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ARTICLE

Exploring the landscape of focal amplifications
in cancer using AmpliconArchitect
Viraj Deshpande 1, Jens Luebeck2, Nam-Phuong D. Nguyen1, Mehrdad Bakhtiari 1, Kristen M. Turner3,

Richard Schwab 4, Hannah Carter 5,6, Paul S. Mischel3,6,7 & Vineet Bafna 1

Focal oncogene amplification and rearrangements drive tumor growth and evolution in

multiple cancer types. We present AmpliconArchitect (AA), a tool to reconstruct the fine

structure of focally amplified regions using whole genome sequencing (WGS) and validate it

extensively on multiple simulated and real datasets, across a wide range of coverage and

copy numbers. Analysis of AA-reconstructed amplicons in a pan-cancer dataset reveals many

novel properties of copy number amplifications in cancer. These findings support a model in

which focal amplifications arise due to the formation and replication of extrachromosomal

DNA. Applying AA to 68 viral-mediated cancer samples, we identify a large fraction of

amplicons with specific structural signatures suggestive of hybrid, human-viral extra-

chromosomal DNA. AA reconstruction, integrated with metaphase fluorescence in situ

hybridization (FISH) and PacBio sequencing on the cell-line UPCI:SCC090 confirm the

extrachromosomal origin and fine structure of a Forkhead box E1 (FOXE1)-containing hybrid

amplicon.
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Cancer is marked by somatic DNA lesions. While these
include small nucleotide changes, and chromosomal
aneuploidies, focal amplifications of smaller regions are

also a prominent signature in a large proportion of human can-
cers1. Focally amplified regions often involve the juxtaposition of
rearranged segments of DNA from distinct chromosomal loci
into a single amplified region2–8. While common, focal amplifi-
cations present a mechanistic challenge—how do multiple regions
from one or more chromosomes rearrange together in cancer?
Our team recently showed that focal amplification in nearly half
of the samples across a variety of cancer types can be explained by
circular, extrachromosomal DNA (ecDNA) formation9. Further-
more, ecDNA formation can dramatically change the outlook for
tumor evolution even as compared with other types of somatic
mutations10. Due to this renewed understanding, there is an
urgent need for tools to study the biological properties of ecDNA,
and more importantly facilitate ecDNA-based techniques for
cancer treatment and diagnostics. Specifically, tools to elucidate
the structure of ecDNA can provide insights into the mechanisms
of oncogene amplification and evolution through complex
rearrangements.

An “amplicon” is defined as a set of non-overlapping genomic
“intervals” connected to each other and amplified, and an
“amplicon structure” as an ordered arrangement of genomic
“segments” within the amplicon. An amplicon interval may be
partitioned into multiple genomic segments depending on the
rearrangement breakpoints within the amplicon structures. We
recently found that oncogenes amplified on ecDNA are often part
of highly rearranged amplicons, which may juxtapose regions
from different chromosomes. Traditional structural variant (SV)
analyses cannot decipher complex rearrangements11–14. The few
methods that extend the analysis, chain together breakpoints into
paths and cycles, but often do not reconstruct the amplicon in the
specific region of interest, and do not provide a comprehensive
view of alternative structures15–22. Reconstruction remains chal-
lenging due to extreme variability in copy counts (5 ×−200 ×)
and sizes (100 kbp–25Mbp) of amplicons, samples containing
heterogeneous mixture of multiple amplicon structures, and
inaccuracy of SV identification.

We describe AmpliconArchitect (AA), a tool for reconstruction
of ecDNA amplicon structures using whole-genome sequencing
(WGS) data (Fig. 1a–j, Methods 1 and 2) that overcomes these
difficulties by providing a versatile representation of an amplicon
that encodes all supported structures and provides a framework
for algorithmic reconstruction of possible structures. Analysis of
AA-reconstructed amplicons in a pan-cancer dataset reveals
novel properties of copy number amplifications in cancer. In
viral-mediated cancer samples, we identify many amplicons with
hybrid, human–viral ecDNA. AA reconstruction, integrated with
metaphase FISH and PacBio sequencing on the cell-line UPCI:
SCC090 confirm the extrachromosomal origin and fine structure
of a FOXE1-containing hybrid amplicon.

Results
Overview of the AA algorithm. AA requires short-read paired-
end WGS data aligned to the reference genome. AA automatically
infers the read length, insert size distribution, depth of coverage,
variability in coverage, and chromosome ploidy relative to the
whole-genome and dynamically adjusts its parameters based on
these inferences (Methods 2Ai).

Given mapped reads and a seed interval, AA automatically
searches for other intervals participating in the amplicon (Fig. 1a,
b, Methods 2Bi), and then performs a carefully calibrated
combination of copy number variant (CNV) analysis23 and SV
analysis (Fig. 1c–e, Methods 2Bii). For algorithmic prediction of

the amplicon structures, AA uses SV signatures (e.g., discordant
paired-end reads and CNV boundaries) to partition all intervals
into segments and build a breakpoint graph (Methods 2Biii). It
assigns copy numbers to the segments by optimizing a balanced
flow on the graph24 (Fig. 1f, Methods 2Biv). As short reads may
not span long repeats, they cannot disambiguate between multiple
alternative structures. AA addresses this in two ways. First, it
creates a succinct “SV View” displaying the details of the
breakpoint graph, including raw SV signatures, coverage depth,
copy number segments, and discordant genomic connections
(Fig. 1g, Supplementary Fig. 1a). The SV view by itself is often
informative to the user for manual interpretation of the amplicon
structure. Second, AA decomposes the graph into simple cycles,
and provides a “Cycle View” to intuitively visualize the segments
of the cycles in the context of the SV view, showing their genomic
locations (Fig. 1h, Supplementary Fig. 1b, Methods 2Bv). The AA
Cycle View provides a feature to interactively merge the simple
cycles and explore candidate amplicon structures (Figs. 1i, j, 2c,
Supplementary Fig. 2-5).

Datasets. AA was tested on three datasets: (i) a benchmarking
dataset with simulations and previously validated samples; (ii) a
pan-cancer dataset with low-coverage WGS (sample set 1); and,
(iii) cervical cancer sets with samples from the Cancer Genome
Atlas project25 (sample set 2). The simulations and sample data
are described in detail in the following sections. These data
included read lengths between 50 bp and 150 bp, variable insert
sizes between 150 bp and 700 bp, and coverage ranging from 1 ×
to 32 ×. We recommend coverage between 5 ×− 10× for optimal
performance in terms of accuracy and speed. By default, AA
downscales datasets with high coverage to 10 × .

Benchmarking AA on simulations and validated amplicons. A
robust amplicon reconstruction tool should predict the amplicon
structure for a diverse set of focal amplifications observed in
cancer in a high-throughput manner. A complete validation of
entire structures would require ultra-long (Mbp) read fragments
or isolation of amplicons from the rest of the genome. Moreover,
multiple experiments would be needed to test AA effectively on
the diversity of reconstructed amplicon structures (e.g., Fig. 2a–c,
Supplementary Fig. 2-5, figshare). Therefore, we developed a
simulation-based benchmarking strategy and error model to
quantify the accuracy of predicted structures.

We simulated a diverse set of 1248 amplicons, including
rearrangements with varying levels of copy number (4 ×−32 × ),
size (40 kbp–10Mbp), number of rearrangements (0–16), dupli-
cation probability (0–0.75), and sequencing coverage (1 ×−32 × )
(Methods 4). Here duplication probability refers to the prob-
ability of duplication of a segment of the amplicon when
simulating the amplicon structure through iterative rearrange-
ments; other events included inversions, translocations and
deletions of amplicon segments (Methods 4). To measure the
accuracy of the complete reconstruction, we developed a novel
metric based on a “graph edit distance”, described informally by
the number of operations required to transform the predicted
amplicon structure into the true structure (Methods 5, Supple-
mentary Fig. 6). The metric partitions the graph operations into
two categories: (i) number of errors caused by AA and (ii)
number of swaps across repeat branches indicative of the number
of cycle merging operations a user would need to perform to
obtain the entire structure. We observed that a mispredicted
rearrangement, e.g., a missing edge, will simultaneously affect at
least two adjacent segments and increase the graph edit distance
by two (Methods 5B). We tested a naive “permutation predictor”,
which picks a random order of the amplicon segments from the
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copy number profile and, indeed, found that the average edit
distance of randomly predicted structures to be close to the twice
the number of segments in the amplicon structure (Fig. 1k–n). To
provide a standard yardstick for assessing our error rate, we
normalized the edit distance of the predicted amplicon structures
by twice the total number of segments in the amplicon and
contrasted against the permutation (Methods 5B). This metric
reported that even on our wide-ranging simulations, AA had an
error rate <= 11%, averaging about one error per nine rearrange-
ments (Fig. 1k–n, Supplementary Fig. 7). A high fraction of
samples was reconstructed perfectly (parenthesized values),
although performance decayed slightly when the amplicon was
simulated with higher probability of duplication of amplicon
segments. AA showed robust performance with changing
amplicon size and copy number (Methods 6, Supplementary
Fig. 8).

We also compared AA against previous studies which examined
complex rearrangements in small sets of cancer samples and
validated individual rearrangements using PCR. Specifically,
L’Abbate et al.4 and Sanborn et al.20 experimentally validated a

combined 109 breakpoints with number of supporting reads at
least 20% of the highest copy, and SV size > 400 bp, and manually
presented structures encompassing 103 of them. AA automati-
cally detected 107 of 109 edges and predicted an additional
36 edges as part of a high copy cycle missed by the previous
groups (Methods 3, Supplementary Section 1, figshare).

ecDNA model for focal amplifications in a pan-cancer dataset.
We further applied AA to sequencing data of 117 cancer samples
(sample set 1) (supplemented by 18 replicates and drug-treated
variants) from 13 cancer types, originally described in Turner9

(Methods 7, Supplementary Data 1). In querying matched normal
samples of the TCGA data, we observed that <1% of the samples
would show a germline amplification of size >100 kbp and copy
number >5 × (Supplementary Data 2). Therefore, to select seed
intervals, we used the CNV tool ReadDepth26 (Methods 1, Sup-
plementary Data 3) to identify 255 focally amplified intervals in
55/117 samples with size >100 kbp and copy number >5 × . Using
the 255 intervals as seeds, AA reconstructed 135 non-overlapping

AA errors AA repeat branch swaps Permutation errors

Sensitive breakpoints & segmentation

S8S6 S7S5S1 S4S3S2

CN-aware breakpoint connections

EGFR MDM2

Coverage shifts

chr7 chr12

chr7 chr12

chr7 chr12

EGFR MDM2

0

25

50

C
op

y 
nu

m
be

r

0

25

50

C
op

y 
nu

m
be

r

0

25

50

C
op

y 
nu

m
be

r

0

25

50

C
op

y 
nu

m
be

r

OUTPUT: SV view + interactive cycle view

0

50

100

C
ov

er
ag

e

0

50

100

C
ov

er
ag

e

0

50

100

C
ov

er
ag

e

0

50

100

C
ov

er
ag

e

0

50

100

C
ov

er
ag

e

INPUT: Seed - explore & extend

chr7 chr12

Seed interval

 

WGS sequencing
&

alignment

a b

cd

e f

Merge cycles:
True structure

Merge cycles:
Alternate structure

Decomposition into 
simple cycles

C2: 10

C1: 10

C3: 10

(C1 + C3) + C2: 10

(C1 + C2) + C3: 10

g

h

Unknown
ampliconchr12–

chr7+

ch
r7

+

chr7+

chr7+

chr7+

M
D

M
2 E

G
FR

S7: 10

S4: 30

S3: 10S2: 10 0

1010
10

10

10 10

Breakpoint graph and CN assignment

i

j

#segments(n)

0

20

40

60

80

100

%
 s

um
(2
n

)

0

20

40

60

80

100

%
 s

um
(2
n

)

Duplication rate: 0.0
Error rate: 8%

57
(47)

70
(64)

91
(66)

22
(18)

Duplication rate: 0.25
Error rate: 10%

47
(37)

65
(53)

81
(67)

47
(24)

Duplication rate: 0.5
Error rate: 12%

45
(40)

62
(47)

69
(52)

64
(35)

4 5–8 9–16 >16
#segments(n)

4 5–8 9–16 >16
#segments(n)

4 5–8 9–16 >16
#segments(n)

4 5–8 9–16 >16

Duplication rate: 0.75
Error rate: 13%

41
(33)

53
(39)

56
(39)

90
(45)

Accuracy of reconstruction

k l m n

S8S6 S7S5S1 S4S3S2

chr7 chr12

Fig. 1 Schematic of AmpliconArchitect (AA). AA takes as input: a aligned whole-genome sequencing data from a sample with an amplicon, and b a seed
interval from the amplicon. It automatically searches for and identifies other intervals that are part of the same amplicon; c Next, AA identifies breakpoints
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amplicons, each containing one or more seeds (Supplementary
Data 4, figshare). Overall 104 of 255 seeds resulted in single-
interval amplicons whereas the remaining 154 seeds were merged
into 31 amplicons (Supplementary Fig 9). We observed a range of
amplicon structures including simple cycles, heterogeneous
mixtures of related structures, a breakage-fusion-bridge amplifi-
cation, and highly rearranged amplicons with intervals from one

up to three chromosomes (Fig. 2a–c, Supplementary Data 4,
figshare). The number of detected rearrangements (breakpoint
edges) per amplicon ranged from 0 to 49 with average of 4.9
rearrangements per amplicon; this is likely to be an under-
estimate, due to the low-coverage sequencing data.

Typical mechanisms invoked for copy number (CN) amplifica-
tion rely on repeated breaks at fragile sites followed by
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duplication events. We used AA to test an alternative model
(Fig. 2d), which (a) starts with breaks at random sites, followed by
ecDNA formation; Poisson random breaks result in an
exponential distribution of segment lengths. (b) Aggregation of
ecDNA create larger, highly rearranged, multi-interval, structures.
(c) Replication and independent segregation of ecDNA create
cells with a diversity of copy numbers; however, (d) positive
selection for higher copy numbers due to proliferative elements
(e.g., oncogenes) on ecDNA result in amplification without the
need for repeated breakpoint use and duplication events; (e)
oncogenes could be expressed in a tissue-specific manner
providing selective advantage to different tumor subtypes.
Therefore, amplicons sampled from specific tumor subtypes
could be enriched in specific oncogenes, while being structurally
quite different; finally, (f) ecDNA structures reintegrate into non-
native chromosomal locations as homogenously staining regions
(HSRs), while maintaining their structure across cell passages.

The model suggests that many chromosomally located
amplicons may also have originated as ecDNA. As sequence
data are not sufficient to directly test this hypothesis, we analyzed
AA predictions in 45 out of 135 amplicons where metaphase
FISH experiments had been performed by Turner et al.9. We used
the simple criteria that presence of a cycle of length ≥10 kbp and
copy count ≥4 in the AA reconstruction was evidence of an
ecDNA origin. Low coverage (< 1 ×) in our WGS data implied
that we could get false negatives due to missed discordant edges,
especially when the FISH ecDNA counts were low. To quantify
this, we selected a threshold t, and called the sample FISH positive
if the average number of ecDNA per cell was ≥t. For t= 1 (at least
one ecDNA per cell on average), 11 of the 17 samples with cyclic
AA reconstructions were FISH positive, whereas only 6 of 28
non-cyclic reconstructions were FISH positive (p:0.005, Fisher's
exact test). The results remained significant for a range of values
for t (0.5 ≤ t ≤ 2). (Supplementary Data 5). The AA prediction of
amplicons with ecDNA origin will further improve with higher
coverage (5 ×−10 ×) WGS data and larger numbers of FISH
samples, and lead to better criterion for calling ecDNA from
sequence.

To test the other tenets of this model, and get statistically more
meaningful numbers, we expanded the 135 AA amplicons in
sample set 1 with 12,162 somatically amplified intervals in 2513
TCGA25 samples determined by CNV arrays (Methods 8).
Importantly, intervals from the AA amplicons showed
a significant overlap with the TCGA intervals (Methods 9,
p-val :1.1e–8).

Consistent with tenet (a), the TCGA interval size and copy
number both followed exponential distributions with mean 1.74
Mbp and 3.16 copies, respectively (Methods 10; Fig. 2e,
Supplementary Fig. 10). Of the 135 amplicons reconstructed by
AA, 104 amplicons consisted of a single interval from the
genome, whereas 31 amplicons contained multiple intervals. The
single-interval amplicons included nine amplicons that had a
simple structure with a single discordant edge connecting the end
of a segment to the start of the segment. This sequence signature
can be a result of either tandem duplications with exact
breakpoints or a circular ecDNA formed by circularization of
the segment. Many of the single-interval amplicons had complex
structures with up to 12 rearrangements and segments with
multiple copy number states (see figshare). The 31 multi-interval
amplicons included 17 “MultiChrom” amplicons containing
intervals from multiple chromosomes, whereas the other 14
amplicons were “MultiCluster” amplicons containing multiple
intervals from a single chromosome. Individual intervals within
multi-interval AA amplicons were similar in size to single-
interval amplicons (Fig. 2f). However, in support of tenet (b), we
observed that MultiCluster amplicons with mean size 4.7 Mbp

and MultiChrom amplicons with mean size 7.7 Mbp were, on
average, larger in size than the single-interval amplicons, which
had a mean size of 2.4 Mbp (p-values= 1.58e–2, 6.18e–4, Fig. 2f,
Methods 11, figshare). In support of tenets (c), (d), we had
previously shown an increase in the copy number heterogeneity
as well as an enrichment of oncogenes in ecDNA9. Tenet (e) of
the model postulates that ecDNA drive tumor growth through the
amplifications of oncogenes that confer a selective advantage to a
tumor subtype. Indeed, we found that amplifications of 59
distinct oncogenes were specifically enriched in 19 of 33 cancer
types in the TCGA sample set (Fig. 2g, Methods 12). For example,
MDM4 and EGFR were enriched in glioblastoma, MYC and
ERBB2 were enriched in breast cancer whereas MDM2 was
enriched in both. In turn, a significant portion of the enriched
oncogenes manifested in the amplicons of the corresponding
cancer types from sample set 1. Limiting the analysis to the 48
enriched oncogenes in 10 TCGA subtypes that were present in
sample set 1, we found that amplicons in four cancer types
contained 18/48 oncogenes enriched in the corresponding TCGA
cancer types, whereas in four more cancer types, the correspond-
ing TCGA samples did not show any enriched oncogenes
(Supplementary Data 6).

In support of tenet (f), we start by noting that both intra-
chromosomal (HSR) and extrachromosomal (ecDNA) amplicons
occurred with a large variation of size and copy number (Fig. 2e),
albeit with HSR elements being somewhat larger and lower in
copy number. Importantly, detailed AA reconstructions showed
that amplicons preserved their structures within biological
replicates but evolved over time, in response to drug treatment,
and in transition from ecDNA to HSR and back9 (Fig. 3).
Amplicons could change their location spontaneously from
ecDNA to HSR or in response to drug (Fig. 3a). Sometimes,
new amplifications or structural changes appeared with changing
drug environment, e.g., MDM2, MDM4, FGFR1 and WHSC1L1
in GBM39 and ERBB2 and MET in HCC827 (Fig. 3a, b).

To test whether neighboring chromosomal features or func-
tional elements outside the oncogenes played a role in amplicon
formation or tumor growth in multiple samples, we measured the
size of the overlap between amplified intervals containing the top
three oncogenes—EGFR, MYC, and ERBB2. For each oncogene,
and each pair of samples focally amplifying the oncogene, we
measured the size of the overlap to evaluate the hypothesis that
the size of the overlap was significantly larger than in a null model
in which overlaps are obtained from a random choice of
breakpoints around the oncogene. The QQ plots of pairwise
similarity scores indicated that the null hypothesis could not be
rejected (Supplementary Fig. 11, Methods 13). Thus, we found no
evidence to suggest that recurrent breakpoint use is important for
amplicon formation. These results complement previous results2,
which also reported a lack of association with fragile sites,
segmental duplications (SDs) or repetitive elements in regions of
complex genomic rearrangements, and they strengthen the case
for an ecDNA-based model of CN amplification.

Chimeric human–viral amplifications in cervical cancer. In a
second application of AA, we looked at focal amplifications near
genomic viral integrations from 68 cervical cancer tumor sam-
ples25 (sample set 2) with matched normal blood samples
(Methods 14, Supplementary Data 7). AA detected human
papillomavirus (HPV) genomic sequence in 67/68 tumor samples
and none in matched normal. We found HPV integrated into the
human genome in 18/20 high-coverage (>30 ×) and 33/48 low-
coverage (<10 ×) samples27. AA reported that viral integrations
induced formation of 41 human–viral fusion amplicons con-
taining both viral DNA and segments from the human genome in
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49% (33) of all samples (Fig. 4a, figshare, Supplementary Data 8).
Although six fusion amplicons contained an oncogene (three with
MYC, one each with ERBB2, BIRC3, and RAD51L1), the majority
of fusion amplicons contained human sequence from intergenic
regions.

The simplest mechanism of viral integration, which we denote
as a unifocal integration, consists of the virus inserting itself into
the human genome by causing exactly one double-stranded break
(Fig. 4b). AA reconstruction revealed a novel bifocal signature
where the endpoints of the amplified human interval were flanked

by the virus on each side (Fig. 4c). For example, if four-ordered
segments ABCD represent a section of the normal human
genome and V represents a viral segment, then a fusion amplicon
induced by a unifocal integration might result in a structure of the
form A[BVC]nD. In contrast, we see structures of the form AB
[VB]nC, reminiscent of a bifocal insertion. A simpler explanation
for bifocal signature is a circular extrachromosomal amplification
of the form (BV) where V is connected back to B. Only 14 (34%)
fusion amplicons displayed a unifocal signature. In contrast, 19
(46%) amplicons displayed a bifocal signature. An additional 12
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Fig. 3 AmpliconArchitect (AA) amplicons evolving over time or in response to drug treatment: a GBM39: patient-derived xenograft (PDX), glioblastoma;
b HCC827: Cell-line, lung; c HCC1569: Cell-line, breast; d HK296: Cell-line, glioblastoma; eMB411FH: Cell-line, medulloblastoma; f MCF7: Cell-line, breast;
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(29%) amplicons showed a “weak” bifocal signature where only
the highest copy segment was flanked by the virus but the virus
did not flank neighboring amplified segments with smaller copy
numbers (Supplementary Fig. 12, Methods 15, Supplementary
Data 8). Thirteen amplicons contained multiple human–viral
connections. Sample TCGA-C5-A0TN contained an unusual
amplicon with a two-way bifocal signature where two segments
from chr2 and chr3 were connected together and the virus in turn
flanked the outer end of each segment in a circular or tandemly
duplicated structure with 10 copies (Fig. 4d). Through simula-
tions, we concluded that a unifocal integration followed by
random rearrangements is unlikely to result in the formation of

an amplicon with a bifocal signature (Methods 16, Supplementary
Fig. 13). The 62 breakpoints supported by split-reads showed
NHEJ or MMBIR signatures similar to breakpoints in sample set
1 (Supplementary Fig. 14).

Akagi et al.28 have proposed a looping model where origins of
replication on the human genome drive amplification. However,
the prevalence of bifocal signatures and multiple chromosomes as
part of an amplicon and the ubiquitous presence of the HPV
origin of replication alongside the viral oncogenes E5 and E6 in
reconstructed amplicons suggest an alternative possibility that the
chimeric amplification could be mediated through ecDNA
formation. Although episomal virus in its native form has been
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Fig. 4 Amplicon structures near viral insertions. a Human papillomavirus (HPV) sequence was identified in 67 of 68 tumor whole-genome sequencing
(WGS) samples (with genomic integration in 51) compared with 0 of 68 in matched normal blood samples. Forty-one fusion amplicons were reconstructed
in 33 samples (Supplementary Data 7, 8). b Although 14 of the viral insertions gave a unifocal amplification signature, consistent with viral insertion at a
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reported extensively in cancer cells, the AA reconstructions make
a compelling case to investigate the presence of fusion
human–viral segments in the form of ecDNA. To test this
hypothesis, we identified a head and neck cancer cell-line UPCI:
SCC090, where the AA reconstruction showed tremendous
heterogeneity of structure, but also the prevalence of cycle
containing the oncogene FOXE1. The AA reconstruction was
further confirmed using PacBio WGS where long, single-molecule
reads supported multiple breakpoints (Fig. 4e). We observed
extensive heterogeneity. For example, PacBio read collections
(210, 53, 27), and (54, 27,167) indicate two different cyclic
structures supporting AA breakpoints in Fig. 4e, consistent with
multiple intra-chromosomal insertions of the amplicon. Meta-
phase FISH using a probe for FOXE1 showed its occurrence as
ecDNA, as well as multiple non-native chromosomal insertions
(Fig. 4f). The existence of multiple FOXE1-containing ecDNA
and HSR structures is consistent with a common, extrachromo-
somal origin for these amplicons.

Discussion
AA is a robust and viable tool for reconstructing possible ecDNA
and other focal amplicon structures from short-read data and
allows for an interactive exploration of alternative structures. The
size of ecDNA (up to 25Mb) implies that existing single-molecule
assembly is also not sufficient for ecDNA reconstruction.
Therefore, AA reconstructions on inexpensive short-read data
can be used as a template for guiding assembly of longer, single-
molecule reads. AA provides a cycle decomposition that explains
at least 80% of the genomic content of the amplicon. There can be
multiple sources affecting complexity of structure, e.g., recombi-
nation of ecDNA elements, rate of tumor evolution, functional
elements providing selective advantage. By choosing the cutoff as
percentage of genomic content, AA makes the conscious decision
to specifically focus on the structures with high abundance as
these structures are likely to drive proliferation. Finally, analysis
of AA reconstructions on multiple pan-cancer datasets suggests
that ecDNA could play an important role in creating complex
rearrangements and focal amplifications observed across the
spectrum of cancer subtypes.

Methods
1) Seed interval selection: interval merging and copy number threshold. AA
requires a seed interval in addition to mapped genomic reads. The seed interval
serves as a starting point for AA to search for all connected genomic intervals
contained in the amplicon. Here, we pick seed intervals in two different sample
sets: (a) WGS of tumor samples across multiple cancer types, (b) WGS of cervical
cancer samples infected with HPV.

A) To identify the set of seed intervals in the WGS samples from the pan-cancer
dataset, we defined parameters CN_THRESHOLD and SIZE_THRESHOLD for
minimum bounds on copy number and size of the interval. Aiming to find a
criterion for identifying somatically amplified intervals, we compared the CNV
calls for matched tumor and normal samples downloaded from TCGA consisting
of 22,376 masked CNV call files from TCGA generated from Affymetrix 6.0 data
for 10,494 matched cases. For a given CN_THRESHOLD, define an amplified
segment as a single CNV call with copy number greater than CN_THRESHOLD. A
sample might have multiple amplified segments adjacent to each other. The size of
the amplified segment was simply the number of basepairs in the segment. For each
sample, we merged consecutive amplified segments within 300 kbp of each other to
create the set of amplified intervals. The size of amplified interval was the sum of
sizes of the amplified segments in the interval and the copy number of the
amplified interval was the weighted average of the amplified segments weighted by
their sizes. We counted the number of amplified intervals in all normal and tumor
samples in the TCGA set for values of CN_THRESHOLD in {3, 4, 5, 7, 10} and
SIZE_THRESHOLD in {10 kbp, 50 kbp, 100 kbp, 200 kbp, and 500 kbp}. Based on
these, we chose the values CN_THRESHOLD= 5 and SIZE_THRESHOLD= 100
kbp for selecting the seed intervals, which resulted in 145 intervals in normal
samples and 12,162 intervals in tumor samples, which did not have a
corresponding amplification in the normal samples.

Next, we analyzed the WGS reads from the WGS samples from the pan-cancer
dataset. We mapped the reads to the hg19 genome from UCSC genome

browser29,30 and obtained CNV calls using the CNV calling tool ReadDepth CNV
software version 0.9.8.431 with parameter false discovery rate= 0.05 and
overdispersion parameter= 1. We also obtained the CNV calls for eight normal
control samples and created the set of amplified intervals from the CNV call sets
for all samples with CN_THRESHOLD= 5 and SIZE_THRESHOLD= 100 kbp.
First, we looked at the amplified intervals from the normal samples and found
genomic regions, which were amplified in two or more normal samples. These
regions were marked as blacklisted regions. As ReadDepth did not report CNV
calls for chrX and chrY, we used a previously computed list of recurrent CNVs on
the X and Y chromosome reported by Layer et al.14.

From the amplified intervals from WGS of tumor samples, we filtered out false
intervals using three criteria:

(i) We identified intervals overlapping blacklisted regions and trimmed them to
exclude the portions within 1Mbp of the blacklist regions.

(ii) For each interval, we calculated its average repetitiveness by defining Duke35
repetitiveness score based on the mappability score track from UCSC
genome browser30. This mappability score track reports the repeat count of
each 35-bp window in the reference genome up to copy number 5. We
computed the Duke35 repetitiveness score of an interval as the average score
of all 35-bp windows in the interval and filtered out intervals with score >
2.5.

(iii) We looked at intervals overlapping regions of SD reported by the human
paralog project. For these intervals, we defined an SD-adjusted copy number
as the interval copy number downscaled by its average repeat count. In the
absence of information regarding actual repeat counts of the SDs, we
assumed a repeat count of 2. As a result, the SD-adjusted CN= Interval CN/
(1+ Total length of overlapping SDs/length of interval). We only retained
amplified intervals if their SD-adjusted CN was >5.

Finally, to correct for the copy number gain due caused due to aneuploidy,
we required that the difference in copy number of the interval and the median
copy number of the chromosomal arm should be at least 3. Specifically, for
amplicons in chromosomes with reference copy number of two, the copy number
cutoff was 2+ 3= 5= CN_THRESHOLD. We applied these filters on the
ReadDepth calls for the 117 WGS tumor samples to obtain 255 intervals in
55 samples.

B) For detecting chimeric human–viral amplification in cervical cancer samples,
we created a combined reference genome consisting of the human chromosomes
and the viral reference genome and aligned reads to this combined reference
(Methods 13). We selected the viral genome as the seed interval. This was a highly
selective criterion for selection of the seed interval, which allowed us to perform a
more sensitive search for amplicons. As a result, there was no initial cutoff on copy
number or size of the seed interval. The cutoffs were chosen at the end of final
reconstruction.

2) AA methods. The AA pipeline starts with the seed interval and mapped reads
and performs multiple steps including search for amplicon intervals, detection of
genomic rearrangements, construction of breakpoint graph, decomposition of the
graph into simple cycles, and visualization of the cycles. To perform these steps
efficiently and accurately, AA implements and uses multiple low-level modules.
Here, we briefly describe the implementation of AA pipeline and the low-level
modules. The AA software described here may be downloaded from https://github.
com/virajbdeshpande/AmpliconArchitect.

A) Low-level modules:

(i) Sequencing parameter estimation: this module estimated the parameters of
sequencing coverage and variability as a function of window size, as well as
the read and fragment insert lengths of the sequencing library. Given a bam
file of mapped reads and a window size ws, AA obtained an initial estimate of
the median coverage for 1000 randomly chosen windows from non-
blacklisted regions, excluded all windows with coverage= 0 or > 5 times
the initial median and recalculated the mean (μws), median (θws), and
standard deviation (σws) of window coverages for the given window size. AA
computed the coverage for window sizes ws= 10 kbp and ws= 300 bp.
Further, it obtained the read pairs from the windows used for estimating the
coverage with window size 10 kbp, estimated the fraction P of “properly
mapping” read pairs and estimated the mean read length R and the mean (µ
(I)) and standard deviation (σ(I)) of the fragment insert length of the properly
mapping read pairs as reported by the read aligner in the alignment flags of
the Sequence Alignment/Map (SAM) file format.

(ii) CNV boundary detection: this module identified positions of copy number
changes in an interval using only the coverage histogram. It first identified an
initial list of boundaries of CNV segments based on a histogram with
window size 10 kbp and then refined these boundaries through a local search
based on a histogram with window size 300 bp within the neighborhood of
the initial list of boundaries. To estimate the CNV boundaries for a given
interval size, AA used a meanshift procedure adapted from Abyzov et al.23.
In the meanshift procedure, AA identified the CNV boundaries as the
locations of the minima of the Gaussian kernel density estimator indicative
of a large change in coverage. Specifically, for each window i, define a
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Gaussian kernel density function Fi:

Fi ¼ norm
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Here j iterates over 50 neighboring windows on either side of window i,
ri, rj are the coverage depths for bins i and j, Hb is the bandwidth for bin
index and Hr is the bandwidth for the coverage depth. For bin i with size ws
and coverage ci, AA set Hr ¼ maxð2; ffiffiffiffiffiffiffiffiffiffiffiffi

ci=θws
p Þσws. Hb iteratively took values

in the order (2, 5, 10, 50, 100) as described below. norm represents the
constant normalization coefficient. Thus, (∇F)i, the component of the
gradient of Fi along the genomic coordinates is:
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AA selected the boundaries between pairs of consecutive windows where
(∇F)i changes from negative to positive, merged all windows between these
boundaries into segments and calculated the average coverage Cs for
each segment s. AA selected the boundaries where the difference in coverage
|Cs1−Cs2| for consecutive segments s1 and s2, was found to be significant as
described below. If either segment was smaller than 15 windows, then it
required |Cs1−Cs2| > 3σws∙ max(Cs1, Cs2)/θws. AA detected the meanshift
boundaries at various scales by iteratively increasing the size bandwidth from
2 to 100 windows while freezing segment boundaries it found significant in
each stage. AA obtained an initial high confidence set of CNV boundaries in
an interval by searching for the meanshift boundaries in the entire interval
with window size ws= 10 kbp. It then refined these boundaries by running
the meanshift algorithm with window size ws= 300 bp and from the new
call set, picking the new boundary with desired directionality change in
coverage and largest difference in coverage of adjacent segments.

The CNV boundary detection module calculates the average coverage for
genomic segments and defines the coverage ratio as CRs ¼ 2Cs=μws: The
module could be run in two modes. In the sensitive mode, the difference in
coverage of adjacent segments |Cs1−Cs2| was considered significant as
determined by independent t-test of the distribution of window coverage of
s1 and s2. In the default mode, the module further filtered out boundaries if
the difference in coverage ratios CRs1 � CRs2j j<maxð1; ffiffiffiffiffiffiffiffiffiffi

CRs1

p
;

ffiffiffiffiffiffiffiffiffiffi
CRs2

p Þ.
The sensitive mode was specifically used for chimeric human–viral
amplicons where the virus could have very high copy number as compared
with the human intervals due to independent amplification. The default
mode was used for all other amplicons in order to focus on amplicon
structures that comparable in abundance with the highest copy structure and
ignore noise from low copy rearrangements.

(iii) Breakpoint detection: This module took as input one or more intervals, and
identified all breakpoints associated with these intervals using discordantly
mapping read pairs as follows:

a) Identify all discordant reads mapping to the intervals such that the mate
maps either maps to a different chromosome, has unexpected mapping
orientation, or maps at location such that the distance between the
outermost mapping positions of the read pairs is outside of the range (µ
(I)−3σ(I), µ(I)+ 3σ(I)). Cluster reads that map within (µ(I)+ 3σ(I))
basepairs of each other and have the same mapping orientation.

b) For reads with each cluster identify mapping positions of the mates and
create one or more cluster pairs, “biclusters” from read pairs (including
secondary alignments) where the first cluster consists of subset of reads
from cluster from step (a) and that the second cluster corresponds to
mates of these reads that map within (µ(I)+ 3σ(I)) of each other.

c) For each bicluster, filter reads in repetitive regions with Mapping
Quality score (MAPQ) ≤ 5 or satisfying one of the three criteria for
filtering out repetitive intervals described in the seed interval selection
process (Methods 1).

d) Remove biclusters whose size is smaller than a significance threshold S
as described below. The size of a bicluster is the number of unique read
pairs in the bicluster.

e) Report pairs of breakpoint inferred from bicluster.

The significance threshold for number of read pairs in the bicluster could be
chosen from four different options used for specific scenarios: (a) a fixed input
parameter (e.g., two read pairs for a sensitive search), (b) minimum number of read
pairs determined by the average sequencing coverage, read length, and fragment
insert length, (c) minimum number of read pairs for a region with copy number
estimated by the coverage ratio of the meanshift segments, or (d) minimum
number of read pairs determined by the difference in the coverage ratio across the
CNV boundary. The minimum number of read pairs S associated with a given CR
or difference in CR of segments was calculated as
SCR ¼ P ´CR ´ μ300 ´ ðI � RÞ=2R=D. Here D= 20 was a downscaling factor, which

we chose based on observations from our simulations, which suggested that the
expected number of read pairs scaled down 20 times provided a classifier with high
sensitivity without affecting specificity at multiple copy number states. Selection
and hard-coding of the parameter D was the only fingerprint of “training” AA
based on the simulation “evaluation set”, otherwise all development of AA was
done prior to evaluation on the simulated examples.

B) AA pipeline:
AA implemented a series of steps to start from a seed interval and ultimately

reconstruct the full structure of the amplicon and provided informative results
from each stage:

(i) Interval search: In this step, AA started with the seed interval and iteratively
identified the list of intervals belonging to the amplicon. It started by creating
a max-heap data-structure storing the seed interval.

a. AA repeated the following steps until the max-heap was empty or after
10 iterations (Fig. 1b).

● In each iteration, AA selected an interval and determined the
discordant read pair biclusters in a CN-sensitive fashion and
selected biclusters with the mate mapping outside previously seen
intervals.

● It then attempted to extend the bicluster by querying whether the
extended portion is amplified. A query segment was classified as
amplified if it had at least 20% of windows(ws= 10 kbp) with
coverage > θ10,000+ 3σ10,000, or if it was smaller than 20 kbp and
contained at least two discordant edges (bicluster size correspond-
ing to CN= 2). AA then efficiently extended the query bicluster by
iteratively doubling the size of the extended portion until the
extension is found to be amplified and then iteratively reduced the
extension query size by half. If AA was able to successfully extend
the query bicluster, then it extended it further by 100 kbp and
recorded the extended interval for future iterations.

● After AA recorded all amplified neighbors, AA marked the
interval as seen, updated the max-heap ordered by the number of
discordant read pairs connected to previously seen intervals and
greedily picked the interval at the top of the heap for the next
iteration.

b. AA reported all amplified intervals from the extension step.

(ii) Interval rearrangements, partition, and visualization:

a. AA calculated all the coverage meanshift boundaries and initial copy
number estimates for corresponding segments (Fig. 1c).

b. It then created the list of discordant read pair biclusters with bicluster
size thresholds determined by the CN estimates (or differences)
(Fig. 1d).

c. Additionally, for meanshift boundaries where it did not find a matching
discordant read bicluster, it performed a sensitive local search for
discordant read pairs with a bicluster size threshold of just two read pairs
(Fig. 1e).

d. Finally, it created the set of genomic locations of all rearrangements with
a discordant read pair bicluster or a meanshift boundaries with no
matching discordant reads. Using this set of locations, it partitioned all
the intervals into sequence edges.

e. For the output from the second stage, AA created a single plot called the
SV view, which displayed the interval set with the coverage histogram,
initial copy number estimates of the meanshift segments and the
discordant read biclusters.

(iii) Breakpoint graph construction: AA used the sequence edge partitions to
construct a breakpoint graph32 (Fig. 1f).

a. For each sequence edge, it created two breakpoint vertices marking the
start and end of the genomic segment and added a sequence edge
connecting the two vertices.

b. AA augmented the vertex set with a special source vertex.
c. For each discordant read bicluster, it added a discordant breakpoint edge

connecting the respective endpoints of the corresponding sequence
edges if both the clusters belonged to the interval set.

d. For all biclusters with one cluster outside the interval set, it introduced a
source breakpoint edge connecting the source vertex to the breakpoint
vertices corresponding to the clusters within the amplicon intervals.

e. It also added source breakpoint edges connecting the source vertex to
breakpoint vertices corresponding to meanshift vertices with no
corresponding discordant biclusters and to endpoints of the amplicon
intervals.

f. Finally, AA connected breakpoint pairs corresponding to consecutive
sequence edges within each interval with concordant breakpoint edges.

g. For each sequence edge and breakpoint edge, AA recorded the number
of reads and read pairs respectively mapping to the edge.
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A correctly reconstructed breakpoint graph represents a superimposition of all
amplicon structures. Each cyclic structure forms a cycle of alternating sequence and
breakpoint edges. A linear structure with endpoints connected to genomic
positions outside the cycle, can be represented as an alternating closed walk starting
and ending at the source vertex. The breakpoint graph construction may not
always be complete due to missing edges leading to inaccuracies in final prediction
of the structures. This problem was partially alleviated by the fact that, if AA failed
to detect a discordant breakpoint edge, but detected the locations of the
rearrangement through meanshift boundaries, then the corresponding amplicon
structures were represented as one or more walks starting and ending at the source
vertex. Henceforth, we restrict the definition of cycle in the breakpoint graph, as a
closed walk with alternating sequence edges and breakpoint edges with the
exception that the walk may contain two consecutive breakpoint edges connected
to the source at most once.

(iv) Copy number estimation using balanced flow optimization: Next, we note
that the CN of each edge is the sum of CNs of each amplicon structure
where each traversal of the edge is counted separately. As a result, the copy
numbers in the graph follow a balanced flow property wherein the CN of a
sequence edge matches the sums of CNs of breakpoint edges connected to
each breakpoint vertex of the sequence edge. AA modeled the number of
read fragments mapping to each edge as a Poisson distribution with the
parameters determined by the CN, edge length and sequence coverage
parameters. Under this model, AA estimated the copy number CNseq for
each sequence edge and CNbp for each breakpoint edge by optimizing a
balanced flow (linear constraints) with the convex objective function:24

X
seq2SEQG

θ1000 � CNseq=R� kseq � ln θ1000 � CNseq=R
� �

þ
X

bp2BPG
SCNbp

� kbp � ln SCNbp

� �

where SEQG represents all sequence edges and BPG represents all breakpoint
edges in breakpoint graph G, kseq, and kbp represent the number of reads
mapping to sequence edge seq and the number of read pairs mapping across
breakpoint edge bp respectively with the constraint:

8v 2 VGð Þ; CNseqv
¼

X
8bpjv2bp2BPG

CNbp

where seqv represents the sequence edge connected to breakpoint vertex v,
VG represents set of breakpoint vertices in breakpoint graph G. The optimal
solution for the balanced flow was obtained using the convex optimization
package Mosek version 8.0.0.60 (https://www.mosek.com). For the third
stage output, AA reported the graph edges and their copy counts as text
output.

(v) Cycle decomposition: As described above, a linear or cyclic amplicon
structure can be represented as one or more cycles in the breakpoint graph.
However, even with correct reconstruction and CN assignment to the
breakpoint graph, the cycles cannot always be inferred unambiguously,
especially with repeated traversals of an edge. Conversely, there may be two
or more possible sets of cycles and associated copy numbers, such that
combining the cycles within each set may finally result in the same
breakpoint graph with the same copy number assignments. Here combina-
tion of cycles simply means summing up the copy numbers for each graph
edge from each cycle. It is not always practical to enumerate all possible
amplicon structures because the number of possible structures can be
exponentially large. To address this issue, we first observed that a cycle
traversing an edge multiple times in the same direction can be divided into
two smaller cycles and conversely, the two cycles can be merged to form the
original cycle. However, if we iteratively merge multiple cycles together, then
changing the order in which the cycles are merged can produce different
resulting structures all with the same edges and copy counts. Based on this
observation, AA decomposed the breakpoint graph in to simple cycles, with
the aim to represent a large number of amplicon structures using relatively
few cycles. We defined a simple cycle as a cycle, which traverses any sequence
edge at most once in each direction and hence cannot be divided into smaller
cycles. We defined the decomposition of the breakpoint graph as a set of
simple cycles with CN assignment such that the CNs of any edges in all the
simple cycles sum up to the CN in the breakpoint graph. Although a
breakpoint graph may have multiple decompositions and the simple cycles in
a single decomposition may not be always be combined to form every
possible amplicon structure, these cases require the breakpoint graph to have
certain complex patterns expected to occur in a small fraction of amplicons.
Instead, AA decomposed the breakpoint graph using a polynomial time
heuristic, which iteratively picked the simple cycle with the highest CN and
decremented the CN from the corresponding edges in the breakpoint graph.
With this algorithm, AA could prioritize the structures that had the highest
CN, as well as the cycles, which occur in a large number of structures
providing a meaningful way of highlighting the important features of the
amplicon. AA provided a text file containing the ordered list of segments

within in each simple cycle. Additionally, AA provided an interactive
visualization of the simple cycles called the “CycleView”, which could be
merged to into larger cycles to investigate possible amplicon structures
(Fig. 1h). In the Cycle View, AA displayed the segments aligned with their
genomic position in the SV view and consecutive segments were placed on
consecutive rows (Figs. 1g, h). If two cycles contained overlapping segments,
then a user could select the cycles, their overlapping segments and merge the
cycles to form larger cycles. The Cycle View provided a way to interpret the
structure of the cycle while visualizing the genomic location and annotations
(Figs. 1i, j).

3) Samples reported by other studies. We ran AA on previously reported
amplicon and provide a comparison of AA reconstructions with previous studies
(Supplementary Information). The samples included:

Dataset (i) contained six samples (HL-60, GLC-1-DM, GLC-2, GLC-3,
COLO320-DM, and COLO320HSR) provided to us by the authors of the original
paper. Each sample was predicted by the original study to contain an amplicon
with the oncogene MYC, along with PCR validation of breakpoint edges. We
mapped the WGS samples to with coverage between 4.6× and 10.5× and remapped
the reads to hg19 reference genome with BWA MEM. We picked the seed intervals
using the ReadDepth as described in Methods 1.

Dataset (ii) had three glioblastoma samples (TCGA-06-0648, TCGA-06-0145,
and TCGA-06-0152) from Sanborn et al.20, also studied by Dzamba et al.19. We
downsampled the bam files to coverage between 4×− 7× by selecting read pairs
with specific read group identifiers. The read group identifiers were selected to be
sets of identifiers with the same read length and roughly similar insert length. The
exact identifiers selected are mentioned in Supplementary Information. We picked
seed intervals based on calls from CNV calling tool ReadDepth with copy number
> 5 and size > 100 kbp as described in Methods 1A.

Dataset (iii) consisted of 12 HPV infected cancer samples (HNSCC and CESC)
from Akagi et al28. For each sample, we predicted the HPV strain as described in
Methods 13, remapped all the reads to the combined reference by concatenating
the hg19 human reference genome to the reference genome of predicted HPV
strain, and used the interval corresponding to the predicted HPV genome as the
seed interval.

4) Simulation algorithm. We developed a simulation algorithm, AAsim, to
simulate 960 amplicons with known “true” structures to measure the accuracy of
AA. Simulations of AAsim can be flexibly adjusted through multiple input para-
meters including: i) interval size, ii) copy number, iii) number of rearrangements,
iv) probability of duplication, and v) depth of coverage. To allow testing, the
reconstruction without the bias of seed selection, AAsim simulated viral (HPV16)
human hybrid structures. The HPV16 genome served as a de facto seed interval
such that AA could be tested without providing any additional information about
the span of the amplicon. AAsim simulated ecDNA structures through the fol-
lowing steps:

1. Chose a random location on the human genome and integrate the HPV16
genome at this location.

2. Randomly select an interval of input interval size around the site of
integration and circularize it to create an ecDNA element containing the
human interval with the integrated virus.

3. Iteratively perform rearrangements on the ecDNA, including deletions,
duplications, inversions, and translocations such that in each iteration.
Each type of rearrangement is selected with preset probabilities, as
described below. The breakpoint coordinates for each rearrangement are
chosen uniformly at random from the entire ecDNA structure, but
rearrangements that deleted the viral genome entirely were not permitted.
Iterations were performed until the required number of rearrangements were
induced.

4. Record the order of segments in the final structure to be used as “truth” set
and assigned a copy count to the ecDNA using the input parameter.

5. Generate 100-bp paired-end reads from the ecDNA using the ART Illumina
read simulator33 with given depth of coverage. Reads are also generated from
other regions of the reference genome for AA to estimate the profile of the
sequencing depth.

The output of AAsim included the target “true” amplicon structures and the
paired-end reads simulated for these amplicons. The values chosen for the input
parameters were: i) Interval size: 40 kbp, 160 kbp, 640 kbp, 2.4 Mbp; ii) Copy
number: 4,16, 32; iii) Number of rearrangements: 0, 4, 8, 16, 32; iv) Probability of
duplication: 0, 0.25, 0.5, 0.75; v) Depth of coverage: 1, 4, 16, 32. In total, we
generated 960 simulations for all combinations of these parameters. The sets of
simulations with increasing duplication probability presented test sets with
increased difficulty of reconstruction due to larger number of cycles per structures,
as well as larger number of segments. To verify that evaluating on simulated
episomes alone vs episomes with WGS background does not significantly affect the
accuracy estimate, we randomly selected 20 simulated episomes, merged the reads
with reads from a simulated tumor genome and compared the number of errors
AA in reconstructions of the matched pairs of simulations. In order to estimate the
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runtime of AA for larger amplicons, we simulated 24 more structures and reads
with parameters: i) Interval size: 5 Mbp, 10Mbp; ii) Copy number: 32; iii) Number
of rearrangements: 0, 8, 32; iv) Probability of duplication: 0, 0.25, 0.5, 0.75; v)
Depth of coverage: 32. To test for change in accuracy with copy number and
coverage, we downsampled the reads to i) Copy number: 4,16, 32; ii) Depth of
coverage: 1, 4, 16, 32.

5) Measuring accuracy of AA. A) Accuracy of methods for SV and CNV analysis
SV and CNV analyses provide the building blocks for AA to accurately

reconstruct the breakpoint graph and ultimately predict the full structure. In order
to establish the reliability of these critical components, we measured the accuracy of
methods for interval detection, discordant edge detection, and meanshift edge
detection. In terms of interval detection, even though AAsim simulated an ecDNA
circularized from a single interval, the final structure can have multiple intervals
due to deletion of intermediate segments. We measured the number of intervals
completely identified by AA (TP), the number of intervals not completely identified
by AA (FN), as well as the number intervals reported by AA, which did not have
any amplification (FP). For measuring the accuracy of CNV detection, we
measured the number of CNV boundaries correctly (within 10 kbp) identified by
the meanshift edge detection algorithm (TP), the number of CNV boundaries not
identified (FN), as well as the number of locations reported which actually did not
have a copy number change (FP). Similarly, for discordant edges, we reported the
number of edges with both breakpoints predicted correctly (within 300 bp) (TP),
one or more breakpoints not detected (FN) and discordant edges reported which
did not exist in the true structure (FP) (Supplementary Fig. 7a-c).

B) Edit distance computation and reporting
For measuring the accuracy of final amplicon reconstruction, we defined a

distance measure to quantify the difference between the predicted structure as
compared with the true structure from the simulation. Inspired by the genome
sorting problem, the goal of the distance measure is to represent the number of
operations to transform the predicted structure into the true structure. The genome
sorting problem aims to find the distance between two related genomes by
counting the minimum number of operations to transform one genome into
another. These operations may include inversions32, translocations34, or double-
cut-and-join (DCJ) operations35. We adapted the DCJ operation to measure
reconstruction accuracy by defining the Repeat-DCJ (RDCJ) distance, which can
separately count the portion of operations caused due to reconstruction errors and
due to alternative traversals across repeats (Supplementary Fig. 6). The RDCJ
distance is defined as the sum of a two-part measure: i) repeat branch swaps and ii)
reconstruction errors. First, the prediction may have errors caused by inaccurate
breakpoint graph construction including missing or false breakpoint edges and
inaccurate copy numbers of segments. We denote these as reconstruction errors as
they represent errors caused by the reconstruction algorithm. Reconstruction errors
involve addition and deletion of breakpoint edges. On the other hand, under
perfect graph construction, the only operation needed to transform the predicted
structure into the true structure is to transform the order of traversal across
repeated segments without any change in the set of breakpoint edges used. We call
this operation a repeat branch swap. Two cycles can be merged together through a
single repeat branch swap. In measuring the RDCJ distance, we simultaneously
minimize the number of reconstruction error corrections and repeat branch swaps
required for the transformation.

Under the RDCJ model, we count the edits on each segment independently and
sum these up to obtain the total distance for the entire reconstruction. To achieve
this, we represent each segment by a switch. A switch is a bipartite graph where the
two parts represent the start and end of the segment, respectively, and the vertices
are the union of breakpoint vertices from the true and predicted structures. If a
breakpoint vertex is traversed multiple times in either of the structures, then we
create multiple copies of the vertex equal to the maximum number of traversals in
the two structures. We define a switch graph as a graph, which consists of all the
switches as subgraphs connected through connective edges, which are union of the
breakpoint edges from the breakpoint graphs of the true and predicted structures
with appropriate multiplicities. Each switch vertex has exactly one connective edge.
Finally, each of the true and predicted structures form a walk on the switch graph
inducing respective matchings within the bipartite switches. The edges within the
matching, called match edges, connect consecutive breakpoint edges in the
structure. As a result, we represent the edit distance of the predicted structure to
the true structure by counting the number of operations of transforming each
switch independently.

Consider a switch with vertices V1, V3 on one shore, and V2, V4 on the other
shore of the bipartite graph with switch edges (V1, V2) and (V3, V4). In using a
repeat branch swap to transform the predicted matching to the true one, we can,
for example, replace edges (V1, V2) and (V3, V4) by two new edges (V1, V4) and (V3,
V2). Note that a repeat branch swap represents a copy number neutral operation
and correspondingly, the number of switch edges does not change. As the set of
vertices in the matching is invariant, the set of connective edges connected to
matched vertices also does not change. In contrast, correction of reconstruction
errors involves addition, deletion or reassignment of exactly one vertex of a match
edge.

To measure the accuracy of AA, we counted and reported the required the
number of the operations of both types across all switches for each simulated
structure. We classified the 960 simulated structures into four groups based on the

value of the parameter probability of duplication, representing amplicons, which
are increasingly difficult to reconstruct. To provide a standard yardstick, we
compared the reconstruction errors of AA predictions against those of a random
predictor. The random amplicon structure consisted of a randomly shuffled order
of all segments from the true amplicon structure. Notably, the average performance
of the random predictor closely followed two times number of segments in the
amplicon where number of segments is measured by adding up counts of segments.
Based on this observation, we defined the error rate of one or more predictions as
the total reconstruction errors as a percentage of 2 × total number of segments
(Figs. 1k–n, Supplementary Fig. 7d-g).

6) Runtime computation. We recorded the runtime of AA for each simulated
amplicon using the Python function time.time(). We plotted a scatter plot of the
runtime as a function of the total DNA content of the amplicon on a logscale graph
to capture performance on small and large amplicons (Supplementary Fig. 8b). The
total DNA content was defined as length of ecDNA structure × copy number ×
depth of coverage. We plotted the best fit line on the logscale graph for the runtime
as function of the total DNA content using the linregress function available in the
Python library scipy.stats.

7) SRA samples, ReadDepth CNV calls. We used sequencing data from 117
cancer samples including cell lines, patient-derived xenografts (PDXs) and tissue
samples and eight normal control samples originally described in Turner et al.9.
These samples may be downloaded from NCBI Sequence Read Archive (SRA)
under Bioproject (accession number: PRJNA338012). Additionally, we studied
WGS of 18 biological replicates of seven samples totaling to 135 cancer WGS
datasets. Four of these samples had replicates treated with targeted drugs and
glioblastoma PDX GBM39 also had post-treatment replicates (Supplementary
Data 1). FISH results for oncogene probes reported in Turner et al. were used to
mark amplicons to be present on EC only, HSR only or both EC and HSR (Fig. 2d,
Supplementary Data 3).

After reconstruction of amplicons in 117 WGS tumor samples using the
255 seed intervals from ReadDepth, AA reconstructed 135 amplicons, which
consisted of 265 intervals. Although AA merged multiple seed intervals into larger
intervals, AA reported 63 new intervals not intersecting the seed intervals including
possible false positives from repetitive regions (Supplementary Data 2,3).

8) TCGA interval set and somatic CNV identification. We downloaded 22,376
masked CNV call files from TCGA25 generated from Affymetrix 6.0 data for 10,995
cases. We mapped the original calls from hg38 coordinates to hg19 coordinates
using the Liftover tool from UCSC genome browser. We selected 10,494 cases for
which Liftover successfully mapped the calls for at least one cancer sample and one
matched normal sample. For cases with multiple call sets, we took the average copy
number of each segment for cancer and normal call sets, respectively. Next, we
selected the CNV calls in the tumor samples according to the seed interval selection
procedure described in Methods 1. However, we did not exclude the calls from the
blacklisted regions since we believe those regions only need to be blacklisted due to
artifacts specific to WGS samples and not array data. Using this method, we
obtained amplified intervals in 2527 cancer cases. Comparing the copy number
calls in cancer samples with copy numbers in matched normal samples, we filtered
out calls where the difference in copy number was <3 (specifically, copy number at
least 5 when there was no CNV call in the normal sample). This criterion only
filtered out a small number of intervals resulting in 12,162 intervals in 2513 cancer
cases. We used this set for further analysis.

9) Overlap of AA amplicons with intervals amplified in TCGA. We tested
whether amplicons reconstructed by AA in sample set 1 were representative of the
focal amplifications across human cancer by testing whether the overlap between
AA amplicons with TCGA intervals was significantly larger than expected by
random change. As originally described in Turner et al.9, for each sample, we
computed a match score between the AA amplicons for the sample and the TCGA
intervals from the corresponding cancer types, which were amplified with fre-
quency > 1%. The match score for the sample was simply the sum of frequencies of
the TCGA intervals within the corresponding cancer types that overlapped an
amplicon from the sample. We recorded the cumulative match score as the sum of
match scores for all samples in sample set 1.

To test if the cumulative match score for the TCGA intervals was significantly
larger than expected by random chance, we generated 720 million permutations of
the TCGA intervals, which were amplified with frequency > 1% in each cancer type
by assigning random positions to the intervals within the human reference genome
while maintaining their size. We computed the cumulative match score of each
permutation with sample set 1 using the same procedure as above and found that
eight permutations had a larger match score than the original TCGA intervals. The
p-value of the significance of overlap between amplicons in sample set 1 and TCGA
intervals was reported as 8/720 million= 1.1×10−8.

10) Size and copy number determination and exponential distribution. The
size of an amplified interval was defined as the sum of sizes of all amplified
segments with copy number > 5 within the interval. The size of the amplicon was
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the sum of sizes of all intervals in the amplicon. The copy number of an interval
was the average copy of the amplified segments in the interval weighted by their
size. Similarly, the average copy number of an amplicon was the weighted average
of amplified segments in all intervals of the amplicon weighted by their size. In the
analysis of final reconstructions, we used the copy numbers assigned to sequence
edges by AA rather than CNV calls from ReadDepth. We plotted the scatter plot
for copy number vs size of the 135 AA amplicons for the 117 samples and the
TCGA intervals (Fig. 2d). For direct comparison, we also plotted the copy number
vs size of the AA intervals (Supplementary Fig. 10). We observed six AA amplicons
and three AA intervals with sizes > 3Mbp and copy number > 30, whereas we
observed exactly one TCGA interval satisfying these constraints. Particularly, the
CNV array calls were capped off at copy number around 40. We verified that this
was the case for the amplicons from all four TCGA WGS sample from previous
publications where the sequencing data reported higher copy counts.

Next, we plotted histograms for the copy number and size of the TCGA
intervals with bin sizes of copy number 1 and size 400 kbp where the height of the
histogram was log scaled. (Fig. 2d). Both histograms displayed a linear decay
indicating exponential distributions. We obtained the best fit lines for these
histograms using the polyfit function in the Python package Numpy based on 20
bins each for copy number (5–25) and sizes (0 bp–8Mbp) beyond which the data
became too sparse. Estimates for the means of the exponential distributions, 3.16
copies and 1.74 Mbp, were obtained using the negative inverse of the slope of the
best fit lines in both cases.

11) Determination of multi-interval and multi-chromosomal amplicons. We
compared the sizes of amplicons containing a single genomic interval to sizes
of amplicons with multiple intervals from one or more chromosomes. To be more
conservative in the interval selection and avoid falsely detected interval from
repetitive regions, we selected intervals based on segments reported to be amplified
by the meanshift based CNV analysis. As a result, only high confidence intervals
detected by the CNV analysis at a resolution of 10 kbp were selected. Next, for a
uniform definition of interval, only for this analysis, we merged all CNV segments
within 5 Mbp of a neighboring segment into a single interval. After merging these
segments, we classified the amplicons into three categories: (i) Clustered: 104
amplicons containing a single interval, (ii) MultiCluster: 14 amplicons containing
multiple intervals from the same chromosome, and (iii) MultiChrom: 17 amplicons
containing multiple intervals from multiple chromosomes (Fig. 2f).

We plotted the distribution of amplicon sizes of the entire amplicon for each of
the three categories, as well as the size distribution of the set of all intervals in all
amplicons in the MultiCluster and MultiChrom categories using the Python
Seaborn library function “violinplot”. We compared the sizes of all amplicons and
intervals in the MultiCluster and MultiChrom category to the sizes of all Clustered
amplicons using Rank-Sum test available through Python Scipy.Stats library
function “ranksums”. We observed that the MultiCluster (p= 1.58×10−2, mean=
4.7 Mbp) and MultiChrom (p= 6.18×10−4, mean= 7.7 Mbp) amplicons were
significantly larger than the Clustered amplicons (mean= 2.3 Mbp). However, the
sizes of intervals from all amplicons in the MultiCluster (mean= 2.2 Mbp) and
MultiChrom (mean= 2.7 Mbp) categories did not show any significant difference
from the Clustered amplicons.

12) TCGA subtype-specific enrichment. We considered the significance that the
amplicons amplified specifically amplified oncogenes in a tumor-type-specific
fashion. To compute the significance, we assume under the null model that each
amplicon interval is randomly positioned. For a genome of length G, the prob-
ability that amplicon a of length la intersects with oncogene g of length lg is A(a,g)=
(la+ lg)/G. Under the approximate assumption that all amplified intervals are
independent of each other, the probability that at least one amplified interval in
sample s randomly intersect g is B s;gð Þ ¼ 1� Q

a2s
ð1� A s;gð ÞÞ. As each sample is

independent, the number of samples with an amplicon intersecting a particular
oncogene follows a Poisson Binomial distribution with n trials where n is the
number of samples with success probabilities B(1, g), …, B(n,g). Thus, if for each
tumor type with n samples, g is amplified in k samples, then we calculated the p-
value for this observation under the null model using the PoiBin function provided
by https://github.com/tsakim/poibin. To answer whether amplifications of g are
significantly enriched in the given tumor type, we recorded an enrichment if the
Bonferroni-corrected p-value was < 0.05, using correction factor G/lg (Fig. 2g).

13) Similarity of amplicons overlapping an oncogene. To investigate whether
amplicons containing an oncogene also contained other genomic elements
that played a significant role in the formation or amplification process, we mea-
sured the similarity between amplicons from different samples containing one of
the oncogenes EGFR, MYC, and ERBB2 from the WGS dataset of 117 samples. For
a given oncogene, if additional genomic elements played a significant role, then we
would expect a larger overlap within amplicons from multiple samples containing
the oncogene than by random chance. We measured the pairwise similarity
between amplicons from two samples containing an oncogene, we calculated the
size of the overlap between the amplicons and quantified the significance of the size
of the overlap with respect to a null distribution for the size of the overlap. The null
distribution was set as the distribution of size of overlap for all valid configurations

for both amplicons, where a valid configuration of an amplicon was defined as any
assignment of a chromosomal location for the start position of the first interval
such that all the intervals maintained their order and sizes as the observed
amplicon, as well as the distances between consecutive intervals such that at least
one interval contains the given oncogene. Given a pair of amplicons, we estimated
the null distribution by computing the overlap for all valid configurations obtained
by shifting the amplicon intervals from the smallest to the largest possible genomic
location in steps of 10,000 bp. Finally, for all amplicons containing each of the three
oncogenes, we measured the significance of all pairwise similarities and visualized
these through three QQ plots (Supplementary Fig. 11). Through the QQ plots, we
observed that in our sample set, that there was significant similarity within
amplicons from multiple samples for any of the oncogenes. This suggests that there
was no single element that played a significant role in the formation or amplifi-
cation process.

14) Description of cervical cancer samples. We downloaded the sequencing data
for 68 cervical cancer samples with matched normal samples from TCGA25. We
downloaded 337 HPV reference genomes from PapillomaVirus Episteme database
(PaVE)36 on 15 August 2016 and concatenated these with the hg19 reference
chromosomes to create an hg19_hpv337 reference genome. For each of the sam-
ples, we randomly extracted 30 million read pairs using the HTSlib bamshuf+
bam2fastq utilities and aligned these to the hg19_hpv337 reference genome using
BWA mem. We determined the existence and strain of HPV infecting each sample
by identifying the strain with the highest number of mapped reads. For each of the
identified strains, we separately concatenated the genome of the single strain to the
hg19 chromosomes, to create the sample-specific reference genome, for example,
hg19_hpv16 and mapped all the reads in the sample to this reference genome using
BWA-mem. Finally, for each sample, we ran AA with the --sensitive-ms (Methods
2) option on the mapped reads with the reference genome of the specific HPV
strain as the seed interval. From the reconstructions, we combined chromosomal
intervals within 5 Mbp and if AA identified multiple amplified intervals connected
to the HPV genome, they were treated as different amplicons unless connected to
each other through discordant edges. We selected the “amplicons” for which the
weighted average of the copy numbers of all amplified (CN > 2.5) sequence edges
from the human chromosomes was >3.0. We plotted a scatter plot for the copy
number vs size of all amplicons similar to Fig. 2e (Supplementary Fig. 12) and
observed that virus-induced amplicons had a mean size of 155 kbp and mean copy
number of 7.04.

15) Identification of unifocal and bifocal signature. We developed criteria for
calling a unifocal and bifocal signature and for each “amplicon” identified
according to Methods 14, we manually searched for unifocal and bifocal signatures.
An amplicon was defined to contain a unifocal signature if we found two reciprocal
discordant edges connecting the virus genome to the human genome such that
these edges had opposite strand on each of the genomes and the positions of the
edges on the human genome were within 1 kbp of each other. An amplicon was
defined to contain a “strong” bifocal signature if it contained a pair of chimeric
edges with opposite orientations, which flanked the entire amplified region on the
human genome. Otherwise, an amplicon was defined to contain a “weak” bifocal
signature if it contained a pair of chimeric edges with opposite orientations such
that all the segments within the region flanked by these edges had higher copy
number than all the other segments.

16) Simulation of unifocal and bifocal integrations. We hypothesized that the
formation of amplicons with a unifocal signature was initiated by a unifocal
integration of the virus into the human genome, whereas a bifocal integration is a
more likely mechanism for the formation of amplicons with a bifocal signature. To
test this hypothesis, we simulated four sets of amplicons where each set consisted
for 40 simulations. Out of the four sets, two consisted of amplicons originating
from unifocal integrations and the other two sets consisted of amplicon originating
from bifocal integrations. For the two types of integration, we simulated one set
each of linear chromosomal amplicons and circular extrachromosomal amplicons.
Thus, if four-ordered segments ABCD represent a section of the normal human
genome and V represents a viral segment, then the circular and linear amplicons
with unifocal integration had the initial structures (BVC) and BVC, respectively.
The circular and linear amplicons with bifocal integration had the initial structures
(BV) and BVB, respectively. Here “()” represents a circular structure. For each set,
the length of an amplicon, B+ C in case of amplicons with unifocal integration and
B in case of the amplicons with bifocal integrations, was chosen from an expo-
nential distribution with mean 155 kbp matching the mean of the amplicons
detected in the 68 cervical cancer samples. In case of the unifocal distribution, the
location of integration defining the segments B and C was chosen uniformly
through the amplicon interval. For each simulation in all the four sets, we itera-
tively performed 20 rearrangements, which was comparable to the maximum
number of rearrangements in our sample set. The type of each rearrangement was
chosen randomly from the set: {translocated duplication, tandem duplication,
inverted duplication, translocation, inversion, deletion} with probabilities: {0.19,
0.19, 0.19, 0.19, 0.19, 0.05}, respectively and the coordinates for each rearrangement
were chosen uniformly randomly from the amplicon structure formed after the
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previous iteration of rearrangement with the constraint that the rearrangement
may not delete all segments from the viral genome. The probability of deletion was
lower than the other rearrangements to make sure that too many deletions did not
remove large chunks from the amplicon. After each iteration, we tested whether the
amplicon structure could show a unifocal signature based on the existence of a pair
of proximal viral connections to opposite strand of the human genome within 1
kbp of each other. Similarly, we tested if the amplicon structure could show bifocal
signature by checking if the virus had connection flanking the outmost ends of the
human segments in the amplicon. For each set of 40 simulations and after each
iteration of rearrangements, we reported the number of amplicons that showed a
unifocal signature and the number of amplicons that showed a bifocal signature
(Supplementary Fig. 13). We found high fidelity between the type of integration
and the observed signature in the amplicon. To elaborate, we found that most
amplicons with unifocal and bifocal integrations showed unifocal and bifocal sig-
natures respectively, but it was rare to observe amplicons with a unifocal inte-
gration to show a bifocal signature or amplicons with a bifocal integration to show
a unifocal signature. This suggests that amplicons with bifocal signatures were
unlikely to have originated from a unifocal integration of the virus, whereas
amplicons with a unifocal signature were highly likely to have originated from a
unifocal integration.

Code availability. The AmpliconArchitect software described in the manuscript is
available at https://github.com/virajbdeshpande/AmpliconArchitect.

Data availability
WGS data for sample set 1 and six replicates for sample GBM39 were downloaded
from the NCBI Sequence Read Archive (SRA) under BioProject (accession number:
PRJNA338012). Twelve replicates for other samples are uploaded on SRA under
BioProject (accession number: PRJNA437014). Source data for the figures is pro-
vided in a Source Data file. The reconstructions described in this manuscript may be
downloaded from https://figshare.com/articles/AmpliconArchitect_reconstructions/
5950339 including (a) all reconstructions on previously reported amplicons, (b) all
reconstructions from sample set 1 and replicates, (c) all examples of simple cycles,
(d) all multi-interval amplicons, (e) all multi-chromosomal amplicons, (f) sample
with Breakage-Fusion-Bridge signature and (g) all reconstructions from sample set
2. All other relevant data are available upon request.
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