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Abstract

Magnetism and Topology in Twisted Graphene Heterostructures

by

Marec Serlin

Graphene, a crystalline atomic monolayer of carbon atoms, is a model system as

the regularity and cleanliness of its lattice enables precise descriptions of its properties.

Theoretical models predict that the behavior of electrons in a heterostructure consisting of

two stacked graphene monolayers with a slight rotational misalignment in their lattices is

dictated by interactions and topology. We investigate a twisted bilayer sample with both

electrical resistivity measurements and nanoSQUID on tip microscopy. The latter, a novel

magnetic imaging method developed as part of this dissertation, is uniquely well matched

to studying the dilute magnetic signals expected in twisted graphene heterostructures.

We observe the emergence of a quantized anomalous Hall effect in twisted bilayer

graphene aligned to hexagonal boron nitride with Hall resistance is quantized to within

0.1% of the von Klitzing constant h/e2 at zero magnetic field. In contrast to magneti-

cally doped (Bi,Sb)2Te3 quantum anomalous Hall variants, intrinsic strong correlations

polarize the electrons into a single valley resolved miniband with Chern number C = 1

arising from inversion symmetry breaking and the formation of a moiré: the system

does not host band inversion or spin orbit coupling. The measured transport energy gap

∆/kB ≈ 27 K, the largest observed to date, is almost four times the Curie temperature

for magnetic ordering TC ≈ 7.5 K. We find that electrical currents as small as 1 nA can

be used to controllably switch the magnetic order between states of opposite polariza-

tion, forming an electrically rewritable magnetic memory. Magnetic imaging reveals a

magnetization primarily orbital in nature dominated by chiral edge state contributions

vii



from the topological gap of the quantum anomalous hall phase. Mapping the spatial

evolution of field-driven magnetic reversal, we find a series of reproducible micron scale

domains, pinned to structural disorder, whose boundaries host chiral edge states.
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Chapter 1

Introduction

Physics strives to describe reality, something infinitely complex, with simple concepts

and formulas. It attempts to address all aspects of our universe at every scale, from

understanding the smallest resolvable particles to describing the dynamics of galaxies.

This thesis focuses the electronic properties of materials that are both sufficiently small

that the microscopic quantum picture is critical and sufficiently large that modeling the

emergent behavior starting from its constituents is computationally untractable.

Chapters 1 and 3 of my thesis are intended to provide the necessary information for

starting graduate students in condensed matter experiment to contextualize and inter-

nalize the concepts critical to the research presented more technically in chapters 2 and

4.

1.1 Theoretical Descriptions of Phases of Matter

The physical properties of matter can, broadly speaking, be categorized as either

quantitative or qualitative. Quantitative properties are ones for which the differences

between materials can be summarized by a number. For example, the differences between
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Introduction Chapter 1

aluminum and copper can be described by comparing numerical values associated with

their electrical conductivity, their hardness, their heat capacity, so on so forth. These

quantitative differences arise from specifics about the materials ultimately related to the

differences in their constituent atoms. In contrast, aluminum and water are qualitatively

different. They belong to completely different categories of materials; each responds to

external stimuli in ways that cannot be described by tuning a numerical quantity. A

major goal of physics, and a vision that is shared by this thesis, is to delve into studying

and understanding where these qualitative differences are encoded.

Materials that exhibit qualitative differences in their properties are categorized into

what physicists call phases of matter. In introductory science classes, the typical examples

of phases are solids, liquids and gases. In each case, the qualitative differences are obvious

to anyone familiar with reality. The air you breathe and walk through is qualitatively

different from a concrete wall. Unfortunately, when the differences are too numerous, it

becomes difficult to isolate the critical component responsible for qualitative change in

behavior.

The most useful approach for understanding different phases of matter is therefore

to study materials where you can observe the qualitative changes in behavior within a

single material. Water, for example, can easily be transformed from its liquid to its

solid state by anyone with a freezer (or, for those who don’t live in Santa Barbara, by

going outside during winter). As a liquid, the water molecules flow freely, move past

each other and conform to the shape of its container. In contrast, the water molecules in

ice are rigidly locked in position, cannot freely move, and independently maintain their

shape. A physicist would ask the question: what is fundamentally different between the

water molecules in both cases and, from studying the transition from water to ice, can

we generate an understanding that can be applied to other materials?

2
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1.1.1 Symmetry Distinguished Phases

The framework physicists most frequently use to categorize different phases of mat-

ter is symmetry. A symmetry of a material is described by a physical property that is

preserved, or remains unchanged, under some “transformation”. For example, a circle

remains unchanged when it is rotated about its central axis by any angle; thus, it ex-

hibits a continuous rotational symmetry. A regular polygon, like a square, also remains

unchanged when rotated about its central axis, but only when it is by a discrete set

of angles; it instead exhibits a discrete rotational symmetry. This approach provides a

language to categorize the vast majority of materials that exhibit qualitative difference.

The familiar example of a phase transition between water and ice is well described

within this framework. The distribution of water molecules for water in both its solid and

liquid phase are illustrated in Fig. 1.1. In the solid phase, moving a particular distance

and direction lands you somewhere locally indistinguishable from your starting point;

that is, the molecules are positioned in a rigid lattice that exhibits a discrete translational

symmetry. In the liquid phase, the molecules are scattered randomly such that you expect

to see a similar distribution of molecules around any position; the molecules are therefore

described by a continuous translational symmetry. The phase transition from liquid to

solid is described by the transition from a continuous to discrete translational symmetry

of its molecules.

Phases can thus be categorized by their physical symmetries. The most tangible

examples, like the one just described, often use symmetries relating to the real space

structure of a materials’ molecules. This thesis, however, concerns itself with the less

tangible electronic properties of materials. We will shortly see these can be described

with symmetries applied to electrons and their physical properties, including, but not

limited to, their position.

3
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A B

Ice Water

Figure 1.1: Microscopic picture of solid to liquid phase transition. Illustration
of the atomic structure of water in both a solid (A) and (B) liquid state. The atoms in
ice exhibit a discrete translational symmetry whereby the separation between adjacent
atoms is always described by a displacement vector . In contrast, the distribution
of atoms in water around any point is identical as they flow freely. The liquid to
solid phase transition break a continuous translation symmetry in favor of a discrete
translational symmetry.

Electronic Phase Transitions

Materials exhibit diverse responses to electromagnetic stimuli resulting in their cate-

gorization as conductors, insulators, magnets, superconductors and more. The majority

of such categorizations can be understood with symmetry arguments. Naturally, I won’t

delve into the details about every electronic state that can be understood with symmetry.

In this section, I cover the basics required to understand both how to apply symmetry

arguments and to what properties they are typically applied for electronic systems.

Crystalline solids are, in the ideal limit, a regular lattice of atoms with discrete

translation symmetry where their organizational structure is determined by the atom’s

chemical properties. The unit cell is defined as the smallest repeating unit having the

full symmetry of the crystal structure. Each atom houses electrons whose spatial dis-

tribution can be described by their atomic orbitals. A one dimensional lattice and the

spatial extents of its electrons’ orbital wavefunctions are illustrated in Fig. 1.2A. The

electronic properties of most materials can be determined by calculating tunneling ener-

gies associated with the overlap of atomic orbitals between electrons on nearby atoms.

4



Introduction Chapter 1

The Hamiltonian generated using these tunneling energies models the behavior of a single

electron on the lattice. In the early 20th century, Felix Bloch realized that, owing to the

lattice’s periodic nature, the solutions to the Hamiltonian can be cleanly determined in

Fourier space, a consequence of what has become known as Bloch’s theorem. The energy

spectrum of the electrons is therefore expressed as a function of crystal momentum, the

conjugate variable of position in the lattice. The periodicity of the lattice is preserved

in its crystal momentum representation where the unit cell in momentum space is called

the Brillouin zone and has periodic boundary conditions, as illustrated in Fig. 1.2B. For

a uniform one dimensional lattice with inter-atomic separation a, the crystal momentum

is periodic in 2π/a.

The relationship between the energy of an electron and its crystal momentum is known

as the electronic dispersion relation or band structure. A band is a representations of

the quantum mechanically available energy states that can only be occupied by a single

electron owing to the Pauli exclusion principle. Full filling of a band occurs when each

unit cell is occupied by a single electron. The electron spin degree of freedom results

in each band being doubly degenerate with one copy for spin up and another for spin

down electrons1; spin degenerate bands are only full when each unit cell has two electrons.

Between bands, one typically observes a range of energies for which electronic states don’t

exist, known as a band gap. The electrons in the material occupy the lowest available

energy states first, filling higher and higher energy states as you add more electrons. The

electron configuration that minimizes the overall energy is called the ground state. The

energy below which the states are filled is called the ‘Fermi energy’ and is directly related

to the material’s electron density. Fig. 1.2C shows an example of the band structure of

a 1D lattice.

1The spins don’t need to be aligned in any particular spin up or down basis, but for simplicity it’s
convenient to describe them as such.

5
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a

A B

DC

k-π/a π/a

E

,

k-π/a π/a

E

EF

EF conductor

EF insulator

k=0, 2π/ak=-π/a, π/a

-kF kF

-kF+δk kF+δk

Figure 1.2: Band structure review. (A) Illustration of a 1D lattice with separation
a with the spatial extents of the electron orbitals in gray. The overlap in the orbitals
determines the tunneling energies associated with electrons hopping from one atom to
the next. A unit cell of the lattice is indicated by the dashed square. (B) The crystal
momentum, k, is periodic. In one dimension it takes values between 0 and 2π/a where
all properties in the band structure shared the same period, i.e. E(k+ 2π/a) = E(k).
Physical properties vary smoothly and continuously along the ring corresponding to
a periodic crystal momentum. (C) The 1D band structure is shown with E on the y
axis and values of k within the first the Brillouin zone on the x axis. Each band is a
continuous illustration of the available electron states; between bands there are regions
without any available states the width of which is called the band gap. The Fermi
energy, indicated by a dotted line, is the energy below which the electron states are
occupied at T = 0. Each band is doubly degenerate owing to spin up and spin down
electrons. (D) A voltage applied to a material shifts the momentum of the electrons
by a value δk. When the Fermi energy is within the band, this results in removing
electrons on one side (shown in green) and introducing electrons on the other (shown
in red) near the Fermi energy. The new imbalance in left and right moving electrons
results in a current through the sample. When the Fermi energy is within the gap,
all the electrons states in the band are occupied and remain occupied because of the
periodicity of k. The momentum shift does not result in an imbalance, and no current
is driven.
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Conductors and insulators can be distinguished using the information provided by

band structure. A material conducts when applying an arbitrarily small voltage results

in electron flow across the material. Applying a voltage to a material accelerates its

electrons in the direction of the generated electric field. The electron crystal momentum

k under a constant force responds analogously to a ‘normal’ momentum; the change in

crystal momentum is given by the force on the electron times the time it exerts it. For

a constant electric field, ~δk = eEτ where τ is the time the electron has to accumulate

momentum before scattering into a random state. This shifts the momentum of the

electrons with crystal momentum k to k + δk. When the Fermi energy is within the

band, as shown in Fig. 1.2D, the shift depletes electrons from the left moving states and

occupies new electrons in the right moving states. This results in a current no matter

how small the voltage from the change in occupations of states near the Fermi energy. In

contrast, if the Fermi energy is within the band gap, all the electrons within a band are

occupied for all values of k. If k → k + δk, the resulting occupied states are unchanged

because k is periodic. No right moving electron states are populated preferentially over

left moving states and no current flows. If the Fermi energy is within a band you have

a conductor and if the Fermi energy is within a gap you have an insulator. The phase

transition to an insulating state can be described by the realization of a discrete symmetry

between the number of electrons and unit cells in the system.

This theory, known as band theory, provides a structure to derive the electrical prop-

erties of materials including, but not limited to, electrical conductivity. It was applied

successfully in many cases but somehow consistently fell short on a certain class of mate-

rials: transition metal oxides. According to band theory, materials with an odd number

of electrons per unit cell are expected to have a Fermi energy within a band, owing to

the spin degeneracy, and consequently be conductive. Despite the predicted ratio being

odd for transition metal oxides, many were experimentally still found to be insulating.

7
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In 1937, Nevill Mott and Rudolf Peierls proposed a resolution to this anomaly whereby

the insulating states can be explained by including interactions into the Hamiltonian.

Peierls proposed a mechanism whereby the distortion of a material’s atomic lattice

could result in an electrical insulator. Materials with one electron per unit cell do not fill

spin degenerate bands; however, if the size of the unit cell were to spontaneously double,

then the same electron density would have two electrons per unit cell and would fill the

lowest energy spin degenerate bands. A band gap would then appear at the Fermi energy

fulfilling the conditions for an insulator as illustrated in Fig. 1.3. Reshaping the unit

cell is energetically preferred when the energy required to reshape the lattice is offset by

the energy gain from forming a gap and reducing the energy of the electrons occupying

the bands. This instability, initially predicted for a one dimensional lattice with one

electron per unit cell, was later dubbed a Peierls instability. It provides a simple scenario

and mechanism whereby electrons interacting with the lattice qualitatively change the

electromagnetic response of a material. This class of electron interaction driven insulator,

for which higher dimensional analogs exist, is now known as a charge density wave.

Increasing the size of a material’s unit cell reduces the size of the Brillouin zone

generating electronic band gaps at smaller crystal momenta. The reduced-size Brillouin

zone, called a mini Brillouin zone, hosts bands called minibands. Full filling of minibands

occurs at a lower electron density than the original bands as the number of electrons

required to populate each unit cell with two electrons decreases with increasing unit cell

area. Gaps open at full filling of the miniband just like they open at full filling of ‘normal’

bands where the size of the gap depends on the details of the material. In the case of

charge density waves, the unit cell is changed by interactions between the electrons and

the lattice; other mechanisms, relevant to the results presented in this thesis, also exist.

The formation of a mini Brillouin zone and minibands is agnostic to the mechanism

whereby the size of the unit cell is increased.

8
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a

A B

k-π/a π/a

E

EF

E

EF

-π/2a π/2a

2a

k-π/a π/a-π/2a π/2a

Figure 1.3: Peierls instability. (A) A 1D regularly spaced lattice without inter-
actions has a unit cell containing a single atom separated by the lattice constant a.
The Fermi energy is chosen such that there is one electron per atom, or unit cell, that
half fills both spin degenerate bands; the system is conducting. (B) If interaction are
considered, the Peierls instability distorts lattice pairing up the atoms. The unit cell
now contains two atoms separated by a new lattice constant 2a and the crystal mo-
mentum is then periodic in π/a instead of 2π/a. One electron per atom corresponds
to two electrons per unit cell, fully filling both spin degenerate bands of the newly
formed, reduced-size, Brillouin zone. The band above the Fermi energy is shown in
the second Brillouin zone indexed by crystal momenta not within ±π/2a to clarify its
relationship to the band in the non-interacting case. The Fermi energy is in the gap
above the lowest energy band implying that the interaction driven lattice reshaping
results in an electrical insulator.

Symmetry driven electronic phase transitions can also result from the formation or

dissolution of symmetries that are less tangible than the electron count or lattice symme-

tries. Nevill Mott also approached the transition metal oxide anomaly from the perspec-

tive of electron interactions, but instead focused on their consequences on a completely

different symmetry: time reversal symmetry. Understanding the consequences of bro-

ken time reversal symmetry is central to both this thesis and the study of magnetic

phenomena.

9
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Magnetic Phase Transitions

A system exhibits time reversal symmetry when its behavior is unchanged by the

transformation t→ −t. The position of an isolated stationary electron respects time re-

versal symmetry since it doesn’t depend on time. In contrast, the velocity of an isolated

moving electron, v = dx
dt

, is odd under time reversal symmetry because of the derivative

with respect to t. All physical properties can be described as either time reversal sym-

metric or asymmetric, with many of them falling into the categories of being even or odd

under time reversal symmetry.

In a material, time reversal symmetry breaking only occurs when applying the trans-

formation changes its macroscopic properties. The band structure of a material captures

those properties making it a useful tool for diagnosing the effects of time reversal. The

electrons in all materials host properties, like their velocity and spin, that are odd under

time reversal and break the symmetry microscopically. These properties manifest them-

selves in the band structure of time reversal symmetric materials either as a symmetry

with respect to the crystal momentum or a degeneracy in the bands. The time rever-

sal transformation results in the exact same band structure where the bands and their

constituent electrons are completely unchanged. Time reversal symmetry breaking in

a material requires more than just having microscopic properties that are time reversal

asymmetric; it requires engineering an imbalance between pairs of electron states related

by time reversal, as illustrated in Fig. 1.4.

Time reversal symmetry breaking can be induced in a material by subjecting it to a

magnetic field. An ambient magnetic field couples to electron properties odd under time

reversal symmetry where the sign of the effect changes with the sign of the property. The

resulting behavior in the material then exhibits differences between pairs of bands related

10



Introduction Chapter 1

A

B

k-π/a π/a

E

k-π/a π/a

E

t -t

k-π/a π/a

E

k-π/a π/a

E

t -t
, ,

Figure 1.4: Time reversal symmetry breaking in band structure. Crystal
momentum and angular momentum are odd under time reversal symmetry; k → −k
and spin up electrons exchange with spin down electrons. (A) If the band is asym-
metric in the crystal momentum, the application of time reversal results in a different
band structure. This is one way time reversal symmetry can be broken. Here the
illustrated band is spin degenerate both before and after the transformation. (B) If
a band only has a single spin, then the time reversal transformation changes the spin
of the electrons. Even if the energy momentum relationship is symmetric in k, time
reversal symmetry is broken because the total angular momentum of the resulting
band changes sign.

by time reversal symmetry.2 Microscopically, the magnetic field imparts the electrons

with an orbit, whose chirality is determined by the Lorentz force, whereby the material

accumulates a net angular momentum. This net angular momentum, a property odd

under time reversal, implies an imbalance in the number of electrons with properties odd

under time reversal and thus the material’s overall state is not time reversal symmetric.

When a magnetic field is applied to a metal with current being driven through it, the

Lorentz force on the electrons generates a gradient in the electron density perpendicular

2Here I am careful in saying ‘in the material’ because a global application of the time reversal
symmetry transformation would also change the sign of the applied magnetic field, resulting in the same
band structure.
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to the current flow. This gradient results in a transverse voltage, or a Hall voltage, whose

sign is changed by time reversal. The observation of a Hall effect is tantamount to time

reversal symmetry being broken.

Of interest to both this thesis and Nevill Mott back in 1937 is the observation of time

reversal symmetry breaking without the application of an external magnetic field. Some

materials exhibit an ‘anomalous’ Hall effect whereby a transverse voltage is observed

at B = 0. Furthermore, transition metal oxides both unexpectedly exhibit insulating

behavior and generate their own magnetic field: clear indications of broken time reversal

symmetry. These phenomena require understanding both how a magnetic field can be

generated by an inert material and how the time reversal symmetry is broken.

From elementary classical physics, we know that a loop of current, and therefore

an isolated charged particle exhibiting orbital motion, generates a magnetic field. The

strength of the resulting magnetic field scales with the product between the magnitude of

the current and the orbit’s enclosed area. This product for an arbitrary configuration of

charges is defined to be the magnetic moment. In a completely classical limit, an electron

can be modeled as a point charge moving in a circular orbit enclosing a finite area. This

can be expressed in terms of the electron’s angular momentum as follows,

µ ≡ IA

=
ev

2πr
πr2

=
e

2m
L

(1.1)

Though the above calculation uses naive classical assumptions, the resulting formula

holds for L representing the total angular momentum determined quantum mechanically.

The total angular momentum of electrons has both orbital and intrinsic components.

The orbital components are classically tangible corresponding to the contributions from

12
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electron’s orbital motion, like for an electron in a constant magnetic field. The intrinsic

component refers to angular momentum arising from the electron spin, a fundamental

electron property whereby they have an angular momentum that does not map onto any

classical ‘orbit’. The formula for the magnetic moment is agnostic to the source of angular

momentum and yields a vector pointing in the same direction as the angular momentum.

Typically, as is the case of transition metal oxides, the magnetic moment is dominated

by contributions from the electron spins. However, understanding the importance of

orbital contributions to the magnetic moment will be critical to understanding the results

presented in this thesis.

Magnetism refers to the class of phenomena where time reversal symmetry is bro-

ken such that the magnetic moments become ordered. Both the orbital and intrinsic

components of angular momentum, and therefore the magnetic moment, are odd under

time reversal symmetry. Furthermore, the energy of a magnetic moment in an applied

magnetic field is minimized when they point in the same direction. The density of a

material’s aligned magnetic moments is called its magnetization. In Fig. 1.5, the mi-

croscopic picture of various types of magnetism are illustrated with circles representing

the material’s constituents and the arrows denoting the direction of their magnetic mo-

ment. Diamagnetism and paramagnetism are where an applied magnetic field causes

anti-alignment and alignment of the magnetic moments that are otherwise non-existent

or disordered. Ferromagnetism, however, exhibits ordered moments without an applied

magnetic field. The ordering of magnetic moments in ferromagnets without an externally

applied magnetic field implies the existence of a mechanism to differentiate electron spins.

This mechanism is central to understanding the insulating behavior observed by Nevill

Mott in transition metal oxides and once again relies on electron-electron interactions.

The configuration that minimizes the energy of two adjacent atoms each hosting a

single spin-full electron is sensitive to the interactions between their electrons. Without

13
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Figure 1.5: Illustration of various flavors of magnetism on the atomic scale.

interactions, the orientation of the electron’s spin has no effect on their energy and all

configurations are degenerate. This picture changes drastically when one accounts for

the effect of the exchange and Coulomb interactions. The exchange interaction, for

fermions like electrons, refers to the effects of the Pauli exclusion principle on identical

particles’ wave functions. If the two electrons have the same spin and are identical,

the exclusion principle dictates they cannot be in the same state. If they’re hosted by

different atoms, thus being in a different state, the exclusion principle suppresses overlap

between their orbital wave functions increasing the expectation value of the distance

between neighboring identical electrons. In contrast, if the adjacent electrons have a

different spin, they are no longer identical and the expectation value of their separation

decreases. Coulomb repulsion favors maximizing the distance between charged particles

implying that the energy of two adjacent atoms is lowered when their electrons are

identical because it increases their average separation.3 If the energy reduction from

aligning adjacent electron is larger than the energy cost of overcoming entropy to align

them, the spins spontaneously polarize.

The anomaly observed in transition metal oxides occurs for materials with one electron

3This presentation of exchange interactions nice because of its simplicity, but doesn’t fully capture the
possible outcomes from Coulomb and exchange integrals of arbitrary orbital wave functions. Depending
on the material in question, the mechanism can lead to an energetic preference for spins both align or
anti-align.
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per unit cell. Such a lattice can be constructed from the two atom and two electron system

analyzed above. The same argument predicated on Coulomb repulsion and exchange

interactions predicts that the lowest energy state for such a lattice occurs when the

electrons are identical, implying that they share the same spin and break time reversal

symmetry. The magnetic moment of each electron is dominated by the spin resulting in

a magnetization that generates a magnetic field. Furthermore, since the spin degeneracy

of electrons is broken, the band is completely filled when there is one, instead of two,

electrons per unit cell as illustrated in Fig. 1.6. Thus, the observation of insulating

behavior is now also consistent with a band theory description of the material. The

presence of an insulating phase with a corresponding gap in the band structure that

would not exist without electron-electron interactions is now known as a Mott Insulator.

Although exchange and Coulomb interactions are responsible for the emergence of

magnetism, neither interaction is magnetic in nature. The argument for an energetic

preference to polarize the spin orientations of all electrons in a material only appeals to

the charge of the particles and their identical character. In most materials, the degen-

eracy of bands arises only from the spin degree of freedom that, when broken, results in

magnetism. In a material with additional degeneracies, the same mechanism can break

a degeneracy between electrons resulting from properties that are both non-magnetic in

origin and do not affect the emergent magnetic character. The polarization of electrons

into a single species due to exchange and Coulomb interactions, both when it does and

does not result in a magnet, is often referred to as ferromagnetism.

The transition metal oxide anomaly highlights the importance of electron interactions.

Developing the mathematical language to propagate the effect of interactions is critical

to making predictions of the behavior of electrons in novel materials. Fully simulating

the effects of interactions on a classical computer requires a computational cost that

grows exponentially with the number of particles. This computational complexity has
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Figure 1.6: Ferromagnetic Mott Insulator. (A) The band structure of a 1D
lattice without electron interactions is illustrated with Fermi energy chosen such that
there is one electron per unit cell. The electrons half fill both the spin up and the
spin down degenerate bands; no band is full and the system is conducting. (B)
Exchange and Coulomb interactions polarize all the electrons into a spin up state. The
periodicity of the lattice is unchanged, so the Brillouin zone still goes from k = −π/a
to k = +π/a. The spin up band has one electron per unit cell; it is filled, forming a gap
between it and the next band with opposite spin. The Fermi energy lies within the
interaction driven gap resulting in an electrical insulator. Time reversal symmetry
is broken because the t → t′ transformation flips the spin of the occupied band.
The shapes of the bands were chosen for illustrative purposes and, other than the
qualitatively aspects, should not be considered precisely.

impeded physicists’ understanding of various emergent phenomena in condensed matter

because even the simplest models proposed to capture them cannot be simulated. The

interaction effects discussed in this section were curated for their simplicity and relevance

to this thesis. Even then, the provided description of magnetism and charge density waves

is vastly simplified. The field of many-body physics, concerning itself with the emergent

behavior of a macroscopic number of interacting particles, is actively researched both

experimentally and theoretically.

In this section, I introduced the concept of symmetry in physics whereby phases of

matter, both structural and electronic in origin, can be categorized. The symmetries in

question can range from incredibly tangible symmetries, relating to the position of atoms,
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to more abstract symmetries, relating to their behavior under time reversal. Of course,

the list of symmetries introduced here is far from exhaustive! Nonetheless, the framework

does describe the vast majority of phase transitions that physicists observe in materials,

even if they are driven by interactions effects difficult to propagate theoretically. However,

as we will shortly see, sometimes even materials that are theoretically approachable

exhibit qualitative changes in behavior without an identifiable change in symmetry.

1.1.2 Topology Distinguished Phases

Starting in the 1980’s, and increasingly in the past 20 years, electronic properties with

sharp qualitative differences have been found in systems that do not exhibit changes in

symmetry. This spurred theoretical innovations to find a new language with which to

understand this change in behavior.

The original observation of qualitative changes without symmetry breaking was in the

quantum Hall effect. The Hall effect, introduced earlier, generates a transverse voltage

when an applied magnetic field breaks time reversal symmetry in a metal with a current.

The magnitude of the voltage, or resistance, is predicted classically to be linear in the

applied magnetic field. Experimental observations of the Hall effect in thin, quasi-two

dimensional, metals display qualitatively different behavior. The classical prediction

holds for smaller magnetic fields but, as shown in Fig. 1.7, diverges from experimental

results for larger fields where the resistance exhibits plateaus with precisely quantized

values. Though time reversal symmetry breaking explains the emergence of a Hall effect,

it cannot explain the resistance quantization or the changes in resistance quantization as

the magnetic field increases.

Quantization of the Hall resistance was understood by determining the band structure

of electrons in an applied magnetic field. Quantum mechanics dictates that the cyclotron
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Figure 1.7: Quantum Hall Effect. The transverse, or Hall, resistance and the lon-
gitudinal resistance of a metal are shown for magnetic fields between 0 and ∼12 Tesla.
For large magnetic fields, the resistance exhibits plateaus with precisely quantized
values not predicted by classical theories and that cannot be explained by a change
in symmetry.

orbits of free electrons in a magnetic field are quantized. Each quantized orbit, called

a Landau level, generates a flat band with a large number of available electron states;

electrons in a material preferentially occupy the lowest energy orbits. The energy differ-

ence between distinctly quantized orbits increases with the strength of the magnetic field;

when this difference become large enough quantized effects are observable in transport.

Landau levels do not generically have distinct symmetries between them despite requir-

ing time reversal symmetry breaking to exist. Nonetheless, Landau level theory predicts

that, when the Fermi energy is in the gaps between Landau levels, the Hall conductivity

is robustly quantized with σxy = νe2/h where ν is an integer representing the number of

filled Landau levels.

The number of electron states available per Landau level is semi-classically con-

strained by dividing the material’s area by the area occupied by a single electron. The

magnetic length associated with the spatial distribution of electrons in cyclotron orbits

in a material shrinks with increasing magnetic field. Increasing the magnetic field there-
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fore increases the number of electrons available in a Landau level and, for a material

with fixed electron density, reduces the Landau level filling fraction. The magnetic field

both increases the energy between Landau levels and tunes their filling fraction, cleanly

explaining the experimental observation, shown in Fig. 1.7, of resistance plateaus devel-

oping with the applied magnetic field.

Though Landau quantization accurately describes the behavior of a two dimensional

metal in a large magnetic field, it doesn’t provide an understanding of the unique prop-

erties in a manner that can be applied to other systems. Why, in this scenario, is there

a quantized Hall resistance? Is there an underlying unidentified feature of the material

that changes from one quantized plateau to the next?

Defining Topology in Materials

The 2016 Nobel prize was awarded to Thouless, Haldane, and Kosterlitz for realizing

the importance of topology in context of electronic phase transitions. In mathematics,

topology is the study of a shape’s geometric properties that are unaffected by continuous

changes or deformations. A concrete example of this concept is illustrated in Fig. 1.8.

A sphere can be reshaped into an egg or tea cup while maintaining continuity between

adjacent points on the surface. However, if one attempts to morph the sphere into a

mug, the formation of a handle will require introducing a hole that breaks the continuity;

such a deformation is said to be discontinuous. The topology of an object is one of

its properties that cannot change unless a discontinuous deformation is performed. In

the case of the comparison between a sphere and a mug, the topological difference is

identified by counting the number of holes through their surface. This number, formally

called the genus, cannot change without puncturing the surface. The genus provides

a numerical quantity associated with the topological classification of a surface; such a

number is called a topological invariant.
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Figure 1.8: Topology of a surface. A surface undergoing continuous deformations
changes shape without creating or closing holes. The number of holes through the
surface can only be changed by a discontinuous deformation; these are indicated by
a ‘POW’ in the illustration. The topology of a surface can be characterized by its
number of holes, i.e. the surface’s genus.

Topological invariants exist for a wide array of physical properties associated with

closed surfaces; the genus is only one such example. In the same way material phases

exhibiting qualitative differences in behavior can be described by identifying the phases’

distinct symmetries, they may also be described by identifying the phases’ distinct topolo-

gies. Topology defines a new axis along which phases of matter can be categorized.

The question remains of how to apply topology to a material, especially in context of

understanding its electrical properties. The quantum Hall effect exhibits sharp difference

in the behavior of its Hall resistance as the magnetic field changes. A changing field does

not introduce holes into the material, so physical sample’s genus cannot be the topology

relevant to its electrical properties.

In analogy to the mathematical definition of the genus, calculating the topological

invariant of a material requires identifying a closed surface. When I introduced band

structure, I highlighted that the Brillouin zone has periodic boundary conditions; it

defines a closed surface as illustrated in one dimensions in Fig. 1.2B and in two dimensions
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in Fig. 1.9A. A topological invariant, a genus or otherwise, can be calculated from

physical properties along this closed surface. If the topology is to determine the behavior

of the electrons, then electron states indexed by the crystal momenta k on the closed

surface needs to be occupied; otherwise, the electrons themselves are not complicit to

the closed surface. Occupying all the states in the Brillouin zone is tantamount to a

band being full and the Fermi energy lying within a gap. For now, the specifics of how a

topological invariant is calculated from this surface is secondary. Just assume that there

is a number, like a genus, for the surface defined by the fully occupied Brillouin zone that

summarizes its topology.

Electronic phases are said to be topologically distinct if their Hamiltonians cannot

be continuously transformed into each other. A continuous transformation requires both

that the terms of the Hamiltonian change smoothly and that it remains gapped, ensuring

continuity of the surface used to define the topology. The simplest such transformation

between a Hamiltonian H and H ′ would be H(α) = αH ′+(1−α)H, where α is a contin-

uously tuned variable introduced to compare them. The system must remained gapped

for all values of α between 0 and 1 in order for H and H ′ to be topologically equivalent.4

A topological invariant calculated from a Hamiltonian is a quantized number associated

with a physical property that cannot change under this definition of continuous trans-

formations. Topology is therefore a framework used to describe gapped, or insulating,

electronic phases; materials with non-trivial topological character are called topological

insulators.

This classification methodology implies that topology in materials will manifest itself

on boundaries between regions with distinct topology. Lets consider a material with

two regions described by the Hamiltonians H1 and H2, where the Fermi energy is in the

4If this requirement is met, then the Hamiltonians are topologically equivalent. If the requirement is
not met, this does not prove the Hamiltonians are topologically distinct as another, more complicated,
continuous transformation between them may exist.
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Figure 1.9: Topology and Boundaries. (A) Surface defined by a two dimensional
square lattice Brillouin zone is a torus. Values of kx are periodic along the direction
of one circle and ky are periodic in the orthogonal circle. When the Fermi energy is
within a gap and a band is fully filled, electron states are occupied for every value of
the crystal momentum on the surface. If the Fermi energy is within a band, the surface
defined by the electrons in the material is discontinuous. (B) A schematic illustration
of a material with topologically distinct regions described by Hamiltonians H1 and H2.
The energy of the electron state closest to the Fermi energy, both above and below,
is shown as a function of position. The transformation between H1 and H2 varies
smoothly with position so the change in topology arises by breaking the continuity of
the electron Brillouin zone surface, closing the gap, and giving a conducting state at
x = 0.

gap of both regions. If H1 and H2 are topologically equivalent phases, then a continuous

transformation exists to go from region 1 to region 2 without closing the gap. Conversely,

if H1 and H2 are topologically distinct, then the gap necessarily closes somewhere between

the regions. Since both regions are insulating, the boundary between them is the only

conducting part of the sample as illustrated in Fig. 1.9B. The Hamiltonian outside a

material, in ‘vacuum’, is always topologically trivial as it contains no properties that can

be described by a topological invariant. Therefore, any material with nontrivial topology

will exhibit conductive states on its external boundary! Three dimensional topological

insulators have conductive surface states and two dimensional topological insulators have

conductive edge states.
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The topological invariant of a topological insulator defines a quantized number, anal-

ogous to the number of holes in a surface, associated with a physical property of the

material. The exact manifestation of the quantized property in a topological insulator,

either in its bulk and on its boundary, depends on the particular topological invariant

it hosts. In context of this framework, the observation of quantized Hall resistances ob-

served in the quantum Hall effect now may no longer be as surprising! Changing the

Landau level filling fraction by increasing the magnetic field must somehow change a

topological invariant whose effects are observed in the Hall resistance.

The topological invariant responsible for the quantization of Hall resistances in the

quantum Hall effect is called the Chern number. It is both central to the work presented

in this thesis and one of the easiest topological invariants used in physics to calculate.

Without further ado, lets make this abstract treatment of topology concrete by presenting

how this ubiquitous topological invariant is calculated from a Hamiltonian.

The Chern Number

The Chern number is a specific application of the topological invariant defined in

mathematics called a winding number. This number counts the number of times that a

closed curve in a plane travels counterclockwise around a point. Formally, the winding

number is defined in polar coordinates where the closed curved is defined by a parametric

equation of the form r = r(t) and θ = θ(t) for 0 ≤ t ≤ 1 with the same initial and final

position. The radial coordinate at the starting and finishing position is uniquely defined;

however, the angular coordinate refers to the same position whenever θ(1)− θ(0) = 2πn,

where n is an integer. An example of a closed path with nontrivial winding number and

a plot of its angular coordinate versus time is shown in Fig. 1.10A and B. Any loop taken

by the path that encloses the origin contributes 2π to the angular coordinate, whereas

loops that don’t ‘backtrack’, undoing the net contributions to the angular displacement.
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Thus, the integer n defines the winding number of the closed path.

A B

P

Θ

t

4π

2π

t = 0

r(t)

Θ(t)

Figure 1.10: Winding number. (A) A closed curve travels around a reference point
P . The distance traveled along the curve is parametrized by t, with t = 0 indicated.
The vector defining the path has a length, r(t) and angle, θ(t). (B) θ(t) is plotted
versus t. The first loop around P quickly accumulates an angle of 2π. The second
small loop doesn’t encircle P ; it causes the angle to dip but doesn’t accumulate a
‘permanent’ contribution to θ. Completing the large loop results in the accumulation
of another factor of 2π. The total angle swept through by the path is 4π and its
winding number is 2.

To define a winding number of a Hamiltonian, we need to identify both a closed loop

and an angle that varies along it. In one dimension, the Brillouin zone is a line with

periodic boundary conditions, i.e. without further machinations it is already a closed

loop. In two dimensions, the Brillouin zone defines a surface with periodic boundary

conditions; equivalent closed loops are naturally defined by any path enclosing the entire

surface as illustrated in Fig. 1.11A for the quantum Hall effect. In three dimensions, the

Brillouin zone defines a volume with periodic boundary conditions; many inequivalent

closed loops can be chosen, resulting in the Chern number no longer being well defined.

Analysis of multiple purposefully chosen closed loops of a three dimensional Brillouin

zone can be used to calculate the Z2 topological invariant[1], but detailed discussion of

this methodology is outside the scope of this thesis. The quantum Hall effect and the

results presented in the main text of this thesis both occur in two dimensional systems,

so those will be the focus of the subsequent discussion. The closed loop defined in two

dimensions encloses the entire Brillouin zone; therefore, the angle of the momentum space
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vector with respect to a reference point will always yield a winding number of 0 or 1,

depending on if the chosen reference is within the loop. This choice of angle renders the

winding number indifferent to the Hamiltonian to which it is being applied, minimizing

its usefulness as a topological invariant.

A natural choice for the angle used to define the winding number is the quantum

mechanical phase of the electron wave function. The phase of a wavefunction is comprised

of two components: the dynamical phase, that evolves in time, and the geometrical phase,

that results from adiabatic changes in the Hamiltonian. The former is of no interest as

we have no way of rigorously relating a time to the closed surface defined by the Brillouin

zone. The latter, however, perfectly suits our needs. The Hamiltonian of our material

depends on the crystal momentum k; the closed loop therefore defines an adiabatic

evolution of the electron’s Hamiltonian. The geometrical phase, usually referred to as

the Berry phase, can be calculated with the following formula:

γn = i

∮
C

d~R ·
〈
n(~R)

∣∣∣~∇R

∣∣∣n(~R)
〉

= i

∮
C

d~R · ~An(~R) (1.2)

where γn is the Berry phase for the closed path C, ~R parametrizes the cyclic adiabatic

process, n(~R) is the wave function of the nth eigenstate, and ~An(~R), defined as the

integrand of the Berry phase integral, is called the Berry connection.

When applied to a material where the wave function can be expressed as Ψn~k(~r) =

ei
~k·~run~k(~r) using Bloch’s theorem and the adiabatic process is parametrized by the crystal

momentum, we get:

~An(~k) = i
〈
un~k(~r)

∣∣~∇k

∣∣un~k(~r)〉 (1.3)

To maintain continuity of the wave function on the closed loop, it must be singly
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valued at any given point. This means that the Berry phase of a closed loop must be an

integer multiple of 2π[2]5. The Chern number is defined as the winding number of the

electron wave function’s Berry phase around the first Brillouin zone.6

C =
1

2π

∮
BZ

d~k · ~An(~k) (1.4)

The Berry connection in the first Brillouin zone of a Landau level and its the integral

along its contour is shown in Fig.1.11B and C. The accumulated Berry phase is non zero

and corresponds to a Chern number of +1. Every Landau level has a Chern number of

+1; therefore, the total Chern number of the system is the sum of the number of filled

bands, or ν. The quantum Hall effect with a Fermi energy in the gap is the first example

of a Chern insulator.

Physical Observables of Topology

Any physical manifestation of topology, other than the gap closing at a boundary, is

specific to the particular topological invariant. The Chern number, as one may surmise,

is directly related to a material’s Hall conductivity.

The contour integral in the formula the Chern number can be re-expressed using

Stoke’s theorem as a surface integral over the Brillouin zone,

C =
1

2π

∫∫
BZ

dkxdkyΩn(k) (1.5)

5An important consideration of the electron phase is that it is gauge dependent, meaning that ar-
bitrary physically equivalent choices in its definition change its value (there is no true ‘zero’ phase).

Anything that changes from the transformation θ → θ+ ξ(~R) is gauge dependent and cannot be directly
related to a physical observable. The Berry connection is gauge-dependent and is not directly observable.
However, its integral along a closed path, the Berry phase, is gauge-invariant and thus can be observed

6The Chern number is defined for arbitrary Hamiltonians and their resulting wave functions. It
therefore possible for Chern numbers to emerge both in interacting and non-interacting electron systems
alike.
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Figure 1.11: Chern number in the Quantum Hall Effect. The crystal momenta
within the first Brillouin zone for a Landau level are defined as kx/y ∈ [0, 2π/`), where

` =
√
h/eB and 2π/` is not included. (A) The illustrated path encloses the entire

surface formed by the two dimensional Brillouin zone, exaggerating the fact that
2π/` is not defined on the surface. (B) The Berry connection of a Landau level in the

Landau gauge, ~A(~k) = − `2

2πkyk̂x, is plotted as a vector field for crystal momenta within
the first Brillouin zone. The path defined in (A) is shown in the planar representations
of momentum space. (C) The Berry curvature accumulated over the path is plotted
as a function of t, the variable paramatrizing the path r(t). The closed path has Berry
phase of 2π, which corresponds to a Chern number of 1.

where ~Ωn(k) = ~∇k × ~An(k) is called the Berry curvature.7 This formulation makes

calculating the Chern number more straightforward, as one no longer needs to be de-

liberate about the choice of the loop.8 However, more critically, the Berry curvature is

a quantity known to be related to the Hall conductivity dating back to before topology

was under theoretical consideration. In particular, the Hall conductivity is given by the

following formula,

σxy =
e2

2πh

∫∫
dkxdkyΩn(k) (1.6)

where the integral is performed over all the occupied electron states. The Hall con-

ductivity formula describes the contribution of Berry curvature for arbitrary band filling.

7The vector notation was dropped in the restated formula for the Chern number because, in two
dimensions, the Berry curvature is necessarily out of plane and in the same direction as the surface
vector. Furthermore, the Berry curvature is a gauge independent property and therefore can be related
to physical observable.

8Related, it cleanly explains why all closed loop enclosing the entire Brillouin zone is equivalent for
determining the Chern number, since any choice of path would be restated as the same surface integral.
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When a band is fully filled, or equivalently the Fermi energy is within a gap, the integral

is identical to the one used to calculate the Chern number. The Hall conductivity can

then be neatly expressed as,

σxy =
e2

h
C (1.7)

where C is the Chern number of the filled bands.

The only electrons at the Fermi energy of a two dimensional topological insulator are

at the edge of the device where the gap closes. The bulk is therefore insulating implying

that no current flows through it and σxx = 0. The current generated from the Hall effect

flows across the sample along a single edge, where the chosen edge is determined by the

sign of the Hall conductivity. The applied electric field is perpendicular to the resulting

motion of the electrons, implying that no work is done and there is no dissipation.

Furthermore, scattering mechanisms would need to scatter an electron to the other side

of the device in order for it to change direction and dissipate energy. Current flows from

one side of the sample to the other without dissipating energy implies that, despite being

an insulator, ρxx = 09. One needs to be careful interpreting this statement; it summarizes

the dissipationless nature of current flow without implying that the current flows through

the bulk. A Chern insulator has a robustly quantized Hall resistance resulting from one

dimensional dissipationless chiral edge states concomitant with vanishing longitudinal

resistance.

This is the hallmark of Chern insulators that originally peaked physicists interest

in topological matter. However, the consequences of a quantized Berry curvature is

not limited to just its transport properties. Both the quantized Hall resistance and the

consequences of a quantized Berry curvature will be critical to explaining measurements

9The resistivity is given by the inverse of the conductivity tensor, not the inverse of its components.
When a material has non zero Hall conductivity, the intuition that ρxx = 1/σxx is incorrect.
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reported in this thesis.

Chern Insulators and Time Reversal Symmetry

Time reversal symmetry must be broken in order for a Hall effect, quantized or not, to

be observed. This implies that both Berry curvature and Chern numbers are odd under

time reversal symmetry. There are two ways a time reversal symmetric band structure

with Berry curvature can be consistent with no observed Hall effect. The first way is

that every band hosts an equal proportion of electrons with positive and negative Berry

curvature for any Fermi energy. This is equivalent to that band having a Chern number

of zero. Alternatively, the band structure hosts pairs of bands related by time reversal

symmetry that have opposite Chern numbers and are degenerate. In this case, despite

the net Chern number being zero, the material still has topological bands waiting to be

unearthed.

I discussed at length breaking time reversal symmetry in context of electronic phase

transitions not topological in nature. Unsurprisingly, breaking time reversal symmetry

in a topological system isn’t any different: it can be achieved extrinsically by applying a

magnetic field or intrinsically in a system with strong electron-electron interactions.

The quantum Hall effect is an example of a Chern insulator where a magnetic field

breaks time reversal symmetry. However, the topological bands arise from the formation

of Landau levels in a large magnetic field. The quantum Hall effect is not an example

of topological bands intrinsic to the material with degeneracy broken by the magnetic

field. In general, Landau levels dominate the electron band structure at smaller fields

than would be required to break the degeneracy between bands with opposite spin10. If

10Technically, even a small magnetic field breaks the degeneracy between opposite spin bands. How-
ever, the degeneracy breaking scales with the Zeeman energy, which is small enough to have virtually
no effect prior to the formation of Landau levels. There are exceptions where, if the topological material
is sufficiently disordered, the relevant constituents have a large magnetic moment, or the material is
already gapped, then an applied field can be used to break the degeneracy.
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the goal is to observe a Chern insulator with topology originating from the material’s

lattice, then an intrinsic symmetry breaking mechanism is more likely to bear fruit.

Ferromagnetic interactions can break the time reversal symmetry between bands with

opposite Chern numbers. If all the electrons in the material are polarized into a single

Chern band, fully filling it, and the gap opened by the interactions is at the Fermi level,

then you have a Chern insulator without an applied magnetic field. This variant of a

Chern insulator is called the quantum anomalous Hall effect as it exhibits a quantized

transverse conductance at an anomalous zero magnetic field. A robust reproducible

realization of the quantum anomalous Hall effect could have many potential applications

for low power electronics, quantum computing, and resistance metrology. It is an active

domain of both theoretical and experimental research.

1.2 Experimental Realizations of Topological Phases

The experimental observation of the quantum Hall effect spurred the development

of the theoretical language used to describe topological phases. As the theory matured

in the early 2000s, precise predictions for new experimental systems expected to host

topology were made and their realizations rapidly followed.

1.2.1 Band Inversion and Topology

Central to the realization of topology is engineering materials where the band struc-

ture hosts Berry curvature. This is obviously critical for Chern insulators, but is equally

important for Z2 topological insulators in both two and three dimensions. Berry curva-

ture is always found whenever a linear crossing between bands hybridizes and forms a
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gap, the proof of which I leave as an exercise to all three people who read this thesis11.

The Berry curvature is necessary, but not sufficient, for the hybridized bands to have

a non-zero Chern number or Z2 topological invariant. Topological insulators with a Z2

invariant, unlike Chern insulators, do not break time reversal symmetry and are easier to

realize since time reversal symmetry breaking interactions do not need to be engineered

into the same device.

A linear crossing between bands can be engineered by inverting the band structure

of a semiconductor. The typical schematic of a semiconductor with quadratic dispersion

is shown in Fig. 1.12. If the bands are inverted, such that the valence band becomes

the conductance band and vice versa, then the bands cross at two different positions

in momentum space and, to first order, the crossing will be linear. The band crossings

are avoided if the semiconductor has a term in the Hamiltonian coupling the electron

spin to its crystal momentum; i.e. the material hosts spin orbit coupling. The inverted

bands with linear band crossings gapped by spin orbit coupling is shown in Fig. 1.1212.

Thus, the necessary ingredients required for the experimental realization of topology were

recognized to be band inversion and spin orbit coupling.

The first zero magnetic field topological insulators were found in a semiconductor with

both spin orbit coupling and an experimental control knob that can invert its bands[3, 4].

Two dimensional HgTe/(Hg,Cd)Te quantum wells were one of the original candidates for

topology owing to its strong spin orbit coupling. The quantum wells are formed by a

central layer of HgTe sandwiched between layers of (Hg,Cd)Te. The thickness of the

HgTe layer tunes whether or not the bands are inverted owing to effects of quantum

11It actually is easy to calculate in one dimension and is a good exercise for those who are interested.
You should get Ω = ±π.

12When spin orbit is present, the electron spin is no longer a good quantum number; the spins in
a single band are a mixture of spin up and down that is a function of momentum. Nonetheless, time
reversal symmetry is not broken and there is still a band degeneracy associated with time reversal
symmetry.
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Figure 1.12: Band Inversion. The inversion of quadratic bands results in two
approximately linear crossings at opposite crystal momenta that become gapped when
spin orbit coupling is introduced. A Berry phase of ±π is accumulated around the
gaps in the newly formed conduction and valence bands.

confinement. Theoretical studies for this system predicted that, when the thickness of

the quantum well was above a critical thickness dc, the bands would invert resulting in a

topological state with a Z2 topological invariant known as the Quantum Spin Hall effect.

The quantum spin Hall effect is characterized by a quantized spin Hall conductance, a

vanishing Hall conductance, and a quantized longitudinal conductance. The system can

be naively though of as a superposition of two counter propagating quantum Hall states,

such that the Hall resistance is zero but the longitudinal resistance approaches 2e2/h.

Evidence for the topological state was found by systematically performing measure-

ments of the charge transport characteristics of HgTe/(Hg,Cd)Te quantum wells as a

function of thickness[5]. Critically, they observed that the longitudinal resistance ap-

proached 2e2/h only for quantum wells made with a thickness larger than a critical

thickness of approximately 6nm, in agreement with the theoretical predictions. This

seminal study marked the first realization of the quantum spin Hall topological insu-

lating state and signaled the beginning of the experimental realizations of topological

systems.

In three dimensions, the Z2 topological insulator was predicted to be conveniently

accessible by creating a Bi1−xSbx crystal. The bismuth provides spin orbit coupling
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and the antimony, when the concentration is in the range 0.09 ≤ x ≤ 0.18, inverts the

bands resulting in a direct band gap[3]. Less than a year after this prediction was made,

a three dimensional topological insulator was experimentally realized in this system[6].

The transport properties of surface states in 3D materials are typically washed out by

contributions from the bulk. The experimental evidence of topology in Bi1−xSbx crystals

came from using Angle Resolved PhotoEmission Spectroscopy (ARPES). ARPES probes

the electronic structure of a material by shinning X-Rays or UV light on it and observing

the energy and momentum of the electrons ejected by the photoelectric effect. The pho-

tons do not penetrate beyond the first couple nanometers of the sample; the technique

therefore primarily probes the surface states of a material and is perfectly suited for in-

vestigating crystalline topological insulators. The band structure of Bi1−xSbx extracted

from ARPES measurements were perfectly consistent with topological surface states so-

lidifying its position as the first three dimensional topological insulator. Subsequently,

Bi1−xSbx became the most common platform for exploring topological physics.

Quantum Anomalous Hall Effect

The first zero-field topological insulators realized were all time reversal symmetric and

had transport properties susceptible to disorder. Transport in three dimensional topo-

logical insulators is not, even theoretically, expected to exhibit clean transport signals.

The quantum spin Hall effect does have a quantized longitudinal conductance; however,

this resistance is susceptible to the details of the electrical contacts made in series to the

device and is therefore difficult to implement in practical applications. The Quantum

Anomalous Hall effect is an important experimental landmark for topological physics as

its dissipationless edge states ensure that the Hall voltage is robustly quantized without

being strongly susceptible to details of the electronic contacts, facilitating its use practi-

cally. Its realization requires bands with non zero Chern numbers and their degeneracy,
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resulting from time reversal symmetry, broken by interactions. Furthermore, since a band

can only have a Chern number in one or two dimensions, the material cannot be three

dimensional.

Time reversal symmetry breaking interactions can be introduced into a material by

doping it with magnetic transition metals. In order for this to induce ferromagnetism in

the topological insulator’s electrons, the exchange coupling between the magnetic ions

and the insulator’s electrons must be large compared to the inverse spin susceptibility

of both the magnetic ions and the electrons: J2
eff > 1/χmχe. Intuitively, this constraint

arises from a competition between the free energy gained from aligning the electron

and dopant magnetic moments, −JeffMmMe, and the energy cost of reducing entropy

by aligning magnetic moments 1
2
χm/eM

2
m/e. This mechanism was originally thought to

be an unlikely candidate for breaking time reversal symmetry in topological insulators

because the largest contribution to the electron spin susceptibility arises from a finite

carrier concentration. In an insulator, where the carrier concentration is negligible, the

electron spin susceptibility is typically so small that magnetic dopants would be unable

to couple strongly enough to induce ferromagnetism. Fortunately, the electron spin

susceptibility can also be enhanced if there is significant coupling between the spins of the

electrons in the conduction and valence bands: this mechanism is called the van Vleck

paramagnetism. Coincidentally, the necessary coupling for van Vleck paramagnetism

naturally emerges when both band inversion and strong spin orbit coupling are present.

Magnetically doping band inversion style topological insulators is therefore a realistic

avenue for engineering ferromagnetism.

The defining experimentally accessible feature of a ferromagnet is hysteresis of its

magnetization with respect to the applied magnetic field. The electrons remain polarized

in their original spin configuration until the field is strong enough to overcome interactions

and repolarize them along the direction of the field. When no field is applied, the electrons

34



Introduction Chapter 1

are stable in their spin configuration that breaks time reversal symmetry. Magnetization

is a measure of the imbalance between spin up and down electrons; this imbalance also

determines the electron’s net Berry curvature and therefore the material’s Hall resistance.

Thus, the Hall resistance is a proxy measurement of the material’s magnetization and,

in a Chern insulator, is quantized when the spins are fully polarized into the spin up or

spin down band.

The first sample to exhibit a quantum anomalous Hall effect was engineered from

(Bi,Sb)2Te3, a variant of the previously discovered 3D topological insulator. A ∼ 10 nm

thick layer of (Bi,Sb)2Te3 is both quasi-two dimensional and has bands with Chern num-

ber ±1[7]; it only lacks a mechanism to break time reversal symmetry.13 When the thin

layer is made with interspersed chromium atoms, ferromagnetism emerges that couples

to the electrons in the (Bi,Sb)2Te3 breaking the degeneracy of the Chern bands. The

magnetic field dependence of the longitudinal and Hall resistances of the first quantum

anomalous Hall sample is presented in Fig.1.13A and B[8]. The Hall conductivity is quan-

tized to ±h/e2 and the longitudinal resistance vanishes at B = 0 exactly as expected of

a quantum anomalous Hall effect. The field couples to the magnetic moment of both the

chromium and the electrons switching their orientation and the observed Hall resistance

when larger than ∼ 150 mT. When the field sweeps back to zero, the Hall resistance re-

mains quantized with its sign determined by the direction of the magnetic field that last

polarized its electrons. Furthermore, both a non-quantized Hall resistance and resistive

current flow through the bulk are observed when the magnetic field induces switching

between the Chern ±1 bands consistent with the gap closing. This device unequivocally

exhibits transport signatures unique to a quantum anomalous Hall effect.

This broadly covers the experimental advances in topological insulating systems en-

13Despite being true, it is not obvious that reducing the dimensionality of a three dimensional Z2

topological insulator can lead to a two dimensional materials with Chern bands.
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gineered prior to the work presented in this thesis. They are landmark experiments that

confirmed the importance of topology in understanding the electronic properties of ma-

terials. However, both for further advancing fundamental knowledge about topology and

practically applying these discoveries, the materials either need to be improved or new

materials need to be discovered.

The material fabrication techniques used to create (Bi,Sb)2Te3 interspersed with

chromium introduces randomness to the product’s crystalline structure. The materi-

als are created by systematically introducing the constituent atoms of a desired product

to an environment where the arrangement that minimizes their energy is the desired

lattice. This process, known as material growth, is susceptible to many details that are

beyond the scope of this thesis. In general, the disorder in grown materials stems from

an inability to precisely control the final position of each atom resulting in an inconsis-

tent lattice. Disorder significantly affects the properties of topological insulators when

the magnitude of its perturbations to the band structure is larger than or comparable

to the topological band gap. When the crystalline disorder is too large, the electronic

properties are dominated by its randomness instead of the underlying lattice that houses

the properties of interest. In an intermediate regime where the disorder is significant

but not prohibitive, the electronic properties of the lattice can only be probed at very

low temperatures. For example, the first quantum anomalous Hall measurements were

taken at 30 mK! To increase the robustness of topological effects, one can either improve

the growth techniques to reduce disorder or find new materials with stronger topological

properties.

New material systems exhibiting topological properties can either be grown or created

with a new fabrication technique. Material growth is a powerful tool because it casts

a wide net on the materials it can create; more robust topological materials accessible

by material growth are likely waiting to be found. However, material growth has the
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weakness that the process is both relatively slow and produces materials with fixed prop-

erties. This means that, in practice, investigating new avenues for topological physics

is cumbersome and time consuming as many samples need to be grown to explore the

material’s parameter space. The work presented in this thesis makes use of an entirely

different fabrication technique to engineer and probe topological physics.

A B
30 mK 30 mK

Figure 1.13: Quantum Anomalous Hall Effect in (Bi,Sb)2Te3. The transverse
(A) and longitudinal (B) Hall resistance as a function of applied magnetic field mea-
sured at 30 mK. The ferromagnetism is fully polarized for magnetic fields larger in
magnitude than ∼ 150 mT resulting in a quantized Hall conductivity and negligible
longitudinal resistance that persists when the field is swept back to 0T.

1.2.2 Graphene Heterostructures

Graphite is a commonly found crystalline form of carbon with its atoms arranged into

two dimensional hexagonal lattices held together with only van der Waals forces. van

der Waals forces arise from a distance-dependent interaction between atoms or molecules

and are weak compared to the covalent bonds responsible for the integrity of graphite’s

individual layers’ lattices. One can therefore imagine that it is possible to isolate a single

two dimensional layer by overcoming the weak van der Waals forces without breaking

the intralayer covalent bonds.

Graphene, the name given to a single layer of graphite, was first isolated in 2004 in
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Professor Geim’s group at the University of Manchester[9]. They approached the prob-

lem of overcoming only the van der Waals forces with a novel yet rudimentary approach:

they put bulk graphite on to scotch tape and repeatedly pulled it apart with fresh tape

until only a graphene monolayer remained. The discovery of this process, formally called

mechanical exfoliation, revolutionized the approach to creating two dimensional materi-

als.

The lattice of graphene monolayers extracted from graphite is incredibly regular and

hosts minimal impurities in the form of dislocations, tears, or contamination from other

materials. Working with graphene is therefore qualitatively different from using material

growth techniques. Instead of working to reduce the randomness of a latticed assembled

from its constituents, one works to maximize the preservation of graphene’s naturally

pristine lattice. The regularity of the monolayers is also reflected in the extent to which

its electronic properties are well modeled by a hexagonal lattice. Matching the theoretical

band structure to experimental results allows for precise extraction of the terms in the

Hamiltonian and generates a model with incredible predictive power.

The two dimensional nature of graphene also enables its electron density to be tuned

reversibly without remaking a sample. Materials made with growth techniques primarily

vary their electron carrier concentrations by changing the relative concentrations of its

constituents. Graphene monolayers, on the other hand, can be made into a parallel plate

capacitor by placing it on top of a local electrical contact, called a gate, separated by a

thin insulating layer. A voltage on the gate accumulates charge on the graphene layer

changing its electron density. The range of electron densities that can be accessed from

electrostatic doping is only limited by the dielectric breakdown of the insulating layer

between the gate. Though this can also be done in materials grown to be quasi-two

dimensional, the range of electron densities accessible in graphene is significantly larger.

Mechanical exfoliation can be used to isolate layers from any material consisting
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of layers adhered by van der Waals forces. Graphene was the first such material to

be isolated, but is far from the last. As more such materials were successfully isolated,

experimental techniques developed to deliberately place the two dimensional layers on top

of each other, creating stacks of exfoliated van der Waals materials called van der Waals

heterostructures. This process, illustrated in Fig. 1.14, provided the degree of freedom

necessary for to engineer structures capable of realizing new physical phenomena.

The only other van der Waals material important enough to be mentioned here is

hexagonal boron nitride (hBN), an insulating analog of graphene. Its low charge trap

content and dielectric constant allows it to be a very high quality substitute for SiO2

substrates. Sandwiching graphene between hBN layers both preserves its quality and

isolates it electrically providing the protection necessary to make diverse high quality

samples[10, 11]. Subsequently, procedures were developed to make clean electrical con-

tact to encapsulated graphene[12] and to electrically gate graphene without introducing

significant disorder by making the local gate out of graphite[13, 14]. The final product was

two dimensional electrical devices with state of the art cleanliness and with a wide range

of accessible electron densities. Naturally, these advances in heterostructure manufac-

turing techniques led to the discovery and improved understanding of electronic phases.

In particular, this thesis is concerned with the use of graphene for the development of

topological systems.

Topological Phases in Graphene Heterostrucutres

The band structure of graphene is particularly well suited for the study of topology.

Graphene’s band structure, derived considering only nearest neighbor interactions, is

portrayed in Fig 1.15. It is characterized by a degeneracy, protected by a combination
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Figure 1.14: van der Waals heterostructures. Graphene, hBN, MoS2, WSe2 and
Fluorographene are examples of van der Waals materials that can be mechanically
exfoliated to single atom thick layers. Each material is analogous to an atomic scale
Lego; heterostructures are created by stacking any two dimension layer on top of each
other in any permutation. Figure was taken from the following publication [15].

of the lattice’s inversion symmetry14 and time reversal symmetry, at the corners of the

Brillouin zone for ~K = (4π/3a, 0) and ~K ′ = (−4π/3a, 0), where a = 2.46 angstroms is

the lattice constant of graphene. Each carbon atom contributes one electron to the π

bands and therefore undoped graphene has exactly half filled bands where, in Fig 1.15,

the Fermi energy is at the interaction of the conduction and valence bands. The full

Hamiltonian can be expanded about the K-points using ~p ≡ ~K − ~k where the resulting

low energy band structure decouples the K points at the Brillouin zone corners and,

within each valley, the spectrum is linear:

E(~p) = ±~vF |~p| (1.8)

The low energy ground state of graphene is four fold degenerate with two pairs of

independent electron species characterized by spin and valley indices. The linear dis-

14Inversion symmetry is characterized by an invariance under point reflection. A point in the lattice
can be found whereby the transformation ~r → −~r leaves the lattice unchanged.
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Figure 1.15: Graphene Band Structure. (A) The hexagonal crystalline lattice
structure of graphene is described by a unit cell with two carbon atoms that observes
a discrete translational symmetry characterized by the illustrated vectors ~a1/2 with
magnitude a = 2.46 angstroms. (B) The electronic band structure of graphene for
a nearest neighbor hopping model. The inset zooming in around ~K = (4π/3a, 0)
shows the linear dispersion near the Fermi energy. (C) A color map of the valence
band simplifies the identification of the hexagonal Brillouin zone. Periodic boundary
conditions are observed along opposite edges of the hexagon. The energy in both (B)
and (C) is displayed in arbitrary units.

persion around the K-points are fundamental properties protected only by the inversion

symmetry of the honeycomb lattice and survives to all orders of nearest neighbor inter-

actions. The energy dispersion resembles the energy of ultra-relativistic particles as a

linear dispersion is equivalently described quantum mechanically by the massless Dirac

equation. Thus, the K-points in graphene are also often referred to as Dirac points.

The linear dispersion at the Fermi energy in graphene is functionally identical to a

linear band crossing from band inversion. Engineering topological phases in graphene

therefore requires unearthing the incipient Berry curvature by gapping out the Dirac

points. In band inversion topological insulators, spin orbit coupling is used to create a

gap at the linear crossing. The natural spin orbit coupling in graphene is very small and

material growth techniques to externally introduce spin orbit coupling are incompatible

with graphene. Spin orbit coupling is not a experimentally practical candidate for engi-

neering topological systems in graphene. When I introduced graphene’s band structure,

I noted that the linear dispersion is protected by the lattice’s inversion symmetry; con-

versely, this implies that breaking the lattice’s inversion symmetry opens a gap at the
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Dirac points.

The first measurements of Berry curvature emerging from inversion symmetry bro-

ken hexagonal lattice were made in 2H-MoS2, the hexagonal crystalline phase of MoS2.

Although it has a hexagonal lattice similar to graphene, the two atoms in the unit cell

are staggered such that one atom is in one plane and the other atom in the unit cell

alternates between being in a plane above and below the plane defined by the first atom.

Thus, it is very familiar when viewing the lattice structure top down. However, when

looked at from the in-plane direction it looks dramatically different from graphene. This

lattice structure, shown in Fig. 1.16, still has its electronic properties determined by

the hexagonal lattice, in that it has a four fold ground state degeneracy resulting from

a Valley degree of freedom. However, the staggering of the atoms in the unit cell breaks

inversion symmetry resulting in gaps at the Dirac points that imply the presence of Berry

curvature.

Figure 1.16: MoS2 crystal lattice.

The valley Hall effect refers to a Hall conductivity arising from Berry curvature gen-

erated by a gap in a material’s valleys. The two valleys contribute equal and opposite

Hall currents that cancel each other out unless time reversal symmetry is broken. Typ-

ically, a Hall voltage is probed by applying a magnetic field and performing electrical

transport measurements; however, this measurement is agnostic to the source of the Hall

conductivity and would not distinguish a valley Hall effect from other contributions to a
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Hall resistance. The valley Hall effect is unique in that optical selection rules allow opti-

cal pumping of valley polarized carriers by circularly polarized photons. This effect was

studied in 2H-MoS2 where they observed a finite Hall voltage whose sign is controlled

by the helicity of the light incident on the sample[16]. Furthermore, no Hall effect is

observed in bilayer 2H-MoS2 devices, which have crystalline inversion symmetry. The

observation of a valley Hall effect only in inversion symmetry broken 2H-MoS2 devices

provides strong evidence for the emergence of Berry curvature.

Though the existence of Berry curvature is a building block necessary for the emer-

gence of many types of topology, additional requirements must be met before true topol-

ogy emerges. A net Chern number requires the accumulation of Berry curvature in a

band. In the former case of MoS2, each valley has equal and opposite Berry curvature,

but the full band, as illustrated in Fig. 1.17A, contains both valleys and has a net Berry

curvature of zero.

One approach to making Chern bands from gapped Dirac cones in a hexagonal lattice

is to engineer a larger unit cell in the graphene that reduces the size of the Brillouin

zone. In analogy to the gaps that open when the unit cell size doubles from the Peierls

instability, gaps are opened around each Dirac cone isolating it and its Berry curvature.

If the larger unit cell, called a superlattice unit cell, is commensurate with the graphene

unit cell, independent minibands with Chern numbers of +1 can be formed from the

K valley and −1 from the K’ valley as illustrated in Fig. 1.17B. The Chern bands are

still energetically degenerate, as time reversal symmetry isn’t broken, and two such bands

exist per Valley owing to the ever-present spin degeneracy. This mechanism was proposed

for engineering topological systems using graphene on top of hBN[17].

The lattice structure of hBN enables it to fulfill two crucial roles in the development

of topology in graphene heterostructures in addition to its use as a low disorder encapsu-

lating layer. hBN has a hexagonal lattice with lattice constant slightly mismatched from
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Figure 1.17: Engineering Topology with a Superlattice. A line cut through
the 2D graphene Brillouin zone with broken inversion symmetry. The Γ point refers
to the center, ~k = 0 point of the Brillouin zone; the K and K ′ points are as previously
defined. A Berry curvature of Ω = −π contributed from the K ′ valley that sums with
the Ω = π contribution from the K valley; the total Berry curvature and therefore
Chern number is zero. Introducing a superlattice changes the size of the unit cell
opening gaps at full filling of the superlattice. In this manner, the Berry curvature
can be isolated creating minibands with Chern number ±1.

that of graphene by ∼ 2%. If the crystal lattice of the hBN is aligned with the lattice of

graphene, then a moiré pattern is formed (Fig. 1.18A) that results in a superlattice unit

cell. The periodicity of the superlattice unit cell is reflected in crystal momentum space

as a reduced Brillouin zone with the formation of mini bands with non-trivial topological

character[17]. Lattice relaxations have been observed to favor the formation of commen-

surate lattices for angles between the graphene and hBN of ≈ 1◦[18]. Furthermore, the

hexagonal lattice of hBN has two different atoms in its unit cell, one boron and one

nitrogen, strongly breaking its inversion symmetry and resulting in it being a band gap

insulator. Crucially, when graphene is stacked on top of hBN, the systematic alignment

of one carbon in graphene’s unit cell with a boron and the other with nitrogen breaks

the inversion symmetry in the graphene/hBN heterostructure.

The superlattice formation and inversion symmetry breaking properties of graphene

aligned to hBN were studied optically using ARPES, the same technique used to provide

initial evidence for 3D topological insulators. Both predicted effects were noticed in their

experimentally extracted band structure. Minibands are expected to exhibit Second-
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A B

Figure 1.18: Moire Superlattice. Moiré patterns are large-scale interference pat-
terns produced when a two similar patterns with transparent gaps are overlaid on
one another. A moiré pattern can be formed by overlaying two hexagonal lattices
with different sized unit cells (A) or by overlaying two identical hexagonal lattices
with a small twist angle between them (B). The unit cell of the emerging moire pat-
tern, marked in red in both cases, is much larger than the unit cell of the underlying
hexagonal lattice.

generation Dirac cones at the K points of the superlattice associated with the formation

of minibands; these were clearly observed at the corners of the superlattice Brillouin

zone for one of the two Valleys. Furthermore, all of the observed Dirac cones, both the

original one at charge neutrality and the SDCs, were gapped suggesting that inversion

symmetry is broken. The authors suggest caution in interpreting the observed gaps as a

strict indication of inversion symmetry breaking as a definitive explanation requires more

theoretical and experimental investigations. The detailed mechanism aside, a gapped

Dirac cone should be Berry curvature rich, given the results from MoS2. This, combined

with the unambiguous proof of a superlattice, should enable the engineering of topological

devices from these basic building blocks.15

15It’s important to note that these ARPES results are not evidence for topology in the graphene/hBN
heterostructure in the same way that it was for the 3D topological insulators. Topology manifests itself
physically on the boundary between the bulk and vacuum. For a 3D material, that boundary is the
surface that’s being investigated with ARPES. For graphene and other 2D materials, that boundary is
the one dimensional edge of the device. The surface results of graphene presented here are therefore
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Thus, all the elements required for topological bands are now, at least theoretically,

present in a graphene system. There is Berry curvature, associated with the gapped Dirac

cones, that has been accumulated into isolated mini-bands resulting from the formation

of a superlattice. The bands have Chern numbers and can exhibit a quantized Hall

effect if their degeneracy can be broken. If bands with opposite topological properties

are simultaneously occupied, in this case because of the four fold degeneracy arising

from spin and valleys, then the associated quantized Hall effects will cancel. The last

ingredient required to make our topology observable is thus to break the four fold ground

state symmetry.

Twisted Bilayer Graphene

Breaking the degeneracy of electrons in a material can be achieved either extrinsically,

i.e. by applying a magnetic field to the sample, or intrinsically, by engineering the

electronic structure to have interactions that differentiate the electron species. The latter

tends to be of great interest both because such devices are fundamentally richer in physics

as interaction driven phenomena are a domain of active research and because it’s easier

to imagine integrating the result into practical applications down the road.

Generically, interactions become important in determining the behavior of electrons

in materials when the interaction energy is comparable to or larger than the other energy

scales in the system. The most important energy scales in electronic materials are the

temperature, the disorder, the dispersion bandwidth, and Coulomb interactions. The

technology used to perform low temperature electronic measurements of materials is well

established and enables access to temperatures sufficiently low to observe phenomena

bulk properties of graphene and, in order to make statements about topology, the edge of the graphene
would need to be measured. However, such measurements have much too stringent of a requirement of
on the spatial resolution of ARPES (which was already pushed to its limit to perform the cited study
in the first place).
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driven by the other three energy scales. In the previous section, I expounded the ad-

vantages of van der Waals heterostructures for reducing the disorder of the system. We

are therefore left with comparing the dispersion bandwidth to the Coulomb interaction

strength. The approach taken for the work presented in this thesis is to engineer a

material where the bandwidth is minimized to the extent that the interactions become

dominant.

The electron dispersion bandwidth is given by the difference between the highest and

lowest energy electron in a filled band. Intuitively, if this is much larger than the elec-

tron interaction energy scale, then, though interactions will lead to minor reshaping and

restructuring of the band, it won’t be able to affect the ordering of bands or differentiate

the electron species. Given that the goal is to engineer a degeneracy breaking mechanism,

the natural requirement becomes to engineer a system with minimal bandwidth, where

it is understood that reducing the bandwidth is equivalent to finding a way to make the

electronic dispersion maximally flat.

Surprisingly, this can be achieved by taking advantage of graphene and the experi-

mental methods developed to stack van der Waals materials. A moiré superlattice can

be formed by stacking one graphene layer on top of another with a slight rotational

mismatch in their lattice orientations as shown in Fig. 1.18B. The size of the resulting

superlattice unit cell is controlled by the relative angle of the graphene layers crystalline

axes. The size of the reduced Brillouin zone along the line between the ~k = 0 points,

called the Γ point, and K/K ′ points is given by kθ ≈ θK for small angles θ between the

graphene monolayers. As is the case for graphene aligned to hBN, electronic band gaps

form around the Dirac points at crystal momenta associated with the periodicity of the

super lattice. In contrast to graphene on hBN, the size of the gap opened, ω, is dominated

by electron tunneling between layers and is simply determined, large, and indifferent to

the twist angle. When ω matches the energy of the linear dispersion where the gap opens
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for the reduce Brillouin zone, determined from equation 1.8, then the bands are max-

imally flat. A schematic illustration of the effect of the coupling between rotationally

misaligned stacked graphene monolayers on the resulting band structure is shown in Fig.

1.19; these devices are called twisted bilayer graphene heterostructures. Experimentally,

the angle of the twisted bilayer graphene heterostructure tunes the bandwidth of the

minibands.
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Figure 1.19: Flat Bands from Twisted Bilayer Graphene. (A) An illustration
of a line cut of the graphene dispersion immediately around the K point towards the
Γ point where the gap associated with the tunneling energy, ω, is set to zero. The
extents of the mini Brillouin zone for graphene monolayers twisted by an angle θ are
marked. The slope of the Dirac cone centered at ~k = ~K is given by ∂E

∂k = ~vF ; the
gaps from the superlattice would emerge at E = ~vFKθ/2. (B) If the size of the gap
opened is commensurate with the energy at which the gap opens, ω = ~vFKθ/2, then
the first miniband is maximally flat.

Calculations of the band structure of twisted bilayer graphene requires careful treat-

ment since, for generic twist angles, the moiré pattern does not necessarily form a com-

mensurate lattice[19]. Proper theoretical treatment of a graphene Moiré superlattice

requires taking into account both the periodicity of the graphene lattice, by the using

the monolayer band structure calculated with Bloch’s theorem, and the quasi-periodicity

of the superlattice, by expanding the basis of the Hamiltonian to include hopping be-
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tween a finite number of superlattice unit cells. The number of superlattice units cells

that need to be included in the calculation in order for the band structure calculation to

be a reasonable approximation of reality, and therefore the size of the matrix that needs

to be diagonalized, scales as ∼ 10θ−2.

Calculations performed with this model predict that there is a series of small twist

angles between graphene monolayers that result in the renormalized Dirac-point band

velocity to vanish and the minimization of the mini-band’s bandwidth. The largest

of these angles, which one would expect to be most experimentally viable and stable, is

1.05◦. This angle is still quite small! One would expect the physics to be quite susceptible

to changes in angle on the order of 0.1◦ which requires a great deal of precision in the

manufacturing process of these device. Therefore, though the infrastructure required to

create twisted bilayer structures existed at the time of the the prediction, it still took

over half a decade before the first samples exhibiting flat bands were realized.

The creation of a superlattice also confers an advantage facilitating the systematic

experimental investigation of the electronic properties. The range of electron densities

that can be accessed in situ from electrostatic gating cannot fully fill or empty graphene’s

lowest energy band. For a sample with a superlattice, the change in electron density

required to fill the mini-band relative to the original band is reduced by the ratio of the

areas of the original unit cell to the superlattice cell. For these twisted bilayer graphene

systems where the superlattice constants are almost 100 times larger than the graphene

lattice constant, electrostatic gating enables us to tune through full filling of the mini-

bands closest to charge neutrality. Thus, in these experimental systems, the behavior as

a function of band filling can be fully mapped out in situ in a single device[20].

Electronic transport measurements of the first twisted bilayer graphene devices were

performed by Cao et. al[21]. Measurements from a slightly later, but improved, twisted

bilayer graphene device with θ = 1.1◦ are shown in Fig.1.20[22]. The x-axis shows

49



Introduction Chapter 1

the carrier density in the heterostructure, tuned by electrostatic gating, and the y-axis

shows the conductance. The carrier density is presented both in terms of n, the number

of electrons per inverse square centimeters, and ν = An, the number of electrons per

superlattice unit cell with area A. An integer value of ν corresponds to the electron

density required to fill individual ν minibands not factoring in the four fold degeneracy

of graphene. One notices the emergence of resistive peaks near charge neutrality and

ν = 1, 2, 3 and 4. Insulating behavior at ν = 1, 2, and 3 implies the formation of a

gap when filling bands that, without considering interactions, are degenerate. Their

observation is tantamount to interaction driven symmetry breaking of the graphene’s

four fold ground state degeneracy. The exact nature of the symmetry broken states and

how they are represented in the spin-valley basis is unclear from these early experiments.

However, it is unambiguous that the system has been driven into the regime where

interactions dominate the observed physics.16

We previously established that hBN aligned graphene monolayers have gapped Dirac

cones and, theoretically, mini-bands with non zero Chern numbers that cannot be ob-

served due to the unbroken fourfold ground state degeneracy. In this section, we estab-

lished that twisted bilayer graphene results in bands sufficiently flat that electron-electron

interactions determine the behavior of the electrons. Furthermore, these interaction break

the four fold ground state degeneracy of the graphene monolayer. However, they do not

exhibit quantized resistances associated with topology bands. Naturally, the next ques-

tion is: what happens if we combine these heterostructures by making a twisted bilayer

graphene device aligned to its hBN substrate?

A twisted bilayer graphene device aligned to its encapsulating hBN was first realized

by Sharpe et. al[23]. Transport measurements share the majority of the characteristics

16The near agreement between the twist angles for which interaction driven effects are theoretically
predicted and experimentally observed is a testament to the cleanliness and regularity of graphene’s
lattice and, more generally, to graphene’s use as a model physical system.
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Figure 1.20: Longitudinal Resistance in a Twisted Bilayer Graphene Device.
Longitudinal resistance Rxx as a function of carrier density n at different perpendicular
magnetic fields from 0T (black trace) to 480mT (red trace). For this introduction, the
magnetic field dependence is not critical. The density dependence is also presented as
a function of ν. Rxx exhibits resistive states of various strength at ν = 0,±1,±2,±3
and ±4. The ν = 0 and ±4 resistance peaks are associated with single particle band
structure effects of the moiré superlattice. The ν = ±1,±2 and ±3 imply the existence
of band gaps driven by interactions between identical, otherwise degenerate, electron
species.[22]

found in devices unaligned to the hBN substrates. However, two important differences

emerge as a result of the hBN alignment presented in Fig. 1.21. First and foremost,

the insulating state found at ν = 3 was found to be hysteretic with an applied magnetic

field implying that time reversal symmetry is broken by interactions intrinsic to the

device. A net Chern number cannot be realized without time reversal symmetry breaking;

Sharpe’s finding is critical to the engineering of a graphene based quantum Anomalous

hall effect. The second key observation is that the magnitude of the Hall resistances

observed near ν = 3 is large enough that the only compatible explanation is that it

results from Berry curvature. Sharpe observed a non quantized Hall resistance of 10.4kΩ

or 0.4h/e2 consistent with a incipient quantized Anomalous Hall effect perturbed by

disorder.

The twisted bilayer graphene aligned to hBN device presented above was not fabri-
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Figure 1.21: Ferromagnetism in Twisted Bilayer Graphene Aligned to hBN.
The longitudinal resistance, Rxx, (A) and the transverse resistance, Ryx, (B) are
presented as a function of magnetic field. Both display hysteretic behavior indicative
of ferromagnetic interactions facilitated by the flat bands[23].

cated using all the techniques known to minimize disorder in graphene heterostructures.

This is where the work done in this thesis starts. Our goal was to answer the ques-

tion: what if one of these devices were made to be less disordered? Would a quantized

anomalous Hall effect be visible, and if so, what can be learned by studying it both with

electronic transport and local magnetic field measurements?
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Transport Measurements of Twisted

Bilayer Graphene

Two dimensional insulators can be classified by the topology of their filled energy bands.

In the absence of time reversal symmetry, nontrivial band topology manifests experimen-

tally as a quantized Hall conductivity σxy = C e2

h
, where C 6= 0 is the total Chern number

of the filled bands. Motivated by fundamental questions about the nature of topologi-

cal phase transitions[24] as well as possible applications in resistance metrology[25] and

topological quantum computing[26], significant effort has been devoted to engineering

quantum anomalous Hall (QAH) effects showing topologically protected quantized resis-

tance in the absence of an applied magnetic field.

To date, QAH effects have been observed only in a narrow class of materials consist-

ing of transition metal doped (Bi,Sb)2Te3[8, 27, 28, 29, 30, 31, 32]. In these materials,

ordering of the dopant magnetic moments breaks time reversal symmetry, combining

with the strongly spin-orbit coupled electronic structure to produce topologically non-

trivial Chern bands[7]. However, the performance of these materials is limited by the

inhomogeneous distribution of the magnetic dopants, which leads to microscopic struc-
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tural, charge, and magnetic disorder[33, 34, 35, 36]. As a result, quantization occurs at

temperatures which are approximately one order of magnitude smaller than the magnetic

ordering temperature[28, 27, 8].

Moiré graphene heterostructures provide the two essential ingredients—topological

bands and strong correlations—necessary for engineering intrinsic quantum anomalous

Hall effects. For both graphene on hexagonal boron nitride (hBN) and twisted multilayer

graphene, moiré patterns generically produce bands with finite Chern number[17, 37, 38,

39], with time reversal symmetry of the single particle band structure enforced by the

cancellation of Chern numbers in opposite graphene valleys. In certain heterostructures,

notably twisted bilayer graphene (tBLG) with interlayer twist angle θ ≈ 1.1◦ and rhom-

bohedral graphene aligned to hBN, the bandwidth of these Chern bands can be made

exceptionally small[19, 40, 37, 41], favoring correlation driven states that break one or

more spin, valley, or lattice symmetries. Experiments have indeed found correlation

driven low temperature phases at integer band fillings when these bands are sufficiently

flat[21, 41, 42, 43, 22]. Remarkably, states showing magnetic hysteresis indicative of time-

reversal symmetry breaking have recently been reported in both tBLG[23] and ABC/hBN

heterostructures[44] at commensurate filling. These systems show large anomalous Hall

effects highly suggestive of an incipient Chern insulator at B = 0. Here I report our

observation of a QAH effect showing robust zero magnetic field quantization in a flat

band twisted bilayer graphene (tBLG) sample aligned to one of its encapsulating hBN

layers.

2.1 Device Fabrication

An optical micrograph of the tBLG device we studied is shown in Fig. 2.1A . The

device is made using the “tear-and-stack” technique [45]. The tBLG layer is sandwiched
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between two hBN flakes with thickness 40 and 70 nm, as shown in Fig. 2.1B. A few-

layer-thick graphite flake is used as the bottom gate of the device, which has been shown

to produce devices with low charge disorder [14]. The stack rests on a Si/SiO2 wafer,

which is also used to gate the contact regions of the device. The stack was assembled at

60◦ C using a dry-transfer technique [12] with a poly(bisphenol A carbonate) (PC) film

on top of a polydimethylsiloxane (PDMS) stamp.

In an exfoliated heterostructure, the orientation of the crystal lattice relative to the

edges of the flake can often be determined by investigating the natural cleavage planes of

the flake. Graphene and hBN, being hexagonal lattices, have two easy cleavage planes -

zigzag and armchair, each with six-fold symmetry, that together produce cleavage planes

for every 30◦ relative rotation of the lattice. We tentatively identify crystallographic

directions by finding edges of the flakes with relative angles of 30◦. From the optical

image we find that the cleavage planes of the tBLG layer and the top hBN are aligned.

Taking into account the uncertainty of distinguishing between zigzag and armchair edges

in this way, this suggests two possibilities - a relative twist angle between the tBLG and

hBN flakes of either ∼ 0◦ or ∼ 30◦.

2.2 Electrical Transport Methods

Four-terminal resistance measurements are carried out in a liquid helium cryostat

with a 1 K pot and a base temperature of 1.6 K. The measurement was done using AC

current excitations of 0.1 - 20 nA at 0.5 - 5.55 Hz using a DL 1211 current preamplifier,

SR560 voltage preamplifier, and SR830 and SR860 lock-in amplifiers. Gate voltages

and DC currents are applied, and amplified voltages recorded, with a home built data

acquisition system based on AD5760 and AD7734 chips.

We use the following convention for labeling contact configurations for resistance
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Figure 2.1: tBLG device. (A) Optical micrograph of the device. Scale bar corre-
sponds to 10 µm. (B) Schematic of a tBLG heterostructure. tBLG is encapsulated
between flakes of hBN, with a flake of few-layer graphite used as a gate. (C) Optical
image of the stack. The crystalline edge of the top hBN and the top layer of tBLG are
aligned with a 30 degree angular offset in the marked cleavage planes. (D) Optical
image of the stack before etching, showing the top layer of the tBLG (red dashed line),
bottom layer of the tBLG (white dashed line), and the bottom gate (green solid line).

measurements: RABCD corresponds to a resistance measured by applying current from

A to B and measuring the voltage between C and D.

Disentangling longitudinal and Hall resistance

The geometry of the device is such that no pair of contacts showing a QAHE allows a

perfectly isolated determination of Rxx or Rxy, and measurements must be performed in

a van der Pauw geometry to obtain precise quantization. Magnetic field and geometric

symmetrization techniques were thus used to separate Rxx and Rxy components of the

resistance tensor [46].

Field symmetrization relies on the fact that longitudinal resistances are symmetric
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with respect to time reversal, whereas Hall resistances are antisymmetric. Above the

coercive field, pairs of resistance measurements performed at opposite fields can thus be

used to extract the longitudinal and Hall resistances using:

Rxx(B) = (Rmeas(B) +Rmeas(−B))/2 (2.1)

Rxy(B) = (Rmeas(B)−Rmeas(−B))/2 (2.2)

In Fig. 2.2, we show an example of this symmetrization method. Rxx and Rxy were

acquired by extracting the field symmetric and field antisymmetric parts of RADBC and

RACBD at B = ±150 mT. When time reversal symmetry is broken independently of the

applied magnetic field—as in the case of the observed ferromagnetism—an analogous

symmetrization technique can be used by symmetrizing and antisymmetrizing the mea-

sured resistance at B = 0 for opposite signs of magnetic field training. This method has

the advantage of not requiring changes to the measurement contacts, which in practice

allows for more precise determination of the components of the resistivity tensor. How-

ever, this form of symmetrization does not accurately capture domain dynamics of the

device that are asymmetric in field.

For faithful measurements of the longitudinal and Hall resistances as a function of B,

we instead use Onsager symmetrization. In an isotropic sample, Hall resistances appear

in the resistance tensor as off-diagonal antisymmetric terms:

R =

 Rxx Rxy

−Rxy Rxx


By exchanging the voltage contacts with the current contacts we can measure the

transpose of the resistance tensor, and can therefore symmetrize by using the following
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Figure 2.2: Measurements of Rxx and Rxy using reverse field reciprocity. (A)
RACBD measured at +150 mT and -150 mT. Rxy is obtained from the antisymmetric
part of the resistance. (B) RADBC measured at +150 mT and -150 mT. Rxx is
obtained from the symmetric part of the resistance.

formulas, which remain valid for all systems in the linear response regime[46] :

Rxx = (RABCD +RCDAB)/2 (2.3)

Rxy = (RABCD −RCDAB))/2 (2.4)

In practice, we expect different contact configurations to carry larger longitudinal or

Hall resistance signals based on the geometry of the sample. RADBC is predominantly
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a measurement of Rxx, whereas RACBD is the contact configuration that maximizes the

relative contribution of Rxy. In Fig. 2.3 A-C, we use RADBC and its Onsager reciprocal

RBCAD to extract Rxx, and in Fig. 2.3 D-F we use RACBD and its Onsager reciprocal

RBDAC to extract Rxy. This measurement modality has the advantage of providing full

field dependence of longitudinal and Hall resistances. However, because it entails switch-

ing physical contact connections, symmetrization by this method can introduce sensitivity

to offsets associated with high contact resistances on certain contacts, discussed in the

next section.

We notice that for each configuration used for Rxx measurements, the resistance peak

associated with a domain transition is only observed in one sweep direction. At low tem-

peratures, we observe the unsymmetrized Rxx peak approach 2h/e2 during the transition.

Both facts are consistent with the magnetic reversal occurring through an intermediate

state in which two magnetic domains with opposite polarization are arranged in series

along the direction of current flow [36].

Offsets and Contact Resistances

We attribute small offsets in longitudinal and Hall resistances to a dramatic increase

in the resistance of one of the contacts of the device near ν = 3. In Fig. 2.4, we show

the density dependence of the two-terminal conductivity of the contacts used in the

measurement with current sourced from one contact and drained through the rest. In all

contact configurations we have the expected insulating states at charge neutrality and

full filling of the miniband, with resistive features near ν = 2 and 3. However, in contact

B we observe another strongly insulating state near ν = 3, at the densities at which we

observe the QAH effect. We attribute this to a tBLG region in series with contact B

that exhibits a strongly insulating C = 0 phase–potentially arising due to misalignment
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Figure 2.3: Measurements of Rxx and Rxy as functions of magnetic field using
Onsager reciprocal relation. (A) Resistance measurement applying current from
contact A to D and measuring voltage from contact B to C. The resistance peak
is only observed in the positive field sweep direction. (B) Resistance measurement
applying current from contact B to C and measuring voltage from contact A to D.
The resistance peak is only observed in the negative field sweep direction. The peak
value of the longitudinal resistance is close to 2h/e2. Both of these phenomena are
signatures of two QAH domains in series [36]. (C) Symmetrized Rxx obtained from
(A) and (B) using Rxx = 1/2 × (RADBC + RBCAD). (D) Resistance measurement
applying current from contact A to C and measuring voltage from contact D to B.
(E) Resistance measurement applying current from contact D to B and measuring
voltage from contact A to C. (F) Symmetrized Rxx obtained from (D) and (E) using
Rxy = 1/2 × (RACBD − RBDAC). Opposite sweep directions are marked with solid
and dashed lines.
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or weak coupling to the proximal hBN layers (as illustrated in Figure 2.6B). When this

contact is used as a current source, near ν = 3 its series resistance is high enough to

introduce offsets in Rxy. When this contact is used as a voltage probe, its weak coupling

to the rest of the device makes the resulting measurement of Rxy noisy. The measurement

scheme that was used to quantitatively assess the quantization of the QAH state in Fig.

2 was a field symmetrized measurement of Rxy using contact B as a voltage probe and

very long averaging times.
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Figure 2.4: Characterization of device electrical contacts. Density dependence
of the contact conductivity of the four contacts used in the experiment at 1.6 K. We
perform a two terminal measurement sourcing current from one contact with all of the
remaining contacts grounded. The density region at which the QAH effect is observed
is highlighted in yellow. Contact B is two orders of magnitude more resistive than all
other contacts close to ν = 3.

2.3 Moiré Angle Charaterization

The electronic properties of tBLG are sensitive to both the twist angle between

graphene monolayers and their alignment to the encapsulating hBN layers. When two

hexagonal lattices are nearly aligned, a hexagonal moire superlattice emerges with lattice

constant determined by the angle of their proximate alignment or the mismatch of their

lattice constant. This produces minibands that are fully filled when four electrons, or
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holes, occupy each superlattice cite (one electron for each spin valley state). Fully filling

or depleting a miniband places the Fermi energy within the band gap whereby resistive

peaks are observed in transport. We can therefore measure the twist angle between

graphene or hBN layers by determining the density at which resistive peaks associated

with full filling of the minibands occur.

Calibrating electron density with quantum oscillations

The electron density in the sample is varied in situ by electrostatically gating the

device. We find the conversion factor from applied gate voltage to carrier density by

measuring the period of Shubnikov de Haas oscillations in Fig.2.5.
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Figure 2.5: Quantum oscillations measured at low temperature. Quantum
oscillations measured between contacts A and B at 30 mK. The QAH effect is not
visibile in this region of the device. Schematic lines representing the evolution of
Landau levels used to extract the gate capacitance are marked with dashed red lines.

Sufficiently low disorder 2D electron gases exhibit the quantum Hall effect at high
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magnetic fields, wherein the band structure is reshaped into Landau levels, topological

bands that are gapped by the cyclotron energy. At intermediate magnetic fields, oscil-

lations corresponding to incipient but not fully gapped Landau level plateaus appear as

minima in Rxx as a function of magnetic field and density. States with nontrivial topol-

ogy, either from Landau level formation or instrinsic band topology, evolve with magnetic

field according to the Streda formula:

C =
h

e

dn

dB
(2.5)

A Landau fan presents Rxx as a function of density and magnetic field. By measuring

the slope of the resistance minima as a function of density and magnetic field, we obtain

the Chern number C of the set of filled bands at that density. This characterizes the

topology of both the emergent topological bands (the Landau levels) and the intrinsically

topological band (the QAH state). By measuring dn
dB

for a set of Landau levels with

ubiquitous, well-characterized behavior, we can determine the density within the device

as a function of applied gate voltage.

Figure 2.5 shows quantum oscillations near charge neutrality measured at 30 mK

between contacts A and B, a region not exhibiting the QAH effect. The Landau Fan

diagram shows clear gapped states with fillings ν = +2, 4, 8, 12, 16, 24, 32. We use these

quantum oscillations to determine the capacitance of the device C = 4.1 × 10−4 F/m2.

This extracted capacitance was used to populate the density axis wherever required.

Bilayer graphene twist angle

In the special case of flat band twisted bilayer graphene, we also expect commensurate

filling resistive states from which we can calibrate the angle. Near B = 0 we identify the

densities at which features we presume to be associated with commensurate band filling
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appear. From measurements of n and ν, we then determine the angle by the relation

n/ν = 1/Am ' 2θ2/
√

3a2, where a = 0.246 nm is the lattice constant of graphene. Using

the clear resistivity peaks in Fig. 2.11 at ν = 0 and 2, the Rxy plateau at ν = 3, and the

edge of the insulating regions at ν = ±4 gives θ = 1.15± .01◦.

Device inhomogeneity

In twisted bilayer graphene devices, the twist angle varies significantly as function

of position [47]. The angle reported in both the main text and the previous section is

extracted from the region of the device where the QAH effect is observed: around contacts

A, B, C and D. In this section, we provide a coarse mapping of the angle in our device

and the phenomenology observed in each region, which is summarized in Fig. 2.6B.

We use four terminal conductance measurements between different sections of the

device, shown in Fig. 2.6A, to estimate the twist angle as a function of position. We use

a mix of full and commensurate filling states, where applicable, to determine the angles.

The bulk of the device can be broadly described by two different regions: one where

we observe an anomalous Hall effect and one where do not. The former is observed

in the part of the device containing contacts A, B, C, D and E where the angle is

relatively uniform at 1.15 degrees. The QAHE is only observed when measuring the Hall

resistance between pairs (B, D) and (A, C) (see Fig. 2.3D and E). Measuring the Hall

voltage with the pair (A,E) shows an AHE near ν = 3 for which the hysteretic change

in Rxy is only 0.03h/e2 (Fig. 2.7). In order for QAHE to manifest itself, there must be a

clean edge state connecting all four contacts used in the measurement. The presence of

structural domains with small twist angle variations, such as those imaged recently using

nanoSQUID microscopy [47], could interrupt edge states and inhibit their equilibration

with contacts. We speculate that this is responsible for the partial quantization observed
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Figure 2.6: Transport measurements in different sections of the tBLG de-
vice. Conductance is measured using four terminal with pairs of voltage sensing
contacts indicated next to traces. Curves are offset by 0.5× 10−3 S for clarity.

between pair (A, E).

The second region, where no anomalous Hall effect is measured, occurs from contacts

M to H. Immediately adjacent to the anomalous Hall region, from contacts A to M, we

see a departure from the twist angle of 1.15 degrees and a broadening of the full filling

resistive peak, likely associated with twist angle disorder. From M to J, the twist angle

becomes larger, such that we do not see convincing superlattice resistance peaks in the

range of carrier density probed. If the small conductivity dips right around 3.3×1012cm−2

are associated with the bilayer graphene twist angle, then they predict an angle of 1.2

degrees. Otherwise, the angle would be larger. Even further from the AH region, the

twist angle changes again to approximately 1.16 degrees. In this region of the device,

density-tuned resistance peaks associated with correlated states are observed without any

sign of an anomalous Hall effect.

In Figure 2.8, we also illustrate the region associated with the contact that goes
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Figure 2.7: Anomalous Hall effect observed between contacts A and E. Top
panels of (A - D) show Rxy measured between between contacts A and E at carrier
densities n=2.21, 2,33, 2.39 and 2.42×1012 cm−2. For this measurement contacts
D,C,B are used as a source and M,L,K,F as a drain. R2xx, shown in the bottom panels,
is a corresponding two-terminal resistance measured between source and drain.

trivially insulating around ν = 3, which was discussed in detail in section 2.2.

Evidence for hBN alignment

Graphene alignment with the hBN has two observable effects in transport: it generates

an additional moiré superlattice with associated resistive peaks and it breaks the graphene

bilayer’s inversion symmetry, creating a large gap at charge neutrality. These features,

if observed, can provide additional evidence of the alignment between a graphene layer

and an adjacent hBN.

We notice a subtle peak at 3.3× 1012 cm−2 in Fig. 2.5 that could be the superlattice

peak due to alignment with hBN. The magnetic field dependence of the feature is reminis-

cent of similar measurements performed on hBN aligned to graphene monolayers[48, 13].
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Figure 2.8: Distribution of Phases in QAH Device (A) Twist angle disorder pro-
duces different low temperature phases in different regions of the device, but transport
data can still be collected as long as the relevant region completely separates a set
of four contacts. In this case the region can be current biased while independently
measuring two voltage contacts. Contacts A, B, C, and D were used throughout this
paper to characterize the QAH region.

We also see resistive features in Fig. 2.6 between contacts J and M around 3.3×1012 cm−2

that could be the result of alignment with the hBN. We do not observe equivalent fea-

tures at opposite density. If these features correspond to a superlattice resistive peak,

the density at which they occur implies either an hBN-graphene twist angle of θ ≈ 0.6◦,

or twist angle disorder in the graphene bilayer with a region corresponding to θ ≈ 1.1◦.

Monolayer graphene, when aligned to hBN, can have gaps opened at charge neutrality

with gap size above 100K[13]. In this device, we observe a large resistance peak at charge

neutrality with a gap size of 67K, consistent with hBN alignment breaking inversion

symmetry in the device.

The only other observation to date of zero field ferromagnetism in a tBLG sample

reported both crystallographic alignment and additional insulating peaks, symmetric in

density, associated with the hBN-graphene moiré lattice[23]. This, paired with weak

evidence for an additional superlattice, a strong gap at charge neutrality consistent with

alignment, and a fabrication procedure in which we intentionally aligned the hBN to the

graphene, leads us to believe that it is, indeed, aligned.
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2.4 Evidence for Unusual Band Structure

Theories predicting the emergence of the QAH effect in twisted bilayer graphene

require either explicitly broken two-fold rotation symmetry, or the inclusion of remote

conduction and valence bands[38, 39, 49]. The former, in particular, can be achieved

by aligning the twisted bilayer graphene with the hBN substrate, which is known in

monolayer graphene to generate large energy gaps at B = 0[13, 50]. In this section we

present evidence that the sample in our study is likely aligned with the hBN. In particular,

it shows an uncharacteristic hierarchy of integer ν gaps, with the largest observed gap at

ν = 0. The Landau fan measurement Rxx(B, n) also shows unusual features that suggest

a significantly modified electronic structure within the flat bands and possible signs of a

second moiré pattern.

Activation gaps at ν = 0 and ν = ±4

In Fig. 2.9, we present thermal activation gap measurements at ν = 0 and ν = ±4.

The gap at charge neutrality is determined to be 67 K, much larger than other devices,

though not unexpectedly so. However, the gaps at ν = ±4 are uncharacteristically small

with values of 34 K for ν = 4 and 16 K for ν = −4. This asymmetry in gap size is not

seen in other devices[51].

Quantum oscillations

Quantum oscillations in the region of the device exhibiting the quantum anomalous

Hall effect can provide independent confirmation of the relevant band’s Chern number

and additional information about the surrounding band structure. Figure 2.10 shows

quantum oscillations measured at 1.6 K between contacts B and C, the region in which

the QAH effect is observed. The QAH state can be seen at n ∼ 2.4× 1012 cm−2, B = 0.
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Figure 2.9: Insulating state activation gaps. Arrhenius plots presenting the tem-
perature dependence of the resistivity of the insulating states at charge neutrality
(ν = 0) and ν = ±4. Fits of the form R ∝ exp(∆/2kBT ) are used to extract the
thermal activation gaps.

We can extract its Chern number from the Streda formula applied to its evolution as

a function of magnetic field, and we find that C = +1 (2.10B). This is in reassuring

agreement with the measurement of Rxy in transport measurements of the QAH state,

for which Rxy = 1
C
h
e2

= h
e2

in this device. Furthermore, it provides additional confirmation

that the carriers in this QAH state are electrons, in contrast to CBST systems [28, 27]

and ABC/hBN [44]. We also observed quantum oscillations originating from the resistive

state at ν = 2 that have hole-like character (C = −2,−4,−6), which is a feature unique

to our hBN encapsulated flat band tBLG device exhibiting the QAH effect[42, 21, 51, 43].

2.5 Quantum Anomalous Hall Effect

Here we report the observation of a QAH effect showing robust zero magnetic field

quantization in a flat band (θ ≈ 1.15 ± 0.01◦) tBLG sample aligned to hBN. The elec-

tronic structure of flat-band tBLG is described by two distinct bands per spin and valley

projection isolated from higher energy dispersive bands by an energy gap. The total

capacity of the flat bands is eight electrons per unit cell, spanning −4 < ν < 4, where we
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Figure 2.10: Quantum oscillations in QAH region. (A) Magnetic field and
density dependence of Rxx in the device at 1.6 K. Data are taken from -5T to 5T
and symmetrized with respect to magnetic field. (B) Schematic lines representing
the evolution of minima in Rxx(n,B) associated with topologically nontrivial bands.
Green lines labelling C = ±1, −2, ±4, ±6 mark quantum oscillations around the
charge neutrality point. Similar sketches mark quantum oscillations around ν = −4
(orange, C = -4, -6), ν = 2 (dark blue, C = -2, -4), ν = 3 (light blue, C = -2, 1), and
ν = 4 (red, C = 4, 4, 8, 12, 16). The two C = 4 states marked in red near ν = 4 are
inconsistent with a single moiré pattern, implying either hBN-graphene alignment or
disorder in the tBLG twist angle. The C = 1 state marked in light blue corresponds
to the QAH state.
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define the band filling factor ν = nAm with n the electron density and Am ≈ 130 nm2

the area of the moiré unit cell. Figure 2.11A shows the longitudinal and Hall resistances

(Rxx and Rxy) measured at a magnetic field B = 150 mT and temperature T = 1.6 K

as a function of charge density over the entire flat band. The sample is insulating at the

overall charge neutral point and shows a weak resistance peak at ν = 2. In addition, we

observe Rxy approaching h/e2 in a narrow range of density near ν = 3, concomitant with

a deep minimum in Rxx reminiscent of an integer quantum Hall state.

Figure 2.11B shows the magnetic field dependence of both Rxx and Rxy at a density

of n = 2.37 × 1012 cm−2 measured at T = 1.6 K. The Hall resistivity is hysteretic, with

a coercive field of several tens of millitesla, and we observe a well quantized Rxy = h/e2

along with Rxx < 1kΩ persisting through B = 0 indicative of a QAH state stabilized by

spontaneously broken time reversal symmetry. The switching transitions are marked by

discrete Barkhausen jumps in the resistance on the order of h/e2 ∆R ≈ h/e2 steps in both

Rxx and Rxy, typical of magnetic systems consisting of a small number of domains[36].

Figure 1C shows the detailed density evolution of the Rxy hysteresis near ν = 3. Both the

coercive field and zero-field Hall resistance are maximal near ν = 3, although hysteresis

can be observed over a much broader range of ν ∈ (2.84, 3.68) (see Fig. 2.21).

Fig. 2.11D shows a schematic representation of the band structure at full filling (ν = 4)

and at ν = 3. In the absence of interaction-driven order, the spin-degenerate bands in

each valley have total Chern number ±2 (Fig. 2.11D). The observed QAH state occurs

because the exchange energy is minimized when an excess valley- and spin-polarized

Chern band[38, 39] is occupied, spontaneously breaking time-reversal symmetry. Mag-

netic order in two dimensions requires anisotropy. In graphene, the vanishingly small

spin orbit coupling provides negligible anisotropy for the spin system implying that spin

ordering is unlikely. The observation of hysteresis with an applied magnetic field there-

fore implies that the valley electrons have a magnetic moment. Since there is no intrinsic
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Figure 2.11: Quantized anomalous Hall effect in twisted bilayer graphene (A)
Longitudinal resistance Rxx and Hall resistance Rxy as a function of carrier density n
at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ν = 3. Data are corrected
for mixing of Rxx and Rxy components by symmetrizing with respect to magnetic field
at B = ±150 mT. (B) Longitudinal resistance Rxx and Hall resistance Rxy measured
at n = 2.37×1012cm−2 as a function of B. Data are corrected for mixing using contact
symmetrization. Sweep directions are indicated by arrows. (C) Hall resistance Rxy
as a function of magnetic field B and density n. Hysteresis loop areas are shaded
for clarity. The rear wall shows field-training symmetrized values of Rxy at B = 0.
Rxy(0) becomes nonzero when ferromagnetism appears, and reaches a plateau of h/e2

near a density of n = 2.37× 1012cm−2. (D) Schematic band structure at full filling of
a moiré unit cell (ν = 4) and ν = 3. The net Chern number Cnet 6= 0 at ν = 3.
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angular momentum component associated with a valley, it is likely that the observed

magnetism is orbital, with strong, easy-axis anisotropy arising from the two dimensional

nature of the graphene bands[49, 23, 22, 38, 39]. This will be addressed in more detail

in the following chapter.

The phenomenology of ν = 3 filling is non-universal across devices: some samples

are metallic[21, 42], some[52, 22] show a robust, thermally activated trivial insulator

while others show an anomalous Hall effect[23]. This is consistent with theoretical

expectation[49] that the phase diagram at integer ν is highly sensitive to model de-

tails which, in our experiment, may be controlled by sample strain[53] and alignment to

an hBN encapsulant layer that breaks the C2 rotation symmetry of tBLG[38, 39]. The

prior report of magnetic hysteresis at ν = 3 was indeed associated with close alignment

of one of the two hBN encapsulant layers[23], a feature shared by our device. Additional

features of the transport phenomenology presented here further suggest that the single

particle band structure of the device is significantly modified relative to unaligned tBLG

devices, and suggest that hBN aligned samples constitute a different class of tBLG de-

vices with distinct phenomenology. First, our device shows only a weakly resistive feature

at ν = 2, but a robust thermally activated insulator at charge neutrality. Remarkably,

this ν = 0 insulator has a larger activation gap than even the states at ν = ±4, which

are much smaller than typical. Second, the quantum oscillations are highly anomalous,

with hole-like quantum oscillations originating at ν = 2, again in contrast to all prior

reports[21, 42, 43, 22]. While no detailed theory for these observations is available, the

extreme sensitivity of the detailed structure of the flat bands to model parameters, com-

bined with observations that hBN substrates can produce energy gaps as large as 30

meV in monolayer graphene[13], point to the role of the substrate in tipping the balance

between competing many-body ground states at ν = 3 in favor of the QAH state.

We check the repeatability of both magnetic field and DC current dependence of
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transport. Both measurements are presented in Fig.2.12, in which we sweep the ap-

plied control parameter from the negative to positive value and back five times while

maintaining a constant density of 2.37× 10−12 cm−2.

We measure the magnetic field dependence of the Hall resistance as we sweep the field

to ±150 mT at 1.6 K in Fig. 2.12A. The structure is consistent between sweeps with many

of the intermediate jumps appearing highly repeatable. Domain switching and coercive

field are asymmetric in field. Structure within Fig. 2.12A is likely related to the presence

of several ferromagnetic domains with different coercive fields. These can plausibly be

explained by the presence of disorder in strain or twist angle. DC current measurements

are made with an applied current within a range of ±6nA at a temperature of 6.5 K

in Fig. 2.12B. We find that current switching is only repeatable at higher temperatures.

Above ∼ 6 K, magnetic domains with smaller Curie temperatures are not magnetized,

so the hysteretic behaviors with respect to both B and I are characterized by single

steps in Rxy of order O( h
e2

) (as opposed to many smaller steps). We presume that

current-switching phenomena are most repeatable when the sample is left with a single

ferromagnetic domain because the sign of the current-domain coupling can vary from

domain to domain.

Repeatable switching of the magnetization state of the device using small pulses of

DC current was demonstrated in Figure 2.18B. Storage of information in magnetization

states is preferable to storage of information in charge states primarily because metastable

magnetization states tend to be less volatile than metastable charge states. In Figure

2.13 we demonstrate repeated switching of the magnetization state of the device followed

immediately by a stability test of the magnetization. Over a period of 500 seconds, the

magnetization of the device does not switch or decay to within the precision of the Hall

resistance measurement.
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Figure 2.12: Repeated hysteresis loops. Hall resistance repeatability as a function
of both applied magnetic field (A), and DC current (B) at a constant density of
2.37× 10−12 cm−2. Measurements are repeated 5 times in immediate succession. The
raw data is presented without any form of symmetrization. Increasing magnetic fields
and DC currents are plotted as solid lines, whereas decreasing fields and currents are
plotted as dashed lines. Magnetic field measurements are performed at 1.6K, whereas
the DC current measurements were performed at 6.5 K.

2.5.1 Temperature Dependence

Figs. 2.14A and B show the temperature dependence of major hysteresis loops in

Rxx and Rxy, respectively. As T increases, we observe both a departure from resistance

quantization and a suppression of hysteresis, with the Hall effect showing linear behavior

in field by T = 12 K. In our measurements, we observe resistance offsets of ∼ 1 kΩ from

the ideal value, which vanish when resistance is symmetrized or antisymmetrized with

respect to magnetic field (or, for B ≈ 0, with respect to field training). For quantitative

analysis of the T -dependent data, we thus study field-training symmetrized resistances,

denoted R̄xy and R̄xx. Figure 2C shows R̄xy(0). Finite hysteresis is observed up to tem-

peratures of 8K (Fig .2C), consistent with the Curie temperature TC ≈ 7.5 K determined

from an Arrott plot (Fig. 2.15). R̄xy remains quantized up to T ≈ 3 K, with the average

value of (1.0010± 0.0002)× h
e2

between 2 and 2.7 K.

To quantitatively assess the energy scales associated with the QAH state, we measure

the activation energy at low temperature. Fig. 2D shows both the measured R̄xx and the
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Figure 2.13: Magnetic bit stability. After a DC current pulse train switches the
magnetization of the QAH magnetization several times, the bit is monitored for 500
seconds. No measurable decay in the magnetization of the sample is detected in that
time.

deviation from quantization of the Hall resistance, δR̄xy = h/e2 − R̄xy, on an Arrhenius

plot.

We obtain the thermal activation gap of σxx by fitting both the longitudinal resistance,

Rxx, and the deviation from quantization in the Hall resistance, δR̄xy. We model σxx as

thermally activated with σxy remaining constant. In the limit of small σxx, this gives:

ρxx = σxx/
(
σ2
xx + σ2

xy

)
≈ σxx/σ

2
xy (2.6)

ρxy = σxy/
(
σ2
xx + σ2

xy

)
≈ 1/σxy − σ2

xx/σ
4
xy (2.7)

Assuming that the Fermi level lies in the middle of the gap, we take the gap size to

be twice the measured thermal activation energy scale. We therefore fit the following

equations to measured values of Rxx(T ) and Rxy(T ) to extract the gap size:

σxx ∝ Rxx = R0e
−( ∆

2T
) (2.8)

σ2
xx ∝ h/e2 −Rxy = R1e

−( ∆
T

) (2.9)

Arrhenius plots of Rxx(T ) and h/e2 − Rxy(T ) have fluctuating slopes; as in most
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Figure 2.14: Temperature dependence of the quantum anomalous Hall ef-
fect. (A) Rxy and (B) Rxx as a function of B measured at various temperatures for
n = 2.37× 1012 cm−2. Rxx and Rxy mixing was corrected using contact symmetriza-
tion. (C) Temperature dependence of the field-training symmetrized resistance R̄xy at
B = 0, as described in the main text. The Curie was determined to be TC ≈ 7.5(.5) K
using an Arrott plot analysis (see Fig. 2.15). The inset shows detailed low-temperature
dependence of R̄xy at B = 0. Error bars are the standard error derived from 11 con-
secutive measurements. R̄xy saturates below ≈ 3 K to a value of (1.0010±0.0002)× h

e2
,

determined by averaging the points between 2 and 2.7 K. (D) Arrhenius plots of field
training symmetrized resistances R̄xx and δR̄xy = h/e2 − R̄xy. Dotted lines denote
representative activation fits. Systematic treatment of uncertainty arising from the
absence of a single activated regime gives ∆ = 31 ± 11 K and 26 ± 4 K for R̄xx and
δR̄xy, respectively.
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Figure 2.15: Arrott plot for the ferromagnetism at ν = 3. Here we plot R2
xy

versus B/Rxy at 5K, 6K, 7K, and 8K. The value of the intercept from the high field
linear regime interpolated down to zero field encodes the type of magnetism observed
at that temperature. A positive intercept corresponds to ferromagnetism whereas
a negative intercept corresponds to paramagnetism. We see that the transition from
paramagnetism to ferromagnetism occurs between 7K and 8K and therefore determine
TC ≈ 7.5K.

thermal activation measurements, the dominant uncertainty in the gap measurement

arises from uncertainty in which temperature regime to fit. For the gaps presented in

Figure 2D in the main text, we fit a polynomial of order n to log(R), where n is chosen

such that the reduced χ2 goodness of fit parameter χ2 − 1 is minimized. We then take

the weighted average and standard deviation of the derivative at each temperature point,

with weight inversely proportional to the log scale error of the measurement. Fits are

shown in Fig. 2.16 and are labeled with the gap obtained from the fit.

We find the activation gaps extracted from fitting δR̄xy and R̄xx to be ∆ = 26± 4 K

and ∆ = 31± 12 K, respectively, with the large uncertainty in the latter arising from the

absence of a single simply activated regime.

Comparison of energy scales with magnetically doped topological insulators

Here we compare the zero field activation gap of the QAH effect in twisted bilayer

graphene to those of Cr modulation doped (Bi,Sb)2Te3 and V doped (Bi,Sb)2Te3 [28, 27].
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Figure 2.16: Thermal activation fit (A) Polynomial fit of log R̄xx(β) and
log (δR̄xy(β), where β = 1/T . R̄xx is fit with a thirteenth-degree polynomial and
χ2 is 2.0. δR̄xy is fit with a tenth-degree polynomial and χ2 is 1.8. (B) Gap size
extracted from derivative of polynomial fit in (A). Gap over the temperature range is
taken as the weighted average with weight proportional to the log scale error at each
temperature point. The first and last two temperature points are removed because
the local derivative cannot be well approximated without symmetric sampling around
the temperature of interest. We obtained a gap value of 31 K ± 12 K from the Rxx
data and of 26 K± 4 K from the δR̄xy data.

Activation gaps have typically not been reported in these compounds. However, digitizing

the published data and replotting it on an Arhennius scale shows behavior that is well

described by a single activation scale. Applying the same fitting procedures to the data

of Mogi[28] and Chang [27], we find gaps of around 2.8 K for Cr doped (Bi,Sb)2Te3, and

0.8 K for V doped (Bi,Sb)2Te3, as presented in figure 2.17. The gap size for tBLG is

27 K, which represents almost an order of magnitude improvement over the next most

robust QAH sample. A comparison of the QAH gap to the Curie temperature, ∆H/TC ,

reveals the difference in nature of the QAH effect in these systems. In Cr doped and V

doped topological insulators, the Curie temperatures are 25 K and 40 K, corresponding

to gap-to-Curie-temperature ratios of 0.1 and 0.02 respectively. The intrinsic magnetism

in tBLG results in a TH/TC ≈ 3, indicating that either intrinsic magnetism or a lack of

doping induced disorder strongly enhances the robustness of the QAH effect.
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Figure 2.17: Zero field thermal activation gap of QAH effect in tBLG and
magnetically doped TIs. We determine the σxx activation gap of Cr modulation
doped[28] (blue) and V doped[27] (red) (Bi,Sb)2Te3 with the formulas outlined in
S2.5.1. Their thermal activation data is plotted with tBLG data on the same axes.
In (A), we fit the thermal activation of Rxx and in (B) we fit the thermal activation
of Rxy.

2.5.2 Current Switching

Ferromagnetic domains in tBLG interact strongly with applied current[23]. In our

device, this allows deterministic electrical control over domain polarization using excep-

tionally small DC currents. Figure 2.18A shows Rxy at 6.5 K and B=0, measured using

a small AC excitation of ∼ 100 pA to which we add a variable DC current bias. We

find that the applied DC currents drive switching analogous to that observed in an ap-

plied magnetic field, producing hysteretic switching between magnetization states. DC

currents of a few nanoamps are sufficient to completely reverse the magnetization, which

is then indefinitely stable. Figure 2.18B shows deterministic writing of a magnetic bit

using current pulses, and its nonvolatile readout using the large resulting change in the

anomalous Hall resistance. High fidelity writing is accomplished with 20 nA current

pulses while readout requires < 100 pA of applied AC current.

Assuming a uniform current density in our micron-sized, two atom thick tBLG device

results in an estimated current density J < 104 A·cm−2. While current-induced switching

at smaller DC current densities has been realized in MnSi, readout of the magnetization
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Figure 2.18: Current controlled magnetic switching. (A) Rxy as a function
of applied DC current, showing hysteresis as a function of DC current analogous to
the response to an applied magnetic field. Insets: schematic illustrations of current
controlled orbital magnetism. (B) Nonvolatile electrical writing and reading of a
magnetic bit at T = 6.5 K and B = 0. A succession of 20 nA current pulses of
alternating signs controllably reverses the magnetization, which is read out using the
AC Hall voltage. The magnetization state of the bit is stable for at least 103 s.
(C) Rxy as a function of both DC bias current and magnetic field at 7 K. Opposite
directions of DC current preferentially stabilize opposite magnetization states of the
bit. Measurements presented in (A - C) are neither field nor Onsager symmetrized,
which produces an offset in Rxy.

81



Transport Measurements of Twisted Bilayer Graphene Chapter 2

state in this material has so far only been demonstrated using neutron scattering[54].

Compared with other systems that allow in situ electrical readout, such as GaMnAs(J =

3.4 × 105 A·cm−2)[55] and Cr-(BiSb)2Te3 heterostructures (J = 8.9 × 104 A·cm−2)[56],

the applied current densities are at least one order of magnitude lower. More relevant

to device applications, the absolute magnitude of the current required to switch the

magnetization state of the system (∼ 10−9A) in our devices is, to our knowledge, 3

orders of magnitude smaller than reported in any system.

Figure 2.18C shows the Hall resistance at T = 7 K measured as a function of magnetic

field and current. DC currents compete directly with the magnetic field: opposite signs of

current stabilize opposite magnetic polarizations, including states aligned opposite to the

direction favored by the static magnetic field. Current breaks time reversal symmetry,

but mirror symmetry across the plane perpendicular to the sample and parallel to the

net current flow precludes an injected charge from favoring a particular out-of-plane

polarization.

The microscopic magnetic domain configurations stabilized from reversal driven by

an applied current are different from those favored by a static magnetic field. Figure 2.19

shows the Hall resistance measured as a function of applied current at T = 1.6 K with no

applied magnetic field. For currents larger in magnitude than∼ 15 nA, the Hall resistance

is quantized to the usual values. The intermediate metastable domain configurations

accessed by sweeping the applied current exhibit zero Hall resistance for currents between

0 nA and 13 nA. This observation is consistent with various microscopic topological

domain configurations that are known to produce no net Hall voltage[36]. Nonetheless,

differences in the configurations accessed from applied currents and magnetic fields may

be critical to properly identifying the current coupling mechanism.
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Figure 2.19: Low temperature current controlled magnetic switching. Rxy
as a function of applied DC current measured at 1.6 K with B = 0 T. In contrast to
measurements at higher temperatures, intermediate metastable domain configurations
are stabilized that do not emerge from switching with an applied magnetic field.

Current Switching Mechanism Proposal

The mechanism by which the current is interacting with ferromagnetic domains is

poorly understood. The observed behavior is not consistent with joule heating-driven

thermal relaxation of magnetic order because the application of a DC current stabilizes

a magnetization state in an opposing magnetic field. This statement holds true even in

the limit of extreme device asymmetry.

In this section, we consider a simple mean field model for the coupling of an applied

current to the QAH order parameter, i.e. the Ising magnetization, whose sign determines

the Chern number and therefore the Hall conductivity. In particular, we show that the

non-equilibrium distribution of electrons in the current-carrying state is different in the

two domains, owing to a difference in population of the chiral edge states and to edge

asymmetries. As a result, the free energy of a domain contains a term which is odd in

the order parameter and in the current, thus preferentially favoring a particular sign of

the Hall conductivity, which can be switched by changing the sign of the current. The

effect is linear in the length of the edges.

We consider a Hall bar with translational invariance along x and a confining potential
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along y. As a simplified model we take a free electron gas with two spin states, and

presume that the up spins see a positive (orbital) magnetic field B and the down spins

see a negative magnetic field −B. The total density of electrons is such that it would fill

one Landau level if all spins were polarized; this mimics the situation in a Chern insulator

with ν = ±1. We add a repulsive interaction between species, Un↑n↓. Presumably this

leads to spontaneous polarization, with the Ising order parameter Φ = n↑ − n↓. Let us

consider the mean field theory in which without domain walls Φ becomes a constant,

and all spins are polarized. Then we have two possible states related by time reversal

symmetry.

Consider a single domain. We suppose the minority polarization states are exchange

split above the Fermi energy, and model only the single spin polarization selected by the

order parameter This is then just the usual integer quantum Hall effect. The twist is that

we want to compute the free energy in the presence of a current, and then observe how it

depends upon the magnetization state of the domain. For a single domain in the Landau

gauge the lowest Landau level states are specified by a single momentum quantum number

k = kx. They are localized at the position y(k) = k`2sign(B), where ` =
√
φ0/B is the

magnetic length. Their dispersion ε(k) forms a flattened parabola which approximates

the constant Landau level energy far from the boundaries, but rises due to the confining

potential when y(k) reaches either boundary. The precise way in which it rises is non-

universal and depends upon the shape of the boundaries. Importantly, the final result

will be expressed entirely in terms of properties of the two edges near the Fermi energy.

Thus we expect that the various assumptions in the model are not important, and the

results are generic and model independent for a QAH state.

In this formulation, we do not quite separate the two boundaries into distinct chan-

nels, because by treating both edges as part of one whole, we automatically achieve the

cancellation of unphysical effects of states far from the Fermi energy which must oth-
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erwise be put in manually. The logic we will take is to treat the system in a sort of

generalized Gibbs ensemble, in which we assume quasi-equilibrium with Lagrange mul-

tipliers for conserved and approximately conserved quantities. The former is the charge,

i.e. electron number, and the latter is the current, which is conserved when we assume

the two edges are decoupled. So with this replacement we have

H → H − µN − µ̃I =
∑
k

(ε(k)− µ− µ̃ε′(k)) c†kck. (2.10)

We can from this write the free energy

F/L =

∫
dk

2π
f(εk − µ− µ̃ε′k), (2.11)

with

f(ε) = −kBT ln
(
1 + e−βε

)
. (2.12)

The current is given by

I = −
∫
dk

2π
eε′knF (εk − µ− µ̃ε′k). (2.13)

Here the Fermi function

nF (ε) =
1

eβε + 1
= f ′(ε). (2.14)

This implies

I = e
∂(F/L)

∂µ̃
. (2.15)

Eq. (2.15) fixes µ̃ as a function of current I, and thereby, inserting this into Eq. (2.11),

obtain the free energy in terms of current. We carry this out in a Taylor series in µ̃ and

I.
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The expansion of the free energy is

F/L = F0 +
1

2
F2µ̃

2 +
1

6
F3µ̃

3 +O(µ̃4). (2.16)

with εk = εk − µ. The first term F0 is a constant. The remaining coefficients are

F2 =

∫
dk

2π
(ε′k)

2n′F (εk) ≈
1

2π
(|v1|+ |v2|) ,

F3 =

∫
dk

2π
(ε′k)

3n′′F (εk) ≈ −
1

π

(
sign(v1)

m1

+
sign(v2)

m2

)
. (2.17)

Here vi = ε′(ki) is the velocity at the end i (top or bottom of the Hall bar), and mi is

the (inverse) curvature at ki. The approximation signs indicate the leading terms in the

T → 0 limit, i.e. for temperatures well below the QAHE gap.

With these equations we can solve for µ̃ in terms of the I up to second order in

current. Reinserting this into the formula for the free energy we obtain consistently up

to third order the result

F/L = F0 +
1

2e2F2

I2 − F3

3e3F3
2

I3 +O(I4). (2.18)

Finally we have obtained a term (proportional to I3) in the energy which is odd in the

current. The coefficient F3 is odd under time-reversal, i.e. changes sign in the two

domains. So the cubic term favors one domain over the other, depending upon the sign

of the current.

A schematic of the mechanism of domain selection is shown in Fig. 2.20. For simplicity

of illustration we assume one edge is much “sharper” than the other, which means that

its dispersion is much steeper than the other “smooth” edge. The sharp edge with |v1| ≡

v � |v2| and 1/m1 ≡ 1/m � 1/m2 dominates the transport because electrons move
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faster on this edge. This allows us to draw a picture of the dispersion just near one edge.

In the figure, the edge dispersion is shown in black for one sign of the magnetization/Hall

conductivity (denoted M > 0), and in blue for the other sign (M < 0). The two curves

are time-reversal copies, so are reflected in the k axis. If a positive current is driven,

the Fermi level is shifted up at this edge for M > 0 and down for M < 0, while it is

shifted down if a negative current is driven for M > 0 or a positive one is driven for

M < 0. Focus on the positive current case I > 0. We seek to find the energy difference

for fixed current but opposite domains. Consider first the M > 0 domain. The positive

current raises the Fermi level, populating additional states. The total energy of those

states is the integral over the domain of added states of the single particle energy of those

states: this defines the gray shaded area under the black dispersion curve and above the

k axis for positive k, ε. This area is the energy cost of driving a positive current for the

M > 0 state. Now consider still I > 0 but M < 0. The Fermi level is shifted down,

and states are depopulated. The blue area above the blue curve and below the k axis for

k > 0, ε < 0 is the energy cost for creating these hole states. One can see that the blue

area is not equal to the gray area, and that the inequality is due to the curvature of the

dispersion. The difference in the two areas is the energy difference the two domains due

to the non-equilibrium current.

To make an estimate of the magnitude of these effects, we use the same “fast edge”

approximation to simplify to a single velocity and mass parameter. Then the cubic term

in the free energy is,

F ∼ (2π)3

3π

~2sign(v)

me3v3
LI3. (2.19)

Here we restored the dependence on ~. The contribution the current to the free

energy is enhanced by decreases in the edge mass and velocity, which are determined by

non-universal edge physics. The free energy is particularly sensitive to v and I, since
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Figure 2.20: Schematic illustration of an asymmetric “fast” edge and the population
changes at this edge due to a current I > 0 for positive and negative domains, shown
in black and blue. The dashed lines show the Fermi energy for the two cases in the
presence of the current. The difference of the two shaded areas is the energy difference
between the two domains due to the current (see text).

both appear cubed, which renders making precise estimates difficult. Nonetheless, to

show consistency, we take v = 5 × 104 m/s (a typical literature value for magic angle

tBLG), and m = me, i.e. a unit effective mass, and a current of I = 100 nA, which is the

order of the switching currents at low temperature (since the theory has been carried at

T = 0). This gives an energy F = 4.0 meV, which is similar to the magnetostatic energy

assuming an orbital moment per electron of a few Bohr magnetons. Uncertainties in the

edge properties as well as thermal renormalizations not taken into account here make it

hard to make a more quantitative comparison at present. These are interesting subjects

for future work.

Experimentally, this could be verified by fabricating a tBLG aligned to hBN QAH

device with gate defined edges. In such a device, one could systematically vary the

sharpness and symmetry of the edge potential to probe which effects are most relevant

to critical switching currents.

In summary, an applied current generates a chemical potential difference between the
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chiral one dimensional modes located on opposite edges of a QAH sample. Due to the

opposite dispersion of a given edge state in opposite magnetic states (which have opposite

C), the DC current I raises (or lowers) the energy of the system by δE ∼ ±8π2

3
~2

me3v3LI
3

for a C = ±1 state, where m and v are the edge state effective mass and velocity, e

is the elementary charge, and L is the length of the edge state. When the edges have

different lengths or velocities, the current favors one of the two domains, with the sign

and magnitude of the effect dictated by the device asymmetry. For a current in the range

of I = 10− 100 nA, comparable to the switching currents observed at low temperatures,

using estimates of m and v based on bulk measurements and assuming an edge length

difference of ≈ 1 µm. gives δE comparable to the magnetic dipole energy due to a 1mT

field.

We note that while this effect should be generic to all QAH systems, it is likely to

be dominant at low currents in tBLG due to the weak pinning of magnetic domains and

small device dimensions. Crucially, it provides an engineering parameter for electrical

control of domain structure that can be deterministically encoded in the device geometry,

enabling new classes of magnetoelectric devices.

2.6 Magnetic Hysteresis Density Dependence

The presence of ferromagnetic ordering in our device manifests as hysteresis in Rxy as

a function of B. Hysteresis implies a mismatch between measured resistances at a given

B for opposite signs of field training. In other words, in a hysteretic regime, Rxy(B−),

the measurement with negative field training (Fig. 2.21A), differs from Rxy(B+), the

measurement with positive field training (Fig. 2.21B), and their difference ∆Rxy(B) is

nonzero. At densities exhibiting a robust, well-quantized QAH state, ∆Rxy = 2h/e2, as

shown in Fig. 2.21C. The presence of ferromagnetic order, the coercive fields, and the
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quantization of Rxy can simultaneously be visualized by plotting ∆Rxy/2 as a function

of the density n (Fig. 2.21D). Notably, the extent of ferromagnetism as a function of

density is significantly greater than that of the QAH effect. Ferromagnetism occurs at

a minimum density of 2.19 × 1012 cm−2, which corresponds to ν = 2.84. Interestingly,

the coercive field of the ferromagnetic phase in tBLG is largest for the lowest values of n

for which hysteresis in Rxy is detectable, terminating abruptly as the density is lowered

further. As the density is increased, the coercive field decreases more or less monotonically

until ferromagnetism vanishes at 2.84 × 1012 cm−2, which corresponds to ν = 3.68. A

quantized anomalous QAH effect is observed in a density range of 2.36−2.42×1012 cm−2

(Fig. 2.21E).

2.7 Concluding Remarks

In this chapter, I presented our results on the realization of a quantized anomalous

Hall effect in a twisted bilayer graphene sample aligned to hBN. This marks the first

observation of a zero field Chern insulator in a material other than transition metal

doped (Bi,Sb)2Te3. The measurements have far reaching implications for experimental

realizations of novel electron systems. First and foremost, it confirms the existence of

alternate mechanisms to engineer topological physics. Topology arises in twisted bilayer

graphene heterostructures without band inversion or spin orbit coupling, the two ingredi-

ents thought to be indispensable not long ago. Second, it explores the benefits of breaking

time reversal symmetry with an intrinsic mechanism. The quantum anomalous Hall ef-

fect reported is the most robust to date. More importantly, the relative energy scales

of the magnetism and the topological gap in the tBLG device suggests that (Bi,Sb)2Te3

samples are hampered by magnetic doping, as it the resulting magnetism is extrinsic,

thus coupling weakly to the topological electrons, and introduces disorder. Finally, our
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Figure 2.21: Exploration of magnetic order as a function of density (A)
Measurement of Rxy as a function of magnetic field B as it is swept from negative
to positive values. (B) Measurement of Rxy as a function of B as it is swept from
positive to negative values. Differences between A and B indicate the presence of
ferromagnetic order in the sample. (C) B − A as a function of magnetic field. This
value, ∆Rxy, is nonzero below the coercive field when ferromagnetic order is present.
It is equal to 2 when Rxy is well-quantized. D ∆Rxy/2 as a function of density and
magnetic field. At a density of 2.19× 1012 cm−2, corresponding to 72% filling of the
band, ∆Rxy/2 first deviates from 0 as ferromagnetic order sets in. Ferromagnetism
vanishes at 2.84× 1012 cm−2, corresponding to 92% filling of the band.

measurements reveal reproducible switching of magnetic domains with electrical currents

as small as 1 nA. This novel mechanism competes favorably with the state of the art mag-

netic domain switching achieved with spintronics and could lead to electrically rewritable

magnetic memory.

For every question that transport measurements of twisted bilayer graphene answered,

it raised at least one more. The transport signatures of a quantum anomalous Hall effect

are sufficiently unique that their observations provides enough evidence to conclude the

91



Transport Measurements of Twisted Bilayer Graphene Chapter 2

presence of topology. However, the accompanying observations require caution in terms

of interpreting their source. In particular, transport measurements raise questions about

the exact nature of the symmetry breaking arising from exchange interactions in twisted

bilayer graphene. The observation of a Chern number implies a valley polarization of

the electrons, but the role of electron spins in mediating it cannot be distinguished from

transport measurements. Does the magnetism originate from the electron spins, which

couples to the valleys with an unknown mechanism, or do the valleys host an anomalously

large orbital magnetic moment? In contrast to transition metal doped (Bi,Sb)2Te3, the

transport observations have discrete jumps reminiscent of Barkhausen noise typical in

magnetic systems with only a few domains. What does this tell us about the nature of

magnetic pinning in a sample that does not have magnetic ions? Current switching of

the magnetic domains is a beautiful measurement that, other than proving its existence,

only raises questions. Transport measurements provide limited information by which to

distinguish the veracity of theories. For example, could our theoretical understanding of

the mechanism be improved by contrasting domain reversal dynamics resulting from an

applied current and a magnetic field?

Bulk probes, like transport, struggle with answering these types of questions that

ultimately result from local phenomena. However, spatially resolved measurements of

the magnetization of the quantum anomalous Hall device would provide complementary

information necessary to deepen our understanding of the underlying physics.
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Chapter 3

Scanning nanoSQUID on Tip

Microscopy

A picture is worth a thousand words; this adage summarizes the philosophy behind the

development of scanning probes used in physics. A plethora of information is encoded in

the spatial dependence of phenomena that can only superficially be accessed with bulk

measurements. In this section, I introduce scanning nanoSQUID on tip microscopy high-

lighting its unique capabilities that enable measurements inaccessible to both transport

measurements and other local probes.

3.1 SQUID Magnetometry

Magnetism is central to an abundance of novel electronic phenomena necessitating

time reversal symmetry breaking. Precise measurement of the magnetic properties of

materials is therefore of paramount importance to pushing the frontier of condensed

matter physics. The ‘precision’ of a measurement consists of two orthogonal axes: its

sensitivity and its spatial resolution.
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Interferometry is widely used in science and engineering to maximize the sensitivity

of a measurement. The superposition of periodic waves yields interference patterns sus-

ceptible to differences in their phase and periods enabling measurements of quantities

that are small fractions thereof. Most commonly, coherent light from a single source is

split into two beams that travel in different paths, which are then combined again to

produce interference. The interference fringes give information about the difference in

optical path lengths and can be precisely related to small displacements, refractive index

changes and surface irregularities.

Superconducting quantum interference devices (SQUIDs) use this principle to perform

sensitive magnetic flux measurements. The wave function of an electron in a magnetic

field picks up a phase proportional to the magnetic flux enclosed by its path. A coherent

electron beam that splits into two paths enclosing an area before recombining yields an

interference pattern controlled by the paths’ enclosed magnetic flux. Superconductors are

materials that conducts electricity without resistance when below a critical temperature.

A byproduct of dissipationless transport is that the phase coherence of the current’s

electrons is preserved over longer distances. A superconducting ring therefore provides

a coherent electron beam, splits it, and defines a path enclosing a measurement area.

However, superconductivity screens the effect of external magnetic fields such that the

phase of electrons in a superconducting state is unaffected by the flux through the loop.

This can be remedied by introducing weaknesses, called Josephson junctions, on opposite

sides of the ring as shown in Fig. 3.1. When the SQUID is in operation, the current

passing through the constrictions picks up a phase from the encircled magnetic flux.

Critically, the junctions are sufficiently small that the electron’s phase is preserved upon

reentry to the superconductor. The voltage or current across the SQUID, depending

on the measurement setup, is periodic in the magnetic flux through the ring with a

periodicity determined by the superconducting flux quantum Φ0 = h/2e. This periodicity
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is encoded by the variation in critical current of the Josephson junctions,

IC(φ) = I0

∣∣∣∣cos

(
π

Φ

Φ0

)∣∣∣∣ (3.1)

Figure 3.1: Illustration of SQUID sensors. A Superconducting QUantum In-
terference Device (SQUID) is a superconducting ring, shown in gray, interrupted by
Josephson junction weak links, shown in red. The critical current of the SQUID is
periodic in the magnetic flux threading through the ring with periodicity Φ0 = h/2e.

The first SQUID was made in 1964 and, since then, became the standard for high

sensitivity magnetic field measurements. In some circumstances, they have measured

magnetic fields as small as 5 aT, or 5×10−18T! It’s important to remember that SQUIDs

are sensitive to the magnetic flux through the ring, not the absolute magnetic field. Large

SQUIDs enable precise magnetic field measurements only when the magnetic field source

is large. If the source is a small sample, like a tBLG heterostructure, the sensitivity of a

large loop is not meaningful as it will be sensitive to stray signals. Furthermore, if the

goal is to spatially resolve the magnetization distribution, then the SQUID will limit the

spatial resolution of the measurement.

The spatial resolution of SQUID magnetometry measurements are primarily con-

trolled by two variables: the SQUID diameter and its height above the sample. Develop-

ing scanning SQUID imaging techniques requires fabricating small, yet sensitive, SQUIDs
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and engineering a machine capable of bringing it close to the surface of the target mate-

rial. Traditionally, standard lithography fabrication techniques are used to make SQUIDs

with diameters as small as ∼ 100 nanometers on silicon chips. The first scanning SQUID

experiments brought SQUIDs fabricated on a chip within a couple microns of the sample

surface, as seen in Fig. 3.2. This approach to scanning SQUID magnetometry enabled

the investigation of many low temperature magnetic and superconducting mesoscopic

phenomena.

Figure 3.2: Illustration of Scanning SQUID on Chip Microscopy. The pick up
coils of a SQUID are fabricated on the corner of a silicon chip to enable bringing them
at close to the sample surface as possible. Nonetheless, the bulk of the chip renders
it difficult to get the sensor within ∼ 1µm from the surface. The artistic rendition of
scanning SQUID microscopy was taken from Stanford professor Moler’s website.

Fabricating SQUIDs on a chip introduces limitations to its applications for spatially

resolved magnetic measurements. The bulkiness of the chip results in the unusual situa-

tion that the resolution is limited, not by the sensor size, but its height from the sample.

A SQUID in a different geometry could be brought closer and resolve features a tenth

the size of what can be done with the configuration shown in Fig. 3.2. Furthermore,

magnetic phenomena are often tuned by applying an external magnetic field. However,

the SQUIDs on a chip lose most of their sensitivity in magnetic fields larger than ∼ 10mT

owing to the degradation of the superconducting contacts. These limitations need to be
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addressed before scanning SQUID measurements could be performed on twisted bilayer

graphene, an example dear to our hearts.

3.2 nanoSQUID on Tip Sensors

Generically, sensors are easy to bring within ∼ 10nm of a surface when they are at the

tip of a structure. However, manufacturing SQUIDs on the tip of anything is nontrivial as

their usual fabrication methods are a complicated multi-step lithography process required

to make electrical contacts, a ∼ 100nm pick up loop, and Josephson junctions. The work

by Finkler et. al in from Weitzmann Institute of Science presents a novel approach to

SQUID fabrication that ultimately led to the development of a new kind of scanning

SQUID microscopy[57]. Instead of using lithography to define the SQUID’s necessary

features, they carefully select a substrate with a geometry such that carefully aligned

depositions of a superconductor would result in their formation on its extremity.

The substrate of choice for self-aligned nanoSQUIDs on a tip are pulled quartz

pipettes, as illustrated in Fig. 3.3A. The pipettes are made by pulling apart a hol-

low quartz cylinder while locally heating it. Tip diameters ranging from 10nm to 500nm

can be reproducibly created by varying the pulling parameters, such as heat, pulling

strength etc...

The SQUID on tip deposition process is illustrated in Fig. 3.3B. There are only

three evaporation steps: two from the side to form superconducting contacts to the tip

and one head-on to form the superconducting ring. The pipette’s circular geometry

prevents the contacts on opposite sides from shorting to each other without the need

for a lithography step. The superconducting ring is both the SQUID’s pick loop and

its Josephson junctions; the narrowness of superconductor on the ring relative to the

contacts results in constrictions knows as a Dayem bridge Josephson junctions. Thus, all
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Figure 3.3: Illustration of nanoSQUID on Tip Fabrication Process. (A)
The pipette substrates are generated from quartz cylindrical shells with a 1 mm outer
diameter and 0.5 mm inner diameter. The center of the cylinder is heated locally by
a laser as a force is applied to both sides, pulling it apart. The procedure yields two
symmetric quartz pipette (B) with diameters on the order of 100 nm. (C) Only three
superconductor deposition steps are required for the fabrication of nanoSQUID on tip
sensors. Prior to the superconductor deposition steps, the pipettes are pre-patterned
with gold (see appendix). The first and third depositions forms superconducting con-
tacts, whereas the second forms the superconducting ring. (D) When viewed head-on,
the geometry of the nanoSQUID sensor is apparent. The ring defined by the pipette
determines the diameter of the SQUID; the narrow superconducting constrictions
across it form weak link Josephson junctions.

the elements required of a SQUID are present.

The characterization of a representative nanoSQUID made with this procedure is

shown in Fig. 3.4. Fig. 3.4A shows an SEM micrograph of a tip post-evaporation where

the smooth gray surfaces are indicative of intact superconductor. The granularity of the

film going vertically down the middle of the image is the boundary between the contacts

and, somewhat surprisingly, remains sufficiently insulating throughout. Fig. 3.4B is an

example of an electrical characterization of a nanoSQUID. The y axis is a voltage roughly

proportional to the current used to bias the SQUID, the x axis is the magnetic field, and

the color scale is the readout voltage. A linecut of the readout shown in Fig. 3.4C clearly

demonstrates that the output is periodic in the applied magnetic field, as expected of a

SQUID.
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Figure 3.4: NanoSQUID on tip sensors (A) Representative SEM micrograph of
nanoSQUID sensor. Indium contacts have been thermally evaporated onto each side
and onto the tip of the quartz micropipette. (B) Dependence of electronic properties
of nanoSQUID on bias voltage and magnetic field. Current through the nanoSQUID is
amplified by a Series SQUID Array Amplifier (SSAA), the output of which is presented
on the color axis. Indium SQUIDs reliably operate in the 0 - 200 mT range, and usually
operate up to 400 mT. This nanoSQUID was used to generate Figs. 4.3 and 4.9. (C)
Magnetic field dependence of amplified SQUID current at the bias voltage used to
generate Figs. 4.3 and 4.9 .

The diameter of a nanoSQUID can be found with two independent measurements.

The more straightforward approach is simply measuring the size of the hole from a tips

SEM micrograph, as shown in Fig. 3.4A. However, this is susceptible to uncertainties of

the ‘true’ boundary of the superconductor owing to magnetic field focusing and screening

effects. The more reliable method is to make use of the periodicity of the response function

with magnetic field, which we know must be periodic in the flux through the ‘true’ ring,

Φ0 = h/2e = BA = B × πr2 (3.2)

The two measurements are typically in agreement for well formed SQUIDs to within

∼ 10%. The diameters reported in nanoSQUID measurements are determined from the

periodicity as it is both more correct and doesn’t require an extra experimental step of

bringing the tips to an SEM.

nanoSQUIDs made with this procedure have a couple remarkable unanticipated prop-
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erties that were discovered after their creation. First and foremost, nanoSQUIDs made

with lead and indium have flux sensitivities down to 50× 10−9nΦ0/
√

Hz for diameters as

small as 46 nm. A practical measure of the noise of small magnetometers is to express

the noise in context of measuring a single isolated electron spin. This spin sensitivity

of such a SQUID is as low as 0.38µB/
√

Hz, which is almost two orders of magnitude

better than previous magnetometers. Thus, nanoSQUIDs are capable of measuring the

magnetic field signals emitted by arbitrarily dilute magnets.[58]. Their second surpris-

ing property is their robustness to large out of plane magnetic fields. In Fig. 3.4B

and C, the interference pattern is well defined for magnetic fields up to 200 mT and

clearly extends further. This is already an order of magnitude larger than the fields at

which SQUID fabricated on chips remain sensitive. The full magnetic field dependence

of lead SQUIDs reveal sensitivities of 0.6µB/
√

Hz in fields up to 1 T[58]. Furthermore,

for applications that require large background magnetic fields without groundbreaking

sensitivity, nanoSQUIDs made out of MoRe have well defined interference patterns for

operating fields up to 5T [59].

3.3 Scanning nanoSQUID on Tip Microscopy

nanoSQUIDs evaporated onto the end of quartz pipettes directly address the weak-

points of traditionally fabricated SQUIDs in context of scanning microscopy; the SQUIDs

are small, down to ∼ 50nm in diameter, sensitive enough to resolve isolate spins, and

remain sensitive in large background magnetic fields. Most critically, they are on the

local extremum of a tip enabling them to be brought close to a sample surface.
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Surface Approach Mechanism

Bringing an exposed ∼ 50nm diameter sensor to within a few tens of nanometers from

a surface poses a significant engineering challenge. We approach this problem, similarly

to those at Weitzmann before us, by mechanically coupling a high quality piezoelectric

tuning fork to the quartz pipette housing the SQUID[60]. ‘Mechanically coupling’ is

fancy way of saying gently pushing them together with just enough force such that the

two remain in contact without breaking the pipette. Fig. 3.5A shows an optical image of

the tuning fork pressed into the side of the top of the quartz pipette. The tuning fork is

electrically excited at the resonant frequency of ≈ 33 kHz, and the AC current through

the tuning fork detected using a room-temperature transimpedance amplifier based on

Ref. [61]

Characterizing and monitoring the resonant frequency of the coupled system en-

ables safe, repeatable approaches to the sample surface. Fig. 3.5B shows an example

AC voltage frequency response curve of the tip-tuning fork system, well modeled by a

Butterworth-Van Dyke model. We achieve quality factors of up to 200, 000 that enable

sensitive measurements of the phase of the oscillations. The oscillations of the tuning

fork generate lateral motion in the tip, along the axis defined by the scale bar shown in

Fig. 3.5A. We slowly approach to the surface while monitoring the resonant frequency

of the tip-tuning fork system with a phase lock loop. When the tip lightly makes con-

tact with the surface, the friction dampens the oscillations resulting in a change of the

resonant frequency signaling a successful approach. This mechanism allows for safe ap-

proaches and repeated touchdowns of nanoSQUID sensors onto arbitrary clean surfaces.

Subsequent magnetometry measurements are performed at a constant height above the

sample.

The approach mechanism described here is functionally equivalent to using the nanoSQUIDs
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to perform shear force microscopy. Though we are primarily interested in its ability to

safely bring the sensor to the surface, the technology does enable measurements of the

sample topography. Such measurements are made sparingly, as it requires maintaining

contact between the tip and the sample surface while they move relative to each other.

This risks scraping off the superconductor on the tip, which is critical to nanoSQUID

formed thereon. Nonetheless, it is a useful tool for correlating physical features of the

sample with magnetic field measurements.
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Figure 3.5: NanoSQUID with tuning fork (A) Optical image of piezoelectric
quartz tuning fork in mechanical contact with a nanoSQUID sensor. (B) AC current
response of tuning fork to 150 µV excitation as a function of frequency near resonance.
Fit to a Butterworth-Van Dyke model is overlaid.

High Frequency Measurements

The sensitivity figures quoted for nanoSQUIDs are measured at frequencies above

∼ 1kHz and are orders of magnitude better than their DC sensitivities. As a consequence,

it is essential to modulate the input signal at finite frequency if the signals of a sample

are at all comparable to the true noise floor.

High frequency variations of the sample’s signals can be achieved by applying a time

varying perturbation to the sample. For example, imagine we’re interested in measuring

the stray magnetic field emitted by a current. The signal can be modulated at a high

frequency by driving the current with an AC voltage instead of a DC voltage. Measuring
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the SQUID response at the frequency of the drive voltage will enable a low noise mea-

surement of the stray fields. This approach, though generically useful, has limitations in

that not all signals of interest can simply be driven by an external AC source. Even in

the stated example, the DC current distribution in a sample would be different from the

AC current distribution. High frequency measurements of the DC current distribution is

therefore inaccessible by varying the drive voltage in time. Another method for high fre-

quency measurement is required if the measurements of a static distribution of magnetic

fields is important to an experiment.

In addition to providing a means of topographic feedback through the tuning fork

response, the lateral oscillations of the tip position can be used to perform AC mea-

surements of a static field distribution. The SQUID’s motion over the sample produces

a response at the drive frequency, BTF ≈ â · ~∇rBz, that is proportional to the spatial

derivative of the static out of plane magnetic field in the direction of the oscillation. The

tuning forks used in our experimental set up have resonant frequencies in the range of

30 − 37kHz that are only minorly perturbed by the coupling to quartz pipettes. Low

noise high frequency measurements are therefore always accessible with nanoSQUID on

tip microscopy in the form of measuring the signal’s local gradient.

Thermal Imaging

The critical current of Josephson junctions is also sensitive to temperature, where

near the superconducting critical temperature, Tc, the dependence is linear and takes the

form,

Ic(T ) = Ic,T=0 (1− T/Tc) (3.3)

Measurements of a SQUID’s electrical response therefore enables its use as a local

103



Scanning nanoSQUID on Tip Microscopy Chapter 3

thermometer.

Non invasive thermal imaging requires proper consideration of the thermal proper-

ties of both the sensor and the sample. In order for a thermal sensor not to perturb

the device’s temperature profile, the thermal resistance between them, Rsd, has to be

considerably larger than the thermal resistance between the device and the bulk of its

substrate, Rdb (Fig. 3.6). This requirement ensures that the heat flowing between the

sensor and the sample is a small fraction of the heat flow that determines the sample’s

temperature distribution. On the other hand, in order for the temperature of the sensor

to accurately describe the local temperature of the sample, the sensor must be thermally

isolated from all other thermal bodies in the microscope, i.e Rsm is large. The resulting

overall requirement of Rsm >> Rsd >> Rdb is usually hard to achieve in AFM-type

scanning thermal probes, leading to invasive in-contact imaging. Notably, traditional

SQUIDs are strongly thermally coupled to their chips resulting in a small Rsm.

The geometry of nanoSQUIDs on tips is ideal for performing noninvasive temperature

measurements. Rsm is large for nanoSQUIDs owing to the thermally insulating properties

of the superconducting contacts and the nanoscale cross-section of the quartz pipette.

The thermal resistivity between the sample and the bulk of its substrate, Rdb, is typically

small given the large surface area of contact between them relative to the sample size.

Meanwhile, the coupling between the nanoSQUID and the sample, Rsd, can be contin-

uously tuned by introducing a finite concentration of helium gas in the microscope. As

illustrated in Fig. 3.6, the helium enables thermal exchange between the sample and the

tip that, for small separations between the two, does not significantly change other ther-

mal resistances in the system. The helium pressure provides a experimental knob that

can both enable non-invasive thermal measurements or thermally decouple the sensor

from the sample for magnetic imaging. Smaller nanoSQUIDs are capable of non-contact,

non-invasive thermal imaging with sensitivity below 1µK/
√

Hz[62].
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Figure 3.6: Thermometry with nanoSQUID on Tip Sensors. A nanoSQUID
on Tip sensor close to the surface of a sample. The red spot illustrates the area of the
sample that is being thermally probed. The thermal resistance between the sensor
and the microscope body, Rsm, is large owing to its path through the narrow quartz
pipette. The black dots with arrows correspond to helium atoms bouncing around
in the sample chamber. Varying the pressure, or density, of helium atoms tunes the
thermal resistance between the sensor and the device, Rsd.

Proof of Concept Measurements

The majority of my time spent working towards my dissertation was spent building

the first nanoSQUID on tip microscope in the United States. The first magnetic and

thermal microscopy images of real samples taken by our system are presented in Fig.

3.7 and Fig. 3.8 respectively. Though these measurement did not result in a publica-

tion, they exemplify the magnetic and thermal imaging capabilities of nanoSQUID on

tip microscopy. The application of nanoSQUID microscopy to twisted bilayer graphene

heterostructures yielded the results presented in the following chapter.

Chromium iodide, CrI3, is a van der Waals material that exhibits magnetism that

persists when exfoliated to few layers. A CrI3 monolayer is ferromagnetic; its spins
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favor aligning in the direction perpendicular to the plane defined by the two dimensional

material. In multilayer CrI3, the spins between adjacent layers have an antiferromagnetic

interaction, i.e. they favor being anti-aligned. In a CrI3 bilayer, if the electrons in the

bottom layer are polarized into a spin up state, then the top layer’s energy is minimized

by polarizing its electrons into a spin down state. The stray magnetic field of an even

number of CrI3 layers with anti-aligned spin is negligible, as the contributions from one

layer are canceled by the next. The interlayer antiferromagnetism is in competition with

an externally applied magnetic field; when the energy gained by aligning to the field is

larger than the energy cost of aligning spins in adjacent layers, a phase transition to a

fully spin polarized state occurs.

We investigated the magnetic field dependence of the domain structure as a function

of magnetic field of a four layer CrI3 sample. The outline of the flake is clearly visible for

the measurement taken with B = 720 mT field, shown in Fig. 3.7A, a magnetic field just

large enough to polarize most of the spins in all four layers into a single spin state. The

structure within the flake is the result of magnetic pinning on strain boundaries. When

the applied magnetic field is reduced to B = 680 mT (Fig. 3.7B), the antiferromagnetic

interlayer interaction energy dominates in some regions of the device. Regions outlined in

Fig. 3.7A that no longer exhibit a signal in Fig. 3.7B are magnetic domains that relaxed

from a magnetic field induced spin aligned state to the antiferromagnetic interlayer state.

We also noticed domain walls pinned to the strain induced structures.

The CrI3 measurement highlights the strengths of magnetic imaging with nanoSQUID

microscopy. The magnetic signal from a normal two dimensional magnet is incredibly

large; these measurements were taken very quickly without much consideration for noise

reduction. This is particularly remarkable given that the images resolve features with

spatial extents of ∼ 100nm. Furthermore, the magnetic fields applied during these mea-

surements, despite not pushing the limits of nanoSQUID sensors, is beyond the reach of
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Figure 3.7: Magnetic Imaging of CrI3. Magnetic field maps of a four-layer CrI3

flake at 720 mT (A) and 680 mT (B). The color indicates the measured relative (not
absolute) magnetic field, δB, as a function of position. The scale bar corresponds to
5 µm.

conventional SQUID on chip scanning microscopy.

Proof of concept measurements for the thermal imaging capabilities of nanoSQUID

sensors were done by investigating the dissipation in a graphene Hall bar. The device

was originally made to investigate of the breakdown of the quantum Hall effect for an

applied current. The dissipationless topological edge states of the quantum Hall effect

only support a finite current before quantized resistances are lost. The precise mechanism

relating the magnitude of current to the breakdown of quantization is poorly understood,

though is known to be exacerbated in narrow geometries. Departure from quantization

is theoretically associated with the onset of dissipative conductance; locally probing the

temperature profile could elucidate the breakdown mechanism.

Local thermometry measurements of a narrow graphene quantum Hall bar are shown

in Fig. 3.8. A sketched outline of the graphene monolayer is overlaid on the thermal

images. Gold electrical contact to graphene are made at the protrusions from the narrow

bar in the middle. We observe that this iteration of a graphene Hall bar exhibited

poor contacts between the gold and the graphene monolayer. A large thermal signal

is generated at the contacts obscuring the thermal dependence of interesting regions of

the sample. The contacts that light up in temperature can be toggled by switching the
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current source and drain providing evidence for this interpretation of the termal images.
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Figure 3.8: Thermal Imaging of a Graphene Hall Bar. The outline of the
narrow graphene Hall bar is overlaid on both thermal imaging scans. A 3µA AC
current is sourced from the contact on the bottom left and is drained either from a
contact at the top right (A) or bottom right (B) of the device. Thermal scanning
microscopy reveals that dissipation in this device occurs primarily at the contact
between the gold contacts and the graphene monolayer, instead of within the bar
itself. The scale bar corresponds to 5 µm.

Despite not yielding scientific results, these measurements still illustrate the power of

local thermometry with nanoSQUID sensors. Once again, the preliminary measurements

have a signal orders of magnitude larger than the noise floor for relatively small currents

through the device compared to those expected for the breakdown of the quantum Hall

effect. The measurement presented in Fig. A resolves the dissipation in the ∼ 1µm wide

Hall bar; the spatial resolution observed is limited by the spatial extent of the features

rather than the resolution of the sensor.

3.4 Overview

nanoSQUID on tip microscopy is capable of magnetic and thermal measurements

with an unparalleled combination of sensitivity and spatial resolution. The sensors are

capable of resolving the stray magnetic fields emitted by a single isolated spin and the

dissipation associated with ideal operation of a single qubit at one gigahertz at 4.2 kelvin.

Furthermore, nanoSQUID sensors are operational in fields as large as 5 Tesla and at
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temperatures arbitrarily close to 0 Kelvin so long as T < Tc, the superconductor’s critical

temperature.

The closest direct competitor to nanoSQUID magnetometry, scanning nitrogen-vacancy

center, is optimal for measurements complementary to those enabled by nanoSQUIDs.

Optically controlling and interrogating the quantum spin state of a nitrogen-vacancy

crystal defect enables magnetic field measurements with sensitivity comparable to that

of nanoSQUID sensors1. Since the NV center sensor is a single atomic defect, the spatial

resolution of such measurements is limited only by the separation between the defect

and the sample. The NV center is usually encased by at least 10 nm of diamond re-

sulting in measurements around ∼ 30 nm from the surface; the spatial resolution of NV

center magnetometry is therefore comparable to, or slightly better than, the smallest

nanoSQUID sensors. The optimal operating conditions of NV center magnetometry are

drastically different from that of nanoSQUID microscopy. The optical control of the

vacancy’s spin state results in heating of the sensor and sample rendering measurements

of cryogenically cooled materials challenging[63]. In contrast to nanoSQUIDs, nothing

limits the NV center magnetic field contrast mechanism for large temperatures. NV

centers are only sensitive magnetometers when the applied magnetic field is precisely

aligned to the direction between the vacancy and the nitrogen. Even when alignment

is maximized, measurements are typically compromised for magnetic fields larger than

∼ 500 mT. In summary, NV center magnetometry enables the investigation of magnetic

phenomena over a wide range of temperatures, from ∼ 7K to room temperature, with

applied magnetic fields limited both in magnitude and in direction. This is complemen-

tary to measurements available to nanoSQUID sensors that favor lower temperatures and

have a wider, less restrictive, range of operating fields. nanoSQUID on microscopy is the

1NV centers are sensitive to temperature, but their sensitivity is several orders of magnitude worse
than that of nanoSQUIDs.

109



Scanning nanoSQUID on Tip Microscopy Chapter 3

optimal experimental apparatus for the investigation of spatially resolved ground state

magnetic phenomena.

Solid state devices often require encapsulating the sensitive layers to safeguard them

from the environment and minimize disorder; for graphene heterostructures, hBN en-

capsulation is critical to the fabrication of low disorder devices. Many prominent local

imaging techniques require the probe to interact directly with the sample. Scanning tun-

neling microscopy needs to flow current from a tip into the sample to generate contrast.

ARPES measures electrons ejected from the sample surface when light is incident on

it. Imaging techniques with these types of signal contrast mechanisms cannot be ap-

plied to encapsulated materials. In contrast, nanoSQUID microscopy measures the stray

magnetic field and temperature emitted from the sample unimpeded by encapsulating

layers2. The geometry of samples that can be investigated with them is relatively un-

constrained enabling measurements of devices made with the state of the art disorder

reduction techniques.

This section provides a cursory introduction to the salient details about nanoSQUID

microscopy that are unique to either the technique or our experimental setup. Detailed

descriptions of the sensor fabrication process and microscope operation principles are

available in the appendix. In particular, drawings and operation principles for the evap-

orator, nanoSQUID measurement circuits and IV characteristics, and the microscope

control software are covered in detail. Other aspects related to the microscope design,

the cryostat, and everything else I may have forgotten will be presented in my coworker’s,

Charles Tschirhart, thesis due time.

2Though the thermal properties of the encapsulating layer will deteriorate the spatial resolution of
thermal measurements, they are still possible as evidenced by Fig. 3.8.
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Chapter 4

nanoSQUID Measurements of

Twisted Bilayer Graphene

Time reversal symmetry breaking interactions have recently been observed in graphene

based moiré systems whose constituents are not intrinsically magnetic[64, 23, 65, 51].

In these materials, a long wavelength moiré pattern, arising from interlayer coupling

between mismatched lattices, modulates the underlying electronic structure and leads

to the emergence of superlattice minibands within a reduced Brillouin zone. For ap-

propriately chosen constituent materials and interlayer rotational alignment, the lowest

energy bands can have bandwidths considerably smaller than the native scale of electron-

electron interactions, EC ≈ e2/λM , where λM is the moiré period. The dominance of

interactions typically manifests experimentally through the appearance of ‘correlated in-

sulators’ at integer electron or hole filling of the moiré unit cell[21, 41], consistent with

interaction-induced breaking of one or more of the spin, valley, or lattice symmetries.

Ferromagnetism constitutes a subset of these states, in which exchange interactions favor

a particular order that breaks time-reversal symmetry by causing the system to polarize

into one or more spin-valley projected bands. Remarkably, the large Berry curvature
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endows the valley projected bands with a finite Chern number[17, 66], so that valley

polarization naturally leads to a quantized anomalous Hall effect at integer band filling.

To date1, quantum anomalous Hall effects have been observed at band fillings ν = 1 and

ν = 3 in various heterostructures[64, 67, 65], where ν = An corresponds to the number

of electrons per unit cell area A with n the carrier density.

A byproduct of engineering ferromagnetic interactions with moiré physics is that the

magnetization density of the resulting ground state is suppressed. The carrier density

at full filling of the superlattice minibands, where correlated ferromagnetic insulating

states are observed, is reduced relative to full filling of the graphene bands by the ratio of

the areas of the graphene and the superlattice unit cell, which is typically . 10−3. The

resulting magnetization density m . 0.1 µB/nm2[68] (where µB ≈ 0.06 meV/T is the

Bohr magneton) is consequently over three orders of magnitude smaller than in typical

magnetic systems with several spins per subnanometer-sized crystal unit cell. Magnetic

probes historically used to investigate magnetism either lack the sensitivity or spatial

resolution required to resolve the suppressed magnetization densities. The absence of

magnetic studies of emergent magnetism in moiré heterostructures leaves open questions

regarding the orbital angular momentum contributions to its electrons’ magnetic moment

and the phase transition’s magnetic field and density dependence.

nanoSQUID on tip microscopy, a novel magnetic probe developed as part of this

dissertation, is perfectly suited for investigations of magnetism in moiré heterostructures.

The sensors boasts a spin sensitivity almost two orders of magnitude better than previous

magnetometers nominally capable of resolving the stray magnetic fields of an isolated

electron spin[58]. Furthermore, they remain sensitive at the magnetic fields and cryogenic

temperatures for which moié heterostructures exhibit phase transitions. In this chapter, I

1The quantum anomalous Hall observation reported in Chapter 2 was the first of its kind that has
since been reproduced in other moiré heterostructures.
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present our scanning measurements of the same twisted bilayer graphene heterostructure

introduced earlier in my thesis.

4.1 nanoSQUID on Tip Microscopy

In the previous chapter, I broadly introduced nanoSQUID on tip microscopy high-

lighting its unique capabilities. Here I provide the specifics of the setup developed at

UCSB and the analysis techniques developed to extract the magnetization density from

measurements of twisted bilayer graphene. A combination of the information provided

in Chapter 3 and the appendix is required to fully understand everything provided here.

We perform magnetic imaging using nanoscale superconducting quantum interference

devices (nanoSQUIDs) fabricated at the tip of quartz pipettes[57]. The nanoSQUIDs are

fabricated by depositing indium on the pulled quartz tubes using a self-aligned three-

angle evaporation performed with the tip at cryogenic temperatures[69]. A shunt resistor

of R ≈ 3 Ω is integrated near the end of the tip[58]. Indium nanoSQUIDs are maximally

sensitive for applied fields below 200 mT for the operating temperature range of the mi-

croscope. The SQUID current is detected using a cryogenic SQUID series array amplifier

for optimal noise performance[70, 71, 57]. At the magnetic fields B ≈ 20− 50 mT used

in this study, the SQUIDs displayed flux noise down to 250× 10−9 φ0 / Hz1/2 (where φ0

is the superconducting flux quantum, φ0 = h/2e = 2× 10−7G cm−2) and magnetic field

noise down to 15 nT / Hz1/2 at frequencies above ≈ 1 kHz.

The magnetic imaging was performed in a pumped helium cryostat at temperatures

ranging from 1.6 - 2.2 K. The microscope is housed in a hermetic chamber that is separate

from the inner vacuum can, allowing variable pressures of exchange gas to be introduced

to the microscopy chamber. Experiments probing magnetism are performed in high

vacuum, P < 10−5 mBar, as measuring in larger pressures produces spurious signals
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related to thermal coupling between the nanoSQUID sensor and sample. During these

measurements, the tip is raster scanned at a fixed height above the sample, as determined

using the tuning fork based shear force microscopy described in the previous chapter. All

the measurements of twisted bilayer graphene presented in this chapter were done at a

height of ∼113 nm above the surface of the hBN, for a total height of ∼153 nm above

the plane of the twisted bilayer graphene.

4.1.1 Quantitative Gradient Magnetometry

The fringe magnetic fields generated by the tBLG ferromagnet are comparable to the

high-frequency noise of our nanoSQUIDs, but far below the DC noise floor. We use the

lateral oscillations of the tip position generated by the coupled tuning fork to produce a

SQUID response, BTF ≈ â · ~∇rBz, that is proportional to the spatial derivative of the

static out of plane magnetic field in the direction of the oscillation.

Quantitative measurements using BTF require having a proper calibration of â, the

vector describing the nanoSQUID oscillation. This can be measured by fitting a DC

signal to the simultaneously measured AC gradient signal. Naturally, this requires a DC

signal sufficiently large that it can be easily measured by the nanoSQUID. Given that

there are no sufficiently strong sources of magnetic field close to the tBLG heterostruc-

ture, we elected to do the calibration by taking advantage of the nanoSQUID’s thermal

sensitivity[60]. The microscopy chamber is flooded with P ≈ 0.1− 1 mBar of helium gas

to facilitate heat exchange between the nanoSQUID and sample while a DC current is

applied through the graphene heterostructure (Fig. 4.1A). The simultaneously acquired

in- and out-of-phase AC signals at the resonant frequency of the tuning fork are shown

in Figs. 4.1B and 4.1C. The nanoSQUID signal at the tuning fork frequency is in phase

with the position of the tuning fork. Like any damped harmonic oscillator, close to reso-
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nance the position is out-of-phase with the driving force. We therefore expect to find the

nanoSQUID signal at the tuning fork frequency to be out-of-phase with the drive voltage,

and indeed that is what is observed. To avoid errors stemming from small detuning of

our drive frequency from the resonant frequency, we perform a phase rotation to capture

the signal from both quadratures (Fig. 4.1D).

Assuming the tuning fork amplitude is small relative to length scales of thermal

gradients, the SQUID response at the tuning fork frequency obeys:

VTF = â · ~∇rVDC (4.1)

From the measured DC signal (Fig. 4.1E), we numerically calculate ∇xVDC and ∇yVDC

(Figs. 4.1F and 4.1G). A least-squares fit over â to VTF according to equation S1 produces

an excellent fit (Fig. 4.1H). This process is repeated for several amplitudes of the tuning

fork drive voltage. We find that the displacement amplitude is linear in the applied

voltage, as expected (Fig. 4.1I).

The oscillation amplitude calibrations are performed in rarefied helium gas, whereas

the magnetic measurements are performed in high vacuum. Changes in ambient pressure

affect the damping in the tuning fork and can therefore change the amplitude for a given

excitation voltage. This effect is captured by the quality factor of the resonance, which is

expected to increase with decreasing ambient pressure. The oscillation amplitude is linear

in both the excitation amplitude and the quality factor Q near resonance when in the

linear driving regime[72]. During the AC gradient thermometry measurements presented

in Fig. 4.1, the quality factor of the tuning fork-nanoSQUID system was Qgas = 89×103.

Immediately after the heat exchange gas was removed, the quality factor increased to

Qmin = 120 × 103. Over the course of the several week experiment during which the

microscopy chamber was continuously pumped, the quality factor of the tuning fork-
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nanoSQUID assembly slowly increased, ultimately reaching Qmax = 172 × 103. Every

AC gradient magnetometry data set presented here is assumed to have the measured

calibration modulated by a factor falling in the range |âvac| ∈ (Qmin

Qgas
, Qmax

Qgas
) · |âgas|, or

|âvac| ∈ (1.35, 1.93) · |âgas|. This systematic uncertainty dominates other sources of error,

and produces the upper and lower bounds on m presented in Fig. 4.3H. Critically,

this range of values of the oscillation amplitude represents the maximum and minimum

values possible from propagating this systematic uncertainty. It is not the expression

of a confidence interval or a standard deviation and should not be interpreted as such.

We note that this error could be made negligible in future experiments by more frequent

calibrations of the tuning fork Q.
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Figure 4.1: AC tuning fork nanoSQUID measurement. (A) An applied DC
current generates a static temperature distribution above the sample to which the
nanoSQUID is sensitive. (B-C) The sample is scanned under these conditions; the
tuning fork AC gradient thermometry signal is shown. On resonance, the tuning fork
gradient signal is primarily in the y quadrature. (D) A phase rotation is performed
on the tuning fork signal to account for small corrections from the x quadrature. (E)
The tuning fork can be calibrated through comparison to a simultaneous measure-
ment of the DC temperature distribution. (F-G) Gradients of the DC temperature
distribution are computed. (H) A least squares fit of the AC gradient thermometry
signal in D to a linear combination of the gradients of the DC temperature distribu-
tion E and F. These scans correspond to a tuning fork amplitude of 346 ± 7nm and
an angle relative to the y axis of 19.9 ± 0.2◦. (I) Amplitude of oscillation of SQUID
as a function of tuning fork drive voltage with a linear fit.
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4.1.2 Reconstructing magnetization from gradient magnetom-

etry measurements

The SQUID-tuning fork measurement, for oscillation amplitudes smaller than mag-

netic features, gives BTF ≈ â · ~∇rBz. Once we have determined â, as explained in the

previous section, we can recover Bz and consequently the magnetization density. All

subsequent operations are performed on difference datasets to ensure that BTF is purely

magnetic, and doesn’t have residual contributions from temperature or electric field.

To integrate the data, we take the bottom and left edges of each dataset to have

the boundary condition of zero magnetic field. For each datapoint in a two dimensional

map of BTF , we interpolate a line from the bottom or left edge along the direction of â

with cubic interpolation taking approximately one data point per pixel crossed. We then

numerically integrate that line using trapezoidal integration. This process is repeated for

every datapoint in the dataset.

The resulting dataset is a two dimensional magnetic field map Bz(x, y, z = z0) at

height z0. In order to calculate the magnetization density of the sample m(x, y, z = 0),

we performed a numerical reverse propagation of the Fourier transform of the magnetic

field, based on [73, 74]. From Maxwell’s equations,

∇×H = 0, (4.2)

and

∇ ·H = −∇ ·m (4.3)

Outside the sample, ∇ ·H = 0 and we define the potential function φm(k, z) in Fourier

space where H = −∇ φm, and k = (kx, ky), where kx and ky are the corresponding

coordinates of x and y in Fourier space.
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By solving Maxwell’s equations in Fourier space, φm(k, z) is given by

φm(k, z) =
σ(k, 0)

2
e−kz, (4.4)

and therefore the perpendicular component of the magnetic field Bz(k, z) is given by

Bz(k, z) = µ0k
e−kz

2
σ(k, 0), (4.5)

where σ(k, 0) is the surface moment density of the sample. The DC signal detected

by the nanoSQUID, Bz, is the out-of-plane magnetic field averaged over the area of the

nanoSQUID. In Fourier space, this convolution process is equivalent to multiplying a

weighting function

h(k) =
J1(kR)

kR/2
, (4.6)

where J1 is the first order Bessel function of the first kind and R is the effective radius

of the nanoSQUID sensor, extracted from the periodicity of the nanoSQUID response in

an applied magnetic field (see Fig. 3.4C). Therefore, the SQUID signal is given by

Bz(k, z) = h(k)µ0k
e−kz

2
σ(k, 0), (4.7)

The averaging effect of the nanoSQUID diameter is convoluted with the averaging

effect of the height of the nanoSQUID h above the tBLG sample. Together these length

scales limit the cutoff frequency of the magnetic signal that our nanoSQUID sensors can

resolve, kmax = min(2π/h, 3.83/R)[73, 74]. In order to comply with this limit and filter
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out the high frequency noise, we apply a Hanning window to the SQUID signal,

W (k) =


1
2

(
1 + cos kh

2

)
, k < kmax

0, k ≥ kmax.
(4.8)

From equation (4.5), we obtain the surface moment density of our sample,

σ(k, 0) =
W (k) ·Bz(k, h)

µ0k · (e−kz/2)
. (4.9)

This is plotted as the magnetization m in Figs. 4.3, 4.9, and 4.11.

4.1.3 Effect of TF Oscillation Amplitude on Spatial Resolution

For measurements of dilute magnetism, the gradient magnetometry signal is max-

imized by TF oscillation amplitudes that are comparable to both the diameter of the

SQUID and its height from the surface. In this section, we examine the effects of the

tuning fork amplitude on the spatial resolution of extracted magnetization maps via

simulation. The process, illustrated in Fig. 4.2, is explained step by step below.

1. First we choose a magnetization distribution for which to simulate the effects of the

TF oscillation on the spatial resolution. We choose a rectangular region of uniform

magnetization with density equal to 1 µB per unit cell. The region is 1.6 µm wide

with a 400nm by 400nm square in the middle with zero magnetization density to

provide perspective on the simulated spatial resolution. The magnetized region

extends all the way to the top of the map, to additionally simulate the effect of

not having all the stray magnetic fields emitted by the magnetization in the scan

range. The chosen magnetization density map is shown in Fig. 4.2A.

2. Next we determine the stray magnetic fields emitted by this magnetization map
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at a height of 140 nm above the magnetized surface. This is done by reversing

the algorithm described in section S3. No convolution with tip diameter or TF

oscillation has been performed at this point. This map, shown in 4.2B, gives us

B(~x).

3. In this step, we simulate the nanoSQUID gradient magnetometry measurement.

First we convolve B(~x) with a circle of diameter equal to the SQUID diameter to

get Bconv(~x). Next, we model the magnetic field as a function of time that is seen by

the SQUID. We assume that the SQUID is oscillating with a sinusoidal oscillation

with amplitude given by our experimentally determined oscillation amplitude. For

any given point on the map ~x0 and tuning fork oscillation ~a, we define the sinusoidal

motion of the tip to be ~xSQUID(t) = ~x0 + ~asin(t). Then we determine B(t) =

Bconv(~xSQUID(t)) using interpolation. In the small oscillation amplitude limit, B(t)

will also be sinusoidal and the amplitude of the magnetic field oscillation will be

equal to the local spatial derivative times the oscillation amplitude. However, if the

oscillation amplitude is large compared to the local gradients, the function will not

be a perfect sinusoid (although it will still be periodic). The experiment extracts

the first harmonic of B(t) at the tuning fork oscillation frequency with a lock in

amplifier. We simulate that by taking the first term of the Fourier series of B(t)

as the TF signal. This is presented in 4.2C in units of the amplitude of the first

harmonic.

4. Finally, we apply the magnetization reconstruction algorithm to this dataset to

generate a magnetization map convolved with height, SQUID diameter, and tuning

fork amplitude. This is done in two steps. First we integrate the data from step 3

along the correct angle, but assuming that the TF oscillation amplitude is a perfect

representation of the linear derivative without including higher order contributions.

120



nanoSQUID Measurements of Twisted Bilayer Graphene Chapter 4

This is the assumption made in the analysis used in the main text and described in

the previous section of the supplement. This provides a DC magnetic field map, now

convoluted with height, SQUID diameter, and tuning fork amplitude and shown in

Fig. 4.2D. Then we apply the rest of the algorithm detailed in the previous section

of the supplement to extract the magnetization map. This is shown in Fig. 4.2 E

through G for tuning fork oscillation amplitudes of 100nm, 200nm, and 400nm.

We conclude that a small effect on the spatial resolution is present when |a| ∼ h ∼ d,

but only significantly degrades the image’s spatial resolution for |a| > h ∼ d. Our

experiments were performed in the former regime and we therefore don’t expect the

spatial resolution to be significantly affected by our tuning fork oscillation amplitude.

4.2 Twisted Bilayer Graphene Measurements

In this section, I present spatially resolved magnetometry images of the submicron

magnetic structure of the twisted bilayer graphene sample aligned to one of its encap-

sulating hexagonal boron nitride layers introduced in the second chapter of this thesis.

The microscopy results primarily address the three following open questions:

1. What is the magnetization density and is it inconsistent with spin ferromagnetism?

2. How does the magnetization density change with carrier density?

3. What does a local probe reveal about the nature of magnetic pinning in the sample?

4.2.1 Magnetization Density Measurements

The magnetic moment of electrons is derived from a combination of its intrinsic

and orbital angular momentum. In crystalline solids, an orbital magnetization arises
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Figure 4.2: Tuning Fork Amplitude Effects on Spatial Resolution (A) Simu-
lated magnetization distribution in units of magnetization density of 1 spin per unit
cell. The empty square in the middle has a side length of 400nm. The top of the
magnetization distribution extends to the top of the image, in such a way that we
are simulate the effect of not fully capturing the stray emitted fields. The scale bar is
1 µm. (B) Magnetic field distribution 140nm above the magnetization density shown
in A. (C) Simulated BTF signal for a 215nm diameter SQUID with oscillation am-
plitude of 200nm. (D) Integrated data assuming that the data in C is an accurate
measurement of the linear derivative. This is the magnetic field data that is then
transformed into magnetization density data. The resulting magnetization density
is presented for an oscillation of 100nm (E), 200nm (F) and 400nm (G). A linecut
across the dotted line shown in G is shown in H for the raw magnetization and the
subsequent extracted magnetization values.
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from both local and non local contributions to the orbital angular momentum from

the Bloch electron wave packet and the Berry curvature of the bands respectively [2].

While the orbital magnetization often contributes—at times substantially[75]—to the net

magnetization of ferromagnets, all known ferromagnetic materials involve partial or full

polarization of the electron spin.

Theoretically, however, ferromagnetism can also arise through the spontaneous polar-

ization of orbital magnetization without involvement of the electron spin. To host purely

orbital ferromagnetic order, a system must have a time reversal symmetric electronic

degree of freedom separate from the electron spin as well as strong electron-electron in-

teractions. Both are present in graphene heterostructures, where the valley degree of

freedom provides degenerate electron species related by time reversal symmetry and a

moiré superlattice can be used to engineer strong interactions. Notably, spin-orbit cou-

pling is thought to be vanishingly small in these systems[76], effectively precluding a

spin-based mechanism. These results have consequently been interpreted as evidence for

the first purely orbital ferromagnet[77, 38, 39, 78, 79, 80, 81, 82]. Confirmation of the

importance of orbital contributions to the magnetic order in moiré heteostructures can

be achieved by an incongruence between the measured magnetization density and the

largest possible spin magnetization density.

Here, we perform spatially resolved magnetometry to extract the magnetization den-

sity of the same sample presented in chapter 2 of this thesis (see Fig. 4.3A). Figure 4.3B

shows a schematic representation of the nanoSQUID microscopy experimental setup. A

finite electrical excitation applied to the tuning fork generates a lateral oscillation of the

tip along vector â, and we measure the SQUID response at the tuning fork oscillation

frequency, BTF ≈ â · ~∇rBz.

Figs. 4.3C and D show images of BTF taken while the sample is doped to n = 2.36×

1012 cm−2, near the quantized Hall plateau corresponding to ν = 3. Here n is the nominal
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Figure 4.3: Imaging orbital ferromagnetism. (A) Hall resistance of a twisted
bilayer graphene device aligned to hexagonal boron nitride measured at T = 2.1 K
and nominal electron density n = 2.36 × 1012 cm−2. A thorough characterization of
transport in this exact device is reported in Ref. [64]. Inset: optical micrograph of
the device with the scan region marked in red. The scale bar is 4 µm. (B) Schematic
illustration of the experimental setup. We raster a nanoscale indium SQUID with
diameter d = 215 nm at a height of h ≈ 153 nm above the plane of the twisted bilayer
graphene. The SQUID is coupled to a quartz tuning fork whose excitation causes the
tip to oscillate mechanically at fTF ≈ 33 kHz in the plane of the sample. The SQUID
response at this frequency BTF ≈ â · ~∇rBz where Bz is the static magnetic field and
|â| ≈ 190 nm is the tuning fork oscillation amplitude. (C) BTF measured at B=22 mT
after field training to +200 mT and (D) -200 mT. (E) Half the difference between
data shown in panels C and D. Panels C, D and E share the same color scale. Inset:
to-scale representations of the SQUID diameter and tuning fork amplitude â. (F) Bz
as determined by integrating data in panel E. We assume Bz = 0 along the bottom
and left edges of the scan range. (G) Magnetization density m. Data are presented
in units of Bohr magnetons per moiré unit cell area A ≈ 130 nm2[64]. (H) BTF and
(I) m plotted along the indicated contours in panels E and G. The shaded regions in
H show absolute bounds on m obtained by propagating the systematic

uncertainty in |â| (see SI).
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density inferred from a parallel plate capacitor model, with the capacitance determined

from the low-field Hall density[64]. Images are acquired in the same background magnetic

field B = 22 mT but on opposite branches of the hysteresis loop shown in Fig. 4.3A.

As discussed in the SI and Fig. 4.4, the measured BTF contains contributions from

magnetic signals as well as other effects arising from electric fields or thermal gradients.

To isolate the magnetic structure that gives rise to the observed hysteretic transport, we

subtract data from Figs. 4.3C and D from each other. The result is shown in Fig. 4.3E,

which depicts the gradient magnetometry signal associated with the fully polarized orbital

ferromagnet. To reconstruct the static out of plane magnetic field, Bz, we then integrate

BTF along â from the lower and left boundaries of the image (Fig. 4.3F). We infer the total

magnetization density m from the Bz data using standard Fourier domain techniques (see

SI) as shown in Fig. 4.3G. Figures 4.3H-I show a comparison of BTF and m plotted along

the contours indicated in Figs. 4.3E and G. The shaded regions in Fig. 4.3I denote

absolute error bounds from the dominant systematic uncertainty in |â|.

Our measurements are taken close to ν = 3, equivalent to a single hole per unit cell

relative to the nonmagnetic state at ν = 4 that corresponds to full filling of the lowest

energy bands. We find that the magnetization density is considerably larger than 1 µB

per unit cell area A ≈ 130 nm2, where we have taken g = 2 as appropriate for graphene, in

which spin orbit coupling is negligible. Without any assumptions about the nature of the

broken symmetries, this state has a maximum spin magnetization of 1 µB per moiré unit

cell. Our data reject this hypothesis, finding instead a maximum magnetization density

of m in the range 2− 4 µB per moiré unit cell corresponding to an orbital magnetization

of 1.8-3.6× 10−4µB/carbon atom. We conclude that the magnetic moment associated

with the QAH phase in tBLG is dominated by its orbital component.
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Parasitic contributions to BTF

The measurements reveal that unprocessedBTF scans have a ubiquitous non-hysteretic

signal at the edge of the device. In this section, we provide evidence that this signal is

neither magnetic in origin, nor related to the physics of twisted bilayer graphene.

Fig. 4.4A shows an optical image of the full device. The bottom white square

highlights the region that exhibits the quantum anomalous Hall effect; this is the region

in which all the scans presented in the main text are performed. The white rectangular

overlay at the top of the device encompasses a region in which there is an edge of one

of the graphene layers forming the tBLG. The top part of this region is gated monolayer

graphene (MLG), whereas the bottom is gated tBLG. Fig. 4.4B shows images of BTF

taken in the top region when gated to both ν = +3 and ν = −3. Magnetism is present

only at ν = +3, and only in the tBLG region. Fig. 4.4C shows two terminal transport

hysteresis curves taken from the contacts indicated in Fig. 4.4A, consistent with the

scanning observation of disordered magnetism. The edge signal is still present along the

edge of the MLG part of the device, thus confirming that it is not associated with the

topological band structure of the tBLG. Furthermore, the sign of the edge signal flips

when gated to the opposite sign. This is more simply explained by a sensitivity to local

electric field than by exotic edge magnetism with gate dependent field coupling.

We have observed that nanoSQUID sensors differ in the strength of their coupling

to the contrast mechanism present at the edges of gated heterostructures. The majority

have similar qualitative behaviors as those presented in the main text and Figure 4.4B.

Occasionally, however, some nanoSQUID sensors exhibit different and much stronger re-

sponses to edges of gated heterostructures. Figure 4.4D is a scan of the region marked

with the maroon square with such a nanoSQUID sensor. Not only is the signal larger rel-

ative to the magnetic sensitivity, but we also see a more sophisticated pattern associated
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with the edge.

Though the exact mechanism is unknown, one possible explanation is that this

contrast mechanism corresponds to electric field modulation of the properties of the

nanoSQUID sensor. We cannot, however, rule out a thermal component to the contrast

mechanism. Nevertheless, as is explained above, the evidence is strong that this signal

arising at the edge is non-magnetic in origin and is not related to the physics of orbital

ferromagnets and edge states that we report in this paper.

Magnetization Error Propagation

In this section, we compile a comprehensive list of random and systematic errors

associated with determining the magnetization density and discuss them in turn. Our

primary sources of error are:

1. Tuning fork calibration uncertainty

2. Breakdown of linearity of the derivative assumption

3. Non-zero magnetic field boundary condition errors

4. Height calibration uncertainty

5. SQUID measurement uncertainty

6. Moiré unit cell size uncertainty

A key result of the analysis is that the magnetization density is larger than is pos-

sible for purely spin magnetism. Consequently, we describe but do not propagate the

error from effects that are guaranteed to systematically increase our measurements of

m; measurements presented here are thus strictly speaking a lower bound on m. After

describing all of the uncertainties in the measurement, the random errors are added in
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Figure 4.4: Parasitic electric field sensitivity of nanoSQUID sensor. (A)
Optical image of entire tBLG device. (B) NanoSQUID AC gradient magnetometry
of region of device far from QAH region. Scans at filling factors ν = −3 electrons per
unit cell and ν = 3 electrons per unit cell are shown. Disordered magnetic structure
is visible in the bulk of this region of the device at ν = 3 but not at ν = −3. Magnetic
order ends at the edge of one of the monolayers used to produce the tBLG. In both
images a signal comparable in size to the magnetic signal is observed at all edges of
the device, where electric fields from the gate are strongest. This signal changes sign
when the applied gate voltage changes sign. Scale bar is 1 µm. (C) Ferromagnetism
observable in 2 wire transport measurement through region imaged in B at ν = 3.
Source and drain contacts are shown with black arrows overlaid on A. (D) Image of
BTF in region marked with maroon square overlaid on A. The nanoSQUID sensor
used for this scan had unusually pronounced contrast at the edge of the device. We
report this scan in units of T for comparison to B, though we do not believe that the
signal is magnetic in origin.
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quadrature to show that their effect is minimal compared to the large but well-bounded

systematic uncertainty in the tuning fork amplitude.

Tuning Fork Calibration Errors

The largest contribution to the error is, as already discussed in supplementary section

S2, the amplitude of the tuning fork oscillation. It is critical to note that the uncertainty

reported represents the absolute maximum and minimum values of the amplitude, not

an error bound with a confidence interval or the representation of a single standard

deviation.

There is also a random error associated with the uncertainty of the fit for extraction of

the tuning fork amplitude and oscillation direction. The oscillation amplitude uncertainty

comes out to a 2% random error. The error associated with the angle of oscillation is

approximately ±0.2 degrees. This random error is harder to propagate systematically.

We approximate the effect of this random error by simulating a circular moment density,

using the same procedure as shown in the spatial resolution simulation section of the

supplement, in which we integrate along a different angle than the simulated oscillations.

For angles incorrect by 1 degree, this leads to errors on the order of 2% of the extracted

maximum magnetization. We propagate this 2% error figure, likely an overestimate given

the ±0.2 degrees uncertainty in oscillation direction, to allow room for additional error

introduced by the discrete sampling of the dataset and interpolation acting as an effective

misalignment of the integration.

Breakdown of linearity of derivative assumption

NanoSQUID gradient magnetometry only provides an accurate measurement of the

local derivative as long as the oscillation amplitude is small compared to the feature sizes.

Feature sizes in this case are determined by a mix of the SQUID diameter and the height

above the sample surface. Our tuning fork oscillation is approximately 200 nm, which is

comparable to both the SQUID diameter and scanning heights of 215 nm and 153 nm
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respectively. Thus it is important to understand the error introduced by assuming that

our measurement is an accurate representation of the local derivative.

In the section investigating the effect of the TF oscillation on the spatial resolution,

we simulate the effect of the amplitude on the resulting extracted magnetization. In

Fig. 4.2H we see that for amplitudes of up to 400 nm the peak magnetization remains

unaffected. Therefore we conclude that for tuning fork oscillation amplitudes relevant

to the measurements performed in this manuscript the breakdown of linearity of the

derivative measurement provides negligible additional error.

Non-zero boundary condition errors

Converting between magnetic field and magnetization density is only perfectly re-

producible if the magnetic field dataset samples all of the stray field emitted by the

magnetization. In the dataset analyzed and presented in our manuscript this is not the

case, as the top edge of each scan passes through a magnetized region. The magnetiza-

tion distribution used in determining the effect of tuning fork amplitude on the spatial

resolution of the measurement was, in order to illustrate the effect of non-zero boundary

conditions, also cut off at the top edge of the device. In Fig. 4.2H, we see that the peak

magnetization from the resulting scans is slightly decreased. This reveals that the algo-

rithm systematically underestimates the magnetization when stray fields are not entirely

captured. Therefore we do not propagate the error in consideration of determining the

minimum possible magnetization density consistent with our measurements.

Height calibration errors

Next, we address the error associated with uncertainty in the height of the SQUID

above the sample surface. This height error can be divided into three different compo-

nents: uncertainty in the calibration of the z scanning piezos, uncertainty in the piezo

creep during open loop height measurements, and uncertainty in the distance from the

top of the device to the twisted bilayer graphene layer.
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Our height calibration is performed by comparing features of a different graphene/hBN

heterostructure using a commercial room temperature AFM to an AFM scan performed

with our scanning nanoSQUID/tuning fork system. We find a 7% uncertainty in our

height resulting from the combined uncertainties of the two AFM scans shown in Fig.4.5.

During measurements, we periodically contacted the tBLG heterostructure with the

nanoSQUID to measure the distance between the tip and sample surface. Approximately

1 nm of drift occurred between the beginning of the scan used in generating Figure 1 and

the end of the last scan used in generating Figure 1. Conservatively we can add another

1% of height error associated with the piezo drift. This error added in quadrature to the

7% uncertainty in z calibration produces a negligible difference.

Finally, we also need to consider the uncertainty in the thickness of the hBN flake

which determines the distance between the touchdown point on top of the heterostruc-

ture and the twisted bilayer graphene layer itself, which hosts the magnetism. AFM

measurements of the hBN flake on top of the device made before stacking show that it is

39.4 ± 1 nm thick. The thickness of the twisted bilayer graphene layer itself is neglible

compared to these length scales (< 1 nm).

The total distance between the SQUID and the magnetization distribution is 113nm±

7%+39.4±1nm. Adding these errors in quadrature, the distance from the tBLG layer to

the nanoSQUID sensor is 153±8nm or 5% height error. The effect of a 5% height error is

determined via simulation, as shown in Fig. 4.6. We take a circular magnetization region

and determine the stray field a given height above it. We then immediately reverse the

process, going from magnetic field back to magnetization, but varying the height from

0.95h to 1.05h. We find that the maximum magnetization from the linecuts varies by 2%

for a 5% change in height.

SQUID Measurement Errors

When performing a SQUID measurement, we are measuring a voltage that we convert
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Figure 4.5: AFM height calibration. (A) Image of a graphene/hBN device cap-
tured with Bruker ICON atomic force microscope. Scale bar is 5 µm. (B) Schematic of
interaction of nanoSQUID tip with surface. Distances to contact are repeatable to ±1
nm. (C) Shear force AFM of region enclosed in white box in A using nanoSQUID us-
ing Z scanner calibration provided by the scanner manufacturer. (D) Linecuts across
device using calibrated Bruker ICON AFM (black dotted lines in C). (E) Linecuts
across device using nanoSQUID shear force AFM with scanner manufacturer’s cali-
bration. The thickness of the device can be compared to extract a precise calibration
of the Z piezoelectric scanner in the nanoSQUID microscope.
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Figure 4.6: Determining Magnetization Error from Height Uncertainty. (A)
A simple representative magnetization density region used to simulate the effects of
height uncertainty. (B) Extracted magnetization after converting the magnetization
density map in A to a DC magnetic field and then back to a magnetization using the
algorithm specified in the supplement and a height of 153nm. (C) Linecuts across
the line in B shown for magnetic fields generated at a height of h = 153nm, but then
determining the magnetization with heights of 0.95h and 1.05h. We see that the max-
imum magnetization in each case is within 2% of the true maximum magnetization.

to a magnetic field via a characterized transfer function.

B = V/T (4.10)

The magnetic field measurement noise on the SQUID used in this study is reported

as 15nT/
√

Hz. This reported noise is the result of the voltage noise σV /T , where we

assume T to be constant. Magnetic field datasets are voltage maps divided by a constant

transfer function T experimentally determined from measurements before and after the

scan. For each scan, the average of the two values is used to convert from voltage to

magnetic field.

Tavg = (Ti + Tf )/2 (4.11)
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This type of random noise is reflected in the linecuts presented to illustrated the

magnetization density observed. Thus, additional propagation of this error is superfluous.

However, the assumption that the transfer function is constant itself is not true and,

since we use a constant value for T , its uncertainty is not visible in the data as presented.

While scanning, we measure a voltage that we convert to a magnetic field from an as-

sumed constant linear relationship between magnetic field and voltage. This constant

is measured before and after every scan, but has the ability to drift in between. We

propagate this error by comparing the difference in the transfer functions from before

and after each measurement:

∆T = Tf − Ti (4.12)

We average ∆T/2Tavg for the 10 longest scans taken, several of which were used to

generate figures 1 and 3 in the main text. This provides us with a random error of 2.5%

that we propagate at the end of the measurement.

We also note that, although there is uncertainty associated with it, the extracted

SQUID diameter doesn’t affect anything quantitative. The transfer functions are mea-

sured directly as a conversion from voltage to magnetic field. The diameter of the SQUID

is used for determining reasonable filtering settings throughout the algorithm, but noth-

ing other than spatial resolution of the effective M maps is changed by systematic error

in the diameter of the SQUID.

Uncertainty in unit cell size

The magnetization density is presented in units of Bohr magnetons per unit cell.

The area of the unit cell is extracted experimentally and its error therefore needs to be

propagated. From transport characterization of the device, we determined that the twist
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angle is θ = 1.15± 0.01 degrees. The unit cell area is given by:

A =
√

3a2/2 sin2 θ (4.13)

where a = 0.246nm is the lattice constant of graphene. Propagating this error we

find that µB/u.c. = 71.3nA± 1.7%

Total random error

In the previous sections, we outlined all the sources of error likely to contribute to the

uncertainty in our measurement. Ignoring those that we determine are either negligible in

amplitude or could only systematically increase the magnetization signal, we are left with

the following sources of error: uncertainty in the fit extracting tuning fork amplitude and

oscillation direction, uncertainty in the unit cell size, uncertainty in the SQUID transfer

function, and uncertainty in the height calibration. Summed in quadrature, all these

effects produce a 5% error. This is small compare to the systematic ∼40% error from

the changing quality factor of the tip-tuning fork system, justifying our choice to ignore

them in the presentation in the main text.

4.2.2 Orbital Magnetization Carrier Density Dependence

In an intrinsic orbital magnet in which all moments arise from conduction electrons,

the magnetization depends strongly on the density. Additional density dependence arises

from the fact that contributions to the orbital magnetization from both wave-packet an-

gular momentum and Berry curvature need not be uniformly distributed within the Bril-

louin zone[2]. Transport observations of a quantum anomalous Hall effect measure only

the total Berry curvature of a completely filled band. At partial band filling, however,
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extrinsic contributions from scattering complicate the relationship between transport

and band properties. In contrast, measuring m provides direct information about the

density-dependent occupation of the Bloch states in momentum space.

The orbital magnetization and its density dependence is determined by the following

equation:

M(µ) =
∑
n

∫
d2k

(2π)2

[
mn(k)− e

~
(εn(k)− µ) Ωn(k)

]
f (µ− εn(k)) (4.14)

...where we are summing over all bands n and integrating over the occupied states

in the entire Brillouin zone, mathematically represented by multiplying the integrand by

the Fermi-Dirac distribution function f (µ− εn(k)). In this formula, e is the electron

charge, ~ is the reduced Planck’s constant, µ is the chemical potential, and εn(k) is the

dispersion relationship of the nth band.

Within the integrand, we can split up the contributions to the magnetization into two

parts. The first, mn(k), is the contribution to the orbital magnetization from angular

momentum of the electron wavepacket. The second term, e
~ (εn(k)− µ) Ωn(k), is the

contribution to the orbital magnetization from the population of chiral edge states. This

term is a function of the Berry curvature Ωn(k).

In a single particle picture, as you increase the electron density by increasing µ,

mn(k), εn(k) and Ωn(k) are unchanged. One needs only consider the contributions from

the new electrons to calculate the change in magnetization. In an interacting picture,

in which adding electrons reshapes the band structure far from the Fermi level, mn(k),

εn(k) and Ωn(k) are also functions of the electron density, which is modulated by µ, thus

fully determining the magnetization trend is difficult.

Despite the trend being complicated when interactions are included in the model,

there are still limits that are easily interpreted. When the bands exhibiting magnetism
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are fully emptied (at low density or gate voltage) or all the bands, with opposite magneti-

zation, are filled (at high density or gate voltage) one expects both the interaction-driven

gap and the magnetization to vanish. Thus, the overall trend for magnetization as func-

tion of density is an envelope with zero at both ends with the trend in between determined

by details of the density dependence of interaction strength, pinning, and magnetization.

This trend also simplifies dramatically once a band has been filled and the Fermi

level is inside a band gap. At this point, increasing µ no longer changes the electron

density and mn(k), εn(k) and Ωn(k) are static even when density dependent electron

interactions are relevant. Experimentally, when in the gap, the gate voltage directly

tunes µ. Therefore in the gap we expect to observe only the effects of the following term

that is directly proportional to µ:

δM(µ) = µ
∑
n

∫
d2k

(2π)2

e

~
Ωn(k)f (µ− εn(k)) (4.15)

= µ
Ce

2π~
(4.16)

The change in M(µ) with µ within the gap is linear and proportional to the Chern

number of the filled bands. This is a non-local contribution to the orbital magnetization

arising from the population of the Chern insulator’s chiral edge states.

We investigate the magnetization density dependence in Fig. 4.7A with repeated

measurements of BTF for a series of gate voltages in the vicinity of ν = 3. BTF is measured

along a contour that runs over a region of the device showing magnetic inhomogeneity

even at the saturation magnetization (see Figs. 4.3E and H). Assuming that the magnetic

structure is density independent, the amplitude of the position dependent modulation of

BTF functions as a proxy for m.

To compare magnetization at different n, we fit the data for n = 2.57×1012cm−2 to a
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7th order polynomial (see Fig. 4.7A); all other curves are then fit to the same polynomial

with an overall scale factor which we denote B̃TF and plot in Fig. 4.7B. Error bars reflect

standard error of the mean of the residuals of these fits. BTF is below our noise floor for

n . 2.25× 1012cm−2. For 2.25× 1012cm−2 < n < 2.52× 1012cm−2—a density range that

overlaps with the quantization of the Hall conductivity[64]—BTF increases rapidly. For

n > 2.52 × 1012cm−2, BTF then slowly decreases as a function of n, dropping below the

noise floor at n ≈ 2.9 × 1012cm−2, corresponding to a superlattice filling of ν ≈ 3.7 and

approximately coinciding with the vanishing of ferromagnetic signatures in transport.

The dramatic change of the inferred m within the quantum anomalous Hall plateau

arises from the contribution of the chiral edge state to the total magnetization. Within an

energy gap, changes in the chemical potential induce no additional charges in the sample

bulk, and consequently no change in the bulk magnetization. In a Chern insulator,

however, charges may accumulate on the sample boundary due to the presence of chiral

edge states. This is predicted to give rise to a chemical-potential dependent contribution

to the magnetization within the quantized transport plateau[68]. We interpret the sharp

change we observe in magnetization within the transport plateau as evidence for this

contribution to the magnetization by the topological edge states. Assuming BTF to

be a good proxy for m, our measurements imply a ∆m & 3µB/u.c. across the quantum

anomalous Hall gap. The magnitude of the theoretically expected jump in magnetization

across a Chern insulator gap is ∆m = CEgap/Φ0, where C is the Chern number and Φ0 =

h/e is the flux quantum. Thermally activated transport measurements of the quantum

anomalous Hall state at ν = 3 in this sample found Egap = 2.5 meV[64], corresponding

to a ∆m of 1.4 µB per unit cell, somewhat smaller than our local measurement and

potentially implying that the transport measurements underestimate Eg.

The orbital magnetization contributed by Bloch states within a valley-projected sub-

band is momentum dependent. As a result, the total magnetization is expected to de-
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Figure 4.7: Density dependence of magnetization. (A) Evolution of BTF with
n in the vicinity of ν = 3, measured along the black linecut shown in Fig. 4.3E.
The data was taken at B = 44 mT and T = 2.2 K. The trace corresponding to n =
2.57×1012cm−2 is shown in red at right, along with a fit to a 7th order polynomial
in black. (B) Comparison of magnetic signal with the residual Hall resistance ∆Rxy,
shown in red. BTF traces at different n are fit to the same polynomial as in panel (A)
with a scale factor B̃TF, which serves as a proxy for m. Error bars measure standard
error of the mean of the residuals of these fits, normalized to the values shown in the
inset of (A). (C) Coercive field Bc determined from transport measurements plotted
alongside B̃TF.
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pend on electron density, although the precise trend is sensitive to the details of the

many-particle ground state wave function. For 2.52 × 1012cm−2 < n < 2.9 × 1012cm−2,

the observed gradual decrease in BTF is concomitant with the hysteresis in transport.

[68, 83]

In contrast, no BTF signal is observed for n < 2.25 × 1012cm−2 despite hysteresis in

transport persisting until n = 2.05 × 1012cm−2. Under the assumption that BTF ∝ m,

absence of measured signal implies |m| < .2µB per moiré unit cell. Transport mea-

surements in this density range show that the anomalous Hall effect changes sign at

n ≈ 2.17 × 1012cm−2, accompanied by a divergence in the coercive field (Figs. 4.8 and

4.7C). These phenomena, observed in a regime of undetectably small m, point to a den-

sity tuned transition in the valley occupation mediated by a sign change in the valley

subband magnetization. In this picture, the sign change of the anomalous Hall effect

arises directly from the opposite Berry curvatures of the contrasting valleys.

While the coercive field behavior is difficult to model quantitatively, coercive fields

in general result from competition between the energetic barrier to magnetic inversion

and the coupling of magnetic order to the magnetic field: Bc ∼ E/m. For densities

where m approaches zero and E does not, Bc will to leading order be sensitive to changes

in 1/m. The observation of a divergence in BC concomitant with a sign change in the

anomalous Hall effect is consistent with a vanishing m at this point. Our observation of an

undetectably small magnetization in this regime strongly suggests these anomalies arise

from a sign change in m at partial band filling, rather than density-dependent extrinsic

contributions to the anomalous Hall effect or domain pinning dynamics. The congruence

of undetectable magnetization with the sign change is critical to the interpretation of the

electric switching of magnetic order in a Chern reported in reference [67].
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Figure 4.8: Valley polarization switching in tBLG. (A) Anomalous Hall resis-
tance ∆Ryx associated with twisted bilayer graphene ferromagnetism, extracted by
subtracting Ryx(B) as B is increased from Ryx(B) as B is decreased. The colorscale
is chosen to illustrate weak features in ∆Ryx(ν). For ν < 3, the coercive field of the
ferromagnetic order increases dramatically, peaking at ν = 2.82 electrons per moiré
unit cell. For ν < 2.82, ∆Ryx switches sign, indicating that the valley polarization of
the ground state of the system at finite magnetic field has switched. The coercive field
plotted in Fig. 4.7C is extracted from this dataset. (B) shows the same data as (A),
but with the colorscale fixed to the von Klitzing constant to show the range of filling
factors for which a robust QAH effect is observed. (C) Robust Chern 1 QAH effect
at ν = 3.1. (D) Ferromagnetic hysteresis plots on opposite sides of the divergence
of the coercive field close to ν = 2.82 (with offset). Note the change in the relative
sign of ∆Ryx. This figure appears in the supplement of [67]. It has been replicated
here since it is the source of data processed and overlaid on Fig. 4.7 and is relevant
to arguments made here.
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4.2.3 Magnetic Pinning

Across the range of densities at which magnetic hysteresis is observed, Bc is not sim-

ply related to m, raising the question of the nature of magnetic pinning. Previous work

on graphene-based Chern insulators found Barkhausen noise jumps comparable to h/e2

[64, 23, 67], suggesting a substructure of only a handful of ferromagnetic domains com-

parable in size to the distance between contacts. However, our magnetometry data show

significant submicron scale inhomogeneity even at full magnetic saturation. This is simi-

lar to findings in transition metal doped topological insulators, where the magnetic struc-

ture is dominated by inhomogenous distribution and clustering of the Cr or V dopants.

In those systems, magnetic imaging shows superparamagnetic dynamics characterized

by the reversal of weakly correlated point-like microscopic magnetic dipoles[33, 84, 36].

Transport, meanwhile, does not typically show substantial Barkhausen noise[8], with the

exception of one report where jumps were reported in a narrow range of temperatures[85].

To investigate the domain dynamics directly, we compare magnetic structure across

different states stabilized in the midst of magnetic field driven reversal. Fig. 4.9A shows

a schematic depiction of our transport measurement, and Fig. 4.9B shows the resulting

Rxy data for both a major hysteresis loop spanning the two fully polarized states at

Rxy = ±h/e2 (in purple) and a minor loop that terminates in a mixed polarization state

at Rxy ≈ 0 (in red). All three states represented by these hysteresis loops can be stabilized

at B = 22 mT for T = 2.1 K, where our nanoSQUID has excellent sensitivity, allowing

a direct comparison of their respective magnetic structures (Figs. 4.9C-E). Figs. 4.9F-

G show images obtained by subtracting one of the images at full positive or negative

polarization from the mixed state. Applying the same magnetic inversion algorithm

used in Fig. 4.3 produces maps of m corresponding to these differences (Figs. 4.9H-

I), allowing us to visualize the domain structure generating the intermediate plateau
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Figure 4.9: Mesoscopic magnetic domains. (A) Transport measurement
schematic and (B) Hall resistance data as a function of magnetic field for major (pur-
ple) and minor (red) hysteresis loops. (C-E) Gradient magnetometry images of the
tBLG device at the three indicated values of the Hall resistance. All magnetic imaging
presented here was performed at B = 22 mT, T = 2.1 K, and n = 2.36× 1012 cm−2.
(F-G) Pairwise difference images based on the data presented in panels (C-E). The
same domain structures were observed on multiple cooldowns, reminiscent of grains
formed by crystalline domain walls in polycrystalline ferromagnetic metals. (H-I) Ex-
tracted magnetization m for the images in panels (F-G). (J-L) Schematic depiction
of edge state structure corresponding to magnetization states in C-E. Assuming full
edge state equilibration, these states would result in Rxy = −h/e2, 0, and h/e2, close
to the observed values.

Rxy ≈ 0 seen in the major hysteresis loop. The domains presented in Figs. 4.9H-I are

difference images; the domain structures actually realized in experiment (Fig. 4.9C-E)

are illustrated schematically in Fig. 4.9J-L. Evidently, the Hall resistance of the device in

this state is dominated by the interplay of two large magnetic domains, each comprising

about half of the active area.

Armed with knowledge of the domain structure, it is straightforward to understand

the behavior of the measured transport in the mixed state imaged in Fig. 4.9D. In

particular, the state corresponds to the presence of a single domain wall that crosses the

device, separating both the current and the Hall voltage contacts (see Fig. 4.9A). In the
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limit in which the topological edge states at the boundaries of each magnetic domain are

in equilibrium, there will be no drop in chemical potential across the domain wall, leading

to Rxy = 0. This is very close to the observed value of Rxy = 1.0 kΩ = 0.039 h/e2. As

shown in Figs. 4.10 and 4.11, more subtle features of the transport curve can also be

associated with the reversal of domains which do not bridge contacts.

In the absence of significant magnetic disorder ferromagnetic domain walls minimize

surface tension. In two dimensions, domain walls are pinned geometrically in devices of

finite size with convex internal geometry. As discussed in Fig. 4.11, we observe pinning of

domain walls at positions that do not correspond to minimal length internal chords of our

device geometry–suggesting that magnetic order couples to structural disorder directly.

This is corroborated by the fact that the observed domain reversals associated with

the Barkhausen jumps are consistent over repeated thermal cycles between cryogenic

and room temperature. While crystalline defects on the atomic scale are unlikely in

tBLG due to the high degree of perfection of the constituent graphene and hBN layers,

the thermodynamic instability of magic angle twisted bilayer graphene makes it highly

susceptible to inhomogeneity at scales larger than the moiré period, as shown in prior

spatially resolved studies[47, 86]. For example, the twist angle between the layers as

well as their registry to the underlying hBN substrate may all vary spatially, providing

potential pinning sites[87]. Moiré disorder may thus be analogous to crystalline disorder

in conventional ferromagnets, which gives rise to Barkhausen noise as it was originally

described[88]. A subtler issue raised by our data is the density dependence of magnetic

pinning; as shown in Fig. 4.7, Bc does not simply track 1/m across the entire density

range, in particular failing to collapse with the rise in m in the topological gap. This

suggests nontrivial dependence of the pinning potential on the realized many body state.

Understanding the pinning dynamics is critical for stabilizing magnetism in tBLG and the

growing class of related orbital magnets, which includes both moiré systems[23, 65, 51]
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as well as more traditional crystalline systems such as rhombohedral graphite[89].

4.3 Concluding Remarks

nanoSQUID microscopy measurements presented here are the first magnetic investi-

gation of emergent magnetism in the growing field of graphene moiré heterostructures.

The extracted magnetization densities conclusively demonstrate the orbital nature of the

emergent ferromagnetism and reveal its quantized dependence on the chemical potential

in the topological gap. Submicron scale disorder in the magnetization suggests that mag-

netic order couples to structural disorder directly; the exact mechanism remains poorly

understood and may be critical for stabilizing magnetism in orbital magnets.

Future measurements with nanoSQUID microscopy, still on this same sample, could

address some of the remaining open questions. The inhomogeneity in the twist angle at

scales larger than the moiré period in graphene moiré hetetrostructures can be directly

imaged with nanoSQUID microscopy[47]. Correlating the location of twist angle do-

mains with the magnetic domains reproducibly observed in the measurements presented

here may provide the necessary insight to identify critical aspects of the pinning mecha-

nism. Furthermore, the unique experimental observation of small DC currents coupling

to magnetic domains has not been addressed with local measurements. The transport

measurements presented in chapter 2 suggest that the domain configurations accessed

by flipping domains with an applied magnetic field differ from those stabilized by small

DC currents. Comparing the current accessed magnetic domain configurations to those

revealed in the measurements presented here and to measurements of the twist angle do-

mains may provide information critical to understanding the current-magnetism coupling

mechanism.
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Figure 4.10: Subresolution domain reversals in the Rxy ≈ 0 plateau (A) Rxy is
repeatedly measured through a complete major loop of the tBLG ferromagnet. Subtle
differences appear between each of the three hysteresis loops, but all share the Rxy ≈ 0
plateau. (B) Rxy is measured through a set of minor loops of the ferromagnetic
hysteresis curve. The cyan loop occurs over a regime in which changes in Rxy as a
function of magnetic field are reversible. The red loop occurs over the transition from
the fully polarized field-unfavored state to the mixed state with Rxy ≈ 0 discussed
in Fig. 4.9. The Rxy ≈ 0 plateau contains several states characterized by small but
measurable changes in Rxy. The green loop characterizes one such small change in
Rxy. The blue loop characterizes the transiton from the mixed state with Rxy ≈ 0
to the fully polarized field-favored state. (C) Scans were performed before and after
the green minor loop in B, and are shown here. The magnetic field distributions are
qualitatively similar with a few small differences. (D) An additional pair of scans with
similar but unequalRxy prepared within theRxy ≈ 0 plateau. (E-F) Difference images
corresponding to C-D. All states within the Rxy ≈ 0 plateau had domain distributions
qualitatively similar to that discussed in Fig. 4.9K. Changes in the precise value of
Rxy correspond to sub-resolution changes in the magnetic field distribution above the
tBLG device.
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Figure 4.11: Additional images of the magnetic domain wall motion. (A)
Hall resistance Rxy, showing the preparation of magnetic domain configuration imaged
in (B-E). (F-H) show magnetic images obtained by taking a pairwise difference of
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motion of domain walls. (I-K) Reconstructed magnetization density corresponding
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Chapter 5

Outlook

The theory of phase transitions attempts to pinpoint the provenance of the qualita-

tive properties of materials. The present day forefront of research on the fundamental

electronic properties of materials studies phase transitions resulting from topology and

electron interactions.

The importance of topology to the framework describing electronic phase transitions

was only realized in the past couple decades. Historically, phase transitions were primar-

ily understood and categorized by the physical symmetries of their properties. Recent

advances in the theoretical descriptions of electronic phase transitions, driven by exper-

imental realizations of systems exhibiting novel phenomena, have increasingly identified

topology as a central concept. Topology in physics is still in its infancy; many theoretical

and experimental applications thereof remain to be discovered. This thesis introduced

the quantum anomalous Hall effects, one of the simplest topological phases to describe

theoretically and realize experimentally. Future work towards making known topological

systems more robust and discovering entirely new topological invariants will broaden our

understanding of the impact of topology in physics.

The relevance of electron interactions has been recognized for significantly longer
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than topology; nonetheless, the complexity of theoretical descriptions of many body sys-

tems has left questions critical to many phenomena unanswered. Exotic magnetism,

high temperature superconductivity, and fractional Chern insulators are on the shortlist

of interacting phases with potentially high impact applications. These phases share the

trait that simulating them on a classical computer is neigh impossible without drastically

simplifying their Hamiltonians. The development of their theoretical understanding ne-

cessitates the experimental realization of materials for which precise predictions can be

compared to equally precise measurements. The future of low power electronics, quan-

tum computing, and both classical and quantum memory may be realized through these

efforts.

The work presented in this thesis contributes small, but significant, advances to the

community’s understanding of topological and interaction driven phenomena. We real-

ized a magnetic topological insulator with topology originating from a novel mechanism

free of spin orbit coupling and band inversion. In contrast to the extrinsic interactions in

magnetically doped (Bi,Sb)2Te3, we engineered intrinsic interactions that led to signifi-

cant quantitative improvements to topological gap size. We observed that the ferromag-

netic domains interact strongly with current through an unknown coupling mechanism.

With scanning microscopy, we established the orbital nature of the magnetism and ob-

served the quantized relationship between magnetism and Chern numbers. Finally, we

investigated the submicron disorder of moiré magnets revealing magnetic pinning to

structural domains.

The significance of the research performed as part of this dissertation is only par-

tially encompassed by the knowledge derived from its particular conclusions. The effort

also contributes to the continued development of two major ‘thrusts’ of experimental

condensed matter physics.

First, experimental realizations of improved and novel electronic phenomena requires
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continuous development of material fabrication techniques. Prior to the discovery of

van der Waals heterostructures, the materials used to study topology and interacting

electrons were typically made with material growth techniques: these both have advan-

tageous and disadvantageous properties. One of material growth’s greatest strengths is

that it casts an incredibly wide net on the systems it can create. In recent decades, a

wide variety of technical development has enabled the production of high quality semi-

conductors, magnetic materials, ceramics, bio-materials and polymers. Even graphene

monolayers can be made with growth techniques! The potential of material growth cannot

be overstated. Nonetheless, the process yields materials with relatively fixed properties;

exploring new material systems requires the growth of numerous samples to explore the

available parameter space. Furthermore, the growth process inherently introduces disor-

der to crystalline structure of the final product stemming from an inability to precisely

assemble the constituents into the desired lattice.

van der Waals heterostructures present a versatile platform complementary to mate-

rial growth for the investigation of electronic phenomena. The raw number of systems

accessible by van der Waals heterostructures is comparatively small because the tech-

nique is limited to materials naturally exhibiting two dimensional chemically bonded

atomic layers assembled into a three dimensional structure held together only by van der

Waals forces. This limitation is compensated for by three unique facets: their cleanliness,

their tunability, and their ability to be stacked. Graphene monolayers extracted from

bulk graphite preserve the pristine nature of its lattice; when processed into devices with

modern methods, they exhibit comparable or less disorder than the best grown semicon-

ductors. Electrostatic gating enables in situ control over their carrier density enabling

systematic studies of phase transitions in a single device. Finally, unique layered mate-

rials can be created by stacking van der Waals materials on top of each other combining

their properties in ways unimaginable to grown materials. The field of van der Waals
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heterostructures, like topology, is young enough that the full scope of its applications

cannot yet be appreciated. The research presented in this thesis contributes to the on-

going development of van der Waals heterostructure fabrication techniques focusing on

the application of lattice moiré patterns to engineer topology and strongly correlated

electrons.

The second major experimental ‘thrust’ critical to stimulating discoveries in physics

is the development of new and improved measurement systems. As theories describing

the behavior of electrons in materials become more refined, so do their predictions. The

suite of experimental techniques must develop accordingly to resolve the minutia neces-

sary to differentiate various models. It is therefore important to continuously develop

apparatuses capable of measuring new material properties and to improve the sensitivity

of existing measurement techniques. The fruit of those efforts must then be popularized,

replicated, and used to investigate newly accessible phenomena.

nanoSQUID on tip microscopy is a novel measurement technique developed in the

past decade capable of spatially resolved magnetic field and temperature measurements.

It stands on the shoulders of SQUID microscopy experiments first assembled in the 1990s.

The improved sensitivity to localized, nanoscale, magnetic signals enables the investiga-

tion of dilute magnetic systems inaccessible with other magnetometers. nanoSQUIDs’

thermal sensing capabilities also present a marked improvement on local temperature

microscopy. The significance of these measurement capabilities is enhanced by the ro-

bustness of the sensors to external magnetic fields; they remain sensitive in static fields

up to 5T. Though they require cryogenic temperatures below the superconductor’s TC

to operate, there is no lower bound on their operating temperature poising nanoSQUID

microscopy as an optimal technique for the investigation of the ground states of mate-

rial systems. The replication of and improvement on the original nanoSQUID on tip

microscope in our lab at UCSB both enabled the presented measurements on twisted bi-
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layer graphene and contributes to the wide-scale popularization of a novel measurement

technique.

In conclusion, the work done towards my dissertation provides experimental confir-

mation for the importance of topology and electron interactions in moiré van der Waals

heterostructures. In doing so, we developed experimental sample fabrication and mea-

surements methods that will enable the realization and investigation of many material

systems of interest to condensed matter physicists in the years to come.
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Appendix

A.1 nanoSQUID on Tip Sensors

In this section of the appendix, I start by providing a brief overview of the theoretical

model for SQUIDs, highlighting key parameters responsible for various aspects of their

I-V characteristics. The model in turn motivates decisions made in both the fabrication

and measurement procedures, discussed in the following subsections.

A.1.1 RCSJ Model

Josephson junctions consist of two weakly coupled superconducting electrodes. The

coupling is strong enough that the supercurrent tunnels through the junction with a

critical current, I0, reduced from the critical current of the superconducting contacts

Ic. In the weak coupling limit where the 0 < I0 << Ic, the supercurrent Is across the

junction is related to the phase difference of the macroscopic wavefunctions of the two

electrodes,

Is = I0sinδ (A.1)
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where the time evolution of the phase difference is determined by the voltage across

the junction,

δ̇ ≡ dδ

dt
=

2π

Φ0

V (A.2)

This is the original result derived by Josephson in the 1960s for an isolated perfect

junction between superconducting contacts without other circuit elements.

In practice, any junction has additional resistances and capacitances that need to

be included to properly predict their behavior. In the RCSJ model, the resistance and

capacitance shunt the junction as shown in Fig. A.1.

R

Iin

CI0 V

Figure A.1: Resistively and Capacitively Shunted Junction. A circuit rep-
resentation of a Josephson junction including all necessary circuit elements. The
junction, labeled by its critical current I0, is shunted by a resistance R and capac-
itance C. The voltage V that determines the junction phase evolution dynamics is
also labeled.

The current through a junction can therefore be expressed as the sum of the current

contributions from each element,

I = I0sinδ + V/R + CV̇ (A.3)
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where the voltage can be expressed in terms of the superconducting phase as,

I = I0sinδ + Φ0δ̇/2πR + Φ0Cδ̈/2πR (A.4)

The resulting non-linear differential equation that predicts the current through a

junction is complicated to solve, let alone two that form a SQUID. I will not go over

their solutions here; instead, I will introduce some important qualitative aspects to the

predictions made by the model. If the reader is interested in a more thorough treatment of

the model, chapter two of the SQUID Handbook Vol 1 provides an excellent introduction.

Hysteresis

The I-V characteristics of Josephson junctions both predicted by the RCSJ model

and observed experimentally to be hysteretic. The extent of hysteresis is parametrized

by the Stewart–McCumber parameter βC = 2π
Φ0
I0R

2C. I-V curves of Josephson junctions

determined from the RCSJ model for different values of βC are shown in Fig. A.2; in

general, hysteresis is observed when βC > 1.

The Stewart–McCumber parameter is critical to the proper fabrication of SQUIDs as

magnetic field or temperature sensors for two reasons. First and foremost, a hysteretic

I-V curve is impractical for the vast majority of measurements. If the sensor’s output

depends on its previous state, then the output will depend on the path taken by the

sensor and will not have a one to one correspondence with the signal being measured.

Second, the sensitivity of a SQUID is optimized when βC ∼ 1[91]. To maximize the ease

of use and sensitivity of the fabricated sensors it is necessary to be able to tune βC .

The most experimentally accessible parameter in βC = 2π
Φ0
I0R

2C is the resistance.

The intrinsic resistance, capacitance and critical current of the junction is a complicated

function of the circuit geometry. However, the junction resistance R can be modified
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Figure A.2: Hysteresis in Josephson junctions. Hysteretic current voltage
characteristics, calculated within the RCSJ model, for various values of βC . The
arrows indicate direction of bias current sweep. Figure is taken from the following
source [90].

by deliberately shunting the junction with a ‘normal’ resistor Rn. The value of the

effective resistance in the RCSJ model then becomes the two resistances in parallel,

Reff = RRn/(R+Rn). The resistance of an intentionally added resistor, Rn, can therefore

be used to tune the value of βC . Proper application of a normal shunting resistor is critical

to maximizing the sensitivity and stability of SQUID sensors.

Negative Differential Resistance

I-V curves of nanoSQUIDs have an anomalous regime where the current measured

through the SQUID decreases with increasing bias voltage. An I-V curve at constant

magnetic field of a nanoSQUID sensor exhibiting a region of negative differential resis-

tance is shown in Fig. A.3A. This ubiquitous feature historically has been understood by

solving the non-linear differential equations generated by an RCSJ model of the SQUID

measurement circuit. However, such explanations are devoid of intuitive explanations for

the phenomenon. Negative differential resistance persists for measurements of Josephson

junctions instead of SQUIDs. Here, I provide simple analysis of the measurement of the
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current through a Josephson junction with shunting capacitance C = 0 that provides

intuition for the emergence of a regime of negative differential resistance.

VB

InSOT

I0

A B

RB
I0

A
+

Rs

Re� IJ
VB

Single
Junction

Figure A.3: Negative differential resistance in Josephson junctions. (A) The
current through the nanoSQUID on tip, InSOT , increases linearly while supercon-
ducting. Counter to intuition, when the bias voltage drives a current just above the
critical current of the SQUID, the current through the nanoSQUID decreases. Only
for large voltages is a linear relationship between bias voltage and current restored.
(B) The I-V curve shown in (A) is calculated for and experimentally observed with
a quasi-voltage measurement scheme. The bias voltage acts on a bias resistor, RB,
driving a current through the single junction (or equivalently in a more complicated
model the nanoSQUID) in parallel with a shunt resistor Rs. The measured current
InSOT corresponds to the current through only the junction not including the current
through Rs.

A simplified and idealized version of the measurement circuit for a single Josephson

junction is shown in Fig. A.3B. The circuit consists of three elements: the bias resistor

RB, the junction with normal state resistance Reff , and a shunt resistor Rs. The bias

resistor has a resistance much larger than both the normal state resistance of the junction

and the shunt resistor, RB >> Rs, Reff ; this is called a quasi-voltage biasing scheme.

The shunt resistor here is a circuit element distinct from the normal resistor, Rn, used

to tune the junction’s Reff . The I-V curve of the nanoSQUID shown in Fig. A.3A has

the current through the SQUID on the y axis and the voltage applied to the bias resistor

as the x axis. This measurement scheme has been found to enable the most sensitive

measurement of the current through SQUIDs and will be discussed in more detail in a

couple sections.
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Lets simplify the analysis of the circuit by assuming that the quasi-voltage bias results

in a constant voltage at all points in the circuit. The phase evolution of a Josephson

junction under constant voltage given by,

δ̇ =
2π

Φ0

V

δ(t) =
2π

Φ0

V t

(A.5)

The current through the junction shunted by resistance Reff and capacitance C = 0

biased with a constant voltage is given by,

IJ = V/Reff + I0 sin

(
2π

Φ0

V t

)
(A.6)

Integrated over time, the average current through the junction is simply ĪJ = V/Reff .

A Josephson junction under constant voltage bias V > 0 behaves like a normal resistor

with resistance Reff . However, if V = 0, then the phase δ is an arbitrary constant, as

δ̇ = 0, enabling a supercurrent up to I0. The resistance of a constant voltage biased

junction can be summarized as:

R(V ) =


0 V = 0 and I ≤ I0

Reff V > 0

(A.7)

Determining the average current through the junction for the measurement scheme

presented in Fig. A.3B is now simple. For VB ≤ I0RB, the current through the junction

is given by VB/RB. For VB > I0RB, the junction is resistive, resulting in the deflection

of current through Rs. The current through the junction is VB
RB

Rs

Rs+Reff
. If Rs . Reff ,

the current through the junction will decrease significantly for VB & I0RB. Very simply,

the deflection of current through the shunt resistor whose current is not included in the
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measurement results in the region of negative differential resistance in SQUIDs with a

quasi-voltage bias scheme.

An important objection to this analysis is that the voltage cannot be constant owing to

the time dependence of the current through the junction. The current deflected through

Rs shares the same time dependence; but, since a normal resistor obeys Ohm’s law

V = IR, the voltage cannot be constant. The equilibrium solution presented is predicated

on an incorrect assumption. Both the voltage and current are functions of time and

need to determined by solving the non-linear differential equation. The constant voltage

prediction and the true solution to the non-linear differential equation are shown in

Fig. A.4.

v = VB/I0RB

i  
= 

I J/I 0

r =  0.4

i sc
  =

 v

i const
  = vr

1

2

1 2 3 4

Figure A.4: Comparison of constant voltage solution to the exact solu-
tion. The solutions are plotted in terms of a normalized current, i = IJ/I0, voltage
v = VB/RBI0, and resistances r = Rs/(Rs + Reff ). The top dotted line corresponds
to the current through the junction if it were to remain superconducting for I > I0.
The bottom dotted line corresponds to the solution if the junction is in a constant
voltage resistive state. For a given voltage, the true solution oscillates in time between
the two dotted lines. The time averaged current determined by the exact solution is
plotted as a solid line; it is given by v = v − (1− r)

√
v2 − 1.

The intuition provided by the constant voltage model correctly identifies the prove-

nance of negative differential resistance. For VB > I0RB, either the junction supercon-
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ducts but IJ > I0 or the junction is resistive but IJ < I0 since a fraction of the current is

deflected through the shunt resistor. The current through the junction should be oscil-

lating between the VB/RB and VB
RB

Rs

Rs+Reff
with frequency and dynamics determined by

the Josephson relations. The frequency of the oscillations scales with 2π
Φ0
V ; for a gener-

ously underestimated IJ = 1µA current flowing through a junction with Reff = 1Ω, the

frequency of oscillations is already over 3 Ghz1! The measurement electronics are not

capable of measuring voltages at frequencies larger than ∼ 100 MHz, so the I-V curves

are measurements of the time averaged current response to the bias voltage that exhibit

negative differential resistance.

A.1.2 Sensor Fabrication

nanoSQUID on tip fabrication is a novel procedure originally pioneered by Finkler.

et. al. as described in the main text[57]. The sensor fabrication procedure is covered in

this section with more detail.

Broadly speaking, the procedure is done in three separate steps. The first is the

pulling and characterization of the quartz pipettes. The second is the pre-patterning of

the pipettes with gold contacts. The final step is the deposition of superconductor.

Pipette Pulling and Characterization

The tip on which nanoSQUIDs are produced are created by pulling apart hollow

quartz cylinders while locally heating it. We use the Sutter P-2000 Laser-Based Mi-

cropipette Puller to pull 10cm long cylinders 1 mm in outer diameter with a 0.5mm

inner diameter with part number Q100-50-7.5.

1This frequency assumes no other circuit elements in the circuit affect the timescale of oscillations.
In practice, parasitic inductances, contributed in large part by the read out electronics, can slow the
oscillations down to ∼ 10 MHz. Near the superconducting transition, the oscillations are sometimes
visible.
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The P-2000 puller gives the user control over a handful of parameters to influence

the diameter and taper of the resulting tip. Generally, the center of the quartz cylinder

is heated by a laser as a small, constant, force pulls the cylinder apart from both ends.

When the small pulling force results in a speed above a threshold, a short large pulling

force is applied. The ‘heat’ parameters controls the power of the laser that melts the

cylinder. The ‘filament’ control the laser spot size. The ‘velocity’ controls the threshold

speed for a hard pull. The ‘delay’ controls how long the puller waits after the threshold

is reached to apply the hard pull. The ‘pull’ controls the magnitude of the force of the

hard pull. If the hard pull does not result in the separation of both halves of the quartz

cylinder, the program continues onto the next line of parameters. If none exists, it reruns

the program from the start.

The program most recently used to pull tips in the range of 100-200 nm is shown

below. When run properly, the tip is formed and the pipette is pulled apart after the

second line finishes running.

Line Heat Filament Velocity Delay Pull

1 600 5 25 128 100

2 600 4 50 128 100

Unfortunately, in my experience, the P-2000 is both inconsistent and susceptible

to drift in the parameters over the timescale of months. The inconsistency within a

single batch of pulled tips is minimized by ensuring that the puller is on for at least 15

minutes prior to pulling tips. The inconsistency and drift can both also be minimized by

performing routine maintenance on the mirror redirecting the laser towards the pipette,

for which the instructions can be found in the manual. Even with proper maintenance,

pulling tips with diameters of 50-200nm is often not very repeatable; the majority of the

tips pulled from a particular program have diameters varying by ±50%.

It is therefore important to have the capability to screen a large number of tips to get
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the ones with the desired diameters. We screen the tips by imaging them with an FEI

Sirion SEM, as it is an SEM with a relatively large chamber and sample-lens separation.

We load up to 34 tips into a rack shown in Fig. A.5A and measure their diameters in

a single seating. The tips, post characterization, are left in the rack and stored inside a

nitrogen dry box.

BA Score and cut on rear 

Measure tip length from baseClamp tip for cutting

Figure A.5: Storage, Characterization, and Cutting Infrastructure for
Quartz Pipettes. (A) Rack with 34 grooves, each 1 mm in diameter, for stor-
ing and characterizing bare pulled quartz pipettes. The opening at the bottom of
the groove enables one to easily push the desired tips out of the rack. The rack slots
into the ‘H’ shaped base for storage. Through holes on opposite sides enable screwing
the assembly to an adapter appropriate for any given SEM. (B) Assembly for cutting
freshly pulled quartz pipettes to the desired length. The uncut pipette is placed into
a small groove, positioned according to the ruler on the front, and then clamped with
rubber. The back-side of the pipette is then scored and snapped as close as possible
to the rear side of the clamp.

Prior to insertion into the assembly but after the tip pulling, the pipettes need to

be cut to the right size; ideally, the taper of the pipette when inserted begins right at

the top of the assembly. The length is critical to subsequent evaporation steps. We use

the pipette cutting assembly shown in Fig. A.5B to identify the desired location of the

cut. We then score the pipettes using a Sutter CTS ceramic scoring tiles to cleanly and

reproducibly break the pipettes at the identified position.

The quartz pipettes are insulating, making it challenging to get a good SEM image
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without metalizing the tips. Unfortunately, metalizing a pipette precludes its use for the

creation of a nanoSQUID sensor. Tip characterizations are only performed on metalized

tip if the P-2000 has drifted sufficiently that new pulling parameters need to be found.

Metalization with 10nm conducting layer significantly increases the throughput both

in terms of speed and accuracy of the diameter measurements. When metalization is

desired, we use a Hummer SEM Sample Coater to create 10nm layers of Pd/Au.

When screening tips intended for sensor fabrication, we SEM the insulating quartz

directly. Inevitably, this leads to charging artifacts that significantly degrade the quality

of the image making it difficult to both find the tip and measure its diameter. Successful

measurements of the diameters can still be made by imaging the tip head-on such that

the electron beam goes into the ‘hole’ of the tip, which enables sufficient contrast. In

general, minimizing the amount of time spent with the beam active minimizes charge

accumulation and the resulting artifacts. This is achieved both by imaging as quickly as

possible and by blank beam between measurements. Furthermore, taking images by inte-

grating quickly taken images instead of performing high line average scans minimizes the

distortion arising from charging artifacts. The measured diameter is very susceptible to

contrast and brightness parameters. Picking standard values for those is also important.

Even then, there are minimal features that can be used to focus on the tip and measure

its diameter; mastering this procedure is a skill that needs to be developed. Fig. A.6 is

an example of the characterization of the diameter of an unmetalized tip.

Gold Evaporation

The pulled quartz pipettes with the desired tip diameters need to have electrical

contacts and a normal shunting resistor evaporated on them prior to the deposition of

the superconductor. The former enables proper electrical contact with the ensemble

housing the nanoSQUID. Contact between the gold and the nanoSQUID sensor holder is
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84.9 nm

89.3 nm

Figure A.6: SEM Micrograph of Unmetalized Pulled Quartz Pipette.

made with BeCu leaf springs (Fig. A.7A). The latter reduces the value of nanoSQUID’s

Reff such that βC . 1 to both minimize its hysteresis and maximize its sensitivity. The

normal shunting resistor is simply a narrow normally conducting gold band deliberately

placed to shorts the superconducting contacts once they are deposited (Fig. A.7B).

Shunting resistor

A

B

Gold contact to 
leaf springs

Figure A.7: Illustration of Gold Deposition Step. (A) Gold contacts are de-
posited on opposite sides of the quartz pipette for making electrical contact to the
tip with conducting leaf springs. (B) Once the superconducting layers are deposited,
the strip of gold near the tip shorts the superconducting contacts with a resistance
determined by it geometry.

The normal metal deposition is done with a Temescal electron beam evaporation
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system in the UCSB nanofabrication facility. Both the contacts and the SQUID shunt

resistor are gold layers evaporated over thin Ti or Cr adhesion layers. The evaporation

masks are shown assembled in Fig. A.8.

A B

C D

Clamping bar

Micrometer screw

Gap for gold contacts Screw adjustable height

Mask for shunt

Figure A.8: Gold Evaporation Holders and Masks. Eight pulled tips, cut to
length, are slotted into identical grooves shown in (A). The clamping bar holds them
in place, preventing them both from falling out and rotating. The inset shows the back
of the clamping bar; the rubber conforms to the tips to make good contact. Tightening
the micrometer screw pushes the clamp to the left, rotating the tips clockwise. Gold
evaporations are done on the tips from the opposite direction of the holder as direction
illustrated in (B). The open part of the groove defines the width of the gold contacts
on the pipette. The tapers and the tip itself are masked as seen in (C). The shunt
resistor is evaporated with the masks shown in (D); height adjustable horizontal gaps
define its dimensions are location on the taper.

The pipettes are placed into the assembly shown in Fig. A.8A for the duration of

the depositions. The dimensions of the grooves are identical to those of the 34 tip holder

introduced in the previous section; only a single cutting step is required. Good contact

between the clamping bar and the pipettes is enabled by a layer of rubber slotted into a

groove machined into the back of the clamping bar. The screw on the right side when

tightened pushes on the clamping bar sliding it leftward rotating the pipettes. The thread
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density of the screw is chosen such that one full turn rotates the pipettes by 90 degrees.

Gold evaporations can then easily be performed on the pipettes by rotating the pipettes

with the following sequence: first evaporate the shunt resistor; rotate the pipettes by 90◦;

evaporate the first contact; rotate the pipettes by 180◦; evaporate the second contact.

The masks for the gold contacts and the normal shunt resistor are shown in Fig. A.8C

and D respectively.

The evaporation of the normal shunting resistor is both the most critical gold deposi-

tion step and fraught with the potential for mistakes. In order for a resistor to properly

couple into the dynamics of the nanoSQUID sensor, it needs to be close to the SQUID. As

mentioned in the previous section, the oscillations responsible for the stabilization of the

time averaged behavior of the SQUIDs occur at very high frequencies. If the SHOVET is

too far from the nanoSQUID, then parasitic inductances increase the impedance of the

path through the shunt for high frequency oscillations, preventing it from reducing the

value of βC . The shunt resistor for nanoSQUID sensors is called a SHunt On Very End

of Tip, or a SHOVET.

The resistance of the SHOVET is determined by the thickness, the width, and the

length of the metal connecting the superconducting contacts. The width and thickness

are determined by the dimensions of the mask shown in Fig. A.8D and the evaporation

parameters respectively. The length of the SHOVET is determined by the size of the

gap between the superconducting contacts on adjacent sides of tip. Since the tip gets

narrower until the top is only ∼ 100 nm in diameter, a SHOVET that’s evaporated too

high will be very short and have too low a resistance. The SHOVET being too small has

two negative consequences. First, if Reff becomes to small compared to Rs in the quasi-

voltage bias measurement scheme discussed in in Fig. A.3 B, then the current diverted

through Rs is too small to generate the contrast required for sensitive measurements. In

practice, we also observe that the modulation depth of the critical current as a function
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of magnetic field, (I0max− I0min
)/I0max , is suppressed by a SHOVET evaporated too close

to the tip. This could be explained by the asymmetry of the coupling of the SHOVET to

the two junctions forming the SQUID. The SHOVET is evaporated only on one side of

the tip; therefore one could imagine that it reduces the effective resistance of one junction

more than the other. In the extreme limit that the effective resistance of one junction

is 0 and the other is finite, then the observed I-V characteristics will be that of a single

Junction where the critical current doesn’t depend on the applied magnetic field. We

experimentally found that a SHOVET evaporated about 700 µm from the tip leads to

sensitive non-hysteretic nanoSQUIDs. If anything, I suspect this is still too close and

that the sensitivity may be improved by a SHOVET even further away.

The alignment of the evaporation source to the masks is critical for reproducible place-

ment of SHOVETs on the pipettes. The slot from SHOVET mask shown in Fig. A.8D is

several millimeters above the pipette. Variation in the angle of the incident deposition

beam of ∼ 5◦ results in displacements of the SHOVET by several hundred microns. It

is important to deliberately place the masked pipettes in the same position relative to

the source to get consistent SHOVET placements. It is therefore also advantageous to

evaporate the adhesion layer from the same source or pocket if possible, otherwise the

gold and adhesion layers won’t overlap. We use Ti for our adhesion layers because the

electron beam evaporator in the UCSB nanofabrication facility has Ti and Au in the

same pocket, allowing for similar alignments of the mask to both sources. We evaporate

a 80 Å Ti adhesion layer for a 100 Å thick gold SHOVET.

The length to which the pipettes are cut determines the success of the contact evap-

oration. The gold contacts are masked by a combination of the constriction of their

slot and an additional mask that covers the exposed parts of the tip (Fig. A.8C). If

the pipette is too short, such that the taper is not fully masked, then gold evaporations

wrap around the taper shorting contacts on opposite sides. If the pipette is too long,

167



Appendix Chapter A

then it protrudes past the additional mask and has trouble fitting in the evaporator for

the deposition of superconductor. All evaporation and scanning assemblies are designed

around a pipette with taper beginning right at the top of the assembly when inserted.

We evaporate a 50 Å Ti adhesion layer for a 500 Å thick gold contact.

Superconductor Evaporation

The last step for the fabrication of nanoSQUID sensors is the deposition of the su-

perconducting layers. This step is performed on the pipette after it is inserted into the

scanning head assembly to minimize the risk of damaging the nanoSQUID with unnec-

essary manipulations. The scanning head, referred to as the dovetail, is shown in Fig.

A.9.

A B

Front contactBack contact

Figure A.9: nanoSQUID Sensor Scan Head. (A) The pipette is slotted into the
middle of the scan head. Leaf springs (illustrated in (B)) push into the gold contacts
(or indium soldered thereon) electrically connecting them to the front and back of the
dovetail.

Electrical connection to the gold contacts patterned on the pipette is made with

BeCu leaf springs screwed into the dovetail as illustrated in Fig. A.9. The parasitic

168



Appendix Chapter A

resistance of the contact directly between the springs and the gold can be ∼ 10Ω which

is comparable to the effective resistance of the sensor and degrades its performance. The

contact resistance is minimized by soldering a layer of indium over the gold where it

makes contact with the spring. Indium is soft enough that it conforms to the spring,

forming a higher surface area of contact between the two. This reproducibly leads to

. 1Ω contact resistances. When soldering the indium layer, the top of the gold contact

should be left uncovered. Hand soldered indium is unsurprisingly bulky compared to the

Au/Ti layer and can lead to accidental shadowing when depositing the superconducting

layer. This failure mode is mitigated by leaving 3− 5mm of exposed gold contact above

the indium.

The nanoSQUID sensors used in measurements presented in this thesis were made

with either indium or lead. Both indium and lead have large surface mobility; deposi-

tions of thin films thereof favor the formation of isolated islands instead of a connected

conducting film. The surface mobility is suppressed at low temperatures; high quality

connected superconducting lead and indium films are made if the deposition is performed

on a substrate cooled to cryogenic temperatures. A custom evaporator was designed and

assembled for the deposition of superconductors of nanoSQUIDs that could both cool the

quarts substrates to cryogenic temperatures and rotate the dovetail through arbitrary an-

gles to do the three stage self aligned evaporation procedure discussed in the main text.

A picture of the evaporator is shown in Fig. A.10 with key components labeled.

The cryogenic cooling of the dovetail and the housed pipette is done with a Janis

ST-400 ultra-high vacuum continuous flow cryostat. The dovetail, attached to the base

of the cryostat, is cooled via thermal conduction. We designed several layers of radiative

shielding to improve the base temperature of the cryostat in the evaporator. Most sig-

nificantly, the outermost layer is designed to be filled with liquid nitrogen. The quartz

pipette is both thermally insulating and has a narrow geometry, preventing conductive
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Figure A.10: nanoSQUID Evaporator. A picture of the evaporator with unusual
components labeled.

cooling from effectively lowering its temperature. We further cool the pipette by intro-

ducing helium exchange gas to mediate the thermal exchange between the tip and the

conductively cooled assembly surrounding it. Helium gas is introduced through an Pfeif-

fer RME 005A leak valve controlled by the RVC300 module. The dovetail sits in a fixed

pressure of 5 × 10−3 mbar while the cryostat is cooled to 4K for ∼ 20 minutes prior to

each evaporation.

The remaining features of the evaporator are more standard and were assembled from

components purchased from the usual vacuum component suppliers. The rotation of the

dovetail in vacuum is done with an MDC RMTG-275 rotating flange. We use a TDK

GEN-10-240-3p208-LAN power supply to heat a Kurt J. Lesker EVS26010W tungsten
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evaporation boat. The Edwards nXDS6i dry scroll pump paired with a Oerlikon Leybold

Turbovac 450 iX enable base pressures of . 5× 10−8 mbar.

A.1.3 Sensor Readout Electronics

The measurement scheme used for sensitive measurements of nanoSQUID sensors is

shown in Fig. A.11. The nanoSQUID in parallel with a shunt resistor, Rs, is quasi-voltage

biased through a large resistor RB >> Rs, Reff . Scanning measurements are performed

with a constant voltage bias, VB. The current through the nanoSQUID changes in

response to the signal emitted by the sample, either magnetic or thermal in origin, as

a function of position. In order for current measurements to be non-invasive, its input

impedance needs to be small compared to the effective resistance of the sensor. For a

superconducting sensor, even the resistance of the wires going to room temperature will

compromise the measurement. Therefore, the current measurement requires a cryogenic

amplification stage.

Figure A.11: Measurement Scheme
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The current through the nanoSQUID is measured with a Series SQUID Array Am-

plifier (SSAA). A SSAA is an array of 100 nearly identical SQUIDs in series fabricated

on a chip. When the array is current biased, the voltage output of the 100 SQUIDs

adds in series generating a signal large enough that the noise of a room temperature

measurement is limited by the voltage noise of the array rather than the amplification

electronics. The current that wants to be measured flows through a superconducting

input coil inductively coupled to the arrays as illustrated in the inset of Fig. A.11. The

input current generates a magnetic field into the SQUIDs from the SSAA that changes

their output voltage. The change in voltage is directly related to the current and can

be measured at room temperature. Furthermore, the input coils remain superconduct-

ing throughout the operation of arrays enabling a low impedance measurement. The

SSAA used in our experiment were designed and provided to us by Martin Huber from

University of Colorado Denver.

The voltage output of any SQUID, including those in the array, is periodic in the

applied magnetic field. The voltage output of the SSAA will be periodic in the current

through the input coils from the nanoSQUID sensor. A measurement that is linear in

the current through the input coils can be achieved by inductively coupling a second

superconducting coil to the SSAA with leads accessible at room temperature. When the

current through the second coil can exactly cancels the magnetic flux generated by the

current flowing through the input coil, the voltage of the SSAA will be unchanged by

the input current. If the current through the second coil is constantly adjusted to keep

the voltage of the SSAA constant while the current through the input coil is changing,

then the current through the feedback coil is linearly related to the current through

the input coil. The output current of feedback loop enables a low noise, low impedance,

linearly related measurement of current through the nanoSQUID. Practical use of a SSAA

requires the development of a custom voltage preamplifier, a feedback mechanism, and
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magnetic shielding.

The voltage preamplifier needs to have low input voltage noise while simultaneously

current biasing the arrays. The circuit schematic and board layout for the preamp are

included in the following section of the appendix. The design of this board is rela-

tively forgiving; even earlier versions with inefficient layouts reached the required noise

benchmarks. The only critical aspect of the assembly is the connection from the coaxial

inputs on the preamp enclosure to the PCB. We found that the noise of the preampli-

fier is minimized and reaches the design specification only if those connections are as

short as possible. Later iterations of the board enable directly soldering the enclosure

feed-throughs to the PCB.

Feedback on the SSAA output voltage is done with an electronic analog feedback

circuit. The bandwidth of the feedback loop is critical when making high frequency mea-

surements as precision measurements with nanoSQUIDs are often done around 35kHz, the

frequency of the oscillations generated by the coupled tuning fork described in the main

text. Digital feedback loops, despite being easier to set up, have a much smaller band-

width owing to the latency of both performing voltage measurements and communication

between instruments. Analog feedback electronics, in contrast, can respond directly to

the voltage output from preamplifier and do not require constant communication to stay

in feedback.

The feedback circuit used for SSAA measurements enables a measurement of the

current through the nanoSQUID with a bandwidth of ∼ 50 kHz. Its circuit schematic

and two layer PCB layout with a signal plane and a ground plane are also found in

the next section. In strong contrast to the preamp, the board layout and choice of

components for the feedback circuit PCB is critical to the stability of the feedback loop.

Parasitic inductances and capacitances lead to phase shifts in high frequency signals that

can result in the instability of the circuit. The frequency of the signals in the feedback
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circuit are on the order of several MHz and are therefore very susceptible to the layout

details that result in parasitics. In early, unstable, iterations of the board several volt

peak to peak ringing was observed in the MHz range that prompted the improvement of

the board layout.

The standard practice for the design of high frequency electronic, observed here, is

to create tight blocks of circuit components that perform feedback. Within each block,

the traces carrying electronic signals have their length minimized and are, as much as

possible, kept on the signal plane of the PCB. Long traces generate significant parasitic

capacitances to the ground plane of the circuit board. The via connecting the two layers

necessary for routing traces through the ground plane introduces additional parasitic

capacitances. The ground plane is only a good equipotential when its impedance is

small. Virtually any ground plane is going to be low impedance for DC electrical signals.

However, ground planes interrupted by signal traces have a parasitic inductance that can

be a significant source of impedance for high frequency signals. Signal traces that divide

the ground plane are a particularly terrible practice that must be avoided at all costs

(which we learned the hard way of course). Non-idealities in the circuit components also

contribute significant parasitic resistances, capacitances, and inductances. The circuit

components were chosen carefully either with proper consideration of its specifications

(presumably this is how the original schematic was made before it found its way to me)

or through trial and error (this was my preferred strategy). Even components that are

not obviously critical to the electronic feedback, when swapped out for a new ‘equivalent’

part, often resulted in an unstable feedback circuit.

The SSAA, by virtue of being composed of SQUIDs, is sensitive to the magnetic field.

We are interested in using nanoSQUID sensors in static magnetic fields as large as ∼ 5T;

much smaller fields would already destroy the superconductivity in the SSAA precluding

their use as an ammeter. The arrays are housed inside magnetic shielding composed
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of alternating layers of µ-metal and niobium. COMSOL simulations were performed to

ensure that the assembly would sufficiently screen the static fields for the position of the

arrays relative to the superconducting electromagnet’s coils.
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A.1.4 Boards and Circuit Schematics

Figure A.12: Preamp circuit board layout.
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Figure A.13: Preamp circuit schematic.
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Figure A.14: Feedback board layout.
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Figure A.15: Feedback circuit schematic.
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A.2 Microscope Control Software

Commercially available scanning microscopy software comes bundled with the hard-

ware necessary for rastering the position of the sensor while measuring. These assemblies

usually cost ∼$100, 000; though the price isn’t prohibitively expensive, it does prompt

a cost-benefit analysis. For scanning experiments on the frontier of condensed matter

experiment, the flexibility of measurements is paramount to the investigation of novel

phenomena. The commercially available scanning microscopy suites, like all commercial

products, are optimized to perform standard experiments not guaranteed to include fea-

tures required for nanoSQUID microscopy. Critically, these limitations are difficult to

address when the designs and components of both the software and hardware are inac-

cessible. Bugs cannot be fixed and features cannot be added without going through the

manufacturers. The choice then becomes to pay the large financial cost for a system that

will require extensive workarounds to perform the desired measurements or to create your

own scanning microscopy software designed around either cheaper or custom hardware.

The scanning nanoSQUID microscope assembled in my PhD uses both custom soft-

ware and acquisition hardware. The latter was developed as part of efforts towards precise

resistance and capacitance measurements of van der Waals heterostructures by coworkers

in our lab. Commercially available digital to analog (DAC) and analog to digital con-

verter (ADC) surface mount components, without an associated PCB, microcontroller

or enclosure, cost around ∼$200. Though it takes more time to build a DAC-ADC from

components than buying one outright, the lasting advantage is access to the firmware

enabling custom commands at the microprocessor level.

The software written to control the nanoSQUID scanning microscopy is composed of

a graphical user interface that an communicates with an independent instrument com-

munication software infrastructure. Both aspect of the code are described below. The
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bulk of the code is written in python 2 and is publicly available on the afylab repository

on github.

A.2.1 Instrument Communication

The software infrastructure responsible for communication with the the scanning ex-

periment’s hardware uses a distributed and modularized platform for instrument control

called LabRAD. LabRAD was developed in response to an increasingly complex software

effort needed to run experiments in the Martinis Group at the UC Santa Barbara Physics

Department. It provides a platform to easily break up a complex software project into

small, manageable modules that can be written in different programming languages, run

on different computers, and independently maintained by different developers. These

modules communicate over a standard network connection and can be accessed from

independent software running both locally and remotely.

LabRAD is the name of the software that hosts independent modules and enables

communication between them. That is all it does; it only provides the framework for

modules that run independently, communicate with each other, and can be accessed

from a central location (in software space). LabRAD itself does not communicate with

hardware in your experiment; the instructions and protocol for communication with

instrumentation is coded into the modules written to interface with LabRAD. Online

repositories both provide the most critical modules for instrument communication and

describe the procedure for writing you own. In computing, a server is a piece of computer

hardware or software that provides functionality for other programs or devices. Each

LabRAD module is exactly that; an independently running piece of software that provides

functionality for other programs running locally or remotely; individual modules are

called servers.
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The workflow of using LabRAD is as follows. You first run LabRAD; this starts

the framework that enables servers to be run independently. Next, you run the servers

that define the commands for communicating with the experiment’s instrumentation. All

the servers can both be communicated with and communicate with each other through

LabRAD. Finally, you run your software that calls LabRAD to use functions in the

servers to control your experiment.

The framework provided by LabRAD has several advantages over directly coding the

communication protocols into your software. A LabRAD setup necessitates a multitude

of small, self-contained, well organized modules. Software programmed using LabRAD

to structure its instrument communication naturally observes proper coding practices

whereby individual parts of the project can be isolated. This has advantages for testing,

debugging, and developing code that will be worked on by multiple programmers and

applied to diverse experimental setups.

Servers performing a particular function only need to be written once before being

implemented in several higher level programs. Modules for standard experimental proce-

dures, like serial communication and data storage, already exist and can be implemented

simply by downloading servers shared by other researchers. The flexibility of server im-

plementation in high level code significantly reduces the duplication of effort during the

development process both within the lab and the LabRAD community.

The robustness of the high level software is increased by having communication with

instruments run on a separate program. Complicated experiments require the develop-

ment of programs that, for a multitude of reasons, are liable to crash. If the commu-

nication is done through LabRAD, then the servers maintain the steady state of the

equipment and enable easy scripting access to control them. The consequences of a crash

are mitigated because control to the experiment is not completely shut down.

Finally, LabRAD facilitates controlling peripherals connected to multiple computers.
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LabRAD and LabRAD servers running on a computer can be easily accessed from another

computer, either locally through a wired connection or remotely through the internet.

This degree of freedom provides flexibility in the design of measurement configurations

and instrumentation hierarchies. For example, a user-inaccessible computer could host

all the critical communication infrastructure, only to be accessed remotely from software

running on another computer. The hardware controlling computer can then be optimized

for stable, long term, unperturbed operation and is less prone to user errors.

LabRAD for Instrument Control

A schematic illustration of the workflow in LabRAD with servers most commonly

used to control an experiment is shown in Fig. A.16. Everything within the largest red

rectangle is part of the LabRAD infrastructure. The registry is a repository associated

with LabRAD where simple information can be stored and accessed to enable saving

parameters necessary for server operation. Individual servers are inside blue rectangles

and the communication workflow is illustrated by the light blue traces. Green rectangles,

located outside of the LabRAD section, represent hardware that controls the microscope.

The majority of hardware can be controlled either through serial or GPIB communication

protocols.

Serial communication in LabRAD is handled through a combination of the serial

server and serial device servers. The serial server identifies occupied COM ports and

defines functions for querying arbitrary commands while smoothly switching between

communication with different COM ports. Any experiment that requires serial commu-

nication will run the serial server; it does not define the specific sets of commands for

communicating with a particular device.

A serial device server has two jobs. First, the device server needs to identify which

occupied COM port is the correct device. This identification step is not automated; when
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Figure A.16: Schematic Illustration of the structure of LabRAD for com-
municating with instruments through various protocols.

setting up a new serial device on a computer, you need to manually edit the LabRAD

registry to include a list of COM ports associated with it. The device server probes the

registry for this list of COM ports and compares it to the list of available ports provided

by the serial server. Multiple devices of the same type can be identified by a device

server. For example, if your experiment requires two SR830 lock in amplifiers, both can

be identified and controlled from the same device server. The second job of a serial

device server is to define the commands that perform operations. For example, an SR830

lock in amplifier server may have a function ‘set voltage’ that tells the serial server what

string need to be written to set the voltage. The serial server then sends the string to

the SR830.

This serial communication structure has the advantage that, when adding a new serial

device, it does not require coding serial communication multiple times. Furthermore, it

enables smooth simultaneous communication with multiple devices connected through

serial communication protocols.
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GPIB communication is structured very similarly to serial communication and har-

nesses the same advantages. The GPIB server identifies open GPIB communication

channels and defines functions for writing and reading generic commands. The GPIB

device sever once again defines the particular commands to be sent through the GPIB

server that instruct the hardware to perform the desired operations. The only difference,

other than being GPIB instead of serial, is the manner by which the proper communica-

tion channel is associated with a GPIB device server. Hardware that can be controlled

with the GPIB communication protocols respond to a standard identification command,

‘\IDN*?’, with a string corresponding to its identity. The proper association between a

GPIB device server and a GPIB channel can be made by comparing the name of the de-

vice to the response of the channel to the identification command. The name of the device

is stored in the device server. The process of instructing the GPIB server to query open

communication channels with the identification command and comparing the responses

to the identities the running device servers is handled by the GPIB device manager.

In the rare case that hardware cannot be control via either serial or GPIB, an indepen-

dent device server can be written. Typically, this occurs when the hardware manufacturer

provides its own control software. Instead of giving the user access to the underlying se-

rial and GPIB commands, they require that the user calls commands defined by their

higher level software. In some sense, their software is a server for their hardware that isn’t

compatible with LabRAD. An independent device server repackages their software into a

LabRAD server that can be accessed through the same centralized LabRAD framework.

This requires hard coding the new ‘communication protocol’ into the server; however,

since the ‘server’ software written by companies is not standardized, there no risk of

running into new communication protocols that apply to more than one device.

All the communication between the computer and the hardware controlling the scan-

ning experiment is done via servers written for LabRAD. The serial server, GPIB server,
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and GPIB device manager were all written by programmers in the Martinis group. The

device servers, including GPIB, serial, and independent servers, were primarily written

by members of our lab.

Hardware for Scanning

The workflow of the software depends on the operation principles of the hardware

used to perform the scanning experiment. Here I provide an overview of the hardware

central to our nanoSQUID microscope. The microscope design, e.g. drawings detailing

the physical implementation of the hardware specified here, will be included in Charles

Tschirhart’s thesis within the year.

In cryogenic scanning probe microscopy experiments, motion of sensor relative to a

sample is done using two different styles of piezoelectric nanopositioners. The first style

of nanopositioner is responsible for long range motion on the order of millimeters. Long

range motion is needed to both position the sensor above the mesoscopic devices found

on macroscopic silicon chips and to bring the sensor close to the surface from a typical

starting position around 1 mm away. However, long range positioners do not have the

capability to perform reproducible precise motion required for scanning measurements

with nanoscale spatial resolution. Instead, the fine motion is done with a second style of

piezoelectric positioner.

We use two Attocube ANPx101 nanopositioners combined with an ANPz101 nanopo-

sitioner, both with resistive encoders, for full xyz long range positioning of the sensor

relative to the sample. These nanopositioners use a proprietary piezoelectric stick slip

mechanism to enable 5 mm of travel in the x, y, and z directions in cryogenic environ-

ments. The stick slip mechanism, not discussed in detail here, results in jumpy violent

movement of the sensor that would break it if the motion resulted in the sensor contact-

ing into the surface. The ANP nanopositioners are controlled by the Attocube ANC350.
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Communication with the ANC350 enables control of the long range sensor positioning

through software.

We use an Attocube ANSxyz100 piezoelectric scanning stage for reproducible fine

motion of the sample relative to the sensor. These nanopositioners directly use the

expansion of the crystal when a DC voltage is applied to move the stage. Applying static

voltages between 0 and 150V on the ANSxyz100’s piezoelectric crystals drives motion of

up to 50µm in the x and y direction and 20µm in the z direction at 4K. We apply the

large voltage to control the scanner positions by amplifying the ±10V output of a custom

DAC-ADC with the Attocube ANC250 low noise voltage amplifier.

The custom DAC-ADCs are used to set and read DC voltages in the experiment.

We use commercially available AD5791 DAC and AD7734 ADC chips controlled by an

Arduino Due to make our customizable data acquisition hardware. The Arduino Due is

programmed to enable sweeping of DAC output voltages while performing buffered acqui-

sition of ADC voltages to enable faster measurements not limited by the communication

latency between the computer and the Arduino.

Finally, we use a Zurich HF2LI lock in amplifier to manage the various AC voltages

in the experiment. In addition to fulfilling the traditional roles of a lock in amplifier,

the HF2LI can has built in high performance analog phase lock loops (PLLs) and PID

feedback controllers. A PLL is a feedback loop optimized for time resolved measurements

of the resonant frequency of an electrical resonance. The PID controllers can use most of

the HF2LI’s parameters as the ‘Process Variable’ and typically use auxiliary DC output

voltages as the ‘Manipulated Variable’.
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A.2.2 Asynchronous Programming

Smooth operation of the user interface without hanging is enabled by asynchronous

programming. The process of querying an instruments from a computer is time limited

by the communication latency of serial or GPIB communication. Sending and reading

the response is virtually instantaneous, but the response is only available after waiting

about 50ms. By default, software runs synchronously and will wait for a response before

running any other lines of code; the user interface will be unresponsive for that time. If

you are constantly monitoring the hardware in your system, the user interface would be

grid locked since you are always waiting for a response from something. Asynchronous

programming instructs the rest of the software to continue running while waiting for the

response from a function with a slow step that doesn’t require active computation. A

graphical illustration of the differences between synchronous and asynchronous program-

ming is shown in Fig. A.17.

We use the python library ‘twisted’ to handle asynchronous commands in our soft-

ware. LabRAD and LabRAD servers are compatible with asynchronous programming

and query hardware asynchronously. Once LabRAD, twisted, and the user interface

have been initialized properly, running asynchronous functions happens automatically

without additional thought or deliberation in the code. Coding asynchronously in this

environment is very easy. Functions called from a LabRAD server will automatically run

asynchronously and will not freeze the user interface. The programmer only needs to be

careful about two things.

First, they need to be cautious about using functions that require a lot of active

computation time. The GUI is responsive for asynchronous programming when the

active computation time of commands is short; if they are long, then the GUI will

still be constantly interrupted and unresponsive. Commands retrieving values from and
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Asynchronous Programming

Synchronous Programming

Time

Time

Figure A.17: Synchronous vs. Asynchronous Programming. Bold colors in-
dicates steps where active computation required. Muted colors correspond to steps
where the software is waiting for an externally provided response. To make the exam-
ple concrete, red operations could correspond to reading the voltage from a DAC, blue
operations to reading the magnetic field from a magnet power supply, and green op-
erations correspond to updating the GUI. For synchronous programming, only when
a step is complete does the next one start; the commands take longer to be called
and the GUI does not have much time to update. For asynchronous programming,
the time waiting for a response is used to both call other asynchronous functions and
update the GUI.

controlling hardware have very short active computation time, so this mostly isn’t an

issue. However, opening large datasets requires a lot of active computation as it needs

to read every number and load it into the software. Similarly, one needs to be careful

when adding intentional delays into the program. The time.sleep command actively

increments an internal timer in a manner that requires constant computation; using it

will cause the rest of the software to hang until it is done running. Instead, the following

asynchronous compatible sleep command calling a function from the ‘twisted’ library

reactor should be used:

def sleep(reactor, secs):

d = Deferred()

reactor.callLater(secs,d.callback,‘Sleeping’)

return d
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Second, the programmer needs to be deliberate about the order in which they call

asynchronous functions. Consider the following example of a hypothetical function de-

fined within the scanning module:

def move_twice():

setPosition(0, 0)

setPosition(1.0e-5, 1.0e-5)

pos = move_twice()

Here, ‘setPosition’ is an asynchronous function that moves the sensor to the input

(x, y) coordinates and, once it has arrived, returns the current position. The code, as

written, would call the first ‘setPosition’ function. Since ‘setPosition’ is written asyn-

chronously, once the sensor to starts moving, the rest of the software continues to run

while waiting for motion of the sensor to stop. In this case, the software would then

immediately run the second ‘setPosition’ function! This would start moving the sensor

to the second position before the sensor has arrived at the first position. The software

would behave unpredictably trying to send multiple commands controlling the position

of the sensor in no particular order.

Twisted features a decorator named inlineCallbacks that allows the programmer to

simply specify the order function are run. Ultimately, the details of how inlineCallbacks

works are not as important as knowing how to apply it; I only understood what the

decorator was doing about 15 minutes after writing this section. Nonetheless, here is a

short explanation of what is being done when using the decorator.

Generator functions in python are functions that run in sections defined by break-

points separated by the command yield. A simple example of a generator function is as

follows:

def simple_gen():

print(‘First text’)

yield
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text = yield ‘Second text’

print(text)

yield

gen = simple_gen()

gen.__next__()

print(gen.__next__())

gen.send(‘Third text’)

Python recognizes that calling the function simple_gen() creates a generator object

because it contains the command yield; the object does not yet run the code. A gen-

erator is instructed to run until the next yield when it is called with the __next__()

function. In the above example, calling gen.__next__() the first time prints the string

‘First text’ before stopping. A yield command is also capable of returning values. Call-

ing gen.__next__() a second time runs the generator until the second yield, which

returns ’Second text’. This is then printed outside the generator. A yield command is

also capable of receiving values. Calling gen.send(’Third text’) both sends a string

into the generator at the previous yield and runs the code until the next yield. Here,

this result in printing the string ‘Third text’ from within the generator. Any subsequent

calls of gen.__next__() will throw an error as no further breakpoints are specified with

yield.

The inlineCallbacks header modifies generator functions such that when they are

called, they iterate through the entire code without stopping. Where the generator

has a yield, the decorator immediately send the value returned by yield back into

the generator. The advantage of this structure is that the code in the generator is

paused while the header decides what to send back in. If the generator returns, from

a yield, a simple value, then it is immediately sent back. If instead the generator

returns the output of an asynchronous function that hasn’t arrived yet, it waits for the

answer before sending it back in. The following pseudo-code approximately implements
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an inlineCallbacks header for a generator function gen:

a = gen.__next__()

while True:

try:

if a == asynchronous output:

% wait until output is determined

a = gen.send(a.output())

else:

a = gen.send(a)

except:

break

This can be applied to the pseudo code for asynchronous scanning functions as shown

below.

@inlineCallbacks

def move_twice():

yield setPosition(0, 0)

yield setPosition(1.0e-5, 1.0e-5)

pos = move_twice()

The code once again calls the first ‘setPosition’ function. The function is yielded,

pausing the code in the generator function defined by move_twice(). The @inlineCallbacks

decorator waits until the setPosition function stops running before sending its output

back into the generator. In the mean time, the sensor has arrived as the desired posi-

tion specified by the first setPosition command. Now, the code in the generator starts

again and calls the second setPosition command, moving to the second position. The

asynchronous functions run in order and allow other processes in the software to happen

as the decorator waits for their outputs.

In practice, the @inlineCallbacks decorator should be used for all functions defined

in the software that use LabRAD or a LabRAD server. Within that function, yield

should be placed in front of any communication to hardware. There is no harm that

comes from abusing or overusing the @inlineCallbacks decorator and yield. However,
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one must be careful to use either both the decorator and yield or neither. Using yield

without the header will creator a generator function that doesn’t iterate and presumably

won’t fulfill the desired purpose. The @inlineCallbacks decorator used on a function

that is not a generator function will throw an error.

A.2.3 User Interface

A user interface for the software used to control the scanning microscopy setup both

enables users with minimal software experience to perform measurements and provides

visualization of the experiment being run. Qt is the widget toolkit for creating graphical

user interfaces we used to write the software. Qt has software called Qt Creator that

provides a user interface for drag and drop creation of other user interfaces. It provides

a convenient environment to create complicated layouts and see the user interface you

are designing without running your code. It does not define the operations performed

when the someone interacts with the interface. Qt Creator generates a .ui file that stores

the layout that can be imported into python and be inherited by a module when its

initialized. Qt user interface objects are controlled in python using the PyQt package.

The GUI elements and their names are defined in the .ui file, not in the python code. The

standard naming convention observed when writing the nanoSQUID scanning software

is to call GUI elements: ElementName CustomName. The ‘ElementName’ is the GUI

object class name defined in PyQt; documentation for its functions is available online.

For example, a button in PyQt is called a pushButton. A button used to start a scan

may be called: pushButton StartScan. This naming scheme enables understanding the

code without simultaneously looking at the .ui file in Qt Creator to correlate ambiguous

GUI element names with a particular GUI object. In the software setup, PyQt needs

to be connected to twisted in order for the user interface to update in the downtime of
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asynchronous functions; this is done by running another import, the pyqt4reactor.

The general structure of the GUI is shown in Fig. A.18. The start up window, whose

code is found in ‘nSOTScanner.py’ hosts all the other modules. All communication

between modules passes through the main window. On a high level, there are modules

responsible for identifying hardware connected to the relevant computers with LabRAD

and modules that control the experiment, labeled modules 1 through N .

Figure A.18: Schematic Illustration of the general structure of nSOT Scan-
ner Software.

LabRAD connect modules queries LabRAD both locally and remotely, identifying

which servers are connected and what devices are connected to those servers. This infor-

mation is sent to the main window, who passes it to the device select module. The device

select module then allows the user to assign the detected hardware to experimental con-

trol modules. This step disambiguates multiple copies of the same hardware for different

purposes. For example, multiple DAC-ADCs are usually connected to the measurement

computer; one is reserved for characterizing the sensor and another for scanning. Iden-

tifying which DAC-ADC should be controlled by the Scanning Module is determined in

the device select module. Configurations mapping the detected hardware to experimental
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control modules can be saved locally to the computer. Once a configuration is selected,

LabRAD connections in each experimental control module are initialized for the devices

determined by the device select module. Experimental control modules communicate di-

rectly with LabRAD to run desired commands. The LabRAD connect and Device Select

modules are only used at the software startup and serve no purpose in the steady state

operation of the software.

The experimental control modules important for motion of the sensor relative to the

sample and their interactions are illustrated in Fig. A.19.

Figure A.19: Schematic Illustration of the interactions for parts of the
nSOT scanner software responsible for motion of the tip relative to the
surface.

The Coarse Motion Control module enables the users to manually control the long

range Attocube ANP nanopositioners. The Approach Control module shares control over

the coarse positioners using the same LabRAD server.

Short range, or fine, motion is controlled through the Approach Control and Scanning

modules; both use the DAC-ADC server to control the same DAC-ADC unit. The

conversion from an applied DC voltage to the displacement of the ANSxyz100 scanners
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is temperature dependent and is specified globally in the software using the Fine Motion

Calibration module. The calibration module does not enable motion of the scanning

stage.

The approach procedure, described in Chapter 3, uses a coupled tuning fork to piezo-

electrically drive lateral oscillations in the motion of the tip at the resonant frequency of

the coupled tuning fork. When the tip contacts the surface, it dampens the oscillations

changing the resonant frequency; the change in resonant frequency signals contact with

the surface. The approach procedure requires identifying the resonant frequency, track-

ing its variations as a function of time, and smoothly reducing the separation between

the sensor and sample.

The resonant frequency of the tuning fork is identified with the Tuning Fork Charac-

terizer. This modules directs the HF2LI to sweep the frequency of an AC voltage applied

to the tuning fork while measuring its response. The quality factor of the tuning fork

is measured by fitting the shape of the resonance to the Butterworth-Van Dyke model

for piezoelectrically actuated tuning forks. The user selects a working point, containing

both a frequency and a phase, to use for monitoring of the resonant frequency that is

sent to the Approach Control module.

The Approach Control module both tracks the resonant frequency of the tuning fork

and specifies the procedure for getting the sensor to the sample surface. The resonant

frequency, measured in real time using the HF2LI’s PLL, is used to control the approach

procedure. The PLL outputs– the phase and resonant frequency– and the Z extension of

the sensor from the ANSxyz100 are live plotted in the Approach monitor. A PID with

the resonant frequency as the ‘process variable’ and the Z extension of the ANSxyz100

as the ‘manipulated variable’ performs a smooth approach to the surface.

The Scan Control module enables scanning in the x-y direction while performing

buffered acquisition on up to 8 DC voltages. The module can scan either with the sensor
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in contact with the surface or with the sensor a constant height above the surface. The

former performs shear force AFM with the tip’s resonant frequency to stay in contact

with the surface without damaging the sensor or the device. In practice, the SQUID loses

sensitivity when in contact with the surface even though the process does not damage

it; until this is more fundamentally understood, this mode is only used for topography

measurements. When scanning a constant height above the sample surface, the scanning

plane is defined by both an x and y tilt angle. Typically, the sensor is . 100 nm from

the surface for constant height scans.

The remaining modules, not involved in sensor motion, are shown schematically in

Fig. A.20. Servers controlling the IPS 120 magnet power supply and the nanoSQUID

sensor DAC-ADCs are shared among the illustrated modules. The Plotting module plots

data stored in the LabRAD data server. The Temperature Control module monitors

the temperature of multiple thermometers in the cryostat and controls the PID heating

with a Lakeshore Model 350 temperature controller. The magnetic field and the magnet

power supply’s settings can be controlled from the Field Control module. The Sample

Characterizer module plots the results of standard two and four wire resistance measure-

ments as a function of a DAC voltage and the magnetic field. The nSOT Characterizer

module measures the nanoSQUID interference pattern as a function of bias voltage and

applied magnetic field. It also enables quick measurements of the nanoSQUID current

response to changing bias voltage for rapid identification of tips that house Josephson

junctions. The sensor parasitic contact resistance is extracted from linear fits to the

feedback voltage response in the superconducting state. Various options for sweeping the

bias voltage are implemented that minimize the artifacts from the SSAA feedback loop.

A Scripting Window exists from which using the GUI can be automated with a script

written in python.
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Figure A.20: Schematic Illustration of the structure of independent modules
in the nSOT Scanner Software.

Approach Software

The procedure to safely bring a nanoSQUID sensor from its starting position to within

100 nm of the sample surface is complicated and nuanced. This section elaborates on

the approach module’s features as well as pointing out and motivating unusual aspects

of the code.

We use a standard AFM woodpecker approach procedure to bring the sensor to the

sample surface. The sensor usually starts about 1 mm away from the sample surface;

this is much further than the 20µm z range of motion of the ANSxyz100 scanning stage.

However, the motion from the ANP stick slip positioners is violent enough to damage

the tip or sample if it brings them in contact. A woodpecker approach procedure first

slowly and smoothly fully extends the scanner searching for the surface. If the surface is

not found, then the scanners are fully withdrawn before stepping forward with the long

range positioners by a large fraction of vertical space explored by the scanners; in our

case, this is about 10µm. The process is repeated until the surface is found.
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The smooth approach is controlled by a PID with the resonant frequency determined

by the PLL as the ‘process variable’ and the Z extension of the ANSxyz100 as the ‘ma-

nipulated variable’. The PLL runs from the working point provided by the Tuning Fork

Characterizer and with parameters, including the loop bandwidth, specified in module.

The control loop sets a target resonant frequency larger than the measured resonant

frequency. The integral term of the PID constantly accumulates as long as the resonant

frequency of the tuning fork doesn’t change, increasing the voltage linearly in time and

reducing the separation between the sensor and the sample. If the sensor comes in con-

tact with the surface, then the resonant frequency increases; the analog PID responds

immediately to stop moving more towards the surface attempting to maintain a constant

resonant frequency at the set threshold. The analog PID enables a response to changes

in the measured resonant frequency that isn’t limited by the communication latency

between the computer and the HF2LI. The software monitors the behavior of the PID

and PLL to determine when the sensor has contacted the surface. We find that a PLL

bandwidth of 100 Hz is both sufficiently low noise and responsive to enable safe contact

between the tip and the surface when approaching.

If the user approached with intent of scanning in feedback with the surface, then the

approach procedure is done and the approach module signals to the scanning module

that it can scan in feedback. If the user specified a constant height approach, then the

software withdraws the sensor by the desired amount leaving the sensor at a fixed height

above the sample surface for constant height scanning. It then signals to the scanning

module that it can scan in constant height mode.

Once in a constant height scanning mode, the Approach Control module maintains

the extension of the scanning piezos with a frustrated analog PID feedback loop. The

maximum extension defined by the frustrated feedback loop places the sensor at the

desired distance from the surface. If the resonant frequency were to again increase beyond
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the threshold, similarly to when approaching smoothly, the PID would immediately react

and the Approach Module, tens of milliseconds later, withdraws the sensor even further

to safeguard it. This feature preserves the sensor in the eventuality that it drifts into the

sample over time from creep in the piezoelectric positioners or if scanning too close to

the surface.

The DC outputs of the Zurich HF2LI lock in can only have their voltages changed

smoothly by using a PID; no output voltage ramping function exists. While approaching,

the voltage is determined by the aforementioned PID enabling a smooth approach. In

contrast, withdrawing after the surface has been reached does not depend on external

parameters. In order to withdraw smoothly, an artificial PID loop is defined with lock-in

parameters completely controlled by the software. The input of the artificial PID loop

is the voltage output from aux output 4, which is set to zero prior to withdrawing. The

integral term of the artificial PID is set to 1 and the output of the PID is set to the aux

output that controls the voltage biasing the z scanning piezos. Since there is no way for

the voltage on the z scanning piezos to change the output of aux output 4 (since it’s

value is set by the software), the artificial PID will smoothly ramp the voltage on the z

scanning piezos at a constant rate determined by the product of the integral term, set to

one, and difference between the aux output 4 voltage, set to zero, and its setpoint. The

set point of the artificial PID loop is unconstrained and is varied to control the rate of

voltage ramping. Given how central aux output 4 is to properly withdrawing the sensor

from the surface, it is strongly suggested not to use it for any measurements.

A screenshot of the Approach Control module is shown in Fig. A.21. The progress

bar illustrates the fraction of the motion in the z direction moved by the fine positioners.

All the PLL and PID settings are accessible either from the shown window or from

the additional settings button. The resonant frequency measured by the PLL and the z

extension of the fine positioners are plotted versus time in the approach monitor window.

200



Appendix Chapter A

A successful approach sends a signal to the scan control module enabling it to start

scanning.

Figure A.21: Screenshot of the Approach Control module.

Scanning Software

Details of the scanning module operates can be critical to performing safe measure-

ments on a variety of samples. Minor design choices influence actions necessary to be

taken by a user when measuring precious samples. These aspects of the scan control

module are elaborated on in this section focusing on when scanning in constant height.
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Scans always start from the bottom left corner of the defined scan range. If the

sensor is not at the bottom left corner, then the software by default will move there in a

straight line from the current position. Depending on the height above the surface and

the sequence of scans performed by the user, this straight line could move the sensor into

a taller feature on the device, e.g. dust or a gold contact. One should be cautious about

the path to the bottom left corner of the scan range when changing the scanning region.

Properly using the tilt parameters defined at the top left of the Scan control module,

as seen in Fig. A.22, is critical to performing safe measurements. A 5 µm scan with an

uncompensated 2◦ tilt of the scan plane relative to the surface plane results in perpendic-

ular displacements, relative to the surface, of almost 200 nm. The scan heights used for

sensitive measurements are at most 100 nm; improperly compensating the tilt will crash

the sensor into the surface potentially damaging both the sensor and the sample. The

tilt parameters defining the plane of the scan can be entered manually or calculated by

finding the distance to the surface at the scan range corners by repeatedly approaching.

Typically, the tilt parameters are determined by running a script automating the latter

method.

Scanning in a tilted plane while using buffer acquisition requires the scanning DAC-

ADC to have control over the voltage applied to the z scanning piezos. As previously

described, this voltage is determined by the PID controllers on the HF2LI both when

approaching and safely maintaining a constant height. The HF2LI analog PIDs cannot

interface with external data acquisition hardware. We use a custom low noise high

thermal stability summing amplifier to add a voltage from the scanning DAC-ADC to

the height determining voltage from the HF2LI PID. The tilting is handled entirely by the

contributions to the z voltage by the DAC-ADC, which can be either positive or negative.

The height of the scanning plane’s origin is determined by the HF2LI’s frustrated PID.

This configuration enables scanning on a tilted plane with buffered voltage acquisition
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Figure A.22: Screenshot of the Scan Control module.

from the DAC-ADC while maintaining the integrity of the frustrated PID safeguarding

the sensor from accidental surface contact.

The ‘set position’ button in the Scan Control module moves the sensor along the plane

defined by the tilt parameters only when the Approach Control module signals to the Scan

Control module that the software is in protected constant height operation. Otherwise,

the button moves along an x-y plane without changing the voltage contribution to the

height from the DAC-ADC. This prevents the user from accidentally damaging the z

scanning piezos by moving along a plane that results in them being negatively voltage

biased. One needs to be cautious when using the ‘set position’ command after the sensor

was automatically retracted from a spike in the PLL. The automatic retraction removes

the software from constant height operation. If the automatic withdraw distance is small,

then moving along the x-y plane could crash the tip. In this case, the ‘Frustrate Feedback’
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button in the approach control module should be used; it turns frustrated feedback back

on for the current z extension and signals to the scan module that it is in constant height

mode.

The scanning module has two different scanning modes: smooth scans and discrete

scans. In both modes, the number of pixels, P , sets the number of points taken within

each of L lines. An individual line consists of sweeping the voltages determining the

x-y-z position of the sensor with the DAC-ADC while reading the ADCs at P equally

spaced points in voltage space. Smooth scans specify the speed the sensor is moving

relative to the sample. Maximally smooth motion is achieved by setting the step size of

the DAC output voltages to 300µV, the smallest possible with a 16 bit ±10V DAC; these

correspond to steps of approximately 2 nm. The delay between each step determines

the scan speed2. Smooth scans minimize the effects of transients associated with sudden

voltage changes on the piezoelectric scanners by specifying intermediate voltages steps

between measurement points. It is strongly recommended for larger scans with a low

pixel density to avoid accidental touchdowns. The only downside is that the additional

voltage points slow down the scan, possibly more than necessary. The 300µV step size

is somewhat arbitrary now that the DAC used to control the scanning experiment has

20 bit resolution. In practice, we have never had an issue with the 300µV step size and

a larger value could be more optimal for maximizing the scan speed while still ensuring

the sensor’s safety. Discrete scans specify the delay time spent at each pixel in the line

before moving to the next pixel. In contrast to smooth scans, the voltage controlling

the sensor’s position jumps from one pixel to the next without sampling intermediate

voltages. For densely sampled small scan regions this mode simplifies determining the

2The setting does not take into account the latency of write / reading times of the DAC-ADC; strictly
speaking, the speed set in the software is a lower bound. Communication latency between the computer
and the DAC-ADC is irrelevant because the sweeping happens from the DAC-ADC firmware, not from
commands between the computer and the DAC-ADC.
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averaging time spent per point in the scan without compromising safety.

A.2.4 Programming Additional Modules

New modules will need to be added to the scanning software suite to make it com-

patible with the 300 mK and dilution refrigerator microscopes coming online in the next

couple years. In this section, I cover the organization of the code and how to write a new

module compatible with the existing software.

Every module typically has at least two files associated with it: the Qt UI file and

the python code. The user interface file is created in QtDesigner, software released by

Qt for designing and building GUIs. It provides a graphical interface for making new

graphical interfaces, significantly facilitating the creation of complicated layouts. The

python code imports the Qt UI files and specifies the functionality of the GUI elements

defined in QtDesigner. For an incredibly simple window, the user interface elements

could be defined within the python code if desired.

The ‘Scanner GUI’ directory hosts the files associated with the ‘Main Window’ (see

Fig. A.18); the remaining code is organized into sub-directories. Code specific to a

particular module is placed within a relevantly named sub-directory. Code intended for

use within multiple modules is placed within the ‘Resources’ sub-directory. Resources

currently include images used in the GUI, number formatting functions, basic data line /

plane subtraction functions, customized color plotting GUI elements, and a GUI element

for retrieving data from data vault.

The sub-directory ‘Module Template’ includes bare-bones files as a starting point for

the creation of new modules. All of the following steps must be done for a new module

to be successfully integrated into the software.

Step 1: Create a folder for the new module.
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Create a new sub-directory within the main ‘Scanner GUI’ directory with an appropriate

name for the new module. Copy the files from the ‘Module Template’ sub-directory over

to the new folder renaming them appropriately. All of the files for the new module will

be placed into this folder.

Step 2: Modify LabRAD Connect.

If the module requires connections to new servers then the LabRAD Connect module

needs to be updated appropriately to search for the new server. This requires doing the

following steps:

1. Update the UI for the LabRAD connect module, ‘LabRADConnect.ui’, to include

GUI elements for the new server.

2. Create an entry for the new server in emptyLocalDictionary or emptyRemoteDictionary

where appropriate.

3. Create a function in the python code to check if the server is connected and it has

a device available. I suggest copying the structure of other connection functions in

‘LabRADConnect.py’. This should update the appropriate dictionary.

4. Make sure your new function is called when the connectAllServers function runs.

If the server is connected directly to the computer, include it in the appropriate

place within connectLocalServers function. If the server is connected remotely,

include it in the connectRemoteServers function instead.

Step 3: Modify DeviceSelect Module.

If the new module requires connections to hardware distinct from those already specified

by the DeviceSelect module, then the DeviceSelect Module needs to be updated as well.

This requires the following steps:

206



Appendix Chapter A

1. Create a new tab within the UI of the DeviceSelect module, ‘DeviceSelect.ui’, for the

hardware associated with the new module. This should mimic the structure of other

tabs. One section should exist for selecting the devices associated with the module.

Another section should exist for selecting channels of particular measurements.

2. Update the GUIDictionary to include the new GUI elements used to select devices

and channels.

3. Update the deviceDictionary to include keys for the hardware and associated

channels.

4. Update the connectLabRAD function to populate the new GUI elements with the

appropriate server information once received from the LabRAD Connect module.

5. Write functions for the new GUI elements that appropriately update the deviceDictionary

when they are changed.

Step 4: Modify the Main Window.

The UI and the python code of the main window, in ‘nSOTScanner.py’, needs to be

updated to run the new module.

1. Modify the global path variable at the top of the program to include the new

module’s folder sys.path.append(path + r’\NewFolderName’) and import the

module’s code.

2. Add an entry in the drop down menus of the main window UI, ‘MainWindow.ui’,

that will, when clicked, open the new module.

3. Initialize the new widget in the MainWindow initialization.

4. If the Module needs to be run from the scripting module, initialize the scripting

window with it as an input, and modify the scripting module appropriately.
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5. Create an openNewModuleWindow function called when the drop down menu button

is clicked.

6. Add the module to the distributeDeviceInfo disconnectLabRADConnections,

hideAllWindows, and closeEvent functions.

7. If the module saves data using dataVault, add it to the updateDataVaultFolder

and distributeSessionFolder functions as well.

Step 5: Create the UI in Qt Designer.

Create the UI file for the new module. It is strongly recommended to use QtDesigner to

simplify the process and to adhere to the GUI object naming convention specified at the

beginning of the user interface section for code readability.

All modules that use LabRAD servers have a colored square button at the top left

corner that indicates the status of server connections. When clicked, it opens up a list

of servers that need to be connected in order for the module to run properly. ‘required-

Servers.ui’ is the UI that pops up when the button is clicked and should be modified to

include servers required by the new module.

Step 6: Write the python code.

Finally, you can write the python code for your module! If part of the code written for

your new module is something that you can imagine wanting to use in other modules

as well, consider adding it to the resources folder. In addition the module specific code,

the following functions found in the ‘Template.py’ file should be updated for consistent

functionality with other modules.

1. Populate the lockInterface and unlockInterface functions with functions en-

abling or disabling all the interactive GUI element of the new module. By default,

the UI elements of a module are locked until all the servers for the module are

connected.
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2. Set the default coordinates of the module in the moveDefault function.

3. Initialize UI elements that cannot be created and modified with QtDesigner in the

setupAdditionalUi function.

4. Populate the connectLabRAD function, creating variables for the relevant servers.

The generate format is included in ‘Template.py’; referring to another module’s

connectLabRAD function can provide an example.

A.2.5 Scripting Documentation

The user interface enables one shot standard local microscopy, sensor characteriza-

tion and sample characterization measurements. Experiments often require repeating

microscopy measurements while varying other parameters, e.g. the carrier density in the

device. Automation of experiments can be done via a scripting module written for the

software.

Scripts run through the module have access to the python objects corresponding to

the modules in the software. A script can use them to directly call functions in the

modules that both perform the desired operation and update the GUI, simulating a user

manually controlling the software. The GUI visuals, including live plotting and displayed

parameter values, are therefore updated as the script is being run. The scripts, written

in python, are run in the software’s previously described asynchronous environment;

functions that need to finish before moving onto the next line need to be called with

‘yield’. A very simple example of a script would be:

yield ScanControl.setPosition(1e-5, -2e-6) \\

yield ScanControl.scan()

The Scan Control module object is called ScanControl in the scripting environment.

The first line of the script sets the position of the sensor to 10 µm and −2µm. The
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function is called with ‘yield’ to specify that the next line of code should only be run

after the setPosition function finishes running; not right after it has been called and the

sensor is still in motion. The second line starts a scan; the function is called with ‘yield’

to specify that the script will finish running when the scan is done, not when the scan

has been started.

The two mostly commonly used scripts automate measurements of the SQUID voltage

to magnetic field transfer function and identification of the tilt of the sample surface

relative to the scanning axes.

Additional scripts can be written for the automation of scanning experiments on a

case by case basis. Documentation for the functions that perform an operation while

appropriately updating the GUI are documented here; these are the only ones I rec-

ommend using when writing scripts unless you have spent the time to understand the

limitations of the less ‘packaged’ functions. The general structure for scripting com-

mands controlling the GUI is ModuleName.FunctionName(inputs). Below is a table for

each module loaded into the scripting environment listing and describing the available

functions. The ModuleName in the scripting environment is given in the table caption.

In general, asynchronous functions update both the hardware and the GUI when called,

whereas non-asynchronous functions just update the GUI. Typically, asynchronous func-

tions are called with yield.
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Function Inputs Outputs Asynch Description

setBias bias (float) - Yes

Sets the bias voltage on the nSOT to the spec-

ified bias in volts. Ramp points and delay are

specified within the module. The function

ramps to the specified bias voltage starting

from the current bias voltage.

readBias - bias (float) Yes

Returns the bias voltage on the nSOT in volts

and updates the GUI with the determined

value.

setFeedback on (bool) - Yes
Sets feedback on if input is True, and off if

input is False.

readFeedback - on (bool) Yes
Returns True if feedback is on and False if

feedback if off.

blink - - Yes
Turns feedback off then on. Always ends with

feedback on.

setGate gate (float) - Yes

Sets the nSOT gate voltage on the nSOT to

the specified gate in volts. Ramp points and

delay are specified within the module. The

function ramps to the specified gate voltage

starting from the current gate voltage.

readGate - gate (float) Yes

Reads the gate voltage on the nSOT in volts

and updates the GUI with the determined

value.

Table A.1: Scripting Function Documentation for the nSOT Bias Module.
Within the scripting environment, the module name is ‘nSOTBias’.
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setMinVoltage
vmin

(float)
- No

Set the minimum voltage for the

characterization sweep.

setMaxVoltage
vmax

(float)
- No

Set the maximum voltage for the

characterization sweep.

setVoltagePoints pnts (int) - No
Set the number of points for the volt-

age in the characterization sweep.

setMinField
bmin

(float)
- No

Set the minimum magnetic field for

the characterization sweep.

setMaxField
bmax

(float)
- No

Set the maximum magnetic field for

the characterization sweep.

setFieldPoints pnts (int) - No

Set the number of points for the

magnetic field in the characterization

sweep.

readFeedbackVoltage - volts (float) Yes

Returns the DC voltage output from

the feedback box. This is propor-

tional to the current through the

nSOT.

setSweepMode mode (int) - Yes

Sets the sweep mode for the squid

characterization. Mode = 0 corre-

sponds to the min to max sweeping.

Mode = 1 corresponds to sweeping

from zero.

runSweep - - Yes

Starts the characterization sweep

with parameters specified in the GUI

updated either manually or from the

aforementioned functions.

Table A.2: Scripting Function Documentation for the nSOT Characterizer
Module. Within the scripting environment, the module name is ‘nSOTChar’.
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setFourTermMinVoltage
vmin

(float)
- No

Sets the minimum voltage

in the four terminal sample

characterization tab to vmin

in units of volts

setFourTermMaxVoltage
vmax

(float)
- No

Sets the minimum voltage

in the four terminal sample

characterization tab to vmax

in units of volts.

setFourTermVoltagePoints pnts (int) - No

Sets the number of points

in the four terminal sam-

ple characterization tab. If

the GUI is displaying the

measurement parameters in

terms of voltage step size in-

stead of points, calling this

function switches it to the

point display.

setFourTermVoltageStepSize
vstep

(float)
- No

Sets the voltage step size

in the four terminal sample

characterization tab in units

of volts. If the GUI is dis-

playing the measurement pa-

rameters in terms of points

instead of voltage step size

instead, calling this function

switches it to the voltage

step size display.

setFourTermDelay
delay

(float)
- No

Sets the delay time in the

four terminal sample charac-

terization tab in units of sec-

onds.

setFourTermOutput
output

(int)
- No

Sets the output channel

of the sample characterizer

DAC used in the four termi-

nal sample characterization

tab. ‘Output’ is 1 indexed,

taking values from 1 to 4.

setFourTermVoltageInput input (int) - No

Sets the voltage input chan-

nel of the sample character-

izer DAC used in the four

terminal sample characteri-

zation tab. ‘Input’ is 1 in-

dexed, taking values from 1

to 4.
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setFourTermCurrentInput input (int) - No

Sets the current input chan-

nel of the sample character-

izer DAC used in the four ter-

minal sample characterization

tab. ‘Input’ is 1 indexed, tak-

ing values from 1 to 4.

FourTerminalSweep - sweepData Yes

Starts a four terminal char-

acterization sweep with

parameters set in the GUI.

Returns the dataset from

the sweep stored as a list

of points with the follow-

ing format: (sweep ind,

sweep voltage, read voltage,

current, resistance, conduc-

tance). ‘sweep ind’ is the

index of the point in the gate

voltage sweep. If the current

input is set to ‘none’, then

the last three outputs are not

included.

rampOutputVoltage

channel

(int), vfinal

(float),

points

(int), delay

(float)

- Yes

Ramps the DAC output

voltage specified by channel,

which is 1 indexed taking

values from 1 to 4. ‘vfinal’

is the target voltage in volts,

‘points’ specifies the number

of steps in the ramp, and

‘delay’ is the delay in seconds.

Table A.3: Scripting Function Documentation for the Sample Characterizer
Module. Within the scripting environment, the module name is ‘SampleChar’.
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readTherm1 - T (float) Yes

Returns the temperature of

thermometer 1 specified in the

GUI in Kelvin.

readTherm2 - T (float) Yes

Returns the temperature of

thermometer 2 specified in the

GUI in Kelvin.

readTherm3 - T (float) Yes

Returns the temperature of

thermometer 3 specified in the

GUI in Kelvin.

setFeedbackThermometer ind (int) - Yes

Sets the thermometer to be used

in the feedback loop when using

the heater to heat to a particular

temperature.

setHeaterMode mode (int) - Yes

Sets the heater mode to closed

loop (mode = 0) or open loop

(mode = 1) operation.

setHeaterOutput out (int) - Yes
Sets the heater output to either

output 1 or 2.

setHeaterRange range (int) - Yes

Sets the hearter range. Range

needs to be an integer from 1 to

5.

setHeaterPID

p (float),

i (float),

d (float)

- Yes
Sets the PID parameters to the

given values.

setHeaterSetpoint
setpoint

(float)
- Yes

Set the setpoint for the PID

when the heater is operating

in closed loop mode. Func-

tion does not change the heater

mode.

setHeaterPercentage
percent

(float)
- Yes

Set the percentage of the output

power on the heater when oper-

ating in open loop mode. Func-

tion does not change the heater

mode.

setHeaterOn - - Yes Turns on the heater.

setHeaterOff - - Yes Turns off the heater.

Table A.4: Scripting Function Documentation for the Temperature Control
Module. Within the scripting environment, the module name is ‘TempControl’.
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setSetpoint B (float) - No

Changes the setpoint within the field con-

trol module. This does not update the

magnet power supply setpoint.

setField B (float) - Yes

Changes the setpoint of the IPS120 power

supply to the input B specifed in Tesla.

Instructs the IPS120 to sweep the field to

the setpoint. Function only stops running

when the field is reached if called with

yield.

readField - B (float) Yes

Returns the magnetic field in Tesla corre-

sponding to the current being sourced by

the IPS120 power supply. If the magnet is

persisting, this is not the true field.

readPersistField - B (float) Yes

Returns the magnetic field corresponding

to the presumed persistent current in the

magnet. This is a saved value in the hard-

ware; not a measurement of the persisting

current.

hold - - Yes

Instructs the magnet power supply to hold

the magnetic field constant. When called,

the magnetic field does not change in re-

sponse to changing the setpoint.

clamp - - Yes
Clamps the output of the IPS120 power

supply to ground.

setPersist on (bool) - Yes

If on == True, sets the magnet power sup-

ply to persist mode. If on == False, sets

the magnet to charging mode.

Table A.5: Scripting Function Documentation for the Field Control Module.
Within the scripting environment, the module name is ‘FieldControl’.
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setPLLThreshold - - Yes

Simulates pressing the ‘set PLL

threshold’ button. This sets the

threshold to the mean plus four

times the standard deviation of the

last 200 PLL datapoints.

withdraw dist (float) - Yes

Withdraws the sensor by the

amount specified by dist in units

of meters. Withdrawing speed is

taken from parameters in the GUI.

If the withdraw distance specified

is greater than the current exten-

sion, the tip is fully retracted. Once

withdrawn, frustrated feedback is

disabled.

setHeight h (float) - No

Sets the height that the tip will

be withdrawn after contacting the

surface with a constant height ap-

proach.

approachConstHeight - - Yes

Starts the constant height approach

sequence. If called with yield, the

function only stops running when

the surface is reached and the tip

is retracted.

getContactPosition - pos (float) No

Returns the z extention in meters

where the tip made contact with

the surface.

setFrustratedFeedback - - Yes

Starts the PID from the PLL en-

abling frustrated feedback for the

present z extension. This sets

the software into a constant height

mode scanning configuration.

Table A.6: Scripting Function Documentation for the Approach Control
Module. Within the scripting environment, the module name is ‘Approach’.
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setPosition
x (float),

y (float)
- Yes

Moves the tip from its current posi-

tion to the position specified by the

(x,y) coordinates of the input. Inputs

are provided in units of meters. Speed

is determined by the scan speed set

in the GUI. The tip moves along the

plane defined by the tilt only if the

approach module is in constant height

mode. Otherwise, it moves along a

constant z plane.

startScan -
[trace,

retrace]
Yes

Starts a scan with the parameters spec-

ified in the GUI. Returns a list with the

trace data as the first input and retrace

as the second. Each dataset is stored as

a list of points with the following for-

mat: (trace ind, x ind, y ind, x volt,

y volt, ADC 1, ADC 2, . . ., ADC N).

A ’trace index’ of 0 corresponds to

the trace and of 1 corresponds to the

retrace. ’x index’ is the pixel index

whereas ’y index’ is the line index.

setSpeed speed (float) - No

Set the scanning speed in units of me-

ters per second. If the Scanning GUI

is not in the ’scan smooth’ mode, this

function switches it to be in the scan

smooth mode.

setDelay
delay

(float)
- No

Set the delay between pixels in seconds.

If the Scanning GUI is in the ’scan

smooth’ mode, this function switches

it out of the scan smooth mode.

setPixels pixels (int) - No

Sets the number of lines for the scan.

If the data aspect ratio is locked, this

also updates the number of pixels.

lockDataAspect - - No Locks the pixel to lines aspect ratio.

unlockDataAspect - - No Unlocks the pixel to lines aspect ratio.

setTilt
xtilt (float),

ytilt (float)
- No

Sets the x and y tilts in the scanner

GUI in units of degrees.

setXc Xc (float) - No
Sets the x position of the scan range

center in units of meters.

setYc Yc (float) - No
Sets the y position of the scan range

center in units of meters.
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setH H (float) - No

Sets the height of the scan range in

units of meters. If the scan frame as-

pect ratio is locked, this updates the

width.

setW W (float) - No

Sets the width of the scan range in

units of meters. If the scan frame as-

pect ratio is locked, this updates the

height.

setAngle
theta

(float)
- No

Sets the angle of the rectangle defining

the scan range in degrees.

lockScanAspect - - No Locks the scan frame aspect ratio.

unlockScanAspect - - No Unlocks the scan frame aspect ratio.

Table A.7: Scripting Function Documentation for the Scan Control Module.
Within the scripting environment, the module name is ‘ScanControl’.
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2019) 237.

[42] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and
P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene
superlattices, Nature (Mar., 2018).

[43] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi,
D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer
graphene, Science 363 (Mar., 2019) 1059–1064.

[44] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li,
K. Watanabe, T. Taniguchi, Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang,
and F. Wang, Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer
Graphene/Boron Nitride Moir\’e Superlattice, arXiv:1905.06535 [cond-mat] (May,
2019). arXiv: 1905.06535.

[45] K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Movva, S. Huang,
S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe, S. K. Banerjee, B. J.
LeRoy, and E. Tutuc, van der Waals Heterostructures with High Accuracy
Rotational Alignment, Nano Letters 16 (Mar., 2016) 1989–1995.

[46] H. H. Sample, W. J. Bruno, S. B. Sample, and E. K. Sichel, Reverse-field
reciprocity for conducting specimens in magnetic fields, Journal of Applied Physics
61 (Feb., 1987) 1079–1084.

[47] A. Uri, S. Grover, Y. Cao, J. A. Crosse, K. Bagani, D. Rodan-Legrain,
Y. Myasoedov, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino,
P. Jarillo-Herrero, and E. Zeldov, Mapping the twist angle and unconventional
Landau levels in magic angle graphene, arXiv:1908.04595 [cond-mat] (Aug., 2019).
arXiv: 1908.04595.

[48] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K. Watanabe, M. P. Zaletel,
and A. F. Young, Observation of fractional Chern insulators in a van der Waals
heterostructure, Science 360 (Apr., 2018) 62–66.

[49] M. Xie and A. H. MacDonald, On the nature of the correlated insulator states in
twisted bilayer graphene, arXiv:1812.04213 [cond-mat] (Dec., 2018). arXiv:
1812.04213.

224



[50] F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, and D. Goldhaber-Gordon,
Insulating Behavior at the Neutrality Point in Single-Layer Graphene, Physical
Review Letters 110 (May, 2013) 216601.

[51] H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K. Watanabe, T. Taniguchi, C. R.
Dean, and A. F. Young.

[52] M. Yankowitz, J. I.-J. Wang, A. G. Birdwell, Y.-A. Chen, K. Watanabe,
T. Taniguchi, P. Jacquod, P. San-Jose, P. Jarillo-Herrero, and B. J. LeRoy, Electric
field control of soliton motion and stacking in trilayer graphene, Nature Materials
13 (Aug., 2014) 786–789.

[53] S. Liu, E. Khalaf, J. Y. Lee, and A. Vishwanath, Nematic topological semimetal
and insulator in magic angle bilayer graphene at charge neutrality,
arXiv:1905.07409 [cond-mat] (May, 2019). arXiv: 1905.07409.
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superlattice, Nature 579 (Mar., 2020) 56–61. Number: 7797 Publisher: Nature
Publishing Group.

[66] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat Chern
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