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Abstract

The future bioeconomy promises drop-in or performance-advantaged 

biofuels and bioproducts derived from lignocellulosic biomass, substantial 

greenhouse gas (GHG) emissions reductions in sectors with few or no 

alternatives, and increased domestic energy production in countries with 

sufficient biomass resources. Despite the slower than anticipated pace of 

commercializing next-generation biofuels, the research community continues

to make dramatic improvements at every stage of production, from 

feedstock cultivation through conversion to final products. However, the 

interdisciplinary nature of bioenergy research, and the need for cross-

coordination among biologists, chemists, agronomists, and engineers, make 

coordinating and optimizing these strategies challenging. This Perspective 

surveys recent advancements in bioenergy crop engineering, lignocellulosic 

biomass deconstruction and fractionation, catabolism of biomass-derived 

sugars and aromatics, and biological conversion to fuels and products. We 

organize major research approaches into broad categories and comment on 

which strategies offer synergies or trade-offs in the context of four 

approaches to improving the economics and carbon-efficiency of advanced 

biofuels and bioproducts: 1) maximize sugar conversion to a single product, 

2) utilize diverse carbon sources for producing a single product, 3) convert 

lignin to high-value products, and 4) fractionate the hydrolysate to derive 

maximum value from each component. 
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Introduction

Advanced biofuels and bioproducts derived from lignocellulosic biomass offer

the promise of substantial reductions in greenhouse gas (GHG) emissions 

and increased domestic energy production in countries with sufficient 

biomass resources and/or land suitable for cultivating energy crops. Bio-

derived liquid fuels may also be the most viable option for decarbonizing 

sectors that are challenging to electrify, such as heavy-duty freight and 

aviation.1,2 However, the scale-up of second-generation biofuel production 

has fallen far short of expectations.3 In the United States, the Energy 

Independence and Security Act (EISA) of 2007 set an annual blending target 

of 16 billion gallons of cellulosic biofuels by 2022, but 2017 production was 

less than 300 million gallons.4,5 The scientific and technological progress 

made in the last two decades has addressed many of the challenges initially 

facing cellulosic fuels and bioproducts. Furthermore, the confluence of high-

throughput and data-driven advanced technologies with disruptive tools in 

genome editing and genomics has set the research community on a path 

toward rapid discovery and improvement.3,6,7 The goal of this Perspective is 
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to identify some of the most promising efforts and understand how they can 

fit together in integrated feedstock-to-fuel (and products) systems. 

The interdisciplinary nature of bioenergy research, and the need for cross-

coordination among biologists, chemists, agronomists, and engineers, makes

optimizing any specific production system challenging. For example, tailoring

feedstocks for ease of deconstruction could have unintended effects on their 

responses to biotic or abiotic stresses, or on biomass stability during long-

term storage;8,9 many of the most effective solvents for biomass 

pretreatment are incompatible with enzymes and microbial hosts required 

for downstream saccharification and bioconversion;10 and microbes capable 

of producing advanced fuels or products at high yields often do not natively 

utilize pentose sugars present in hydrolysates.11,12 Conversely, consolidated 

approaches aimed at decreasing costs, energy demand, and material inputs 

for biomass deconstruction also lend themselves to engineered hosts 

capable of utilizing a wide range of sugars and aromatics downstream.13,14 

Biological conversion has the inherent advantage of manufacturing 

compounds that are unobtainable using solely chemical methods - leading to

new categories of fuels and bioproducts.15 In short, some advances at the 

unit process or sub-system level may be more compatible than others, while 

some combinations may offer unexpected synergies. This Perspective 

encompasses published research on bioenergy crop engineering, 

lignocellulosic biomass deconstruction and fractionation, catabolism of 
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biomass-derived sugars and aromatics, and biological conversion to fuels 

and products. We comment on which strategies may offer synergies or trade-

offs based on four general strategies for improving the economics and 

carbon-efficiency of advanced biofuels and bioproducts: 1) maximize sugar 

conversion to a single product, 2) utilize diverse carbon sources for 

producing a single product, 3) convert lignin to high-value products, and 4) 

fractionate the hydrolysate to derive maximum value from each component. 

Plant engineering for cell wall optimization and in-planta production

Delivered feedstock cost and the composition of biomass are some of the 

driving factors in the economics of the bioenergy and bioproducts. Cost is 

primarily driven by crop yield, a simple metric that is derived from many 

interlinking and complex underlying agronomic traits. The most desirable 

composition varies depending on how the biomass is handled and ultimately 

converted. For example, a process that only utilizes glucose will be best 

suited to feedstocks with minimal lignin and hemicellulose. In addition to 

natural variation in lignin, cellulose, and hemicellulose content, the presence 

of inhibitory compounds in hydrolysates and the resulting impacts on 

microbial conversion will vary. For example, Du et al.16 explored different 

combinations of feedstocks and pretreatment and identified 40 potentially 

inhibitory compounds present in the resulting hydrolysates. Some 

engineering efforts have focused on reducing the presence of these 

otherwise naturally occurring inhibitors, such as cell wall-bound ferulic acid.17
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Feedstock engineering can deliver biomass tailored to the end use, which 

can in turn have a dramatic impact on product yields, costs, and net 

environmental impacts. This requires a detailed knowledge of plant cell wall 

biosynthesis and carbon metabolism. This paper focuses on dedicated 

biomass crops, although similar strategies could be used to alter crop 

residue biomass if they do not negatively impact the yield and quality of 

valuable primary products such as corn grain.

Biomass is primarily composed of the secondary cell wall, which is laid down 

on the inside of the primary cell wall at the cessation of cell growth. It 

contains polysaccharides, which are a mixture of six-carbon sugars (hexoses)

and five-carbon sugars (pentoses), and lignin, a complex cross-linked 

polymer constructed from aromatic monomers (Figure 1).18 The exact 

composition of sugars, linkages, and phenolics is dependent on plant 

species, tissue type, as well as environmental factors. Many different 

strategies for biomass improvement have been proposed. Some, such as 

increasing the quantity of hexoses, would have broad applicability, given the 

far wider range of host microbes that natively utilize glucose relative to 

pentoses. Others, such as producing soluble co-products, may require highly 

tailored downstream processing and separations.

6
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Figure 1. Major components of the grass secondary cell wall. (A) Example 

polysaccharide structures (B) and lignin monomers. (C) An example lignin 

fragment with p-coumarate acylation. Glucose is an example of six-carbon 

sugar or hexose while xylose is an example of a five-carbon sugar or 

pentose. 

Redesigning Polysaccharides

Most industrially used microbes preferentially or exclusively use hexose over 

pentose sugars.19 Increasing the proportion of hexose sugars in the non-

starch plant biomass fraction (i.e. the cell wall) is therefore a popular 

strategy, and can be achieved by many routes. The majority of hexose in the

plant cell wall comes from the glucose in cellulose, which primarily forms 

crystalline microfibrils that are recalcitrant to enzymatic degradation. The 

7

http://f1000.com/work/citation?ids=2070574&pre=&suf=&sa=0


remaining cellulose is present in an amorphous form that is more readily 

depolymerized by enzymes. Efforts to increase the cellulose content in the 

commonly-studied woody feedstock poplar by overexpressing cellulose 

synthase genes have yet to be successful, as it resulted in silencing of the 

endogenous cellulose synthase genes and a massive decrease in cellulose 

content.20 However, introduction of a mutated form of one of the cellulose 

synthase genes into another model plant, tobacco, increased the quantity of 

amorphous cellulose, which translated to a 40-60% increase in 

saccharification yields.21

A more promising approach has been to increase the synthesis of non-

cellulosic hexose-containing polysaccharides: pectins and hemicelluloses.22 

The enzyme that synthesizes mixed linkage glucan, a soluble polymer of 

glucose found in grass cell walls, has been introduced in Arabidopsis 

(another model plant), producing a fourfold increase in non-cellulosic 

glucose, and a 42% increase in saccharification yield. Importantly, this 

increase was only achieved by expressing the enzyme under a senescence-

related promoter, which avoided developmental defects observed when 

introducing mixed linkage glucan production in developing cells. Of course, 

these temporal engineering strategies will have implications for agronomic 

practices. This approach would require pre-harvest senescence, which is not 

always practical for all species across all possible locations. 
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A second strategy to enhance the hexose content was to increase the 

quantity of pectic galactan, which is made from the hexose galactose, and is 

usually a component of just the primary cell wall. Initial attempts to increase 

the quantity of galactan by overexpressing the galactan synthase had 

limited success.23 However, by stacking the galactan synthase gene with 

other genes in the biosynthetic pathway, the galactose content was 

increased from ~25 ug/mg biomass to more than 100 ug/mg stem 

biomass.24,25

Strategies to increase the quantity of hexoses combined with a reduction in 

pentoses quantity can be particularly attractive. Although pentose sugars 

can be easier to liberate at near-theoretical yields in some pretreatment 

configurations and more difficult in others,13,26 they are still a fairly universal 

challenge for microbial conversion, given that most promising hosts either do

not natively utilize pentoses or preferentially utilize glucose.19 Additionally, a 

non-negligible fraction of xylose is converted to furfural during common 

pretreatments such as with dilute-acid, which inhibit downstream microbial 

conversion.26,27 The primary approach for decreasing pentoses is to decrease 

the quantity of the hemicellulose xylan, the dominant polysaccharide after 

cellulose.27 Constitutive reduction in xylan has a severe effect on plant 

growth and development, primarily due to weakening and then collapse of 

the plant vasculature.28,29 However, this penalty can be avoided by the use of

cell-specific promoters, and targeting the fiber cells.25,30–32 In Arabidopsis, this
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resulted in a 20% reduction in xylan content, while maintaining normal 

growth.

Modifying lignin monomeric composition and structure 

Lignin typically makes up 10-25%, and up to as much as 40%, of plant-based

biomass.33,34 This portion of the plant inhibits cell wall deconstruction and the

lignin itself remains underutilized in subsequent biological conversion due to 

the heterogeneous nature of its aromatic/monomeric components. Most 

system-wide studies assume lignin is combusted to produce heat and 

electricity.27,35 Valorizing lignin streams has remained a long-standing 

challenge for the pulp and paper industry, and thermochemical routes to 

high-value products have proven similarly challenging.34 Given this context, 

plant engineering strategies can focus on reducing lignin content, achieving 

homogeneous lignin, or some combination of the two. 

Homogenizing lignin monomeric composition is an appealing approach to 

achieve higher yields of aromatic monomers and simpler product mixtures 

after lignin depolymerization. Unusual catechyl lignin (C-lignin) present in the

seed coats of vanilla36,37 and various members of the Cactaceae36,37 is an 

example of a lignin monomer that can be valorized. Such lignin, which 

features one single type of monomer and only β–O–4 interunit cleavable 

bonds, has been exploited to achieve high product selectivity using catalytic 

hydrogenolysis with specific catalyst and solvent combinations.38 These 
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observations indicate that engineering lignin in bioenergy crops for the 

replacement of conventional G and S units with C units could represent a 

promising approach (Figure 1B). The engineering of lignin monomeric 

composition has been achieved in poplar, resulting in lignin containing up to 

98% of S units and ~90% of β–O–4 linkages. Extraction of this S-rich lignin 

under acidic conditions, with concomitant stabilization with formaldehyde to 

prevent condensation reactions, allowed a high monomer yield (78%) under 

hydrogenolytic conditions.39 Other engineering strategies in the model plant 

Arabidopsis led to important reductions in lignin content and enrichment of H

units that resulted in improved biomass saccharification efficiencies,40,41 and 

in some cases, allowed significant reductions of cellulase loadings (up 5 fold) 

to achieve sugar yields similar to those obtained with control non-engineered

plants.42 Nevertheless, these approaches have not yet been validated in 

bioenergy crops and implemented without compromising agronomic 

performance. 

Alternatively, rather than modifying lignin content or its ratio of conventional

G and S units, lignin structure has been successfully altered by enhancing 

the incorporation of exotic monomers that initiate lignin chain elongation 

(e.g. syringaldehyde, 4-hydroxybenzoic acid) or introduce labile linkages 

within the polymer (e.g., coniferyl ferulate, curcumin), resulting in increased 

biomass saccharification efficiencies. Such approaches have been 

demonstrated both in Arabidopsis and poplar.43–45 
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Increasing lignin value via addition of valuable and readily-

cleavable units

p-Coumarate is a lignin monomer precursor that can decorate lignin through 

ester bonds (Figure 1C). For example, grass lignins can contain up to 10% to 

15% by weight of p-coumarate esters.46 p-Coumarate is particularly 

interesting because certain microbial hosts have the capacity to use it as a 

growth substrate. For highly reduced advanced biofuel targets, eliminating 

the need to use sugars as a carbon source can boost yields substantially. For

example, using glucose alone to produce limonene (an attractive jet fuel 

precursor: C10H16) has a stoichiometric theoretical yield of 0.32 g limonene 

per g glucose.47 If utilization of p-coumarate means that glucose is no longer 

needed as a source of reducing equivalents as well as carbon, the theoretical

limonene yield increases to 0.45 g limonene/g glucose, and this increase in 

potential yield can dramatically reduce production costs.48 A combination of 

complementary engineering approaches could be employed to enrich lignin 

with p-coumarate esters. Increasing carbon flux through the shikimate 

pathway by expressing a bacterial feedback-insensitive variant of the first 

enzyme in the pathway (3-deoxy-D-arabinoheptulosonate 7-phosphate 

synthase) was shown to increase 3-5 fold the amount of soluble p-

coumarate-derived metabolites in Arabidopsis.49 Moreover, expression of 

grass-specific coumaroyl-CoA:monolignol transferase - the enzyme that 

attaches p-coumarate moieties onto lignin monomers- resulted in an 
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increase of p-coumarate linked to lignin in Arabidopsis (~8% dry weight 

[DW]) and poplar (~2% DW).50,51 Finally, the recent characterization of a 

plant-specific tyrosine ammonia-lyase, an enzyme that converts tyrosine into

p-coumarate, represents another potential engineering target for increasing 

p-coumarate.52 Simultaneously overexpressing these enzymes via a gene-

stacking approach could enhance further increase the amount of p-

coumarate ester-linked to lignin in bioenergy crops.

Cell wall modification of pith tissue

Minimizing the moisture content of biomass at harvest is crucial for reducing 

storage losses and transportation costs. This is true for bioenergy 

applications, and any other industry that requires long-term storage of 

biomass without an ensiling process (e.g. fiber production). For domestic 

use, industry experts note that a target of 20% moisture or lower is sufficient

to ensure stability and further dry-down, while biomass meant for 

international export, biomass is compressed to reach closer to 15% moisture 

content.53 Crops that senesce can reach these targets, although it is not 

always practical to wait for senescence before harvest and some feedstocks 

will not senesce, depending on the specific crop and location. Farmers will go

to great lengths to ensure that biomass meant for long-term storage remains

as low-moisture as possible, such as harvesting early to avoid the rainy 

season, even at the expense of yield. This challenge is particularly prevalent 

for sorghum, as it is well-known that sorghum stalks do not dry down well in 
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the field. Parenchyma cells in the pith are responsible for the storage of 

water in stems. Genetic engineering of these cells represents a promising 

approach to increase air porosity or hydrophobicity of pith tissues. For 

example, the D gene in sorghum, which was recently shown to encode for a 

transcription factor that induces programmed death of parenchyma cells, 

represent an interesting target.54 A functional allele of the D gene results in 

dead, air-filled, pith parenchyma cells that reduce stem water content 

whereas non-functional alleles result in sorghum varieties that produce juicy 

stems. As another approach, identification and disruption (e.g., by gene-

editing) of transcription factors that act as negative regulators of secondary 

cell wall deposition in the pith could be considered to increase lignification 

and thereby hydrophobicity of this tissue.55,56  

Improving agronomic traits

In addition to the biomass modification approaches discussed above, 

including lignin engineering strategies that potentially benefit both forage 

and bioenergy sectors,1,2 there is a wealth of agriculturally-relevant traits 

which, while not all specific to the bioenergy market, would be useful in 

ensuring consistently high-yielding, resilient crops. Since many proposed 

dedicated bioenergy crops are only partially domesticated, there is 

substantial room for improvement in many cases. These traits include 

drought tolerance, pathogen and pest resistance, and reduced lodging 

(collapse of the stem due to a plant’s inability to support its own weight). 
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Recent research has also revealed a promising avenue for increasing 

photosynthetic efficiency in C3 crops: introduction of a synthetic pathway to 

metabolize the products of photorespiration increased yield in field-grown 

tobacco by as much as 40%.57 

Tolerance to abiotic stresses, particularly drought, is likely to become 

increasingly important as rainfall becomes less predictable58,59 and 

groundwater resources for agriculture become increasingly restricted.60 

Drought tolerance is a complex trait.61 Much progress has been made on 

understanding the molecular/genetic components.62 Probabilistic methods 

have been proposed for assessing the best combination of alleles depending 

on the drought scenarios,63 as well as combinations of agronomic practices 

and genetics.64 This is important, given that the ultimate impact of 

agronomically-relevant traits on yield and resilience cannot necessarily be 

evaluated while holding farming practices constant; farmers are likely to 

adapt their practices based on the needs of the crops in the specific 

environment where they are grown. Adoption of different agronomic 

practices may also require different physiologies to be developed in the elite 

cultivars, such as canopy shape and root architecture. It should also be 

noted that biomass engineering, at least in one case, has unexpectedly 

increased drought tolerance.30 Drought can also alter biomass composition, 

for example decreasing lignin and structural glycans, while increasing ash 
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and extractives.59,65 Biomass grown in drought conditions can also have 

unexpectedly negative effects on microbial growth and production.66

Bioenergy crops as production platforms for chemicals

In-planta production of valuable chemicals represents an appealing option to 

increase the value of biomass feedstocks and, in some cases, the overall 

titers of target compounds being produced biologically from other plant-

derived components. Selecting targets that are simple to extract, are not 

metabolized by the microbial hosts (unless desired), and do not meaningfully

increase the complexity of downstream product recovery is crucial. These 

chemicals produced in-planta can be metabolic intermediates from particular

pathways implemented in microbial hosts or the target compound itself. The 

efficiency of in-planta production, assuming carbon is being diverted from 

polysaccharides or other biomass components, must also be weighed against

the efficiency of producing the target microbially. This presents an 

interesting set of tradeoffs that have so far not been adequately addressed 

in the literature. 

One promising example of a platform chemical is 4-hydroxybenzoic acid 

(4HBA), which is an important intermediate for several bioproducts with 

biotechnological applications.67 Some engineering approaches have already 

proven to be successful for enhancing dramatically 4HBA content in plants,68 

and their translation to bioenergy crops could enable the manufacturing of 

4HBA-based bioproducts. Protocatechuate (PCA) is another example of 
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value-added chemical that can be overproduced in plants for downstream 

microbial conversion into important compounds such as muconic acid.69 A 

techno-economic analysis based on a sweet sorghum feedstock showed that 

in-planta production of PCA (i.e., ~10% of soluble sugars) for ultimate 

bioconversion into muconic acid, when combined with ethanol production 

from sugars, could provide a net reduction in the minimum selling price of 

ethanol.70 Moreover, engineering strategies for the phytoproduction of 

muconic acid have been recently reported in the model plant Arabidopsis. 

Although achieved titers in plant biomass were low (~0.1% DW in stems), 

optimization of the proposed pathways in feedstock crops currently used for 

microbial production of muconic acid could enhance overall titers considering

that muconic acid is readily extractable from lignocellulosic biomass via 

conventional pretreatment methods.71 Lastly, a metabolic engineering 

strategy for overproduction of triglycerol, which can be used for biodiesel 

production, was recently achieved in vegetative tissues of sugarcane (4.7% 

DW in leaves).72 It should be noted that production of bioproducts in-planta 

can have negative effects on plant growth, such as the 

polyhydroxyalkanoates (PHAs), a class of bioplastics.73,74 Synthetic biology 

strategies, such as cell-, tissue- or life-stage specific expression are a 

promising approach to avoid these effects, as demonstrated for muconic acid

production.71

Pretreatment and saccharification of lignocellulosic biomass 
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Biomass  pretreatment  is  a  crucial  step  in  the  lignocellulosic  conversion

process. The overall function of pretreatment is to increase the accessibility

of biomass-deconstructing enzymes to hemicellulose and cellulose to enable

efficient depolymerization into fermentable sugars (Figure 2).75,76 Historically,

pretreatment has been one of the most expensive unit operations within the

biomass  conversion  regime  and,  over  the  last  two  decades,  many

pretreatment techniques have been developed for biomass depolymerization

and  fractionation.77,78 Despite  technological  advancements  that  have

improved  yield  and  overall  economics,  there  is  still  much  to  be  done  to

maximize process efficiency and reduce costs. There are several potential

focus areas for improving these metrics, including maximizing sugar yields,

valorizing lignin, and reducing the number of unit operations.

Figure 2. Schematic of pretreatment impact on lignocellulosic biomass   

Pretreatment  methods  can  be  classified  into  three  major  categories:

physical,  chemical,  and  biological.  In  addition,  two or  more  pretreatment

18

http://f1000.com/work/citation?ids=1974758,1361632&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=5249667,6319846&pre=&pre=&suf=&suf=&sa=0,0


techniques  from  the  same  or  different  categories  can  be  combined  to

generate a wide variety of different methodologies.79 The real challenge is to

determine which of these many strategies provides effective, efficient, and

economical  biomass depolymerization.  An ideal pretreatment strategy can

be  characterized  by  several  salient  features:  minimizing  energy  input,

reducing  biomass  losses,  having  high  biocompatibility  with  enzymes  and

microbes used downstream, and reducing biorefinery costs.80,81 In addition,

several other factors should be considered, like whether the process includes

the  possibility  of  lignin  valorization,  the  ease  of  solvent  recycling  where

required, ease of catalyst reuse, and subsequent downstream processing.34,82

While  developing  a  pretreatment  technology,  it  is  necessary  to

comprehensively consider all the aforementioned criteria.

Of the three main pretreatment categories, chemical pretreatment has been

investigated the most.83–85 Chemical pretreatments have been successfully

implemented for many years in the pulp and paper industry for production of

paper by delignification of cellulosic materials, and that work has laid the

foundation  for  investigating  this  approach  for  developing  lignocellulose

conversion  technologies.77,86 The  most  common  chemical  pretreatment

methods that have been investigated are based on exposure of biomass to

alkali, acid, ammonia, organic solvents (organosolv),87–89 and ionic liquids.89,90

Historically,  the primary  goal  of  the majority  of  these methods has been

improving  cellulose  depolymerization  by  removing  lignin  and/or
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hemicellulose or reducing the degree of cellulose polymerization/crystallinity.

However, given the biomass feedstocks currently available, any economically

viable bioenergy and/or bioproduct route must make use of hemicellulose

and lignin. Therefore, pretreatment research needs to focus on methods that

enable complete hexose and pentose conversion, as well as provide a route

to lignin valorization.

Process integration of pretreatment with saccharification and 

fermentation 

Driving down the cost of biomass deconstruction requires a holistic approach

that takes into account the intended downstream conversion. Many, if not 

most, chemical pretreatment methods involve chemicals or reaction 

conditions (temperature, pH) that are incompatible with enzymes and/or host

microbes used downstream. Depending on the value or price of the 

pretreatment chemical, it may also be necessary to achieve high rates of 

recovery and recycling.10 Separation and washing of pretreated biomass can 

reduce toxicity to downstream unit operations, and sequential pretreatment, 

saccharification, and bioconversion enables the use of highly optimized, 

commercially-available enzymes and strains, maximizing the efficiency of 

each unit operation. However, these benefits are counterbalanced by 

increases in process complexity, carbon lost to waste streams, and an overall

reduction in process intensity.91 Due to these inherent tradeoffs, continued 

development of efficient, resilient, and biocompatible deconstruction 
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technologies, paired with development and testing of more robust microbial 

hosts, is required to fully unlock the benefits of process integration.

Elimination of solid-liquid separation following both pretreatment and 

saccharification enables streamlined processing, with no intermediate losses 

and all separations consolidated downstream of fermentation. Successful 

implementation of separation-free bioprocessing requires a biocompatible 

pretreatment strategy, coupled with robust enzymes and host strains 

capable of withstanding toxicity introduced during biomass pretreatment. For

ionic liquid-based pretreatment, elimination of these upstream separations 

creates substantial techno-economic benefits, potentially reducing total 

production cost by 40% due to reductions in water-washing of the pretreated

biomass.92 To fully leverage the benefits of an integrated process, significant 

improvements have been made in separation free “one-pot” processing 

using bio-derived ionic (“bionic”) liquids,10,92–95 ionic liquid-tolerant enzyme 

cocktails,96 and ionic liquid-tolerant strains.97,98 A number of studies have now

demonstrated successful bioconversion of whole slurry hydrolysate following 

saccharification, including conversion of ionic liquid-pretreated13 and AFEX-

pretreated99,100 biomass.

Elimination of separations between saccharification and bioconversion 

creates opportunities to fully consolidate these two operations, through 

configurations such as simultaneous saccharification-fermentation (SSF) and 
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consolidated bioprocessing (CBP). These unit operations operate at ambient 

pressure over similar time spans (1-5 days), temperatures (30-50℃), and pH 

regimes (pH 4-5). Due to the long residence times required in each step, 

coupling these operations is a compelling way to both simplify and intensify 

the conversion process. As compared to sequential, separation-free 

processing, SSF and CBP both require full compatibility between 

saccharification and fermentation. 

If commercial enzymes are used to saccharify lignocellulose, SSF can be 

implemented and the resulting lignocellulosic hydrolysate that then be 

converted to biofuels and bioproducts by a wide variety of organisms 

capable of consuming these carbon sources.93,101–104  However, the use of 

commercial enzymes can add significantly to the overall cost within a 

biorefinery.105 To avoid these costs, CBP can be performed by organisms like 

Clostridium thermocellum that can deconstruct and convert pretreated 

lignocellulose without the aid of exogenous enzymes.106–108 Size reduction 

techniques have also been tested and yielded promising results in the 

context of CBP, such as in-situ ball milling.109 While CBP promises significant 

reductions in enzyme cost, the technology is currently limited by reduced 

rates of saccharification, and by the relatively small number of well-

characterized organisms with the demonstrated ability to directly 

deconstruct lignocellulose. This factor limits CBP to process conditions 

compatible with these organisms (e.g. anaerobic), and limits the range of 

22

http://f1000.com/work/citation?ids=4058260&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4069364,6536716,5332688&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=4069199&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3929198,1814723,4021327,3994066,4672513&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0


bioproducts that can be produced leveraging their metabolism.108,110 

Therefore, the decision to implement SSF or CBP is highly dependent on the 

desired process and bioproduct.

Pretreatment process intensification

Primary methods for process intensification in the biomass to biofuels 

pathway include process consolidation (as described above) and 

improvements in the volumetric throughput of biomass. Increasing solids 

loading in biomass deconstruction enables increased sugar concentrations in

the resulting hydrolysate, translating into higher volumetric productivity, 

higher product titers, and reduced separation and purification costs.10,13,111,112 

Maximum biomass loading is dictated by rheological challenges and by the 

osmotic tolerance of the biocatalyst. Osmotic inhibition triggered by high 

sugar concentrations can be overcome through use of osmotically tolerant 

strains,113,114 or through implementation of an SSF process configuration in 

which sugar consumption is matched to the rate of saccharification. 

Rheological challenges during saccharification can be addressed via fed-

batch configurations, in which pretreated biomass is introduced gradually to 

the saccharification vessel.10 Moving forward, a significant opportunity exists 

for synergistic advances coupling feedstock engineering, enzyme 

engineering, and high-solids biomass deconstruction. In a fed-batch 

saccharification configuration, maximum hexose and pentose concentrations

are limited by the accumulation of insoluble recalcitrant biomass composed 

of residual lignin, hemicellulose, and cellulose. Continued reductions in or 
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modifications of the lignin content of energy crops, coupled with 

improvements in saccharification efficiency, will serve to drive down the 

fraction of recalcitrant biomass, enabling a synergistic increase in biomass 

loading, sugar concentrations and ultimately in bioproduct titers.

Catabolism and conversion

As  the  progress  in  renewable  biomass  deconstruction  and  processing

produces  cleaner  streams  of  a  range  of  sugars  and  lignin-derived

intermediates,  the  downstream  bioconversion  must  keep  pace  with  this

evolving  source  of  carbon  and  energy.  An  economically-viable  process

requires that microbial systems be capable of utilizing all components of this

feedstock as well as convert it efficiently to the desired final product. Uptake

and metabolism of the carbon intermediates released by the deconstruction

process can be approached using several strategies that result in different

benefits and tradeoffs. Based on the microbial host selected or the metabolic

engineering undertaken, a range of carbon intermediates can be catabolized,

co-catabolized, and a large number of final compounds can be produced. 

Catabolism of plant-derived substrates 

Bioconversion of plant-derived substrates have focused on the conversion of

glucose, a hexose sugar, through central metabolism. The classical host for

glucose conversion is Saccharomyces cerevisiae, which can be cultivated in

sugar solutions that are >100 g/L.115 Zymomonas mobilis, a bacterium which

has been isolated from alcoholic beverages, grows at comparable levels of
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sugar to S. cerevisiae.116 A key limitation of these hosts for bioconversion of

plant-derived  biomass  is  their  inability  to  natively  metabolize  xylose,  a

pentose  sugar,  therefore  substantial  efforts  have  been  undertaken  to

engineer S. cerevisiae and Z. mobilis to convert xylose through the oxidative

pentose phosphate pathway.117,118 E. coli, which is widely used for metabolic

engineering, can grow on both glucose and xylose (though natively with a

preference  to  glucose)  but  tolerates  lower  sugar  concentrations  than  S.

cerevisiae and Z. mobilis.119 Because of the impact this lower tolerance has

on  the  overall  biorefinery  economics,  forward-looking  technoeconomic

modeling  efforts  tend to  favor  other  hosts;  for  example,  the  widely-cited

report  by  the  National  Renewable  Energy  Laboratory  (NREL)  assumes  a

glucose and xylose-utilizing Z. mobilis strain.27

Recently, strategies have been developed to expand the range of substrates

from plant biomass beyond sugars derived from plant polysaccharides. This

is  important,  particularly  given  the  recognition  that  lignin-derived

compounds must be diverted to higher-value application than combustion for

on-site heat and electricity generation. Some soil bacteria harbor pathways

to  convert  lignin-related  monoaromatics  (p-coumarate,  ferulate,  vanillate,

hydroxybenzoate)  to  central  metabolic  intermediates.120 These

monoaromatics  are  funneled  through  peripheral  pathways  to  the  beta-

ketoadipate  pathway,  which  converts  the  monoaromatics  through
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protocatechuate to acetyl-CoA and succinyl-CoA, where they enter the TCA

cycle.

Strategies  have  been  developed  to  depolymerize  lignin  and  convert  the

resulting monoaromatics (such as p-coumarate) to polyhydroxyalkonaotes in

Pseudomonas putida  and triacylglycerides in  Rhodoccocus opacus.14,121 This

catabolic process in P. putida, which proceeds through the beta-ketoadipate

pathway,  has  also  been  engineered  to  convert  monoaromatics  to  cis,cis-

muconic  acid,  which is  a precursor  to adipic acid,  a widely used polymer

precursor.122 An  engineered  Novosphingobium  aromaticivorans DSM12444

converts  plant-derived  aromatic  compounds  into  2-pyrone-4,6-dicarboxylic

acid, which is a potential polyester precursor.123 Other microbial hosts with

innate  ability  to  catabolize  broader  ranges  of  plan  biomass  derived

components,  such  as  the  fungal  host  Rhodosporidium  toruloides104 and

Corynebacterium glutamicum124 provide promosing host for the production of

biofuels.  Further progress in the conversion of aromatics from biomass to

biofuels  and  bioproducts  will  benefit  from engineered  lignin  that  can  be

depolymerized through either chemical or biological means to a defined set

of aromatics that can be converted through bacterial pathway. Methods have

also  been  developed  to  convert  plant-derived  proteins  to  products  by

engineering amino acid catabolic pathways in E. coli.125,126 
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Future metabolic engineering strategies for the catabolism of lignocellulose

may  be  enhanced  by  engineering  metabolic  pathways  to  maximize  the

conversion of carbon in the plant to products. A commonly used strategy for

improving  the  carbon  conversion  of  glucose  metabolism  is  to  express

bifidobacterial  phosphoketolase,  which  shunts  glucose  metabolism  by

generating acetyl phosphate from pentose phosphate pathway intermediates

(fructose-6-phosphate,  xylulose-5-phosphate).127,128 Acetyl  phosphate  is

converted  to  acetyl-CoA  by  phosphoacetyltransferase.  The  bifidobacterial

shunt bypasses central metabolism and lowers carbon loss as CO2 from the

conversion  of  pyruvate  to  acetyl-CoA  during  conventional  glycolysis.

Application  of  the  bifodobacterial  shunt  in  glycoclysis  could  lead  to  83%

conservation of carbon from glucose, in comparison to a 66% conversion for

intermediates that proceed through decarboxylation catalyzed by pyruvate

dehydrogenase. An additional strategy segregates glucose metabolism from

the  metabolism  of  other  plant  derived  products.  In  this  method,

nonphosphorylative metabolisms for pentose sugars (xylose, arabinose) and

galacturonate,  derived  from  pectin,  were  engineered  into  E.  coli.  These

pathways enabled high titer and yield production of 1,4-butanediol,129 which

is  derived  from  central  TCA  (tricarboxylic  acid)  cycle  intermediates.  The

bioproduct 1,4-butanediol was produced from xylose (12.0 g/L, 43% yield),

arabinose (15.6 g/L, 37% yield) and galacturonate (16.5 g/L, 70% yield). In

this  scenario,  glucose  is  used  for  cell  growth  while  the  other  plant

components are used for bioproduct formation. Although the best approach
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may vary depending on hydrolysate composition and target molecules, new

conversion  strategies  that  combine  sugar  and  aromatic  metabolism  will

improve the carbon efficiency of biomass conversion and lower the cost of

biofuel and bioproduct formation. 

Conversion to bio-based fuels and products

Due to several large projects aiming to generate bulk platform chemicals and

fuels via bioconversion (e.g. the Bioenergy Research Centers in the United

States,  FAPESP  Bioenergy  Research  Program in  Brazil,  and  the  European

Technology and Innovation Platform Bioenergy),  the last decade has seen

significant improvements in the ability to engineer a range of microbial hosts

to generate a broad set of compounds.127,130,131 These compounds represent

many  different  biosynthetic  routes  and  underscore  the  potential  of

converting  biomass-derived  carbon  sources  into  final  products.  However,

while most of these proof-of-concept systems are reported with at least low

grams per liter titers, they have not yet been examined for performance in

terms of rate or yield, both of which are important for the economics and life-

cycle  greenhouse  gas  footprints.  Determination  of  yields  requires  use  of

defined media where the mass balance can be calculated and determination

of  rate requires  fed-batch or  continuous  cultivation  that  are  also  not  the

norm  at  the  research  laboratory  development  level.  This  leaves  a

considerable  gap  between  results  reported  in  the  literature  and  any

quantitative  understanding  of  the  performance,  and  long-term  economic
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viability,  of  these systems.  A  few representative/select  examples  of  both

fuels and platform chemicals that have been reported with some relevant

performance data are listed in Table 1. 

Even in cases where relevant performance data is reported, most pertinent

examples of conversion to advanced biofuel and bioproduct pertain only to

the  hexose  sugar,  glucose.  Many  efforts  have  focused  exclusively  on

optimising the use of cellulosic glucose for the production of ethanol 106 and

other advanced biofuels.15 However,  as is evident from the discussions in

previous  sections,  deconstructed  plant  biomass  will  contain  a  far  more

diverse range of compounds, including other hexose sugars (e.g galactose),

pentose sugars (e.g xylose), and lignin-derived aromatics. The use of xylose

and other intermediates have been demonstrated but are not as advanced

as the processes using glucose. Xylose utilization is the most obvious target

after glucose, as it is typically the second-most abundant single component

in herbaceous biomass hydrolysates. 

Recent  examples of  developing fungal  systems for  conversion of  pentose

sugars to biofuels include coupled use of cellulosic acetic acid and xylose in

an  engineered  S. cerevisiae  for  bioconversion  to  ethanol.132 Alternative

approaches  have used  fungal  hosts  that  are  natively  capable  of  utilizing

mixed  carbon  sources,  such  as  the  use  of  Rhodosporidium  toruloides to

produce  the  jet-fuel  precursor  bisabolene  at  2.2  g/  L  from  sorghum
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hydrolysate in a 20-L one-pot process.13 Equivalent approaches in bacterial

systems involve engineering the ability to utilize xylose in  P.putida, a host

with  other  desirable  phenotypes133 or  in  Clostridium  acetobutylicum for

acetone/butanol/ethanol  (ABE)  production  from  xylose.134 As  discussed

previously,  some feedstock engineering strategies to increase the ratio of

hexose  to  pentose  sugars  may  increase  galactose  rather  than  glucose.

Though some examples exist,135 other hexose sugars such as galactose are

not  the  preferred  carbon  source  in  laboratory-stage  development.  These

examples provide the foundation for future conversions from mixed carbon

sources, and highlight the need for further work.

Some of the most prominent progress in developing biological systems for

bioconversion has been in the production of  non-natural  final  products or

natural products at levels that are not made naturally. Here, for biofuels and

platforms  chemicals,  targets  have  ranged  from  aviation  fuels48,136 and

gasoline  targets137 to  polymer  precursors138 and  other  bulk  chemicals.139

Several recent reviews focus the range of compounds that can be made via

microbial conversion.140 In addition to the development of the biosynthetic

pathways,  optimization  of  the ancillary  metabolism and the host are also

critical  and  can  be  used  to  maximize  the  conversion  yield.  Interesting

examples  of  pathway  developments  include  the  exploration  of  multiple

pathways to make the same final product,106 using metabolic bypasses to

reduce cofactor  using steps127 or  modifying steps that generate inhibitory
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intermediates.141 Improving the tolerance of a microbial system to precursor

or final compounds is an important aspect,142 as are demonstrations for titers

at higher scales and in bioreactors.13,143,144 Non-targeted methods involve the

use of lab evolution145 and high throughput methods to seek optimal pathway

architectures.146 

Industrial  teams  have  achieved  successful  implementation  of  microbially

produced  bulk  products  such  as  ethanol  (Braskem,  Praj),  1,3-propanediol

(Dupont), lactic acid (Cargill), trans-β-Farnesene (Amyris), and 1,4 butanediol

(Genomatica). In this review we model the potential of the next generation of

commodity chemicals and fuels that show similar promise. It is also worth

mentioning that the renewed vigor of the biotech sector brought about by

data driven sciences, in turn facilitated by high throughput synthetic biology

(Zymergen,  Ginko  Bioworks,  Riffyn)  -  have  important  socio-economic

impacts. 

Table 1. Examples of promising fuels and commodity chemicals 

Compound Uses Microbes
Maximum 
titer

Sca
le

Carbon 
source

Isopentenol14

7

Biogasoline
Platform to 
isoprene

E. coli
2.2 g/L from

10g/L
glucose

2% Glucose

Methyl 
Ketones148

Biodiesel,
fragrances

Various 
bacteria

5.4 g/L 2L
Glucose and 
Hydrolysate

Fatty Biodiesel Fungal 6 g/L 2L Glucose and 
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Alcohols103 Commodity 
chemical

systems Hydrolysate

Isobutanol149 Fuel, platform 
chemical

E. coli

50 g/L in 72
h. From
55g/L

glucose

1L

Glucose
With product 
removal using 
gas stripping

Ethanol106 Clostridiu
m

22.4 ± 1.4
g/L ethanol

from 60 g/L 
cellulose

Short chain 
Ketones137

Novel 
branching in 
gasoline 
target
Ideal RON 
MON* 
numbers were
shown.
Platform 
chemicals

S. albus > 1 g/L 2L

Pure sugars 
and 
Hydrolysate

*RON: Research Octane Number, MON: Motor Octane Number 

Integrating Research Approaches for Cost and Emissions Reductions

Each of the scientific research approaches described in previous sections 

offers advantages over the current state of technology and many represent 

fruitful avenues of research that are likely to yield basic scientific discoveries

and practical process improvements as the work progresses. However, a 

constant challenge, even for highly-integrated interdisciplinary research 

programs, is the assembly of individual research efforts into broader, 

synergistic strategies that convert biomass to fuels and products. For 

example, approaches that work well in model plants or even greenhouse 

experiments with bioenergy crops may result in different results when tested

in the field.150 Within the biorefinery, key unit processes such as separations, 
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are often not explored until scale-up and commercialization efforts begin, 

and this makes estimating system-wide impacts more challenging. 

Researchers must depend largely on simulations to estimate the 

downstream impacts of variations in feedstock composition, increased solids 

loading, differing hydrolysate fractionation requirements, or varying end 

product(s). For example, Humbird et al.151 used selected experimental data 

to develop an empirical correlation between glucose yield and solids loading,

enzyme loading, and temperature. Studies that make use of currently costly 

chemical inputs, such as ionic liquids and γ-valerolactone, have simulated 

the potential impacts of high rates of recovery and recycling.10,152 

Separations can be even more challenging in the context of bioproducts, 

where product purity specifications upwards of 99.9% and multiple 

azeotropic mixtures add significant process complexity. Both Wu et al.153 and

Markham et al.154 simulated ethylene production routes with potentially 

costly product recovery systems. Although simulations can offer valuable 

insights, the research community’s reliance on them introduces a level of 

unavoidable uncertainty for early-stage research. 

In the face of inherent uncertainty that accompanies the translation of 

bench-scale research to large-scale, fully-designed bioenergy and bioproduct

systems, the research community continues to pursue a wide variety of 

strategies with an eye towards cost reduction and minimized environmental 

impacts. Some of the research approaches outlined in this review are likely 
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to offer net benefits regardless of the specific biorefinery configuration or 

targeted end products, whereas others may help to minimize costs and 

improve efficiency in some configurations but will be neutral or 

counterproductive in others. With some exceptions, most recent and ongoing

work on biochemical routes to fuels and products can be categorized as 

falling into one or more of four broad strategies: 1) maximize sugar 

conversion to a single product, 2) utilize diverse carbon sources for 

producing a single product, and 3) convert lignin to high-value products, and 

4) fractionate the hyrolysate to derive maximum value from each component

(Figure 3). We attempt to evaluate the compatibility of research strategies 

spanning feedstock engineering, deconstruction, and catabolism and 

conversion, with dual objectives of reducing costs and net greenhouse gas 

emissions.
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Figure 3. Compatibility of Selected Research Approaches with Biorefinery 

Process Strategies

Engineering Biomass Feedstocks

Across the broad range of feedstock engineering research being undertaken, 

it is likely that any significant improvement in agronomic traits is likely to 

yield a net benefit, even if there is a minor negative impact on composition. 

Increased yield, reduced lodging, reduced moisture at harvest, and improved

resilience to biotic and abiotic stressors will all impact the market price of 

biomass, which is the single largest operating cost for cellulosic biorefineries.

For example, in a recently simulated biomass sorghum-to-jet fuel production 

facility, the biomass feedstock comprised 47% of the total materials cost and
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23% of the overall minimum fuel selling price.48 In the case of corn stover-to-

cellulosic ethanol, the corn stover feedstock is responsible for 34% of the 

minimum selling price of ethanol.27 Improvements in yield and/or reduction in

crop losses will also result in GHG emissions improvements, particularly if 

nitrogenous fertilizer inputs can remain constant. Of course, this broad 

generalization will not apply to some agronomic traits. For example, if only 

cost and GHG emissions are of interest, improvements in water use 

efficiency are likely to have a minimal impact. The net economic impact of 

deficit irrigation regimes is uncertain and very crop, region, and water 

pricing-dependant.155 

In terms of feedstock engineering approaches aimed at altering composition,

the system-wide impacts depend on any likely agronomic tradeoffs (e.g. if 

decreasing lignin content results in increased lodging or reduced yield) and 

the compatibility with downstream conversion routes. Tailored, homogenized

lignin appears to have little downside, given the potential improvements in 

deconstruction efficiency and increased ease with which a more 

homogeneous lignin stream can be used as a carbon source for host 

microbes. Increasing the ratio of hexose to pentose sugars is another nearly-

universally advantageous strategy, as long as it does not negatively impact 

agronomic traits important for feedstock production costs and environmental

impacts. However, to realize the intended yield improvements, any non-

glucose hexoses (galactose or fructose) would ideally be easily utilized by 
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selected host microbe(s) or at least preferable to the pentoses being 

replaced. Given the limited research on galactose utilization to-date, this is 

an area requiring further study. 

Another feedstock engineering strategy dependent on the effectiveness of 

research efforts downstream is lignin minimization. In the context of the 

current state of technology, reducing the lignin content in bioenergy 

feedstock crops is very likely to be advantageous for improving sugar and 

downstream product yields. Increasing the ratio of carbohydrates (hexoses 

and pentoses) to overall plant dry matter from 59 to 70% alone results in a 

12% reduction in minimum fuel selling price for isopentenol and a 9% 

decrease in GHG emissions.156 However, in scenarios where lignin-derived 

monoaromatics become either an energy source for host microbes or a 

precursor to valuable co-products, reducing lignin content may no longer be 

desirable. It may also be challenging to gauge the agronomic impacts of 

lignin minimization. Field studies of sorghum indicate that low-lignin mutants

(e.g Brown Midrib) do suffer from increased lodging relative to other 

varieties.157 Similarly, accumulation of in-planta intermediates may offer 

value in specific biorefinery configurations, although the outcome is 

dependent on where and how carbon is diverted to generate these products 

and the net impact on downstream separations. Limonene is an interesting 

example to explore, as it can be accumulated in some plant tissues at 

relatively high concentrations158 and can also be microbially produced from 
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sugars.136 The question of whether engineering a bioenergy crop to 

accumulate limonene in-planta can reduce costs will depend on the net 

impact on biomass yield, plant carbohydrate content, the stability of 

limonene during deconstruction, and the maximum achievable limonene 

yield from sugars.

Deconstructing Biomass for Downstream Conversion

Efficient biomass deconstruction to sugars, lignin intermediates, and other 

monomers is central to achieving cost-competitive and sustainable biofuel 

production. The deconstruction strategy is often the driving factor in the 

overall process configuration because the solvents used and reaction 

conditions impact all downstream unit operations. It is also inextricably 

linked to choice about downstream conversion, since individual components 

of the hydrolysate may be useful carbon sources or undesirable inhibitors 

depending on the host microbe(s) employed during bioconversion. Across all 

system-wide strategies outlined in Figure 3, increasing solids loading and 

improving enzyme performance during deconstruction result in lower costs 

and emissions. Moving from 20% solids to 30% can reduce the minimum fuel

selling price for an ionic liquid-based isopentenol production process by 8% 

and cut GHG emissions by more than 30%.156  

Establishing broad categories that appropriately capture the wide variety of 

pretreatment and saccharification strategies, from dilute-acid to steam 
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explosion, ionic liquid pretreatment, and CBP, is challenging and each has as 

unique set of tradeoffs. For the purposes of this review, we separate 

strategies on the basis of harsh vs. mild pretreatment conditions, where 

harsh pretreatment strategies are assumed to generate higher sugar yields 

but may degrade lignin and other plant-derived intermediates in 

unpredictable or undesirable ways. For example, steam explosion operates 

at temperatures from 180 to 240℃.159 Acid pretreatment can span both 

categories, ranging from 60 to 200℃, and the same is true for AFEX, where 

high sugar yields were reported for 140℃ at relatively low pressures.99,159 

These conditions are well-suited to biorefinery configurations that aim to 

maximize the conversion of sugars, and may also be appropriate for 

microbial hosts capable of utilizing a wide variety of carbon sources, such as 

R. toruloides, as long as the process generates minimal inhibitory 

compounds. Mild pretreatment conditions, conversely, may have lower sugar

yields but leave other components intact. Ionic liquid pretreatment operates 

close to ambient temperatures, although the resulting xylose yields are 

generally lower than compared to dilute acid or ammonia pretreatment.99 

Ultimately, the ideal deconstruction strategy is highly dependent on the host 

and molecular targets to be produced downstream. 

Converting Intermediates to Bio-Fuels and Products

Much progress has been made in the catabolism and conversion of plant-

derived sugars, aromatics, and other components. In particular, the 
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emphasis on pathways and hosts that enable the use of lignin-derived 

monomers and other compounds present in hydrolysates are likely to 

improve costs and reduce emissions regardless of the specific biorefinery 

configuration. In a consolidated process with little or no fractionation 

upstream, the microbial host can be used to convert every carbon source 

available to a single product. This simplifies the process and reduces carbon 

losses, but can present a challenge if any high-value solvents are 

inadvertently metabolized before they can be recovered. For example, the 

ionic liquid [Ch][Lys], can be metabolized by the Pseudomonas species.160 

Utilizing lignin also allows biorefineries to avoid the need for on-site 

combustion or export for co-firing with other solid fuels. Eliminating the need

for a solids boiler on-site and instead relying solely on biogas produced 

during on-site wastewater treatment (plus any supplemental natural gas 

required) can reduce capital costs for the combined heat and power section 

by more than 60%.35 

The question of whether utilizing a diverse range of carbon sources is 

preferential to optimizing for the use of sugars alone depends on the 

feedstock composition as well as tradeoffs in titer, rate, and yield. For 

herbaceous feedstocks, pentose sugars are the second-most abundant 

substrate behind glucose. For example, xylan alone makes up 15-23% of 

corn stover’s dry mass compared with glucan at 27-38% and lignin at 11-

18%.27 Crop residues are unlikely to be dramatically altered for bioenergy 
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purposes if those engineering strategies impact the primary product (e.g. 

corn grain). However, if next-generation herbaceous bioenergy feedstocks 

can be engineered to further reduce lignin content to < 10%, there may be 

at least some target molecules for which the most practical option is to 

optimize solely for maximal yield from sugars. In these cases, S. cerevisiae 

and Z. mobilis are likely to be attractive hosts because of their ability to 

tolerate higher sugar concentrations than E. coli and the efforts that have 

already been undertaken to engineer them for co-utilization of pentoses. 

Several common strategies exist for engineering or improving pentose 

utilization in microbes, and future efforts may expand the breadth of hosts 

that can convert hexoses and pentoses.161 That said, while both native and 

engineered pentose utilizers can effectively consume xylose, improving the 

hexoses-to-pentoses ratio in herbaceous feedstocks still offers significant 

process benefits due to the difficulty of achieving simultaneous rather than 

sequential pentose and hexose consumption,119 and due to the reduced 

yields for many bioproducts when utilizing pentose sugars. 

In contrast with herbaceous material, lignin is generally more abundant than 

hemicellulose in woody feedstocks, with commonly studied feedstocks such 

as Eucalyptus saligna, Monterey Pine, and poplar varieties ranging from 21 

to 29% lignin on a dry mass basis.162 Poplar varieties, for example, have 

lower xylan, ranging from 13 to 19% of dry mass.162 Minimizing lignin will 

remain an important goal for these feedstocks, barring any breakthroughs 
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that result in very high-value lignin-derived co-products, but the higher 

starting values for lignin suggest that any viable strategy for converting 

woody biomass must make use of lignin for either fuel or bioproduct 

production. In strategies with minimal or no fractionation of the hydrolysate, 

R. toruloides, which utilizes mixed carbon sources natively or P. putida, 

which has been engineered to utilize lignin-derived aromatic monomers, may

be the most appropriate hosts to pursue. However, if some substrates are 

utilized more slowly than others, and the net impact of using mixed 

hydrolysates can be a significantly increased residence time, this will 

increase capital costs and GHG emissions. The power demand associated 

with bubbling air through bioconversion reactors during aerobic conversion is

one of the primary contributors to the GHG footprint of advanced microbially-

produced fuels.163 For example, reducing bioconversion time from 63 to 36 

hours has a minimal impact on costs but cuts the GHG footprint of IL-based 

isopentenol production by 40%.156 

Regardless of feedstock type, another option is to use hosts optimized for 

the catabolism and conversion of specific hydrolysate components. Certainly 

there are far more hosts and metabolic pathways available for the 

conversion of glucose to novel fuels and products, whereas the options for 

utilization of lignin-derived monomers and pentoses are more limited. 

Perhaps a host such as R. toruloides should be used to convert lignin 

intermediates and pentoses, leaving glucose available for conversion using a
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different host and pathway. Lignin is already recovered through solid-liquid 

separation in most process configurations documented in the 

literature,10,27,48,151 although the question of where and how lignin will be 

deconstructed to monomers or other easily-catabolized intermediates is not 

as well-established. Separation of hexose from pentose sugar streams, while 

less common, is far from new given the interest in using xylose for xylitol 

production (a low-calorie sweetener).164,165 In a dilute acid configuration, for 

example, liberated xylose could be separated after pretreatment in a solid-

liquid separation, with remaining solids going to simultaneous 

saccharification and bioconversion before lignin is separated through a 

second solid-liquid separation step. The only difference in this process 

relative to what is described in Humbird et al.27 is the pentose sugar recovery

after pretreatment. A few studies have actually explored utilizing only 

hemicellulose from sugarcane bagasse due to the ease of deconstruction, 

sending cellulose for on-site combustion or other lower-value 

applications.166,167 However, as Zhang et al.168 point out, achieving high 

xylose yields may require not only solid-liquid separation, but also washing 

and post-hydrolysis to ensure breakdown of remaining xylooligomers. This 

kind of fractionation also means that biorefineries must either take in a very 

consistent feedstock or risk under- or over-sizing equipment for each 

conversion process if the proportion of lignin, cellulose, and hemicellulose 

vary seasonally and annually. These kinds of system-wide tradeoffs are 
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important to consider, but the optimal approach may vary on a case-by-case 

basis depending on the location and feedstock mix available.
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Conclusions

Over the last decade, impressive advancements have been made in 

fundamental research related to tailoring biomass feedstocks for bioenergy 

and bioproduct applications, efficiently deconstructing plants to useful 

intermediates, and converting those intermediates to a wide range of 

valuable products. Some advanced conversion strategies are already being 

implemented using first-generation starch and sugar feedstocks such as 

ethanol, 1,3-propanediol, lactic acid, trans-β-Farnesene, and 1,4 butanediol. 

In the long term, low oil prices and competition from other renewable energy

carriers mean that a successful bioeconomy must make use of every carbon 

source available and generate renewable fuels and products for markets in 

which few or no viable alternatives exist. Achieving this goal requires 

strategies that reach far beyond the traditionally-envisioned cellulosic 

ethanol facilities. 

In response to this challenge, the research community continues to pursue a 

broad suite of approaches, beginning with feedstock traits that make 

cultivation, harvest, and long-term storage of high-yielding biomass as low-

cost and low-input as possible. Tailoring feedstock composition to increase 

the relative proportion of carbohydrates and favor more easily-converted 

substrates, such as hexose sugars and homogenous lignin, offers significant 

reductions in cost and emissions across a wide range of biorefinery 

configurations. Reducing overall lignin content also facilitates the 
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intensification of otherwise costly deconstruction, allowing for high solids 

loading, lower solvent inputs, and milder conditions. Simpler hydrolysates 

with lower concentrations of inert materials that otherwise inhibit 

saccharification and bioconversion will benefit biorefinery configurations 

across the spectrum, from consolidated one-pot processes to extensively 

fractionated, targeted conversion of each plant-derived component. Finally, 

utilization of a more diverse range of carbon sources beyond glucose, and 

conversion of those substrates to fuels and products that offer performance 

advantages or meet the needs of a market without other alternatives, will 

enable biorefineries of the future to derive the greatest value from every 

tonne of biomass arriving at the facility gate. 
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Synopsis

A more competitive, efficient, and sustainable bioeconomy requires tailored 

feedstocks, intensified deconstruction, and robust omnivorous microbial 

hosts.
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