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The legacy effects of keystone individuals
on collective behaviour scale to how long
they remain within a group

Jonathan N. Pruitt1 and Noa Pinter-Wollman2

1Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
2BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA

The collective behaviour of social groups is often strongly influenced by one or

few individuals, termed here ‘keystone individuals’. We examined whether

the influence of keystone individuals on collective behaviour lingers after

their departure and whether these lingering effects scale with their tenure in

the group. In the social spider, Stegodyphus dumicola, colonies’ boldest individ-

uals wield a disproportionately large influence over colony behaviour. We

experimentally manipulated keystones’ tenure in laboratory-housed colonies

and tracked their legacy effects on collective prey capture following their

removal. We found that bolder keystones caused more aggressive collective

foraging behaviour and catalysed greater inter-individual variation in bold-

ness within their colonies. The longer keystones remained in a colony, the

longer both of these effects lingered after their departure. Our data demon-

strate that, long after their disappearance, keystones have large and lasting

effects on social dynamics at both the individual and colony levels.
1. Introduction
The ability to execute effective collective behaviour is vital for social groups. The

coordinated gliding of fish schools when evading predators or the emergent

nest structures of social insects represent collective adaptations that afford

groups advantages that are not achievable for solitary individuals [1]. Such collec-

tive traits have captured the imagination of scientists including ecologists [2,3],

behaviourists [4,5], mathematicians [6] and engineers [7,8], perhaps, more than

anything else, because these collective traits are thought to emerge without central

control [9]. In classic models of collective behaviour [10,11], individuals are treated

as functionally equivalent. Yet, a cursory glance at any group reveals that, even

among clones, no two individuals behave in precisely the same way [12]. Only

recently have models of collective behaviour begun to predict how such behav-

ioural variation is expected to impact collective outcomes (e.g. [13,14]). We

consider here an extreme case of how individual variation can impact collective

behaviour, where the behavioural traits of just one or a few highly influential

individuals shape the behaviour of entire societies.

We define individuals that exhibit a disproportionate large influence over col-

lective behaviour as keystone individuals (or just ‘keystones’). Though one may

reason that keystone individuals might be a relatively rare phenomenon, a

recent literature review on the topic identified more than 80 case studies where

just one or a few highly influential group members shape group behaviour and

success [15]. Movement leaders [16–19], knowledgeable tutors [20–22], hyper-

aggressive males [23], catalytic individuals [24,25] and disease superspreaders

[26] represent just some of the ways in which keystone phenotypes can influence

group function.

The reliance of a group on one influential individual may reduce its robust-

ness to perturbation. For instance, groups’ ideal collective phenotype could be

compromised if their keystone individuals leave or die [27]. Such groups might
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also be more susceptible to manipulation by predators or

pathogens because the keystone may serve as a fulcrum by

which an exploitative agent can manipulate the entire

group [28,29]. A possible solution to this potential system fra-

gility would be that keystone individuals impose long-lasting

changes on the behaviour of other group members which, in

turn, could maintain their influence over the group’s collec-

tive phenotypes even after their departure. Although

catalytic effects by keystone individuals have been suggested

for some social systems [24,25,30], there are few experimen-

tally verified examples of these effects being long lasting

(but see: [31,32]), and even fewer studies have determined

what factors control the duration of these effects. Determin-

ing what controls the onset and duration of behavioural

changes induced by keystone individuals is important for

understanding the robustness of collective systems.

Social spiders of the genus Stegodyphus are a superb model

for the study of keystone individuals. Social spiders live in

multi-female societies that are inbred and exhibit female-

biased sex ratios [33,34] and individuals cooperate in web

maintenance, prey capture and alloparental care [35,36]. In

Stegodyphus dumicola (Araneae, Erasidae), colonies differ sub-

stantially in their collective aggressiveness during prey

capture [37,38]. Some colonies attack prey rapidly with many

attackers, whereas other colonies are slow to attack and do so

with few attackers. Such inter-colony variation is a common

phenomenon in social insects [39], group-living spiders

[38,40], and even vertebrates [41,42], though its causes and eco-

logical consequences are often unknown [43,44]. For social

spiders, collective prey capture requires a surprisingly high

level of coordination. For instance, evidence suggests that the

first few spiders to locate a prey item produce recruitment sig-

nals via web-borne vibrations that elicit further attack responses

by other individuals [45]. Additionally, social spiders display

synchronized pausing behaviour during attacks, where hunting

groups alternate bouts of collective approach with collective

pauses, which allow colony members to reorient towards strug-

gling prey items in the absence of vibrational interference of

other colony members in motion [46]. In S. dumicola, colonies’

collective aggressiveness and success are both predicted by

the behavioural phenotype of the single boldest individual

within the colony. Colonies with just one very bold individual

exhibit heightened aggressiveness during prey capture,

increased within-colony behavioural variation and gain mass

more rapidly in laboratory conditions relative to all-shy colonies

[47]. When there are two or more bold individuals within a

group, the boldest individual becomes the primary driver of

the group’s collective behaviour [37]. Recent data suggest that

these bold keystones are capable of such influence because

they catalyse lasting changes in the boldness/aggressiveness

of other group members, such that particularly bold keystones

beget bolder behaviour in their normally shy colony mates.

Here we explore what controls the tenure of the keystone

individual’s long-lasting impacts on group collective behav-

iour. We term the lingering behavioural changes imposed

by the keystone individual ‘legacy effects’. We reason that

the longer keystone individuals remain within groups, the

greater their influence will be on the behaviour of their

fellow group members. Specifically, we test the following

hypotheses: (H1) the influence of keystone individuals will

linger following their departure but these legacy effects will

dissipate with time; (H2) the duration of keystones’ legacy

effects will scale positively to the amount of time that they
spent within the group prior to removal and (H3) keystones

with longer tenure will create a larger shift in the behaviour

of their fellow group members.
2. Material and methods
(a) Collection and laboratory maintenance
Whole colonies (N ¼ 35) of S. dumicola were collected in February

2014 along the southern Kalahari Desert near Upington, North-

ern Cape, South Africa (S 28827011.800 E 21822051.800). Colonies

ranged in size from 232 to 689 individuals. Spiders were trans-

ported to the laboratory at the University of Pittsburgh where

our experiments were conducted. Only mature females were

used in the studies reported here. Colonies were provided a

maintenance diet of ad libitum domestic crickets twice weekly.

All of our experimental colonies were established within three

weeks of returning to laboratory as detailed below.

(b) Boldness assays
We assessed individuals’ boldness using an established aversive

stimulus assay [38,48]. Trials were initiated by placing each spider

in a clean container (radius ¼ 7 cm, depth¼ 4 cm) and giving

them 30 s to acclimate. After 30 s of acclimation, we administe-

red two rapid puffs of air to the anterior prosoma of the spider

using an infant nose-cleaning bulb. Like many spiders [49,50],

Stegodyphus respond to this stimulus by drawing in their legs in

the form of a death feign. We then recorded spiders’ latency to

resume a normal posture and move one complete body length.

Trials were terminated after 10 min (600 s). Some individuals

resume normal activity rapidly, which we refer to as bold behaviour,

and others fail to resume normal activity even after 10 min, which

we refer to as shy behaviour. In S. dumicola, individuals’ latency

to resume movement is highly repeatable over several weeks

[37,51,52] and is tightly linked with individuals’ tendency to partici-

pate in prey capture [48]. Shorter latencies to resume movement

correspond to greater boldness, consequently, we subtract individ-

uals’ latency from 600 s to generate a more intuitive ‘boldness

index’, where larger numbers correspond to greater boldness. All

individuals were uniquely tagged using model paint atop their

cephalothorax to allow for individual identification.

(c) Establishing and assaying colonies
Experimental colonies were housed in 490 ml deli containers each

containing a tangled ball of poultry wiring to facilitate web con-

struction. Colonies were established 20 days prior to the start of

our removal experiment. ‘Keystone removal’ colonies were created

with 19 very shy individuals that each exhibited a boldness index

score of zero. To this group of 19 spiders, one haphazardly selected,

putative keystone individual of variable boldness was added to the

group. In some groups, this individual was only slightly bolder

than its fellow colony members (e.g. boldness score 5–150) whereas

in others it was extraordinarily bold (e.g. boldness scores 400–600).

In natural colonies, the vast majority of individuals exhibit a shy be-

havioural type, thus, the phenotypic ratios used in our study

represent a reasonable approximation of those seen in nature [53].

All individuals of an experimental group originated from one natu-

ral colony, thus, natural levels of within-group relatedness and

familiarity were not adulterated [51,54].

To determine the effect of keystones’ tenure on their legacy

effects, we established three treatment groups that varied in the

duration of exposure to the keystone individual (N ¼ 30 colonies

per treatment group): (1) a keystone individual was added on

the day of colony establishment, i.e. 20 days before its subsequent

removal (added on day-20); (2) a keystone was added 10 days after

colony establishment (added on day-10) or (3) a keystone was
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added 15 days after colony establishment (added on day-5). On the

same day (day 0), we removed the keystone from all colonies. Thus,

colonies harboured their keystone for 20, 10 or 5 days. This pro-

cedure held the date of removal and the duration of group

tenure constant among treatments. To control for changes to

group size, we created paired control colonies containing 18 shy

individuals and one putative keystone 20 days prior to the start

of the experiment. We then added one very shy individual 20, 10

or 5 days before the start of the experiment (N ¼ 30 colonies per

control treatment). Then, on the same day that we removed the

keystones in the treatment groups, we removed the added shy con-

trol individuals from their colonies (see electronic supplementary

material, supplement no. 1 for a timeline of the procedure).

Following the removal of the keystone or a control (shy) indi-

vidual, we assayed the collective aggressiveness during staged

prey capture events for all colonies 1, 3, 6, 12 and 24 days after

removal. Colony prey capture was assessed by placing a 1.5 �
1.5 cm piece of white paper within the capture web and vibrating

it using a handheld vibratory device (GoVibe), producing a con-

trolled and consistent stimulus across all trials. Colonies were not

exposed to this vibratory stimulus until day 1 of our experiment

(i.e. after the keystones or control individuals had been removed).

Thus, the vibrating paper represented a novel prey stimulus for

all of our colonies. We recorded the number of attackers that

emerged in response to the stimulus over the next 10 min, and

noted if the keystone individual was among the attackers. We

then provided colonies a four-week-old domestic cricket as a

reward for attacking the stimulus. In nature, the number of indi-

viduals that respond to prey is positively related to the

probability that prey will be successfully subdued [55–57]. This

is particularly true for the largest and most profitable prey,

which colonies require for their continued survival [58,59].

To determine whether the boldness of the keystone individual

influenced the boldness of other colony members, and whether

these effects depended on the duration of time that keystones

remained within their colony, we conducted further individual

boldness assays at the end of our study. After all collective prey cap-

ture assays were complete, we dismantled all of the colonies and

haphazardly selected three to four shy individuals per colony.

Each of these individuals was subjected to three boldness assays

as described above, once per day for 3 consecutive days.
(d) Statistical analyses
To examine whether the effects of the keystone individual dissipate

overtime (H1) and whether the duration of the legacy effect varied

according to the tenure of the keystone individual (H2), we tested

if the number of attackers in the collective prey capture assays

changed over time and among treatments using a repeated

measures ANOVA. Day of collective prey capture trial, treatment

(number of days with keystone or control individual, 5, 10 or 20)

and the interaction between day and treatment were effects in

the model. Because keystone boldness varied among colonies,

and colony aggression scales with the boldness of the keystone

individual [47], we further examined the change over time and

among treatments in the relationship between the boldness of

the keystone individual and number of attackers, which was quan-

tified using Pearson’s correlations. We deemed correlations to be

significantly different across treatment groups if their 95% CIs

failed to overlap, after Laskowski & Pruitt [51]. To examine if

shifts in the behaviour of shy group members was influenced by

keystones’ tenure (H3), we compared the ending boldness indices

of spiders among treatments using an ANOVA. We used the aver-

age of the three trials of each individual as its boldness index

because boldness was highly repeatable (intra-class correlation

coefficient (ICC) ¼ 0.42) [60]. We used both colony mean and stan-

dard deviation of individual boldness for our comparison among

treatments.
Finally, we provide a list of statistics describing the boldness

scores of non-keystone group members at the beginning versus

the end of our experiments. These values were obtained by calcu-

lating the average and standard deviation in boldness scores of

all non-keystone individuals at the start of our experiments and

comparing these values to the average and standard deviation

in boldness scores using three to four representative individuals

per colony at the end of our experiments. Statistical analysis was

conducted in ‘R’ v. 3.1.2 [61].
3. Results
Regardless of how long the keystone had been in the colony,

the number of attackers that responded to prey tended to

decrease over time following the removal of the keystone

(figure 1a). There was a significant change in the number of

attackers over time, and overall, the number of attackers

was significantly lower in the colonies that contained a key-

stone for only 5 days (figure 1a, repeated measures

ANOVA: number of days with keystone (treatment): F2,88 ¼

4.904, p ¼ 0.0095; test day (time): F4,352 ¼ 22.336, p , 0.0001;

time � treatment: F8,352 ¼ 1.664, p ¼ 0.106). No such patterns

were noted in control colonies (figure 1b, repeated measures

ANOVA: number of days with control individual (treatment):

F2,87¼ 0.535, p¼ 0.588; test day (time): F4,351¼ 1.314, p¼ 0.264;

time � treatment: F8,351¼ 1.342, p¼ 0.222). The data meet the

sphericity assumptions according to Mauchly’s test, p . 0.05,

for both control and treatment colonies.

As found in previous studies, the boldness of colonies’ key-

stones was tightly associated with the number of spiders that

attacked during staged prey capture trials. This association

emerged in control colonies regardless of the day that we

measured the colony (figure 2b; electronic supplementary

material, figure S1, Pearson’s correlation: all r . 0.63, all ps ,

0.0001). However, for keystone removal colonies, the correlation

between the removed keystone’s boldness and the aggressive-

ness of the colony decayed over time. This rate of decay was

associated with the duration of time that the keystone had

remained in the colony (figure 2a). Twelve days after the key-

stone was removed, the association between the keystone’s

boldness index and the number of attackers had dissipated in

colonies that contained keystones for only 5 or 10 days. How-

ever, for colonies that contained a keystone for 20 days prior

to its removal, the association between the keystone’s boldness

and the number of attackers lingered for the entirety of the

study, 24 days after the keystone had been removed.

At the end of our study, inter-individual variation in bold-

ness among formerly shy individuals was highest in colonies

that had contained their keystones for longer durations

(figure 3a, ANOVA: F2,85¼ 3.762, p ¼ 0.027). No difference

in inter-individual variation was observed among control treat-

ments (figure 3b, ANOVA: F2,28¼ 0.688, p ¼ 0.511). The colony

average boldness index of formerly shy individuals did

not differ among keystone removal treatments (ANOVA:

F2,86¼ 2.57, p ¼ 0.082) or control removal treatments

(ANOVA: F2,28 ¼ 2.286, p ¼ 0.12) at the end of experiments.

Regardless of treatment, however, the average boldness of for-

merly shy individuals increased during our experiments. At

the beginning of all treatments the mean+ s.d. boldness of

the shy individuals was 0+0. At the end of the experiments

the average boldness for the various treatments was: keystone

removal 5 ¼ 249.63+63.02; keystone removal 10 ¼ 230.41+
57.47; keystone removal 20 ¼ 265.87+62.73; control removal
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5 ¼ 289.83+31.5; control removal 10 ¼ 253.54+49.01 and

control removal 20 ¼ 247.19+59.91.

As seen in previous experiments, keystones’ participation in

foraging events tapered off rapidly over time in all of our control

colonies (electronic supplementary material, figure S2). This

is despite the fact that control colonies continued to attack

prey with an equally large number of attackers (figure 1b).

Thus, colony-wide tendency to attack did not decrease, just

the tendency for keystones to participate. Notably, although

keystones’ participation in prey capture diminished over time,

the association between the boldness index of the keystone

and colonies’ collective foraging aggressiveness did not decay

(electronic supplementary material, figure S1). Thus, keystone

individuals’ influence over collective foraging behaviour is

not contingent on their consistent participation.
B
282:20151766
4. Discussion
Our understanding of how keystone individuals emerge and

operate across the animal kingdom is still in its infancy. In

this study, we tested whether the effects of keystone individ-

uals linger following their departure, and whether the

duration of keystones’ legacy effects scale to the amount of

time that they had spent within their groups. As seen in pre-

vious studies on S. dumicola, bold keystones exhibit a strong

influence over the collective foraging behaviour of their society:

colonies containing bolder keystones attack prey with many

more attackers than other colonies (electronic supplementary

material, figure S1). Importantly, this effect does not immedi-

ately vanish when the keystone disappears. Instead, the

impacts of keystone individuals echo for a variable amount

of time following their departure (figures 1 and 2). In other

words, keystones exhibit a legacy effect on the collective behav-

iour of their colony. These data are intriguing because they

suggest that social systems have a ‘collective memory’ [10], per-

haps mediated through semi-stable changes in individual

personalities and/or social network structure, which facilitates

system robustness to perturbations that result in the removal of

keystone individuals.

The duration of a keystone individual’s legacy effects scaled

positively to the amount of time that it had spent within its

group. First, we found that colonies’ collective aggressive-

ness during prey capture decreased over time following the

departure of their keystone, and this decrease was more pro-

nounced in colonies that contained their keystone for less time

(20 days versus 5 days; figure 1a). Second, we found that the

association between keystone individuals’ boldness and

colony foraging behaviour persisted longer in colonies that

contained their keystones for more time (figure 2a). These find-

ings suggest that keystones shift the behaviour of their fellow

colony members, causing semi-stable changes in collective

foraging that persist after the keystone individual’s departure.

More broadly, these data suggest that keystone individuals

(e.g. tutors, leaders) that persist in their roles for longer are

more likely to have long-lasting effects on societal behaviour/

culture, as seen in human societies and potentially some non-

human primates [62,63]. These time-lagged effects of keystone

individuals further bare similarity to properties of engineered

systems (such as thermostats), physical phenomena (such as

rubber elasticity [64]) and some biological processes (such as

cell division [65]) in which hysteresis, the dependence of a sys-

tem’s output on its history, reduces the impact of external noise.
Keystone individuals may affect collective behaviour by

either performing the task themselves and organizing

others to perform it, or by catalysing long-lasting behavioural

changes in colony members [30]. Although, recruitment by a

few key individuals is common in social insects (e.g. nest site

selection in honeybees [66] and foraging in ants [2]), in our

system, keystones quickly habituate to novel prey stimuli

and rarely participate in prey capture in established colonies

(electronic supplementary material, figure S2), even when the

stimuli result in prey capture [47]. Yet, despite their lack of

participation, their influence over groups’ collective behaviour

persists (figures 1b and 2b; electronic supplementary material,

figure S1). Thus, keystone effects may be better explained by

their catalysis of behavioural variation within their colony

(figure 3). Such increased behavioural variation can facilitate

efficiency in collective systems [67]. Previous work on

S. dumicola showed that keystone-induced behavioural diver-

sity persisted when colony members were kept in isolation for

months after spending only one week with a keystone individ-

ual [47]. Notably, the behavioural metric being catalysed

(boldness) is also tightly associated with individuals’ tendency

to participate in foraging tasks [38,48]. Here we show that even

when colonies remain intact after the removal of a keystone

individual and group members can interact to assess their

social environment [43], changes to individual boldness still

persist. Alternatively, or perhaps in addition to these effects,

keystone individuals may cause changes to social network

structure which, in turn, could change the way the colony

behaves en masse (N Pinter-Wollman and JN Pruitt 2015, unpub-

lished data). Consistent with this hypothesis, preliminary data

suggest that both network structure and within-colony vari-

ation in boldness change simultaneously with the presence of

a keystone individual. However, the relative contribution of

either factor to the phenomena observed here is yet unknown.

Similar catalytic mechanisms have been proposed in other

kinds of cooperative hunters, like chimpanzees [24,25].

The ecological implications of keystone individuals’ ability

to enhance colony aggressiveness are substantial. Like wild

dogs, social spiders are cooperative hunters that as a group

can capture larger and more profitable prey than solitary

individuals [55–57]. Subduing large prey becomes especially

important as colonies grow larger and web surface area to

volume ratio goes down [58]. Because the number of colony

members is linearly proportion to web volume, as colonies

grow larger, their capture surface area per individual (i.e. fora-

ging potential per individual) goes down, which means less

food per individual spider. To overcome this scaling con-

straint, larger colonies must consistently subdue larger prey

with high efficiency [58]. A colony’s ability to capture these

large prey is directly related to the number of attackers that

participate in prey capture [55,56]. Thus, the increased

number of attackers associated with the presence of bold

individuals in S. dumicola is important for the functioning

and success of their societies. Indeed, the presence of just

one bold colony member increases the collective mass gain

of fellow colony members by 200–300% and reduces mortality

rates by 40% relative to colonies of all-shy individuals [47].

Fortunately for these societies, the positive influence

of keystone individuals on prey capture does not vanish

immediately upon their departure.

The effect of keystone individuals on the boldness of

other group members scaled with their tenure in the group.

All treatments showed an increase in mean boldness of
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shy individuals from 0 at the start of our experiment to 252.47+
59.56 (mean+ s.d.) at the end of the study. However, colonies

that contained keystones for longer exhibited a more behaviour-

ally diverse group composition at the end of our study (figure 3)

and these behavioural changes were repeatable when individ-

uals were tested multiple times (ICC¼ 0.42). In colonies that

contained their keystones for only 5 days, we saw levels

of within-group behavioural variation that were only half of

those of colonies that harboured a keystone for 20 days

(figure 3a). In contrast, the within-group variation of colonies

that housed a keystone individual for 20 days before its removal

was nearly identical to the behavioural variation observed in the

control colonies (figure 3). This finding is impressive because, at

the end of the study, keystones had been gone from their colo-

nies longer than they had ever been in them (24 versus

20 days), whereas keystones had never left the control colonies.

It is possible that colonies that contained their keystones for only

5 or 10 days never had high within-group variation in boldness;

however, this seems unlikely because a previous study demon-

strated that just 7 days with a very bold keystone was sufficient

to generate a 400% increase in behaviour variation relative

to all-shy control groups of S. dumicola [47]. Therefore, we

deem it more likely that all of our colonies underwent an

increase in within-group variation in boldness at some point,

but that these effects dissipated following the keystone’s

disappearance in some treatments. In essence, by polarizing

the boldness of other group members, keystones may effectively

be creating new (almost) keystones that can replace them when

they depart. Granted, other studies on S. dumicola [68] and other

social Stegodyphus [51] have shown that particularly bold group

members can emerge spontaneously within groups of all-shy

colony members. This process is further associated with

enhanced mass gain of the entire social group and increased

prey capture and colony defence efficiency (KL Laskowski,

PO Montiglio, JN Pruitt 2015, unpublished data). Without a

pre-existing keystone, this process takes weeks or months,

whereas having a pre-existing keystone individual completes

the same process in a matter of days [47]. This further conveys

the power of keystone individuals to catalyse important social

processes within their colonies.

Our study offers several conceptual and empirical advance-

ments for our understanding of how keystone individuals

influence collective behaviour. While most behavioural ecolo-

gists are familiar with examples of how innovative behaviours

emerge and spread culturally within a population [69–71],

our findings differ from such studies in several important

ways: (i) we provide evidence that individuals’ tendency to

become keystone individuals and to initiate legacy effects are

associated with their personality type, which is a semi-stable

endogenous trait of an individual. While one may reason that

the first Japanese macaque to ever wash tubers [69] or wheat

[70] was likely to have an innovative behavioural type, there

are little data to support such claims. (ii) We provide evidence

that keystone individuals are influential because they alter the

behavioural tendencies of other individuals in long-lasting

and important ways across a variety of situations [47]. In par-

ticular, keystone individuals increase the boldness of other

colony members and boldness is linked to individuals’

tendency to participate in prey capture [53], to assist in web

repair/construction [38], and is associated with how individ-

uals respond to predators [37]. This cross-situational influence

is in contrast to cultural transmission studies, in which a

single specific and highly tangible meme is devised and
transmitted [31,70]. (iii) We show that the duration of legacy

effects scale to keystone individuals’ tenure within groups,

which is a question that has never been addressed experimen-

tally in other studies. (iv) Via high levels of replication, we

demonstrate that the phenomena identified here are repeatable,

robust and can emerge in a variety of social settings (e.g. families

and populations). This is in contrast to most published studies

on keystone individuals, legacy effects or cultural transmission,

which often tend to be descriptive, anecdotal and/or unrepli-

cated. (v) Because of our experimental approach, we are able to

link the findings herein with important ecological benefits for

colonies, including increased mass gain, survivorship, prey cap-

ture efficiency and success during colony defence [47]. Colony

success is thought to be the primary driver of individual fitness

in social spiders [72]. Finally (vi), the phenomena noted here

were observed in social invertebrates, which tend to be under-

utilized in the field of social learning (but see [73,74]) despite

their ecological dominance in terrestrial systems the world over.
5. Conclusion
We demonstrate that the legacy effects of keystone individuals

have the potential to buffer their societies from radical shifts

in collective behaviour associated with their sudden disappear-

ance. However, these effects scale to the former keystone’s

tenure within the society: groups in which keystones persist

for longer periods appear buffered against shifts in collective

behaviour, perhaps by producing alternate keystone replace-

ments, whereas societies with short-lived keystones are more

likely to exhibit fluctuations in collective behaviour. Although

a causal understanding of how keystone individuals exert

their influence is still missing for S. dumicola, the fact that

keystones are able to generate long-lasting shifts in the behav-

ioural tendencies (boldness) of their fellow colony members,

even after their departure, highlights the extraordinary influ-

ence of keystone individuals on collective outcomes. Few

scientists would have presupposed that the behavioural

dynamics of social spiders would resemble the hysteresis of

physical systems and the collective memory of human societies.

The generality of our findings may thus change the kinds of

questions asked regarding the interplay between individual

variation, social dynamics and collective behaviour.
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