
kinetics of the system, as well as an ability to interpret multiple
time series. By applying machine learning (ML) techniques to
multiple bout exercise testing, we seek to lay the foundation
for quicker and more consistent interpretation of patterns in
physiological time series that may aid researchers in caring
for their patient. Our work with functional data analysis shows
that it may be a highly useful method for classifying patients
based on their exercise-induced cardiovascular signals.

In typical CPET protocols the work performed becomes
increasingly difficult until the participant or technical super-
visors sense that the limit of the individual’s tolerance has
been reached. In contrast to most CPET protocols, patterns of
physical activity in children and adolescents observed outside
of the laboratory are characterized by series of brief bouts of
exercise of varying intensity interspersed with short intervals
of rest [1]–[3]. Consequently, individuals must frequently
decide whether to begin the next bout of exercise when
engaged in these more natural patterns of sporadic physical
activity. We wondered whether we could identify predictive
physiological signals from breath-by-breath gas exchange and
heart rate (HR) data that are collected in CPET laboratories.

The study has two innovations: First, we show that sys-
tematically processing the time series with Functional Data
Analysis can lead to conclusive predictive results for pediatric
participants. Second, we posit that an alternative exercise test
(MBEB) may be more appropriate for children and provide
richer results than the gold-standard maximal effort CPET test.

The next section provides relevant background and a litera-
ture review for this area of research, which led us to develop
the research questions defined in Section II. To address these
research questions we obtained exercise test data from 81
participants. We then applied Functional Data Analysis to
characterize the multiple time series obtained from the exercise
testing. Results from this analysis are in Section IV. Following
a discussion of results and their implications (Section V), we
provide an overview of potential future research opportunities
(Section VI) and limitations of our study (Section VII).

II. BACKGROUND

A. Medical Interpretation of Exercise Testing Data
Exercise testing for diagnostic purposes is conducted by

measuring physiological responses during graded physical
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exercise. Typically, this is done by measuring gas exchange
and cardiac condition in order to score the performance
of coordinated human biological subsystems. CPET is the
most widely used exercise test; it measures responsiveness
of the pulmonary, cardiovascular, neuropsychological, skeletal
muscular, and hematopoietic systems. Since about the 1920s,
peak oxygen uptake (V̇ O2peak) has been the most widely used
biomarker for aerobic fitness, commonly measured through
CPET protocols as the “gold-standard” [4]. CPET has the
advantage of being low-risk [5] and non-invasive.

The voluminous data from continuous electrocardiogram
and other measurements during CPET are described in a 9-
panel report which can be leveraged for clinical diagnosis of
cardiopulmonary abnormalities [6]. Armed with the ability to
analyze CPET reports, medical professionals should be able to
definitively diagnose – or predict – these abnormalities. How-
ever, there exist numerous limitations to CPET interpretation
and it is reportedly underutilized as a clinical tool [7]–[12].

A survey of recent literature reveals an effort to overcome
the barriers to CPET interpretation. To address the difficulty
with human interpretation of graphical data and chaotic breath-
ing patterns, [7] recommends data smoothing techniques as
well as a focus on dynamic measurement relationships indicat-
ing patterns of dysfunction. Our approach optimally smooths
the data and draws out underlying functional relationships to
assist in pediatric fitness assessment.

Reference [8] analyzed heart failure severity using time
series data and statistical analysis of variance to compare their
engineered variables. They aimed to clarify pathophysiology
with a single display that uses ratios of oxygen uptake,
ventilation, and carbon dioxide output, plotted on equal axes,
to better quantify heart failure severity. Reference [9] notes
that when processing multiple CPET time series data points,
we often simplify peak values and slopes which leads to a loss
of valuable trend information. The authors propose a method
for encoding the CPET time series as images, which are fed
to a convolutional neural network to classify patients. In this
work, our method is directly compared to the performance of
the image-encoding approach.

Computer-aided algorithms in [10] were highly useful in
evaluating CPET data to identify medical conditions. This
experiment with incremental exercise tests produced data that,
when input to supervised ML algorithms, helped to discrim-
inate between healthy and diseased patients (mean accuracy
99%). The novel contribution was to convert raw CPET data
into ‘normalized percent of predicted’ values.

Recently, [11] applied CPET-generated data to aid clinical
evaluation of exercise intolerance. This advanced approach
involved feature engineering, feature selection, and automatic
ML classification to choose the best-performing model for 225
CPET time series cases. Reference [11] also calls for further
investigation as to whether early data capture would facilitate
accurate diagnosis without the need for maximal-effort CPET.
Our work addresses this research gap; our results suggest that
data from exercise tests of shorter duration can be incredibly
useful in understanding an individual’s fitness status.

B. Beyond CPET
Though CPET has long been the gold standard, some

researchers have been investigating other, possibly more effec-
tive ways to capture health and fitness information in pediatric
patients. References [1]–[3] propose that an alternative to
CPET could be more suitable for younger populations. Among
other key differences, it has been noted that gas exchange and
ventilatory signals tend to show greater variation in children
than adults [13]. The present study utilizes a protocol termed
“Multiple Brief Exercise Bouts” (MBEB) which follows the
reasoning that natural patterns of physical activity in children
are characterized by relatively short bursts (seconds to min-
utes) of exercise at various intensities interspersed with rest.
By observing the same gas exchange and frequency variables
as CPET over a more appropriate fitness test protocol, we hope
to glean important physiological insights about square wave
exercise cardiovascular dynamics in pediatric subjects.

In a recent publication, we analyzed the gas exchange and
HR kinetic responses during the first five bouts of MBEB
and compared data from early and late-pubertal females and
males at low- and high-intensity MBEB [3]. In the course
of these studies, we noted that all participants completed the
MBEB task when the MBEB work rates were low intensity. In
contrast, during the high-intensity MBEB, a significant number
of participants were unable to start the next bout after the 1-
min rest. An important finding of the research was that, during
high-intensity MBEB, the dynamics of HR and gas exchange
changed from bout to bout even though the work rate input
remained constant. This result suggests that recovery from
each bout was incomplete and raises the possibility that the
cumulative response deficiency might eventually translate into
signals that alter cognitive exercise behavior. In this research,
we present an analysis of gas exchange and HR data in the
bouts preceding the task failure.

When reviewing the literature, we found no similar ap-
plication of Functional Data Analysis (FDA) to CPET time
series. This paper inspires a deeper look into FDA as a viable
approach to processing multiple bout exercise data. Our study
was guided by two primary research questions:

1) Can we use machine learning techniques and FDA to
accurately predict which individuals will fail to complete
an exercise test based solely on their cardio-respiratory
signals? Can we make this prediction with reasonable
accuracy after only four exercise bouts?

2) To what extent do the machine learning techniques use
sex, maturational status, and body mass to predict the
physiological responses of children during MBEB?

Shorter and simpler exercise tests would be hugely ben-
eficial to the medical community; thus, we sought to make
predictions on just 720 seconds of MBEB.

We decided to study the effects of sex, puberty, and body
mass as they are readily available in most CPET datasets
and are known contributors to physiological responses during
exercise. We were interested to explore to what extent each of
the three anthropometric covariates aided with prediction and,
presumably, impacted the child’s exercise tolerance threshold.
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III. METHODS

A. Study Participants

Human data collection was approved by University of Cal-
ifornia at Irvine’s IRB HS 2015-2467. Eighty-one participants
were recruited, of which seventy-eight were included in the fi-
nal analysis. As shown in Table I, the participants were equally
distributed. The volunteers reflected the racial and ethnic
composition of the region [Caucasian (93%), Hispanic/Latino
(5%), and African American (2%)]. All participants were
screened and determined to be healthy based on interviews
to identify any congenital or chronic conditions that would
impair physiological responses to exercise. Extremely physi-
cally active participants (e.g., elite athletes involved in routine
intensive exercise training) were also excluded. A commonly
used self-assessment questionnaire for population studies was
used to assess pubertal status, quantified as early pubertal
(Tanner 1–2) and late pubertal (Tanner 4-5).

B. Collection of Exercise Testing Data

The study consisted of three separate exercise testing ses-
sions completed over a course of no more than 12 weeks.
Study visits were scheduled to morning or early afternoon
and participants were asked to abstain from exercise before
the visit in the same day. The first session consisted of a
ramp-type progressive exercise test in which the participant
pedaled on a cycle ergometer (CE) until they reached the
limit of tolerance. Gas exchange was measured breath-by-
breath using the SensorMedics system (Vmax Encore 229,
Yorba Linda, CA). Participants were vigorously encouraged to
continue pedaling during the high-intensity phases of the test.
Gas exchange was measured breath-by-breath and peak V̇ O2

was determined when the respiratory exchange rate exceeded
1.0 and was calculated as the highest 20-s rolling average in
the last minute of exercise.

The results of the ramp CPET were then used to set the
individualized baseline work rate for the subsequent MBEB
session scheduled for separate days. The work rate for the
MBEB task was calculated for each participant as low-
intensity (40% of peak work rate) and high-intensity (80%
of peak work rate). The MBEB protocols were performed on
different days and in random order. No warm-up exercise was
performed.

MBEB consisted of up to ten 2-min bouts of constant work
rate exercise on a CE with a 1-min rest period after each bout.
After each bout, the participants were instructed to affirm their
willingness to continue with the next bout. For all sessions, we
asked each participant to try to complete ten bouts of exercise.
All participants completed the full 10-bout MBEB task at
the low-intensity work rate; these data were not analyzed. In
contrast, 39 of the 81 participants (48%) failed to complete the
high-intensity MBEB. This group of ‘task-failed’ participants
completed a mean of 6.18± 0.23 bouts and all 39 completed
at least 4 bouts. After time-interpolation to achieve second-by-
second data for every participant, the final data set consisted
of 266,416 discrete observations of anthropometric, frequency,
and gas exchange variables measured at high intensity.

C. Functional Data Analysis

As a tailorable exercise protocol, MBEB produces data
in discrete but sometimes irregular time series. Variability
in the intervals of measurement and correlation of repeated
measurements are just two of the potential problems that
arise with MBEB output that present challenges for traditional
multivariate statistical techniques. Since the goals of this study
are to provide a high level of classification accuracy and
to present readily interpretable and physiologically relevant
results for clinicians, we need methods that can address these
challenges. The complexity of traditional multivariate models
can render their analysis uninformative to the medical com-
munity. Additionally, we hypothesize that a high amount of
understandable information can be gleaned from exercise test
data without a traditional 9-panel CPET plot. The systematic
method we use to attain these goals and address the data
challenges is Functional Data Analysis (FDA).

FDA is a highly flexible technique which can deal with non-
independent and correlated repeated measures. Its prominence
has grown simultaneously with the emergence of electronic
devices that accurately capture a continuous stream of phys-
iological data; FDA can help leverage that data towards
meaningful empirical conclusions.

Within a biomedical context FDA has proven powerful in
the analysis of human growth curves [14], gait analysis [15],
fetal heart rate monitoring [16], [17], and prediction of max-
imal V̇ O2 during exercise [18]. Additionally, [18] proposed
FDA to reduce predictive error in estimation of maximum HR
by avoiding the problems of high dimensionality and collinear-
ity. A ramp exercise protocol was used in that research, and
the authors called for exploration into the predictive capacity
of FDA with square wave exercise modalities. Our research
applies MBEB as a square wave modality.

When implementing FDA, data observations do not need
to be equally spaced and missing observations are handled
relatively well. Exceptionally noisy signals (such as respiratory
rate in our data) benefit from the smoothing procedure, which
is the key first step in FDA. The functional data (FD) objects
themselves can be more visually informative than the set of
finite discrete observations and allow us to draw prediction
information by applying multivariate statistical concepts.

The functional nature of MBEB-derived observations en-
courages us to assume that the data are realizations of stochas-
tic processes in continuous time. The time series measurements
of our MBEB experiment are discrete and sometimes noisy
observations of a continuous, dynamic process, therefore FDA
seems highly appropriate. After transforming the breath-by-
breath or second-by-second time series into a collection of
smooth FD curves, we can explore supervised or unsupervised
ML techniques.

1) Data Conversion Procedure: The first step of FDA was
to convert the raw time series into FD objects by choosing
the appropriate basis transform and smoothing parameters. To
predict ‘task-failures,’ we included only measurements for the
first 720 seconds of MBEB. The purpose was to analyze only
the first four bouts of MBEB, as all 81 participants completed
a minimum of four bouts.
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TABLE I: Anthropometric and peak V̇ O2 in 78 study participants

Cohort N Age (yr) Weight (kg) Height (cm) BMI (%tile) Peak V̇ O2 (ml/min/kg)
EPF 16 9.0± 1.3 28.5± 5.9 130.6± 7.4 47.3± 27.0 44.3± 7.3
EPM 20 10.7± 1.8 36.7± 11.8 143.6± 12.2 45.1± 29.9 52.3± 7.7
LPF 23 15.5± 7.8 54.8± 8.4 161.38± 6.0 54.3± 24.3 40.0± 7.9
LPM 19 16.8± 1.4 63.5± 10.3 172.8± 6.7 45.7± 25.4 54.5± 8.8

(a) EPF - early pubertal females; EPM - early pubertal males; LPF - late pubertal females; LPM - late pubertal males; BMI - Body mass
index

The four variables of interest for our research ques-
tion were heart rate (HR) (beats/min), respiratory rate (RR)
(breaths/min), V̇ O2 (mL/min), and V̇ CO2 (mL/min). The data
was organized such that each response variable constituted its
own independent time series. We confirmed that each signal
has a distinct pattern characterized by variation and noise.
Sample representations of two signals are presented in Figs.
1-2. Plots of the full data set are available in Appendix I.

Fig. 1: One participant’s second-by-second heart rate for
the full MBEB session. In general, HR was the signal that
contained the least noise in our data set; individual exercise
bouts are very easily discerned.

Fig. 2: One participant’s second-by-second respiratory rate for
the full MBEB session. In general, RR was the signal that
contained the most noise in our data set; individual exercise
bouts are difficult to discern.

Smoothing the data helps our algorithm to differentiate
normal breath-by-breath noise from signal patterns indicating

that a participant is reaching their exertion limit. Splines
have been chosen to represent similar time series data in
previous studies [19], [20]. A B-spline basis representation
was determined to provide an excellent fit to each of the four
time series. The splines were generated using 725 total basis
elements of 6th order B-splines. The smoothing procedure was
controlled by a roughness penalty, which resulted in reason-
ably smooth functions without unacceptably large variations in
the approximating function. Penalized smoothing was done by
applying harmonic acceleration operators to the functional data
and searching across values of λ (smoothing parameter) until
an acceptable generalized cross-validation (GCV) error level
and degrees-of-freedom (DoF) were reached in the smoothed
estimate. In other words, each of the response curve sets were
deemed appropriately smooth for this particular application.
This process is introduced in Chapter 5 of [21]. Fig. 3 explains
this procedure visually.

Fig. 3: Example estimation of the smoothing parameter λ.
An appropriate level of smoothing was determined by visual
inspection of the relationship between GCV and DoF in the
smoothed model. This procedure is explained in depth in [21].
This figure shows a minimal GCV when the model contains
350 DoF, which corresponds to a λ near 200. Thus, 200 was
chosen as the smoothing penalty for the set of HR curves, and
the fit was validated after visual inspection of the smoothness
(see Fig. 4). This process was repeated for all variables.

Three participants were removed due to irregularities in
their time series (likely the result of technical HR or gas
exchange data collection errors). This left 78 curves for
analysis, representing an equal number of task-failed (n = 39)
and task-successful (n = 39) participants.
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After smoothing the FD objects, we carried out curve
registration which allows us to align the curves (by time
warping or otherwise) and remove phase variation while
maintaining amplitude variation. Reference [22] presents the
foundation for registration in misaligned data sets. For our
data, automated continuous registration resulted in minimal
phase shifting, as the original time series were nearly perfectly
aligned by nature of the testing protocol; exercise bouts began
and terminated near the same moment in time for all partici-
pants. The proportion of total variation due to phase variation
(MSEphase/MSEtotal) was 9%. The registered curves (with
phase variance removed) were utilized for all subsequent
analysis. Fig. 4 depicts the smoothed and registered HR FD
objects as an example; remaining plots are in Appendix II.

Fig. 4: Heart Rate data after converting the discrete time series
to 78 smoothed and registered curves. Each participant’s time
series is represented as an individually colored function.

2) Functional t-Tests: To identify differences in gender or
puberty sub-groups, we investigated the null hypothesis (H0)
that there exists no statistically significant difference in the
functional means of participants in contrasting sub-groups.
To test for differences between gender groups, we sampled
11 each of males and females at the early-puberty level, to
which we applied permutation t-tests on their functional means
using the default parameters of the function ‘tperm.fd’ in the
R software package ‘fda’ [23]. To test for differences between
puberty groups, we compared 11 samples of early puberty
males vs. late puberty males. For time periods where the t-
statistic exceeded the critical value (0.05), we could reject
(H0). This procedure revealed distinct puberty and gender
differences throughout the time series of V̇ O2 and V̇ CO2,
but no such significant mean functional difference existed for
HR and RR. Fig. 5 highlights one result of this exploration.

3) Supervised Functional Classification: We tested the abil-
ity of the FDA approach to discriminate between MBEB task-
failures and task-completers. This is an example of a curve-
discrimination problem, further explored in [24]; we have a
sample of curves (Xi, i = 1, . . . , n), and each of them is
known to belong to one of the G groups g = 1, . . . , G. Given
a new curve x, we wish to know its class membership; thus
we estimate, for any g ∈ 1, . . . ,G, the conditional probability:

Fig. 5: Visual output of the functional permutation t-test
between Early- and Late-puberty males. The blue curve shows
the t-statistic for the observed values. The green curve repre-
sents the 95% quantiles, and the dashed red line is the 95%
quantile of the maximum of null distribution t-statistics. The
t-test confirms that the derivatives are indeed different except
in the regions of overlap (the first few moments of exercise).
This could signify a fundamental difference in the physiology
between puberty groups when holding gender status constant.

pg(x) = P [T = g|X = x] where Ti is the group of the curve
Xi (task-failure or completer). To do this we applied various
classification models to the FD object set. The goal was to find
a classifier with the minimum error rate. Our first approach
was to predict ‘failure’ from combinations of the functional
data and anthropometric covariates: sex (binary), puberty level
(binary), and body mass (continuous). Weight alone was used
for body mass observations, without consideration to fat mass.

The flexible nature of FDA allowed us to test seven unique
classification models: generalized spectral additive models
(GSAM), linear discriminant analysis (LDA), recursive par-
titioning and regression trees (RPART), RandomForest (RF),
support vector machines (SVM), neural network (NNet), and
k-Nearest Neighbors (KNN). Ten-fold cross-validation was
built into each classification model.

Functional representation of HR alone was the first FD
covariate we tested: failure = s(HR[0,720]) where HR[0,720]

is the smoothed HR function over the first four bouts. After
this approach proved fruitful on the cleanest physiological
signal, we applied the classifiers to RR, V̇ O2, and V̇ CO2

FD objects with the same model parameters. This allowed us
to compute model performance and directly compare results.
Overall model accuracy was calculated as the number of
correct classifications divided by the total number of at-
tempts. The F1 score was computed as (2 ∗ (precision ∗
recall)/(precision + recall)). Finally, we combined all an-
thropometric and functional covariates for HR, RR, V̇ O2,
and V̇ CO2 into a ‘full’ multivariate model and tested the
classification rate. The structure of each model is described
in Appendix IV.

The final step was to conduct functional analysis of vari-
ance (FANOVA) over our 78 independent samples. One-way
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TABLE II: Individual Classification Model Performance

Model Inputs Accuracy (%) F1 Score (%)

GSAM V̇ O2 + Sex + Puberty 93.6 93.5
GSAM V̇ O2 91.0 91.1
GSAM V̇ CO2 87.2 87.5
GSAM V̇ CO2 + Sex + Puberty 87.2 86.8
NNet V̇ O2 84.6 83.8

GSAM HR + Sex + Puberty 82.1 82.1
GSAM HR 78.2 80.5
SVM HR 79.5 80.0
NNet V̇ CO2 80.8 80.0
LDA HR 79.5 79.5

ANOVA was performed within the software package ‘fda.usc’
based on an asymptotic version of the ANOVA F-test. The
function returns the p-value of the test over a specified number
of bootstrap replications [25]. The HR, RR, V̇ O2, and V̇ CO2

functional data objects were bootstrap resampled 500 times,
plotted, and analyzed. We empirically tested whether ‘task-
failures’ and ‘task-completers’ display differences in their sig-
nals’ functional means, as indicated by a significant FANOVA
p-value. A p-value ≤ 0.05 was considered significant to
reject the null hypothesis (H0) of equality of mean functions
between participants labelled ‘failure’ and ‘completer.’

4) Comparison: We compared our FDA method to the re-
cently proposed image encoding approach for CPET classifica-
tion [9]. In that paper, authors encoded the CPET time series as
images using the Gramian Angular Field (GAF) or the Markov
Transition field (MTF) approach, followed by attention-based
pooling for multivariate time series classification. GAF/MTF
encoded images are capable of capturing the temporal trends
and interactions between different time points within time
series and hence have shown strong classification performance.
We encoded the time series used in our ‘full’ multivariate
model (HR, RR, V̇ O2, and V̇ CO2) using the three approaches
(GASF, GADF, and MTF) proposed in their paper. Using the
neural network architecture consisting of attention pooling,
we performed ten-fold cross-validation for the ‘task-failure’
classification task. The resulting performance measures are
shown in Table III for comparison to FDA results.

IV. RESULTS

A. Classification
The results of the ten best performing models are presented

in Table II. The table shows (1) which classification model
structure was used; (2) which combination of inputs (func-
tional and non-functional) were applied to that model; and (3)
the resulting predictive accuracy over the dataset. All models
performed better when the continuous variable ‘body mass’
was omitted. The GSAM structure generally performed best
among the tested classifiers. The highest F1 score (93.5%)
was achieved using V̇ O2 functional data and sex and puberty
covariates as predictors in a GSAM. Providing functional
data alone (with no anthropometric covariates) resulted in a
maximum classification F1 score of 91.1%.

After testing each individual cardiovascular signal, we con-
structed a ‘full’ model. This model used all functional data of

TABLE III: Full Classification Model Performance

Model Accuracy (%) F1 Score (%)
Full GSAM 93.6 93.5
Full LDA 87.2 87.2

Full RPART 83.3 84.0
Full SVM 77.0 78.0
Full NNet 70.5 72.3
Full KNN 65.4 69.0

Full RandomForest 66.7 66.7
GADF + Attention 80.8 80.0
GASF + Attention 76.9 76.9
MTF + Attention 74.4 73.0

HR, RR, V̇ O2, and V̇ CO2 together, along with sex, puberty
level, and body mass. The results are shown in Table III. The
‘Full GSAM’ model performed best (F1 score 93.5%, accu-
racy 93.6%). Further, we demonstrated that the FDA method
performed better than GAF and MTF encoder approaches.

B. Functional Analysis of Variance
The statistic of interest in drawing conclusions from

FANOVA was the probability of a true difference in functional
means over the bootstrapped observations. A p-value ≤ 0.05
indicated that we could reject (H0) and conclude that a
significant difference in functional means was present.

Fig. 6 is the visual depiction of HR functional means for
‘task-failures’ and ‘completers’ and compares the estimated
HR curves after bootstrap resampling. FANOVA results for
RR, V̇ O2, and V̇ CO2 are included in Appendix III. Table IV
shows the resulting p-values and conclusions from FANOVA.
We found that children in the ‘failure’ and ‘completer’ groups
have significantly different functional means for three signals:
HR, oxygen uptake rate, and carbon dioxide uptake rate. Each
of these variables display higher mean functions across the
four bouts for those who failed to complete the MBEB session.

Fig. 6: Comparison of functional means for the Heart Rate
signal [X(t)] during the first four exercise bouts. Task-failures
are labelled as ’1’ with a solid green mean function. ‘Task-
completers’ are labelled ‘0’ with a solid red mean function.
The black line indicates the mean trajectory for all participants.
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V. DISCUSSION

This is the first study to examine whether functional data
analysis of breath-by-breath gas exchange and HR data could
predict an individual’s ability to complete a task consisting of
ten 2-min bouts of constant work rate, high-intensity exercise.

There are a few theoretical implications highlighted by our
work. First, we contribute to understanding exercise-induced
responses of children. The differences that we found between
gender and puberty subgroups are generally in agreement
with historical findings. There is evidence, for example, that
healthy, early pubertal children have substantially faster HR
and V̇ CO2 exercise responses than healthy late-pubertal or
adult individuals [26], [27]. V̇ O2 kinetics appear to be less
dependent on puberty status, but children typically have higher
oxygen uptake per work performed than do late pubertal or
adult individuals [12], [28]. These differences were identified
via t-test after our second-by-second observations were trans-
formed into functional data. Statistically significant functional
differences between males and females were more difficult to
discern in our data set and require further study.

We considered FDA’s theoretical utility in the exercise
data arena. Based on model performance alone, FDA seems
to be a highly useful tool for processing exercise-induced
physiological signals. By transforming the raw data into appro-
priately smoothed functions, the outputs were quite useful for
highlighting differences among the cohorts. In addition to the
promising predictive capability we presented here, the general
benefits of FDA were apparent. As exercise response signals
are inherently noisy and non-linear (especially in younger
children compared with adults), exploration of the data as
smoothed functions was instrumental in our statistical analysis.
Conventional statistical techniques are useful for ramp style
exercise time series, as the on- and off-transient structure
does not exist. However, these methods struggle to capture the
patterns when considering multiple repeated exercise intervals.

FDA allows for handling of sparse datasets and those in
which individual exercise performance intervals of the protocol
are not cleanly aligned. FDA’s ability to reduce predictive
error could be beneficial for exercise prescription, especially
in settings where a maximal stress test is not feasible [29].

One-way functional ANOVA showed that, in general, ‘task-
failures’ were characterized by a statistically significant higher
functional mean HR, V̇ O2, and V̇ CO2 across the four bouts.

Our models included gender, maturational status, and body
mass as scalar covariates alongside functional MBEB sig-
nals to identify ‘task-failures.’ V̇ O2, V̇ CO2, and HR were
especially informative signals for predicting ‘task-failures’
based on the first four exercise bouts. Incorporating gender
and puberty level was beneficial for several models. The top

TABLE IV: FANOVA Results

Response Variable p-value Conclusion
Heart Rate 0.000 S.S. difference in means

Respiratory Rate 0.186 not S.S. difference in means
V̇ O2 0.000 S.S. difference in means
V̇ CO2 0.000 S.S. difference in means

performing model classified ‘task-failures’ with 93.5% F1
score; by adding the anthropometric features to the functional
covariate, we improved the classification rate by several points.
We also showed the ability to sample from subgroups and
conduct permutation t-tests of the functional means, testing
for sex and maturational status differences. This particular
comparative method is more challenging with discrete data.

With regard to the ‘body mass’ variable, the generalized
spectral additive model (GSAM) that produced the best results
showed that inclusion of this variable provided no additional
benefit in model performance. Body mass is certainly corre-
lated with some physiological signals. A theoretical discussion
of how body mass may influence physiological and metabolic
function can be found in seminal papers by A. Heusner [30],
[31]. However, the degree of this correlative effect seems to
be subject to a participant’s other demographics [3]. These
researchers found significantly higher V̇ O2, and V̇ CO2, and
V̇ E costs in the early-pubertal participants for both low- and
high- intensity multiple brief exercise bout (MBEB) protocols
when these values were scaled to body mass. It is possible
that these differences in dynamic responses between pubertal
groups hindered the ability of Functional Data models to
correctly predict which children would fail to complete all
ten exercise bouts.

As to the practical implications of our work, FDA can also
provide interpretable results for the clinician. Suppose that
instead of predicting who quits exercising, we want to see the
differences between healthy individuals and those with chronic
disease. The graphical depictions of sub-group mean functions
(Fig. 6 and Appendix III) can aid a clinician with determining
whether a patient’s trajectory more closely aligns with that of
a healthy or non-healthy subject. Finally, as suggested by [11],
we demonstrated that meaningful medical conclusions can be
drawn with measurements from shorter-duration exercise tests.

VI. FUTURE WORK

FDA is currently a very active research topic. The per-
formance of FDA for exercise testing on this sample of
participants suggests further research opportunities. First, there
exist other important frequency and gas exchange variables as
calculated during CPET; work output (watts), minute venti-
lation (V̇ E), respiratory quotient (RQ), and the ratio of V̇ E
to V̇ CO2 (V̇ E/V̇ CO2 slope). FDA could be applied to each
of these and may prove medically useful. Some physiological
signals are correlated with body mass; it would be interesting
to test theories about the dynamics of gas exchange variables
while specifically normalizing by lean body mass.

Further investigation is needed into the the selection of
smoothing parameters and basis representation for FDA. A B-
spline basis was chosen for this dataset due to the popularity
and flexible nature of splines as well as the ability to capture
the on- and off-transient signal patterns that resulted from
MBEB. Other basis transformations should be investigated for
their goodness of fit on this and other data sets. Additional
analysis is also necessary to confirm that the results in this
research are reproducible for the low-intensity exercise setting.
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VII. LIMITATIONS

The primary limitations of this study relate to the type of
patients and quantity of exercise tests analyzed. Our participant
population, while reflective of the local community at our site,
was not representative of the population as a whole. Moreover,
any predictive methodologies must be tested by prospective
studies and analysis. Further studies will be necessary to gauge
the effect of chronic disease, racial, ethnic, and other social
determinants on exercise responses as children develop. The
FDA method should be applied to other population groups,
such as healthy young adults or pediatric patients with chronic
diseases or obesity. This study’s analysis may be useful as a
baseline to which we can compare the signals of diseased
individuals. The inclusion of prospective data in future work
should eliminate potential bias in our method of analysis.

The binary classification methods used here assume that
whether or not a child completes an exercise test is an
appropriate proxy for his or her physical fitness. There
are undoubtedly other factors at play when a child makes
the decision to quit during intense exercise. Understanding
the physiological determinants that contribute to cognitive
decision-making around exercise behavior will be critical for
the optimal use of exercise testing in health and disease.
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APPENDIX I
RAW DATA PLOTS

The figures below are the second-by-second observations of
our four variables of interest: HR, RR, V̇ O2, and V̇ CO2.

Fig. 7: Ten bouts of Heart Rate data, originally observed
breath-by-breath and time interpolated to a second-by-second
representation. Each participant’s observations are shown with
a unique color.

Fig. 8: Ten bouts of Respiratory Rate data, originally observed
breath-by-breath and time interpolated to a second-by-second
representation.

Fig. 9: Ten bouts of O2 Uptake Rate data, originally observed
breath-by-breath and time interpolated to a second-by-second
representation.

Fig. 10: Ten bouts of CO2 Uptake Rate data, originally
observed breath-by-breath and time interpolated to a second-
by-second representation.
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APPENDIX II
SMOOTHED & REGISTERED DATA PLOTS

The figures below are the functional data representations of
our four variables of interest: HR, RR, V̇ O2, and V̇ CO2.

Fig. 11: Four bouts of Heart Rate after converting the discrete
time series to 78 smoothed and continuously registered func-
tional data objects.

Fig. 12: Four bouts of Respiratory Rate after converting
the discrete time series to 78 smoothed and continuously
registered functional data objects.

Fig. 13: Four bouts of O2 uptake rate after converting the dis-
crete time series to 78 smoothed and continuously registered
functional data objects.

Fig. 14: Four bouts of CO2 uptake rate after converting
the discrete time series to 78 smoothed and continuously
registered functional data objects.
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APPENDIX III
FANOVA RESULTS

Functional ANOVA results for the RR, V̇ O2 , and V̇ CO2

guided the investigation of the null hypothesis. For p-values
≤ 0.05, we reject the null hypothesis and conclude that there
is a statistically significant difference in the functional means
for ‘task-failures’ and ‘task-completers.’

Fig. 15: Comparison of functional means for the RR signal
during the first four exercise bouts. p-value = 0.186. Partic-
ipants who failed to complete ten bouts during MBEB are
labelled as ’1’ and colored green. The red line depicts the
functional mean for ‘task-completers.’ The black line indicates
the mean trajectory for all 78 participants. The plot on the right
shows Heart Rate curves for MBEB ‘task-failures’ (green) and
‘task-completers’ (red), bootstrapped 500 times. The black line
indicates the mean trajectory for all 78 participants. Notice that
there is substantial overlap between the two groups’ signals;
quitters and non-quitters have virtually indistinguishable res-
piratory rates.

Fig. 16: Comparison of functional means for the V̇ O2 signal
during the first four exercise bouts. p-value = 0. Participants
who failed to complete ten bouts during MBEB are labelled
as ’1’ and colored green. The red line depicts the functional
mean for ‘task-completers.’ The black line indicates the mean
trajectory for all 78 participants. The plot on the right shows
Heart Rate curves for MBEB ‘task-failures’ (green) and ‘task-
completers’ (red), bootstrapped 500 times. The black line
represents the bootstrapped mean function for 78 participants.

Fig. 17: Comparison of functional means for the V̇ CO2 signal
during the first four exercise bouts. p-value = 0. Participants
who failed to complete ten bouts during MBEB are labelled
as ’1’ and colored green. The red line depicts the functional
mean for ‘task-completers.’ The black line indicates the mean
trajectory for all 78 participants. The plot on the right shows
Heart Rate curves for MBEB ‘task-failures’ (green) and ‘task-
completers’ (red), bootstrapped 500 times. The black line
represents the bootstrapped mean function for 78 participants.
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APPENDIX IV
CLASSIFICATION MODEL DESCRIPTIONS

This appendix details the structure of each classification model in the Functional Data approach. Models were built with
consistent parameters to allow for performance comparison. Note that the individual models use only functional data from
one physiological signal, and the multivariate models use functional data coefficients from all four signals. Also, the full
multivariate models include BodyMass as a third anthropometric scalar variable.

All modeling was performed in Rstudio (Version 1.4.1103). FDA was conducted in R using the ‘fda’ package (version
5.5.0) [23] and the ‘fda.usc’ package (version 2.0.2) [25]. Wrapper versions of the following packages were called within the
’fda.usc’ functions:

• RPART: rpart package
• RandomForest: randomForest package
• SVM: e1071 package
• LDA: MASS package
• Neural Network: nnet package

The binary class ’quit’ (1 or 0) was predicted with the following covariates (X[0,720] represents the response variable and
the function s(·) denotes an additive effect over the variable):

• GSAM: s(X[0,720])

– equal weights (1) were used for all observations in GSAM models
– The probability value for binary discriminant (i.e. classification threshold) was optimized within each GSAM model;

we searched across a range between 0.3 and 0.8, and the threshold which produced the highest F1 score was selected.

• GSAM + Covariates: s(X[0,720]) + Gender + PubertyLevel ( + BodyMass for the full model)

• RPART: s(X[0,720]) + Gender + PubertyLevel ( + BodyMass for the full model)
– the value of prior probabilities was set to the default for rpart

• K-Nearest Neighbors: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full model)
– the k number of nearest neighbors was chosen based on trial and error, to determine which k resulted in the lowest

classification error. Therefore, k varies between 12 and 14 among the models.

• RandomForest: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full model)
– we used the default value for the number of trees to grow (500) and the number of variables available for splitting

at each tree node (square root of total number of variables)

• Support Vector Machines: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full model)
– default values were used for the C parameter (1) and γ parameter (1/data dimension) in the radial basis function

kernel

• Linear Discriminant Analysis: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full multivariate model)
– the important parameter was the prior probabilities of class membership; with our balanced data, we used the class

proportions for the training set

• Neural Network: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full model)
– we used the default value for weights (1) in the neural net
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