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Model
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Abstract

An essential feature of the linear logistic test model (LLTM) is that item difficulties
are explained using item design properties. By taking advantage of this explanatory
aspect of the LLTM, in a mixture extension of the LLTM, the meaning of latent classes
is specified by how item properties affect item difficulties within each class. To
improve the interpretations of latent classes, this article presents a mixture generali-
zation of the random weights linear logistic test model (RWLLTM). In detail, the
present study considers individual differences in their multidimensional aspects, a
general propensity (random intercept) and random coefficients of the item proper-
ties, as well as the differences among the fixed coefficients of the item properties. As
an empirical illustration, data on verbal aggression were analyzed by comparing appli-
cations of the one- and two-class LLTM and RWLLTM. Results suggested that the
two-class RWLLTM yielded better agreement with the empirical data than the other
models. Moreover, relations between two random effects explained differences
between the two classes detected by the mixture RWLLTM. Evidence from a simula-
tion study indicated that the Bayesian estimation used in the present study appeared
to recover the parameters in the mixture RWLLTM fairly well.
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Introduction

Mixture item response models have been developed to represent the possibility that

students may not be sampled from a homogeneous population, as assumed in conven-

tional item response theory (IRT), but rather, a mixture of multiple latent subpopula-

tions or classes. In mixture item response models, the unobserved heterogeneity of

populations is investigated using latent class analysis, and observed responses within

each class are modeled using IRT models. Applications of mixture item response

models in educational and psychological contexts have attempted to enhance our

understanding of the differences between examinees in different classes. For exam-

ple, latent classes differ in their use of strategies for test items (e.g., Bolt, Cohen, &

Wollack, 2001; Mislevy & Verhelst, 1990; Rost, 1990), developmental stages in task

solution (e.g., Draney, Wilson, Gluck, & Spiel, 2008; Wilson, 1989), and individual

differences in the presence of test speededness (e.g., Bolt, Cohen, & Wollack, 2002;

De Boeck, Cho, & Wilson, 2011; Meyer, 2010).

The distinguishing features of mixture item response models are that (a) students

from distinct populations are qualitatively differentiated (De Boeck, Wilson, &

Acton, 2005) and (b) each person’s population membership is unknown; instead, it is

a latent variable. Thus, in mixture item response models, it is very important to find

discrete characteristics that define each latent class of examinees. For example,

Mislevy and Verhelst (1990) developed the idea of the mixture LLTM (MixLLTM)

by coupling the concept of the linear logistic test model (LLTM; Fischer, 1973) and

the mixture item response model framework, more specifically by relating character-

istics of each class to known features of items. In the LLTM, items are built based

on item design properties using psychological and cognitive theory, or other features

of the items, and then the item difficulties are explained using the design properties.

As such, the LLTM is referred to as an explanatory item response model with respect

to items (De Boeck & Wilson, 2004). In the MixLLTM, each class is differentiated

by the way in which item properties affect item difficulties, and these differences

define the meaning of latent classes.

In addition, the random weights LLTM (RWLLTM; Rijmen & De Boeck, 2002),

an extension of the LLTM, allows individual differences in the extent to which the

item properties determine the item difficulties. In contrast to the LLTM, which

assumes that the effects of the item features are constant for all persons, in the

RWLLTM, each person can have different effects of the item properties on the item

difficulties through random coefficients. In this regard, the RWLLTM captures more

information about the examinees than the LLTM does. Therefore, it is interesting

and potentially beneficial to formulate and investigate a mixture extension of the

RWLLTM (MixRWLLTM), which can take advantage of the item explanatory

aspect of the LLTM and also incorporate individual differences detected by the

RWLLTM to define characteristics of latent classes. Specifically, the MixRWLLTM

can be employed to identify latent classes that differ in multidimensional aspects,

that is, differences in a general latent trait and specific latent dimensions defined by

item design features. The primary objective of the present study is to investigate the
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use of the MixRWLLTM to distinguish a subpopulation of examinees as well as to

improve interpretations of differences among latent classes.

To this end, this article is organized as follows. First, the LLTM and the

RWLLTM are briefly reviewed, and the MixLLTM is described. Based on these

approaches, the MixRWLLTM, which is of major interest in the present study, is

presented with respect to model specifications. Following that, we describe an esti-

mation algorithm for the MixRWLLTM using the Markov chain Monte Carlo

(MCMC) approach implemented in WinBUGS 1.4.3 (Lunn, Thomas, Best, &

Spiegelhalter, 2000) for parameter estimation of the proposed models. Then, in order

to show how the MixRWLLTM can be applied to an empirical example, the results

of the analysis of a verbal aggression data set are presented. Finally, a simulation is

conducted to assess parameter recovery and correct identification of class member-

ship of the MixRWLLTM.

Methods

Review of the LLTM and RWLLTM

As discussed above, the LLTM is designed to help explain how item design features

influence responses on tests with a prior item structure. Suppose that there are K item

properties. Under the LLTM, the probability that person p gives the correct response

on item i is written as

P Ypi = 1jup

� �
=

exp (up � b�i )

1 + exp (up � b�i )
=

exp (up �
PK
k = 0

Xikbk)

1 + exp (up �
PK
k = 0

Xikbk)

, ð1Þ

where up is the latent ability of person p that follows an underlying population distri-

bution (e.g., a normal distribution with mean zero and a constant variance) and b�i is

the difficulty of item i. As shown in Equation 1, the item difficulty in the LLTM is

expressed as a function of the coefficient of property k, bk (k = 1, . . . , K). Note that

Xik is the known value of the I 3 (K + 1) design matrix for item i on property k. For

k = 0, b0 is the item intercept with Xi0 = 1 for all items i, and from 1 to K, Xik reflects

the prespecified structure of composing the difficulty of item i associated with prop-

erty k. Therefore, bk represents the difficulty of property k, which corresponds to the

contribution of item design feature k to the item difficulty. By taking the multilevel

IRT perspective, in which the responses on items (Level 1 units) are assumed to be

clustered into the persons (Level 2 units) (Adams, Wilson, & Wu, 1997), the ability

up can be considered as the random intercept which varies over the persons, and the

item property difficulties bk are the fixed effects which are constant across the

persons.

The LLTM has the advantage of parsimony: item difficulties are explained in

terms of item features and there are usually fewer item features than items. However,
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the assumption that item properties explain the item difficulty perfectly and that the

effects of the item features are constant for all persons might be unrealistic and strict

in many circumstances. The RWLLTM1 relaxes the assumption of invariant effects

of item properties by incorporating person-specific random coefficients. In detail, in

the RWLLTM, person-specific random coefficients YpK# are assumed for a subset of

K item properties, K# of which coefficients are assumed to vary among persons.

Therefore, Xis (s2K#) is the element of the submatrix of the full design matrix asso-

ciated with random coefficients (or random slopes) ups (s2K#). For instance, if the

random coefficients are assumed for the first and second item properties among four

item properties, K# corresponds to {1, 2}, Xis is the element of the matrix consisting

of the second and third columns of the full design matrix X, and YpK# = (up1, up2)#.

In the RWLLTM,
P

s2K#Xisups is added to the difficulty of item i for person p as

follows:

b��pi =
XK

k = 0

Xikbk +
X
s2K 0

Xisups: ð2Þ

Alternatively, given that YpK# are the person-specific random effects, in the

RWLLTM, the person ability is a multidimensional parameter, Yp = (up0, YpK##)#, a

vector of the random intercept up0 and random coefficients ups (s2K#). Thus, the

required ability for person p to respond to item i is formulated as

u�pi =
XS

s = 0

Zisups, ð3Þ

where Zis is the value of the I 3 (S + 1) matrix that appends a constant vector of 1

with the length of I for the random intercept up0 and submatrix of the design matrix

X for the random coefficients ups (s2K#). Particularly, for s = 0, Zi0 = 1 for all items.

For s from 1 to S, Zis is the same as Xis (s2K#) and S is equal to the number of ran-

dom coefficients K# (e.g., S = 2 in the above example). In the RWLLTM, the prob-

ability that person p gives the correct response on item i is written as

P Ypi = 1jYp

� �
=

exp (u�pi � b�i )

1 + exp (u�pi � b�i )
=

exp (
PS
s = 0

Zisups �
PK
k = 0

Xikbk)

1 + exp (
PS
s = 0

Zisups �
PK
k = 0

Xikbk)

: ð4Þ

In fact, as noted by Rijmen and De Boeck (2002), the model framework Equation

4 is a special case of an earlier model, the multidimensional random coefficients mul-

tinomial logit model (MRCMLM; Adams, Wilson, & Wang, 1997), in which Z and X

correspond to the scoring matrix and design matrix, respectively, of the MRCMLM.

The random effects Yp are assumed to follow a multivariate normal distribution;

therefore, the RWLLTM can be considered a multidimensional extension of the

Choi and Wilson 81



LLTM that includes additional dimensions corresponding to person-specific random

effects associated with item properties.

Mixture Extensions of the LLTM and RWLLTM

The rationale for formulation of the MixLLTM is to combine the heterogeneous pop-

ulation from the mixture item response models and the decomposition of the item dif-

ficulties in the LLTM. In the mixture Rasch model (Rost, 1990), within each latent

class, the Rasch model is assumed with class-specific person ability and class-specific

item difficulty parameters. Similarly, in the MixLLTM, the LLTM is assumed to hold

within each latent class. The conditional probability of the MixLLTM that person p

endorses item i under the condition that this person belongs to latent class g is

P Ypig = 1jupg, g
� �

=
exp (upg � b�ig)

1 + exp (upg � b�ig)
=

exp (upg �
PK
k = 0

Xikbkg)

1 + exp (upg �
PK
k = 0

Xikbkg)

: ð5Þ

As shown in Equation 5, the conditional probability is the same as in the LLTM, but

the model contains class-specific ability upg and class-specific item property coeffi-

cient bkg. In addition, the item difficulties become class-specific due to the class-

specific coefficients. It is common to assume that the ability (random intercept) fol-

lows a normal distribution with class-specific mean and variance, upg ~ N(m0g, s2
0g)

for each latent class g = 1, . . . , G. Class membership g is regarded as a latent vari-

able with the class size parameters or the mixing proportions pg having constraints, 0

�pg� 1 and
P

gpg = 1. Therefore, each person belongs to one of the classes with

probability pg. The marginal probability of person p’s correct response on item i in

the MixLLTM is specified as

P Ypi = 1jupg, g, pg

� �
=
XG

g = 1

pgP(Ypig = 1) =
XG

g = 1

pg

exp (upg �
PK
k = 0

Xikbkg)

1 + exp (upg �
PK
k = 0

Xikbkg)

: ð6Þ

The MixLLTM is capable of identifying distinct classes that depend on a general

level of propensity, where each class is defined by class-specific ability distributions

and item property parameters. However, it can be assumed that classes are also dis-

tinguished by individual differences in the degree to which item properties influence

the item difficulty and in the general propensity. This goal can be achieved by

extending the RWLLTM into a mixture model. Considering the model framework of

the MixLLTM in Equation 6, the marginal probability that person p endorses item i

in the MixRWLLTM can be represented by extending the RWLLTM in Equation 4

into a mixture model as

82 Educational and Psychological Measurement 75(1)



P Ypi = 1jYpg, g, pg

� �
=
XG

g = 1

pg

exp (
PS
s = 0

Zisupsg �
PK
k = 0

Xikbkg)

1 + exp (
PS
s = 0

Zisgupsg �
PK
k = 0

Xikbkg)

, ð7Þ

where g and pg represent the class membership and mixing proportions, respectively,

as in the MixLLTM. Similar to the MixLLTM, the RWLLTM is assumed for each

latent class in the MixRWLLTM. However, unlike the MixLLTM, in each class, as pre-

sented in Equation 7, there are multiple random effects: the random intercept up0g and

the random coefficients of item property upsg, s = 1, . . . , S. In detail, while the random

intercept up0g indicates the general propensity of person p in class g, the random coeffi-

cient upsg represents the degree to which item property s affects the item difficulties of

person p in class g. In other words, these are the person- and class-specific variables.

Therefore, in the MixRWLLTM, the classes are characterized by the fixed coeffi-

cients of item property bkg and the random effects Ypg = (up0g, up1g, . . . , upSg)#, which

follow a multivariate normal distribution with class-specific means and variance-

covariance matrix. For example, in the case of incorporating just one random coeffi-

cient up1g in addition to the random intercept up0g, the Z matrix is composed of the

first two columns of the X matrix. The random effects of person p within latent class

g, Ypg = (up0g, up1g)#, are assumed to follow a bivariate normal distribution as

Ypg =
up0g

up1g

� �
;MVN2

m0g

m1g

� �
,

s2
0g s01g

s01g s2
1g

" # !
, ð8Þ

where m0g and m1g indicate the class-specific mean of the random intercept and ran-

dom coefficient, respectively, s2
0g and s2

1g are the class-specific variance of the ran-

dom intercept and random coefficient, respectively, and s01g is the class-specific

covariance of the two random effects.

We follow the parameterization by Rijmen and De Boeck (2002), in which the

fixed effects represent the means of the intercept or the item property difficulties,

and the random effects are considered the deviations from these means (the fixed

effects). For instance, in the above example, where there is one random coefficient,

the difficulty of the first item property corresponds to b1g2up1g, and b1g and up1g

represent the mean (fixed) difficulty of the first item property and person-specific

deviation from the mean difficulty, respectively. In other words, the fixed coeffi-

cients bkg, k = 0, 1, . . . , K, indicate the fixed effects or the means of the random

effects in latent class g, and hence the means of the random intercept and coefficients

are defined as zero by model specifications, such as m0g = m1g = 0 in Equation 8.

Estimation

Bayesian estimation using MCMC was implemented in the WinBUGS 1.4.3 software

(Lunn et al., 2000) to estimate the parameters of the MixRWLLTM and MixLLTM.
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For this purpose, prior distributions must be specified for all parameters, which include

the person-specific ability with class-specific mean and variance, class-specific item prop-

erty coefficients, group membership, and mixture probabilities. Although each parameter

can have a number of different prior distributions, this study limits its scope to the simple

and straightforward commonly used ones, such as the conjugate priors. This means that

the posterior distribution belongs to the same family as the prior distributions. More spe-

cifically, assuming a normal distribution is standard practice for the ability and item para-

meters, and the conjugate prior for the variance of the normal distribution is the inverse-

gamma distribution. It is reasonable to assume that, given the mixture probabilities, each

individual’s group membership follows a multinomial distribution, and one of the conju-

gate priors for the mixture probabilities is the Dirichlet distribution (Cho, Cohen, & Kim,

2013; Cohen & Bolt, 2005; Gelman, Carlin, Stern, & Rubin, 2004).

Consequently, the following prior and hyper-prior distributions were used to esti-

mate the MixLLTM in the present study:

bkg;N (0, 1), k = 0, :::, K, g = 1, :::G,

upgjs2
0g;N (0, s2

0g), p = 1, :::, P, g = 1, :::, G,

s2
0g;Inverse� Gamma(1, 1), g = 1, :::, G,

g;Multinomial(1, (p1, p2, :::, pG)),

p = (p1, p2, :::, pG);Dirichlet(a1, a2, :::, aG):

ð9Þ

By model specification, the means of the ability distributions were treated as zero for

every class. Mildly informative prior distributions for item property coefficients bkg

and variance of ability s2
0g were used, and for mixture probabilities, a noninformative

Dirichlet prior with ag = 0.5 was specified (Bolt et al., 2001; Cho et al., 2013; Cohen

& Bolt, 2005). Therefore, the posterior distribution can be derived from

P upg, s2
0g, bkg, g, pgjY

� �
}

P Y jupg, s2
0g, bkg, g, pg

� �
P upgjs2

0g

� �
P(s2

0g)P(bkg)P(gjpg)P(pg): ð10Þ

Considering their distributional assumptions, the only difference between the

MixLLTM and MixRWLLTM is the latent ability Ypg that includes up0g and upsg.

For this variable, we assumed a multivariate normal distribution with mean zero and

a variance-covariance matrix
P

g for each class (as assumed in the RWLLTM). An

inverse-Wishart distribution, which is a conjugate prior of the variance and covar-

iance of the multivariate normal distribution, was specified for
P

g (Gelman et al.,

2004). Accordingly, the prior and hyper-prior distributions of ability in the

MixRWLLTM were as follows:

YpgjSg;MVN (0, Sg), p = 1, :::, P, g = 1, :::, G,

Sg;Inverse�Wishart(Ru, r), g = 1, :::, G,
ð11Þ
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where Ru and r represent the scale matrix and degree of freedom of the inverse-

Wishart distribution. For parameters other than the ability, the same prior distribu-

tions as the MixLLTM were assumed. The posterior distribution of the

MixRWLLTM is derived from

P Ypg, Sg, bkg, g, pgjY
� �

}

P Y jYpg, Sg, bkg, g, pg

� �
P YpgjSg

� �
P(Sg)P(bkg)P(gjpg)P(pg): ð12Þ

Empirical Data Study

Data Source

Verbal aggression data (Vansteelandt, 2000), previously analyzed by De Boeck

(2008) and by Ip, Smits, and De Boeck (2009), were selected to illustrate how the

proposed model can be applied to real data (the data can be downloaded from http://

bearcenter.berkeley.edu/EIRM/). A total of 316 individuals, 243 females and 73

males, responded to 24 items that described verbally aggressive reactions in a frus-

trating situation. Responses were dichotomized as 0 for ‘‘no’’ and 1 for ‘‘perhaps’’

or ‘‘yes.’’

In this example data, the items were developed using four factors that describe a

person’s propensity toward verbal aggression. The first design factor reflects the

expected tendency that we do not always actually do whatever we want to do. The

factor is referred to as the behavior mode, which differentiates between two levels of

behavior: wanting to engage in verbal aggression (termed as Want) and actually enga-

ging in verbal aggression (termed as Do). The second design factor is based on the

assumption that people display more verbal aggression when others are responsible

for discouraging situations. Specifically, this factor, defined as the situation type, con-

trasts situations in which someone else is to blame (termed as Other-to-blame), such

as missing a bus or train because a bus fails to stop, and situations in which the indi-

vidual is to blame (termed as Self-to-blame) such as a grocery store closing because

the person is late. The last two design factors, related to the behavior type, include

three levels: Curse, Scold, and Shout. The third and fourth factors are Blaming and

Expressing, which deal with the extent to which respondents ascribe blame and

express aggression, respectively. Among the three behavior types, cursing and scold-

ing are regarded as blaming and cursing, and shouting as expressive.

For example, the item, ‘‘A bus fails to stop for me. I would want to curse’’

describes factors of want (behavior mode), other-to-blame (situation type), and curse

(blaming and expressing). The four design factors are referred to as the item proper-

ties, and these item designs enable application of the LLTM and its extended models.

The coding scheme for the item properties, which designates the values of the design

matrix, is presented in Table 1. In detail, dummy coding was used for the behavior

mode and the situation type, in which the want behavior mode and the self-to-blame

situation type were the reference categories; and contrast coding was used for the
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behavior type where the overall mean was the reference category. The item design

matrix with the constant item predictor (k = 0) is given in Appendix A.

Analysis

In the present study, an MCMC algorithm as implemented in WinBUGS was used to

extend the LLTM and RWLLTM into mixture models using the verbal aggression

data. Three chains with different initial values were specified, and in order to check

convergence, time-series plots were monitored. Convergence of the three chains was

determined using the R̂ index proposed by Gelman and Rubin (1992), with a critical

value of 1.01. Depending on these convergence indices and model specifications, the

lengths of the iterations were chosen for each model. For example, for the LLTM

and RWLLTM, three chains with 3,000 iterations of a burn-in were used in this study

followed by 3,000 post-burn-in iterations, and for more complicated models, such as

the MixLLTM and MixRWLLTM, 10,000 post-burn-in iterations were made after

10,000 iterations of burn-in.

Furthermore, for ease of interpretation, one random coefficient for the behavior

mode (k = 1), up1, was assumed in addition to the random intercept, up0, for the ran-

dom weights models. Thus, in the RWLLTM and MixRWLLTM, S = 1 and Z corre-

sponds to the first two columns of design matrix X. In the mixture models, two latent

classes (G = 2) were assumed. In other words, Yp and Ypg, follow a bivariate normal

distribution, and group membership g follows a Bernoulli distribution in the

MixLLTM and MixRWLLTM.

Given that the four models, LLTM, MixLLTM, RWLLTM, and MixRWLLTM,

considered above are not nested a likelihood ratio (LR) test is not appropriate to com-

pare the relative fit of the models. In the present study, Akaike’s (1974) information

criterion (AIC) and Schwarz’s (1978) Bayesian information criterion (BIC) indices

were reported, and the BIC was used to determine the better fitting model. Li, Cohen,

Kim, and Cho (2009) found that the BIC selects the true data-generating model better

than the other methods do, including the AIC and the deviance information criterion

(DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) in mixture dichotomous

IRT models using Bayesian estimation. In detail, we followed the method suggested

by Li et al. (2009) to define the AIC and BIC for MCMC estimation as

Table 1. Coding Scheme for Item Properties in the Verbal Aggression Data.

Design factor Coding scheme

Behavior Mode (k = 1) Do = 1 Want = 0
Situation Type (k = 2) Other-to-blame = 1 Self-to-blame = 0
Behavior Type: Blaming (k = 3) Curse, Scold = 1/2 Shout = 21
Behavior Type: Expressing (k = 4) Curse, Shout = 1/2 Scold = 21
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AIC = D(j) + 2m,

BIC = D(j) + m( log N ), ð13Þ

where D jð Þ is the posterior mean of the deviance, j represents all parameters under

the model, m refers to the number of estimated parameters, and N indicates the sam-

ple size.

Another critical issue in mixture IRT modeling is the label switching problem

(Cho et al., 2013; Li et al., 2009). The first type of label switching occurs across

iterations within a single MCMC chain, and the second type occurs when the latent

classes switch over replications or for different initial values. An occurrence of the

first type of label switching results in multiple modes of density for the parameters;

thus, the estimated marginal posterior densities were examined in the empirical data

analysis in order to detect label switching. In fact, none of the marginal posterior dis-

tributions had multiple nodes, which implied that label switching did not occur. The

second type of label switching is often observed in simulation studies, as detailed in

the simulation study section.

Results

Table 2 summarizes the model fit indices including the AIC and BIC, and the para-

meter estimates and corresponding standard errors obtained by applying the one-class

and two-class LLTM and RWLLTM to the verbal aggression data.

First of all, comparisons of the estimated AIC and BIC values suggested that the

MixRWLLTM fitted better than the other models did. As presented in Table 2, exten-

sions of the LLTM into the RWLLTM and the MixLLTM yielded better fits than the

LLTM did, and the MixLLTM explained the verbal aggression data better than the

RWLLTM did. In other words, the two-class LLTM assuming subpopulations

described the data more correctly than the one-class RWLLTM allowing a random

coefficient of the behavior mode. And most importantly, the two-class RWLLTM,

assuming heterogeneous populations that differ in the general propensity of verbal

aggression and the effects of the behavior mode property, described the data more

correctly than the two-class LLTM. For a more detailed discussion, the fixed and ran-

dom effect estimates of each model are described below.

Under the LLTM, the estimate of the first design factor (b̂1) was 0.67, suggesting

that the probability of being verbally aggressive decreased when actually doing so

compared with wanting to do so. In contrast, the negative estimate of the second

design factor (b̂2 = 21.023) indicated that examinees became more verbally aggres-

sive in other-to-blame situations than in self-to-blame situations, as we would expect.

The estimates of the behavior type (blaming and expressing) were 21.358 and

20.701, respectively, indicating that the blaming aspect of a behavior had greater

effects on verbal aggression than the expression aspect. To examine the effects of

the three behaviors, coefficients of curse, scold, and shout were calculated, using the

coding scheme in Table 1 and the estimates of the third and fourth item properties
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(see Table 3). Among the three levels of the behavior type, cursing, the combination

of blaming and expressing, was the most likely response, and shouting was the least

likely response. The variance of the random intercept (up0) was estimated as ŝ2
0 =

1.82, which represented variability in the general propensity of verbal aggression

between persons.

The third column of Table 2 displays the results of extending the LLTM into the

RWLLTM. Comparisons of the estimates of the LLTM and the RWLLTM revealed

that similar patterns regarding the fixed effect parameters were found, even though

absolute magnitude of the estimates was slightly greater in the RWLLTM. In this

model, a random coefficient of the behavior mode (up1) was included to model indi-

vidual differences in their tendency to display aggression when the behavior mode

changed from wanting to do to actually doing. In detail, while the difference between

the two behavior modes was assumed to be constant as b1 across all examinees in

the LLTM, 2up1 was added to the difference for person p in the RWLLTM. As a

result, the variance of the random coefficient s2
1

� �
and the covariance of the random

intercept and coefficient (s12) were estimated in the RWLLTM. The results sug-

gested that there was substantial person-to-person variability in the degree of being

verbally aggressive for actually doing (ŝ2
1 = 1.005), and a negative association (ŝ01

= 20.424) between the two random effects was found. The meaning of this negative

correlation will be detailed below.

As discussed above, mixture extensions of the LLTM and RWLLTM enable us to

take advantage of the explanatory aspects of the LLTM and RWLLTM to define

characteristics of latent classes. First, the two-class LLTM produced class propor-

tions of approximately 47.8% in Class 1 and 52.2% in Class 2. In this model, the two

classes differed in the fixed effects of the item properties and their general propensity

of verbal aggression (random intercept). In general, the patterns of the estimated dif-

ficulties of the item properties in each class were similar to those in the LLTM. For

instance, in the two classes, the probability of being verbally aggressive decreased

when going from wanting to do to actually doing, and they were more likely to be

aggressive in other-to-blame situations than in self-to-blame situations. However, in

Table 3. Estimates of Coefficients for the Behavior Type.

One-class LLTM One-class RWLLTM Two-class LLTM Two-class RWLLTM

bCurse 21.030 21.078
bCurse(1) 21.827 21.832
bCurse(2) 20.545 20.575

bScold 0.022 0.024
bScold(1) 20.210 20.274
bScold(2) 0.186 0.238

bShout 1.008 1.054
bShout(1) 2.036 2.106
bShout(2) 0.360 0.337
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Class 1, the coefficient of the behavior mode was much greater, and the coefficients

related to the behavior type were smaller than those in Class 2. In other words, com-

pared to Class 2, the tendency to take action decreased much more in Class 1. The

estimated coefficients of the three behavior types in Table 3 implied that the exami-

nees in Class 1 were more likely to curse and scold, and less likely to shout

than those in Class 2. The variance estimate of the random intercept in Class 1

(ŝ2
01 = 2.919) was greater than that of Class 2 (ŝ2

02 = 1.588), which suggested that

there was more variability in the general propensity in Class 1 than in Class 2.

As in the MixLLTM, two latent classes of almost equal class size (48.2% in Class

1 and 51.8% in Class 2) were detected in the two-class RWLLTM. Compared to the

one-class RWLLTM, the MixRWLLTM found two classes that differed in the fixed

coefficients related to the behavior type. In Class 1, b̂3 and b̂4 were much smaller

than those in Class 2, which resulted in a tendency to curse and scold easily, but to

hardly shout in Class 1, compared to people in Class 2. This feature was also found

in the classes estimated in the two-class LLTM. However, in the MixRWLLTM, the

fixed effects of the behavior mode were not significantly different in the two classes

(b̂11 = 0.802 and b̂12 = 0.763). Note that the difference between the want behavior

mode and the do behavior mode in Class 1 was a lot greater than in Class 2 in the

MixLLTM (b̂11 = 1.803 and b̂12 = 0.451). In other words, after allowing individual

differences in the effect of the behavior mode in the MixRWLLTM, the difference

between the two classes in the fixed effect of the behavior mode disappeared.

More interestingly, the MixRWLLTM found that the two classes did differ in a

meaningful way with respect to the random effects. In this model, by introducing

a person-specific random effect of the behavior mode, the latent trait was assumed

to follow a mixture of two bivariate normal distributions. In Class 1, the estimated

variance of the intercept (ŝ2
01 = 3.559) was greater than the variance of the random

coefficient of the behavior mode (ŝ2
11 = 2.044), and there was a negative associa-

tion between the two random effects (ŝ011 = 21.509). The estimated correlation

was 20.567, which was significantly different from zero at the 5% level. In Class

2, the variance estimate of the intercept (ŝ2
02 = 2.044) was greater than the var-

iance estimate of the random coefficient (ŝ2
12= 0.794), as in Class 1. However,

unlike Class 1, the estimated covariance of the two random effects was a small

positive value in Class 2 (ŝ012 = 0.025). The estimated correlation 0.02 was not

significantly different from zero at the 5% level. In sum, there was more person-

to-person variability in the random intercept than in the random coefficient in the

two classes, and the two random effects of Class 1 were more heterogeneous than

those of Class 2.

Moreover, the estimated correlations between the two random effects delineated

the difference between the two classes more clearly. Specifically, the negative corre-

lation in Class 1 meant that people who had a higher propensity toward verbal aggres-

sion appeared to have a smaller random coefficient of the behavior mode. Given that

the coefficient of the behavior mode for person p, represented as b12up1, indicates

the difference in the probability of wanting to take verbally aggressive action and of
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actually doing, this result implied that, as the general propensity of verbal aggression

(up0) increased, the random coefficient (up1) decreased; thus the difference between

wanting and doing increased. However, in Class 2, the general propensity of verbal

aggression and the random coefficient of the behavior mode were virtually indepen-

dent of each other. The estimates of the latent variables related to the general propen-

sity and the coefficient of the behavior mode for each class in the MixRWLLTM are

presented in Figure 1.

In addition to estimates of the item parameters, the variances of the latent ability

distributions, and the mixing proportions, examinees in mixture item response mod-

els are also characterized by a parameter that indicates each examinee’s latent group

membership g. In the two-class RWLLTM, the estimated mixing proportions classi-

fied 155 (110 females and 45 males) examinees into Class 1 and 161 (133 females

and 28 males) examinees into Class 2 (see Table 4). In the total sample, the propor-

tions of females and males were 76.9% and 23.1%, respectively, while the propor-

tions in Class 1 were 71% and 29%, respectively, and the proportions in Class 2 were

82.6% and 17.4%. There were more males in Class 1 and more females in Class 2

than in the total sample. The chi-square test of independence indicated that gender

was associated with class membership (p \ 0.05), although the correlation between

gender and class membership was weak (r = 0.138).

Figure 1. Diagram of estimated Ypg by each latent dimension.
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Simulation Study

Data Generation

The simulation design followed the empirical example of the verbal aggression data,

as described previously. The data were generated from the two-class RWLLTM, in

which 1,000 examinees responded to test items designed using the four item proper-

ties, as in the empirical application. The simulation design included two test lengths:

24 items and 48 items. In the 24-item condition, the design matrix used for the verbal

aggression data was assumed. In the case of the 48-item condition, the elements of

the design matrix for the first 24 items were repeated for the last 24 items.

The structure of the verbal aggression data was kept, and the estimates of the two-

class RWLLTM, presented in the fifth column of Table 2, were assumed as the true

values in the data generation. In other words, two latent classes, with class size para-

meters p = (0.482, 0.518), were assumed, and only one coefficient of the first item

design factor was treated as random. The data generating model was a two-class and

two-dimensional model containing one random intercept and one random coefficient.

Thus, the latent traits within a class follow a bivariate normal distribution with class-

specific means and variance-covariance matrix. As noted previously, the means of

the random effects were constrained to zero in each class. The variance-covariance

matrices of the random effects for each class were specified as

Yp1;MVN2
0

0

� �
,

3:559 �1:509

�1:509 1:989

� �� 	
, Yp2;MVN2

0

0

� �
,

2:044 0:025

0:025 0:794

� �� 	
:

ð14Þ

In addition, the two classes depend on the fixed coefficients of the item properties.

The R software (R Core Team, 2013) was used to generate the data and 30 replica-

tions were made for each condition of the two test lengths.

Analysis

Once the data were generated, the two-class RWLLTM, was applied using the

MCMC algorithm. As implemented in the empirical data application, WinBUGS

was run using three chains with 10,000 post-burn-in iterations after discarding

Table 4. Gender Compositions in the Two Latent Classes.

Latent class Gender Total

Female Male

Class 1 110 (71.0%) 45 (29.0%) 155 (49.1%)
Class 2 133 (82.6%) 28 (17.4%) 161 (50.9%)
Total 243 (76.9%) 73 (23.1%) 316
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10,000 burn-in iterations. Convergence of the three chains was determined by the

Gelman and Rubin (1992) method.

The second type of label switching in mixture item response models, which refers

to class switching over replications, was observed in the simulation study described

here. For example, if label switching has occurred, Class 1 in one replication corre-

sponds to Class 2 in the true model; thus, labels of the parameter estimates and group

membership need to be switched, such as from Class 1 to Class 2. Given that we

know the true values of the parameters in the simulation study, the detection of label

switching is possible by simply comparing the item parameter estimates and esti-

mated group membership with the generating values (Cho et al., 2013; Li et al.,

2009). In this simulation study, the covariance of the random effects, of which true

value in Class 1 was negative and larger in absolute value than the one in Class 2,

was used to detect label switching.

Results

After adjusting for label switching, the bias and root mean square error (RMSE) of

the parameters in each class were assessed, and they are reported in Table 5. In gen-

eral, the estimated biases were not substantial under the two test length conditions.

Table 5. Bias and RMSE of Parameters in the Simulation Study.

P = 1,000, I = 24 P = 1,000, I = 48

True Bias RMSE True Bias

Class 1
b01 0.295 0.023 0.076 20.035 0.079
b11 0.802 20.024 0.088 0.008 0.076
b21 20.912 20.004 0.066 20.012 0.037
b31 22.625 20.001 0.080 20.010 0.031
b41 21.039 0.015 0.044 20.001 0.029
s2

01
3.559 0.006 0.083 20.007 0.079

s2
11

2.044 0.003 0.096 20.013 0.087
s011 21.509 20.019 0.090 20.002 0.079
p1 0.482 0.015 0.029 0.021 0.027

Class 2
b02 0.408 20.027 0.086 0.015 0.076
b12 0.736 0.006 0.068 20.004 0.052
b22 21.129 0.017 0.044 0.008 0.034
b32 20.608 20.007 0.043 20.005 0.033
b42 20.542 20.013 0.034 20.005 0.025
s2

02
1.989 20.001 0.097 0.021 0.074

s2
12

0.794 0.016 0.091 0.001 0.080
s012 0.025 0.005 0.083 20.015 0.083
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According to the one-sample t-test, none of these bias estimates was significantly dif-

ferent from zero at the 5% level. These results suggested that the estimates of the gen-

erating model were approximately unbiased. The RMSEs in the 48-item condition

were slightly smaller than those in the 24-item condition.

In addition, recovery of group membership was investigated by comparing the

estimated latent group membership with the generating one, and the percentage of

correct identification was evaluated in each replication. The averages of the percent-

age of correct identification across 30 replications were 86.69% and 93.8% for the

24- and 48-item conditions, respectively, indicating that recovery of group member-

ship increased as the test length increased.

Discussion and Conclusions

In this study, the MixRWLLTM was developed to find multiple subgroups of exami-

nees and to interpret the meaning of latent classes. The existence of subgroups is

identified using latent class analysis or mixture item response modeling; however,

the meaning of latent classes can be specified only after estimated class-specific para-

meters, such as item difficulties and distributions of the latent variables, are inter-

preted and compared across latent classes. This study showed that the MixRWLLTM

can contribute to a better understanding of characteristics of latent classes, by incor-

porating the explanatory aspect of the LLTM and the individual differences of exami-

nees captured by the RWLLTM.

For instance, in the MixRWLLTM, the fixed class-specific coefficients of the item

properties describe how people within each class would respond differently on items

related to the item properties. Because the item property coefficients represent the

fixed effects, interpretations based on these parameters are assumed to be the same

across individuals within the same class, and therefore, describe overall characteris-

tics of latent classes.

Moreover, the MixRWLLTM allows individual differences in the effects of the

item features, as in the RWLLTM. Within each class of the MixRWLLTM, each indi-

vidual has person-specific random effects in the general latent variable the test items

intend to measure and in the coefficients of certain item features. Therefore, individ-

ual differences in these multidimensional aspects and relations across multiple dimen-

sions can be used to disclose key characteristics of latent classes. Furthermore, given

that in the MixLLTM the meaning of latent classes is determined based mainly on

the fixed coefficients of the item properties, we expect that the MixRWLLTM pro-

vides a more comprehensive understanding of how latent classes are defined and why

people across classes respond or behave differently.

The illustrative example, using the verbal aggression data, showed that the

MixRWLLTM yielded much better agreement with the data than the LLTM,

RWLLTM, and MixLLTM did. Additionally, in order to compare performance of

the MixRWLLTM to the mixture Rasch model, the verbal aggression data were also

analyzed using the two-class Rasch model. In the mixture Rasch model, the item
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design features in the verbal aggression data were not considered and the difficulties

of the 24 items were estimated for the two classes. The estimated values of the AIC

and BIC of the mixture Rasch model supported a better fitting of the MixRWLLTM

to the data.2 In other words, by taking into account the design features of items, the

MixRWLLTM provided more correct description of the data.

In addition to improving goodness of fit, the MixRWLLTM revealed an interest-

ing difference across latent classes that was not detected by the other approaches.

The MixRWLLTM identified two distinct classes that differed considerably in rela-

tions between the general propensity toward verbal aggression and the random effect

related to the behavior mode. In general, the results indicated that people in the two

classes were reluctant to actually take verbally aggressive action compared to just

wanting to do so, based on the class-specific fixed coefficients of the behavior mode.

However, in one class, people whose general propensity toward verbal aggression

was higher displayed a greater difference between their tendency to want and to actu-

ally do; thus, they were more reluctant to take action. In sum, the empirical data

study suggested that interpretations of latent classes in the MixRWLLTM can be

improved by considering the multidimensional random effects of respondents, and

more specifically, by using their general latent trait and person-specific effect of an

item feature. In this regard, cognitive theories or features of the items, which direct

the instrument development in the LLTM, also enrich interpretations of classes in

the mixture extensions of the LLTM.

The simulation study indicated that Bayesian estimation using WinBUGS

appeared to recover the parameters and group membership of the MixRWLLTM

fairly well. By increasing the number of test items, recovery of group membership of

the MixRWLLTM increased.

Overall, the results from the empirical and simulation studies suggested that the

MixRWLLTM was able to identify the latent classes of examinees and that the item

design properties could play a crucial role in an improved understanding of character-

istics of latent classes. There are also some possible extensions of the current model.

Here, because the primary goal of the study was to extend the RWLLTM into the

mixture model, we limited ourselves to a simple model by classifying examinees into

two classes. However, it is possible to introduce more than two latent classes (e.g.,

Cho et al., 2013; Frederickx, Tuerlinckx, De Boeck, & Magis, 2010). The WinBUGS

code given in the Appendix B can be easily generalized to deal with more than two

classes. Likewise, more random coefficients of the item properties can be included.

One concern in applications using mixture item response models is that they may

not always detect the true latent classes, but yield spurious latent classes; for exam-

ple, Alexeev, Templin, and Cohen (2011) showed that fitting the mixture Rasch

model to data generated by the 2PL model could produce false classes. In a supple-

mentary simulation, to examine whether the classes detected via the MixRWLLTM

were spurious or not, we generated data from the one-class RWLLTM, and the one-

and two-class RWLLTMs were fitted to the data. Across 15 replications, the esti-

mated BIC values were consistently lower for the one-class RWLLTM, which
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suggested that spurious classes were not found. However, when the one- and two-

class LLTMs were fitted to the data, the two-class LLTM yielded a better fit than the

one-class LLTM across all the replications. Consequently, according to these addi-

tional simulations, the MixRWLLTM developed in the present study did not produce

latent classes when indeed there were none but the MixLLTM did. Thus, when the

multidimensional structure of the random effects is not modeled appropriately (i.e.,

fitting the MixLLTM to the data generated by the RWLLTM), spurious classes can

be produced. Even though these simulations have not shown a problem regarding

false classes for the MixRWLLTM, further studies should be carried out to investi-

gate the possibility of detecting spurious latent classes in the context of multidimen-

sional IRT models.

In the present study, we have successfully applied the Bayesian approach to esti-

mate the MixRWLLTM, using conjugate and mildly informative prior distributions

in order to make the fitting procedures more stable (Bolt et al., 2001, 2002; Cho &

Cohen, 2010). However, given that the specification of the prior distributions could

have substantial impacts on estimation (Gelman, 2006), it is worth investigating more

deeply the use of different prior distributions. In order to examine the sensitivity to

the prior distributions, less informative priors on the item property coefficients such

as N(0, 10) and N(0, 100) were employed in the empirical data analysis. We found

that the use of less informative priors yielded estimates only slightly different from

the ones using the mildly informative prior, which suggested that the results of the

present study were robust to the specification of the prior distributions.

Finally, the MCMC procedures implemented in WinBUGS required substantial

computing time for convergence, which is not uncommon in MCMC estimation. To

enhance the practical use of the proposed model, other software that handles multidi-

mensional mixture models for discrete data (e.g., LatentGold; Vermunt & Magidson,

2005) might be considered for future studies.
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Appendix A

Design Matrix of the Verbal Aggression Data

X =

1 0 1 0:5 0:5
1 0 1 0:5 �1

1 0 1 �1 0:5
1 0 1 0:5 0:5
1 0 1 0:5 �1

1 0 1 �1 0:5
1 0 0 0:5 0:5
1 0 0 0:5 �1

1 0 0 �1 0:5
1 0 0 0:5 0:5
1 0 0 0:5 �1

1 0 0 �1 0:5
1 1 1 0:5 0:5
1 1 1 0:5 �1

1 1 1 �1 0:5
1 1 1 0:5 0:5
1 1 1 0:5 �1

1 1 1 �1 0:5
1 1 0 0:5 0:5
1 1 0 0:5 �1

1 1 0 �1 0:5
1 1 0 0:5 0:5
1 1 0 0:5 �1

1 1 0 �1 0:5

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

Appendix B

WinBUGS Code for the MixLLTM and MixRWLLTM

1. MixLLTM

model{

for (p in 1:P){

for (i in 1:I){

r[p,i]\- resp[p,i]

}

}

for (g in 1:G){

for (i in 1:I){

for (k in 1:K){

b[g,i,k] \- q[i,k]*beta[g,k]

}
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be[g,i] \- sum(b[g,i,])

}

}

# likelihood

for (p in 1:P){

for (i in 1:I){

logit(prob[p,i]) \- theta[p]-be[gmem[p],i]

r[p,i] ~ dbern(prob[p,i])

}

}

# Prior for ability

for (p in 1:P){

theta[p] ~ dnorm(mu[gmem[p]], tau[gmem[p]])

gmem[p] ~ dcat(phi[1:G])

}

mu[1] \- 0

mu[2] \- 0

for (g in 1:G){

tau[g] ~ dgamma(1, 1)

var[g] \- 1/tau[g]

}

# Prior for mixture probabilities

phi[1:G] ~ ddirch(alpha[])

#prior for item difficulty

for (g in 1:G){

for (k in 1:K){

beta[g,k]~dnorm(0,1)

}

}

}

2. MixRWLLTM

model{

for (p in 1:P){

for (i in 1:I){

r[p,i]\- resp[p,i]

}

}

for (g in 1:G){

for (i in 1:I){

for (k in 1:K){

b[g,i,k] \- q[i,k]*beta[g,k]

}
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be[g,i] \- sum(b[g,i,])

}

}

for (p in 1:P){

for (i in 1:I){

for (d in 1:D){

theta2[p,i,d] \- theta1[p,d]*equals(t[i,d],1)

}

theta[p,i] \- sum(theta2[p,i,])

}

}

# likelihood

for (p in 1:P){

for (i in 1:I){

logit(prob[p,i])\- theta[p,i]-be[gmem[p],i]

r[p,i] ~ dbern(prob[p,i])

}

}

# Prior for ability

for (p in 1:P){

theta1[p,1:2] ~ dmnorm(mu[gmem[p],1:2], tau[gmem[p],1:2, 1:2])

gmem[p] ~ dcat(phi[1:G])

}

mu[1,1] \- 0

mu[1,2] \- 0

mu[2,1] \- 0

mu[2,2] \- 0

tau[1, 1:2, 1:2] ~ dwish(R[1:2, 1:2], 2)

tau[2, 1:2, 1:2] ~ dwish(R[1:2, 1:2], 2)

var[1, 1:2, 1:2] \- inverse(tau[1, 1:2, 1:2])

var[2, 1:2, 1:2] \- inverse(tau[2, 1:2, 1:2])

corr1 \- var[1,2,1]/(sqrt(var[1,1,1]*var[1,2,2]))

corr2 \- var[2,2,1]/(sqrt(var[2,1,1]*var[2,2,2]))

# Prior for mixture probabilities

phi[1:G] ~ ddirch(alpha[])

#prior for item difficulty

for (g in 1:G){

for (k in 1:K){

beta[g,k]~dnorm(0,1)

}

}
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Notes

1. The model title, random weights LLTM, is used as it was proposed in Rijmen and De

Boeck (2002); however, in this study, the term coefficient is also used interchangeably

with the identical meaning with weight in Rijmen and De Boeck (2002).

2. The estimated values of the AIC and BIC of the two-class Rasch model were 7077.1 and

7264.9, respectively.
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