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Abstract

Electronic and Optical Properties of Materials for Energy-Related Applications

by

Chin Shen Ong

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Steven G. Louie, Chair

In this dissertation, I discuss the electronic and optical properties of materials for energy-
related applications, with a focus on silicon (Si), gallium arsenide (GaAs) and the transition
metal dichalcogenides (TMDs) in particular.

Si is the most widely used photovoltaic material today, dominating the photovoltaic industry
by more than 90%. This is because Si is non-toxic, abundant and benefits from technologies
developed over the years in the microelectronics industry. Despite its widespread usage as a
photovoltaic material, Si does not efficiently absorb most of the light in the solar spectrum
because it has an indirect bandgap. On the other hand, GaAs has a direct bandgap that
is optimal for solar energy conversion, even though it is more expensive than Si and is also
toxic due to the presence of arsenide. Nonetheless, in the atomically-thin film limit, both
cannot be compared with the TMDs, absorbing significantly less light than the TMDs in the
solar spectrum. This optical property of the TMDs makes them a very appealing class of
candidate materials for flexible ultra-thin solar cells.

In Chapter 1, I give an overview of the different approaches that we use to address different
problems in this dissertation. In Chapter 2, I discuss our work [157] that aims to understand
how the structure of an alternative Si phase can lead to an improved calculated absorption
relative to diamond-Si. In Chapter 3, I discuss how we [17] can use first-principles to calculate
the hot carrier dynamics in GaAs, such as by calculating its electron-phonon relaxation
times. In the Chapters 4, 5, 6, I discuss the electronic and optical properties of mono-
to few-layer TMDs. Not only are their quasiparticle bandgap and exciton energy levels
affected by dielectric screening due to substrates [158], the dielectric screening environment
can also be modified to engineer an intrinsic lateral heterojunction within a homogeneous
TMD monolayer [212]. In Chapter 7, we [240] report the first observation and control
of the Berry-phase induced splitting of the 2p-exciton states in monolayer MoSe2, and in
Chapter 8, we [236] study that the dynamics of atomically-sharp lateral heterojunctions
between differently-stacked TMD domains.
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Chapter 1

Introduction

In terms of solar applications, silicon is the most widely used photovoltaic material today,
dominating the photovoltaic industry by more than 90%. This is because silicon is non-toxic,
abundant and benefits from technologies developed over the years in the microelectronics
industry. Despite its widespread usage as a photovoltaic material, silicon does not efficiently
absorb most of the light in the solar spectrum (Fig. 1.1) [7]. The solar spectrum that is

Figure 1.1: The GW -BSE optical spectrum of diamond-Si (black) and GaAs (red) and the
measured solar spectrum (gray).

received on the Earth’s surface [1] ranges from 0.3 to 4.4 eV and is the strongest around
1.2 eV (Fig. 1.1). According to the Shockley-Quiesser model [191], the optimal direct band
gap for solar energy conversion lies within the range of 1.1 to 1.4 eV [191, 179, 170]. One
approach [37] to increasing the absorption range of silicon is to find a crystal phase of
silicon that has a smaller direct band gap than that of diamond-Si using first-principles
computational techniques [220, 28, 163, 108]. In Chapter 2, we [157] aim to understand how
the structure of an alternative silicon phase can lead to an improved calculated absorption
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relative to diamond-Si. A real-space approach is introduced to understand the relationship
between optical absorption and crystal structure, which is then used to study alternative
phases of silicon, with a focus on the Si20 crystal phase [228]. We find that about 83% of the
changes in the calculated low-energy absorption in Si20 as compared to Si in the diamond
structure can be attributed to reducing the differences between the on-site energies of the
bonding and anti-bonding orbitals as well as increasing the hopping integrals for specific
Si-Si bonds.

On the other hand, gallium arsenide (GaAs) has advantages over silicon for solar applica-
tions because it has a direct band gap (Fig. 1.1) [7], its band gap of 1.4 eV is optimal for solar
energy conversion according to the Shockley-Quiesser model [191, 179, 170] and its conduc-
tion electrons have very small effective masses, which are indicative of high carrier mobilities.
This is despite the fact that GaAs is more expensive than Si and is also toxic due to the
presence of arsenide. In energy applications, hot carriers lose energy over nanometer lengths
and picosecond timescales, critically impacting the performance of electronic, optoelectronic,
photovoltaic, and plasmonic devices. In Chapter 3, we [17] compute electron-phonon relax-
ation times at the onset of the Γ , L, and X valleys from first-principles and found them
to be in excellent agreement with ultrafast optical experiments. We are able to show that
the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise
from electron–phonon scattering. The work provides definitive microscopic insight into hot
electrons in GaAs and accurate ab initio computation of hot carriers in advanced materials.

Figure 1.2: (a) The solar spectrum (gray) and the absorbance of 5-Å-thick diamond-Si
(black) and 5-Å-thick GaAs (red). (b) A zoom-in of the energy range (shaded yellow) from
1.3 to 3.0 eV of (a), superposed with absorbance of a MoS2 monolayer.

In the remaining chapters, I discuss excited states in mono- and few-layer transition
metal dichalcogenides (TMDs), which are semiconducting quasi-2D materials. Due to their
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reduced dimensions, atomically thin TMDs are candidate materials for flexible ultra-thin
solar cells. Moreover, MoS2, MoSe2, and WS2 also undergo a crossover from indirect to
direct gap semiconductors when going from bilayer to monolayer [132], resulting in enhanced
monolayer photoluminescence. Compared to the equivalent absorbance of Si and GaAs of
similar thickness (∼ 5 Å) (Fig. 1.2), we see that TMDs has significantly larger optical
absorbance within the solar spectrum, making them appealing for solar energy conversion
[7, 132, 16]. We use the term “quasi-2D” to describe the dimension of TMD to emphasize the
fact that a monolayer TMD is a two-dimensional material embedded in a three-dimensional
space. “Quasi-2D” is distinct from a purely two-dimensional model (Fig. 1.3a), which is in
flatland and does not have an out-of-plane direction.

Figure 1.3: A schematic diagram of the field lines between two charges inside (a) 2D, (b)
quasi-2D and (c) 3D materials.

In Chapter 4, I discuss how the electronic and optical properties of monolayer TMDs
are affected by dielectric screening (Fig. 1.4) due to its environment. Unlike in a three-
dimensional (Fig. 1.3c) material such as bulk silicon, electrons in an atomically-thin quasi-
2D (Fig. 1.3b), like a TMD monolayer, are confined in their motions and experience reduced
intrinsic dielectric screening. As a result, electron-electron and electron-hole interactions
within the material are enhanced, leading to large bandgap renormalization due to self-
energy effects and tightly-bound excitons [132, 33, 211, 168, 169]. In the non-periodic
out-of-plane direction, the Coulomb field of the electrons extends outside of the quasi-2D
material (Fig. 1.3b), and hence, unlike in a bulk 3D material (Fig. 1.3c), electrons in a quasi-
2D material are sensitive to the screening environment due to its substrate and encapsulating
material, which can drastically modify optical and electronic measurements and can also be
exploited to bring about new applications [117, 211, 20, 167, 173, 199, 212, 215, 174].

It is now well-established [132, 168, 33, 211, 169] that the screening from substrates can
strongly reduce many-electron interactions in quasi-2D materials and renormalize both the
quasiparticle bandgap and the exciton binding energy. However, for metallic substrates,
the frequency dependence of the screening plays a paramount role that is often ignored. In
Chapter 4, we [158] predict that the frequency dependence of the substrate screening can
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Figure 1.4: Dielectric screening of a charge. Charge is (a) completely unscreened, (b)
partially screened by substrate and (c) completely screened by substrate.

induce a strong anti-screening effect within the quasi-2D material and lead to anomalously
non-hydrogenic exciton energy levels. A systematic study of renormalizations by a wide
range of experimentally-motivated substrates is also carried out and our calculated results
show very good agreement with experiments. Computational details and the our derivation
of the the frequency-dependent ideal-metal substrate (Fig. 1.4c) are elaborated in Chapter 5.
In Chapter 6, we [212] show that this dielectric-dependent electronic bandgap can be used
to engineer a lateral heterojunction within a homogeneous MoS2 monolayer. We examine
its electrical transport experimentally and theoretically. The heterostructure is visualized
using a Kelvin probe force microscopy. We observe a lateral heterojunction with ∼90 meV
band offset due to different bandgap renormalization of monolayer MoS2 when it is on a
substrate in which one segment is made from an amorphous fluoropolymer (Cytop) and
another segment from hexagonal boron nitride. This heterostructure leads to a diode-like
electrical transport with a strong asymmetric behavior.

Moreover, it was recently predicted that Berry phase effect can also modify the exciton
states in transition metal dichalcogenide monolayers, and lift the energy degeneracy of ex-
citon states with opposite angular momentum through an effective valley-orbital coupling
[230, 251, 198, 210, 15, 224]. In Chapter 7, we [240] report the first observation and con-
trol of the Berry-phase induced splitting of the 2p-exciton states in monolayer MoSe2 using
the intraexciton optical Stark spectroscopy. We observe the time-reversal-symmetric analog
of the orbital Zeeman effect resulting from the valley-dependent Berry phase, which leads
to energy difference of +14 (-14) meV between the 2p+ and 2p− exciton states in the K
(K’) valley, consistent with the ordering from our ab initio GW -BSE results. In addition,
we show that the light-matter coupling between intraexciton states are remarkably strong,
leading to prominent valley-dependent Autler-Townes doublet under resonant driving. This
study opens up new pathways to coherently manipulate the quantum states and excitonic
excitation with infrared radiation in two-dimensional semiconductors.

Lastly, in Chapter 8, we [236] study that metallic boundary states at the atomically-sharp
lateral heterojunction between differently-stacked TMDs domains. In quasi-2D materials, the
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ability to engineer its crystal symmetry has emerged as a promising way to achieve novel
properties and functions. The non-centrosymmetric structure of monolayer TMDs, such as
MoS2, has allowed for valley control of optical excitations via circularly polarized optical
excitation. In bilayer TMDs, inversion symmetry can be controlled by varying the stacking
sequence, providing a pathway to engineer valley selectivity. With the in situ integration of
AA’ and AB stacked bilayer MoS2 with different inversion-symmetries, we create atomically
sharp stacking boundaries between the differently stacked domains. In this setup, we track
the formation and atomic motion of the stacking boundaries, and in conjunction with density
functional theory calculations, we establish the dynamics of the boundary nucleation and
expansion, and identify the metallic boundary states. This approach provides a means
to synthesize domain boundaries with intriguing transport properties, and opens up a new
avenue for controlling valleytronics in nanoscale domains via real-time patterning of domains
with different symmetry properties.
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Chapter 2

Real-Space Study of the Optical
Absorption in Alternative Phases of
Silicon

2.1 Introduction

In order to reduce the cost of solar-cell energy generation, a great deal of effort has been put
into attempts to increase the number of charge carriers collected by the solar cell relative
to the number of incident photons (quantum efficiency). Silicon is the most widely used
photovoltaic material. In terms of global annual power production, a recent market survey
shows that crystalline silicon dominates the photovoltaic industry by more than 90%. One
of the major reasons for its popularity is that silicon is non-toxic and abundant. There are
also benefits from technologies developed over the years in the microelectronics industry.

Despite its widespread usage as a photovoltaic material, silicon does not efficiently absorb
most of the light in the solar spectrum. The solar spectrum that is received at the Earth’s
surface (under the so-called air mass of 1.5 or AM 1.5 for short [1]) ranges from 0.3 to 4.4 eV
and is the strongest around 1.2 eV. According to the Shockley-Quiesser model [191], the
optimal direct band gap for solar energy conversion lies within the range of 1.1 to 1.4 eV
[191, 179, 170]. Since silicon has a direct band gap of 3.3 eV, optical absorption due to direct
transitions can only take place at the high-energy end of the solar spectrum between 3.3 and
4.4 eV. Phonon-assisted indirect transitions[150, 125] lower the onset of optical absorption
to 1.2 eV. Even then, absorption coefficients due to indirect transitions alone are smaller
and require the solar cell to be thick in order to amplify the phonon contributions. With a
thicker absorber layer, the solar cell has to have high purity to prolong its carriers lifetime.
Together, the increased thickness and need for material purity add to the cost of production.

Under ambient conditions, the diamond cubic phase (diamond-Si) is the most stable
crystal phase of silicon, and this is also the crystal phase of silicon most commonly used
to make solar cells today. However, silicon is known to exist in other crystal phases as
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well. For instance, with increase in pressure, silicon undergoes phase transitions from the
diamond-Si phase to the β-Sn phase [89], Imma phase [140], simple hexagonal phase [155,
80, 30, 31] and Cmca phase [75]. Pressure release from the β-Sn phase does not recover
the diamond-Si phase. Instead, a slow pressure release produces the metastable R8 phase
[165] which subsequently transforms into the BC8 phase [143, 98, 221, 135], while a very
rapid pressure release leads to two other tetragonal phases [250]. Many of these phases are
not suitable to make solar cells. For example, the first four phases mentioned above only
exist under high pressure. The β-Sn and simple hexagonal phases are also metallic [30, 31]
while the BC8 phase [135] is semi-metallic. On the other hand, phases like the R8 [134] and
body-centered tetragonal [133] phases are semiconducting, and since they have direct band
gaps smaller than diamond-Si’s, they in principle can also absorb light over a wider energy
range [37] than diamond-Si. Recently, a low-density silicon allotrope with an open silicon
framework consisting of large empty channels, Si24, has reportedly [100] been synthesized. It
has a direct calculated G0W0 band gap of 1.34 eV, which is smaller than that of diamond-Si.

One approach [37] to increasing the absorption range of silicon is then to find a crystal
phase of silicon that has a smaller direct band gap than that of diamond-Si. With the
advent of first-principles computational techniques, it has become possible to search[220,
28, 163, 108] for crystal phases that have not been previously discovered. Botti et al. [19]
found several crystal phases of silicon that have lower energies than the R8 and BC8 phases
and have quasiparticle band gaps ranging from 0.8 to 1.5 eV from GW calculations. Wang
et al. [218] proposed phases of silicon that have band gaps from 0.39 to 1.25 eV obtained
within density functional theory (DFT) using the hybrid HSE functional. Lee et al. [109]
used the conformational space annealing (CSA) approach and presented several other direct-
gap silicon phases. Using the same CSA approach, Oh et al. [154] subsequently proposed
a series of direct-gap silicon superlattices composed of bulk-like Si layers intercalated by
defective layers made of Seiwatz chains [187]. Depending on the thicknesses of the bulk-like
layers, these superlattices can have calculated G0W0 band gaps that fall within the optimal
range for solar conversion.

In Ref. [228], Xiang et al. found the structure of Si20 (also called Si20-T) using the particle
swarm optimization (PSO) [220] approach. The calculated DFT-HSE band gap of Si20 is
1.55 eV. One of the structural features of Si20, which is not found in diamond-Si, is that
some of the bonds form equilateral triangles. In Ref. [228], it was suggested that these bonds
might be related to its improved optical absorption. Nevertheless, the microscopic reason
for the increase in the calculated absorption in Si20 remained unknown. In a related work,
Guo et al. [72] proposed an alternative ground state of silicon with a band gap of 0.61 eV
from DFT-HSE that also contains triangular bonds.

The purpose of this work is to understand how the structure of an alternative silicon
phase may lead to an improved calculated absorption relative to diamond-Si. While there
are many proposed metastable phases of silicon with improved absorption, we focus here
in detail on Si20 as a case study for our approach since it has a very desirable calculated
optical absorption. (We note that Si20 has a somewhat high formation energy [109, 5, 229],
which may make it harder to access experimentally.) To demonstrate the generality of our
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approach, near the end of this chapter, we also study two other silicon phases (SC5 and Si24)
that have drastically different structures from that of Si20.

One of the obstacles in establishing the relationship between the crystal structure and
optical absorption is the fact that the crystal structures of alternative phases of silicon like
Si20 and diamond-Si are very different. For example, one cannot be related to the other by
the removal or addition of a single atom, or by a small structural distortion that will not
drastically disturb the bonding network of the silicon atoms. Moreover, the primitive unit
cell of diamond-Si contains two atoms whereas that of Si20 contains 20 atoms. Therefore,
a conventional analysis of optical absorption in the reciprocal space is non-trivial as each
k-point in Si20 contains 40 valence and 40 conduction sp3-like bands (unlike diamond-Si,
which only has four of each).

To overcome this difficulty, we study the optical absorption in a real space representation
using Wannier functions. Our analysis reveals that about 33% of the enhanced optical
absorption of Si20 can be attributed to the decreased differences of the on-site energies
between the bonding and anti-bonding orbitals. Roughly 50% is due to the increased hopping
integrals between the bonding and anti-bonding orbitals. The remaining 17% is due to a
variety of other contributions.

2.2 Method

In this section, we will first describe the conventional density functional theory (DFT)
interband-transition approach and the GW plus Bethe-Salpeter equation (GW -BSE) ap-
proach for computing optical absorption in reciprocal space. The latter approach is more
accurate and includes electron self-energy and electron-hole (excitonic) effects. Next we
briefly introduce a real-space representation of the electronic structure in terms of Wannier
functions. Finally, we transform the expression for the optical absorption from the reciprocal
space representation into the real space representation.

Optical absorption

Optical absorption can be expressed through ε2(ω), the imaginary part of the dielectric func-
tion. Within the independent-particle DFT approach and neglecting the photon momentum,
the diagonal elements of ε2(ω) can be computed using the random-phase approximation for
a specific light polarization,

ε2(ω) =8π2e2h̄2
∑
k

∑
n∈{C}

∑
m∈{V }

|e · 〈nk|r|mk〉 |2

× δ(h̄ω − Enk + Emk).

(2.1)

Here k is the wave vector, e is the polarization direction, r is the position operator, ω is
the frequency of absorbed photon, Enk and Emk are the DFT eigenvalues, |nk〉 and |mk〉 are
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the DFT Bloch eigenstates and {V } and {C} are the valence and conduction bands. The
matrix element 〈nk|r|mk〉 describes a transition of an electron from state |mk〉 into state
|nk〉 upon the absorption of a photon.

The ε2(ω) calculated within the DFT approach is shown in Fig. 2.1a for diamond-Si
(black) and Si20 (red). In this calculation we used a norm-conserving pseudopotential and
we used the local density approximation as implemented in Quantum-ESPRESSO [66]. The
plane-wave cutoff for the electron wavefunction is 36 Ry. For diamond-Si, the Wannier
functions are constructed from a coarse k-mesh of 16×16×16 and they are used to interpolate
quantities on a fine k-mesh of 30× 30× 30 to calculate ε2(ω). For Si20, the coarse k-mesh is
8× 8× 8 and the fine k-mesh is 20× 20× 20.

From Fig. 2.1a, it is clear that within the DFT approach, the onset of optical absorption
in Si20 is 1.7 eV lower in energy than in diamond-Si. However, absorption of Si20 at the
absorption edge is relatively small, and it increases significantly only at 0.8 eV above the
absorption edge. Comparing the steep edges of the absorption spectra, the steep edge of Si20

is still about 0.9 eV lower in energy than it is for diamond-Si.
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Figure 2.1: The absorption of diamond-Si (black) and Si20 (red) calculated with the DFT
(a) and BSE (b) approaches.

In what follows, we discuss two well-known limitations of the optical absorption calculated
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within the DFT-RPA approach. The first limitation is that the calculated DFT-LDA band
gap is typically too small due the fact that DFT eigenvalues are not quasiparticle excitation
energies. The GW approximation [83] removes this limitation by properly including the
electron self energy effects. In the case of Si20 and diamond-Si, the inclusion of the GW
correction [2] separates the DFT valence and conduction bands by 0.7–0.8 eV (depending on
the k-points and electron bands) which is close to the value obtained by the hybrid-functional
approach in Ref. [228].

The second limitation of the optical absorption calculated within the DFT approach is
that it does not consider electron-hole interactions. Within the interacting many-electron
picture, an electron is excited from a ground state |0〉 to an excited excitonic state |S〉 in
which the electron interacts with the hole that it left behind. This process can be calculated
[178] by solving the BSE and ε2(ω) is then expressed as,

ε2(ω) = 8π2e2h̄2
∑
S

|e · 〈S|r|0〉 |2δ(h̄ω − ΩS). (2.2)

Here S labels the exciton states and ΩS is the exciton eigenenergy.
The ε2(ω) spectra calculated [2] by solving the BSE for Si20 and diamond-Si are shown

in Fig. 2.1b. Comparing the GW -BSE and DFT absorption spectra, we see two main
differences. First, the absorption edge in the GW -BSE spectrum is 0.6 eV higher in energy
than the edge in the DFT spectrum. This shift is close to the shift resulting from the GW
correction (0.7 eV). The second difference with the GW -BSE approach is that ε2(ω) is larger
in amplitude by a factor of about 1.5–2.0 near the band edge.

Therefore, while the optical absorption in absolute terms is very different between the
GW -BSE and DFT approaches, the corrections made by the GW -BSE approach are nearly
the same for both Si20 and diamond-Si. To better understand the improved absorption of
Si20, it is sufficient to focus on an analysis of results from the DFT-RPA approach, since the
geometric effect of the crystal structure is already present at the DFT-RPA level.

Localized representation

The Bloch states appearing in the expression for ε2(ω) (in Eq. 2.1) have a well-defined crystal
momentum k. They are eigenstates of the Kohn-Sham Hamiltonian,

〈nk|H|mk〉 = δnmEnk. (2.3)

By superposing the Bloch states of different crystal momenta k, one can construct a well
localized Wannier state,

|jR〉 =
1

Nk

∑
nk

e−ik·RU
(k)
nj |nk〉 . (2.4)
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Here R is a real-space lattice vector and U
(k)
nj is an arbitrary unitary matrix that mixes

the Bloch bands at k. In this chapter, we use indices i and j to denote individual Wannier
functions and indices n and m to denote individual Bloch bands.

One often chooses the matrices U
(k)
nj according to the scheme introduced by Marzari

and Vanderbilt [139] so that |jR〉 is as localized in real space around the centers of mass
of the Wannier functions as possible. For this reason, |jR〉 is also called the maximally
localized Wannier function. The Bloch functions can be reconstructed back from the Wannier
functions through an inverse transformation,

|nk〉 =
∑
jR

eik·RU
(k)†
nj |jR〉 . (2.5)

Since the set of Wannier functions contains the same amount of information as the set
of Bloch bands from which it is generated, it is convenient to rewrite the Hamiltonian
and position operators in the Wannier basis. The Hamiltonian in the Wannier (or real
space) representation is simply 〈i0|H|jR〉 which can be calculated by a Fourier transform
of 〈nk|H|mk〉,

〈i0|H|jR〉 =
1

Nk

∑
nmk

e−ik·RU
(k)†
ni 〈nk|H|mk〉U (k)

mj . (2.6)

There are two types of Hamiltonian matrix elements that we will focus on in this chapter.
For the first type, we have R = 0 and i = j. We will refer to this type of matrix element,

〈i0|H|i0〉 = ei, (2.7)

as the on-site energy of Wannier function i. The remaining matrix elements

〈i0|H|jR〉 = tijR (2.8)

are known as the hopping integrals. The hopping integral measures the probability amplitude
for Wannier function j in cell R to tunnel to the Wannier function i in the unit cell at the
origin.

Wannier functions are constructed from a set of Bloch bands so a different choice of Bloch
bands will lead to different Wannier functions. Since the expression for optical absorption
in Eq. 2.1 refers explicitly to occupied and empty Bloch states, we constructed the Wannier
functions either from only empty or only occupied Bloch states. Therefore, by construction,
〈i0|H|jR〉 is zero unless bra and ket are either both derived from empty or occupied states.

We will refer to the Wannier functions constructed from the occupied Bloch states as
bonding Wannier functions and those from the empty states of the relevant conduction bands
as anti-bonding Wannier functions since they typically have real-space forms that resemble
bonding and anti-bonding molecular orbitals. Since silicon bonds are highly covalent, the
valence charges are localized on the bonds between these two nearest-neighboring silicon
atoms. Therefore, the bonding and anti-bonding Wannier states are localized in the region
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(a) Bonding Wannier function

(b) Anti-bonding Wannier function

Figure 2.2: The isosurface of calculated bonding (a) and anti-bonding (b) Wannier functions
in diamond-Si. Gray spheres are silicon atoms forming the bond. Isosurface in (a) is 1.4 and
1.0 in (b). Red and blue colors indicate parts of the Wannier function with opposite signs.

between these two silicon atoms, as shown in Fig. 2.2 for the case of diamond-Si. Each Si-Si
bond has only one sp3-like bonding and one sp3-like anti-bonding Wannier function (per each
spin). For convenience, we will label the on-site energy for the bonding and anti-bonding
states as, ei and ēi respectively. Similarly, we denote the hopping integral between anti-
bonding states as t̄ijR.

Optical absorption in the localized basis

The optical absorption calculated using ε2(ω) (Eq. 2.1) within the DFT-RPA approach de-
pends on the energy of the Bloch states Enk, and the matrix element of the position operator.
The Bloch state energies are fully determined by ei and tijR. Similarly, the position operator
matrix element can be computed from its representation in the Wannier basis

〈i0|r|jR〉 = rijR. (2.9)

In all, optical absorption is exactly determined given the following three real-space quantities:
ei, tijR, and rijR.

2.3 Results and discussion

In this section, we will compare ei, tijR, and rijR in diamond-Si and Si20 and relate them
to the structural differences between the two materials, as well as the differences in their
optical absorption.
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Figure 2.3: Conventional unit cell of diamond-Si containing eight silicon atoms. Its primitive
unit cell contains only two silicon atoms.

Figure 2.4: Conventional unit cell of Si20 containing 20 silicon atoms. Its primitive unit cell
is the same as the conventional unit cell. Four distinct Si-Si bonds are indicated with labels
a, b, c, and d. Bonds forming a triangle are labelled with letter a.

Comparison of structures

Figures 2.3 and 2.4 show the crystal structures of diamond-Si and Si20. Both of their con-
ventional unit cells have cubic lattices. In our calculations, we use fully relaxed structures
of Si20 and diamond-Si. The lattice parameters of the conventional unit cells of Si20 and
diamond-Si are 7.40 Å and 5.43 Å. On the average, Si20 has one Si atom every 20.2 Å3

(2.30 g/cm3) and diamond-Si has one atom every 20.0 Å3 (2.33 g/cm3).
Each Si atom in diamond-Si is tetrahedrally coordinated to four other Si atoms, such

that every bond angle is exactly 109.5◦. Every Si-Si bond in diamond-Si is symmetrically
equivalent. The distance between the bond centers of two nearest-neighboring bonds is 1.9 Å.
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For Si20, every Si atom is also coordinated to four other Si, but in a distorted tetrahedron.
The distortions bring some of the bond centers of Si20 closer together and others further apart.
There are four symmetry-inequivalent groups of Si-Si bonds in Si20 and they are labelled from
a to d in Fig. 2.4. One feature of the Si20 structure is the type-a bonds which form triangles.
These bonds are highly strained as they are distorted from 109.5◦ to a narrow 60.0◦. As a
result, the distance between two nearest-neighboring bond centers ranges from as short as
1.2 Å (between two type-a bonds of the same triangle) to 2.1 Å. We will label this range,
1.2–2.1 Å, as the nearest-neighbor hopping regime.

On-site energy ei

Here we compare on-site energies of diamond-Si and Si20. Since we can assign a single bonding
and anti-bonding Wannier function to each Si-Si bond, we will focus here on comparing the
on-site energies, ei and ēi, for the same bond in the crystal.

Calculated values of ei and ēi for diamond-Si and Si20 are shown in Fig. 2.5 with horizontal
lines. The arrow represents the difference between ei and ēi for a given set of symmetry-
related bonds in the structure. In the case of diamond-Si, ēi−ei for its Si-Si bond is 9.66 eV.
On the other hand, ēi−ei for Si20 ranges from 8.78 to 10.10 eV. The smallest value (8.78 eV)
belongs to the highly strained type-a bonds. Its large deviation from diamond-Si’s 9.66 eV is
likely due to large strain present in these triangular bonds. Less strained type-b and type-c
bonds have ēi − ei similar to that in diamond-Si (9.64 and 9.78 eV). Finally, type-d bonds
have the largest ēi − ei (10.10 eV).

We expect that the smaller ēi− ei of type-a bonds will lower the optical absorption edge
of Si20 with respect to diamond-Si’s. This will be analyzed in more detail in Sec. 2.3.

Hopping integral tijR

After analyzing ei, we now focus on the hopping integral tijR of diamond-Si and Si20.
For the analysis of tijR, we will define the hopping distance as the distance between the

centers of mass of the Wannier functions |i0〉 and |jR〉,
∣∣ 〈i0|r|i0〉 − 〈jR|r|jR〉 ∣∣. In what

follows, we will relate tijR with its hopping distance.

Bonding states

First, we discuss the hopping integrals between bonding Wannier functions. As shown in
Fig. 2.6, the hopping integrals of both diamond-Si and Si20 are nearly zero for hopping
distances beyond 5 Å. This behavior is characteristic of the exponential localization [21] of
Wannier functions for insulators.

The hopping integral tijR with the largest magnitude for diamond-Si is −1.23 eV. This
hopping integral couples a bonding Wannier function with its nearest bonding neighbor and
has a hopping distance of 1.9 Å. In Fig. 2.6, it is denoted by the leftmost black dot. For Si20,
hopping integrals coupling the nearest bonding neighbors are distributed over the range of



CHAPTER 2. REAL-SPACE STUDY OF THE OPTICAL ABSORPTION IN
ALTERNATIVE PHASES OF SILICON 15

0

2

4

6

8

10

12

e
i

a
n

d
ē
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Figure 2.5: On-site energy of bonding (ei, lower value) and anti-bonding (ēi, higher value)
Wannier function in diamond-Si (left, black) and Si20 (right, red). Numbers indicate ēi − ei
in eV. In the case of Si20 we show ēi−ei for all four types of bonds. (The origin of the energy
scale is arbitrary.)

1.2–2.1 Å (see Sec. 2.3). In Fig. 2.6, they are represented by the group of red dots surrounding
the above-mentioned black dot.

The largest |tijR| for Si20 corresponds to the hopping integral with the shortest hopping
distance of 1.2 Å. This hopping integral couples type-a bonds and is 0.70 eV larger than the
largest |tijR| of diamond-Si. The presence of this large hopping integral in Si20 is due to the
fact that the distance between triangular bonds is 1.9−1.2 = 0.7 Å shorter than the shortest
bond–bond distance in diamond-Si.

As we will analyze later in more detail, we expect the larger hopping integrals of the
occupied Wannier functions to raise the valence band edge in Si20 as we expect the valence
bands to have a larger bandwidth.

Anti-bonding states

Now, we look at the hopping integrals between the anti-bonding states. Figure 2.7 shows that
the largest |t̄ijR| for diamond-Si is 0.54 eV and has a hopping distance of 5.8 Å. Unlike the
bonding states, this largest t̄ijR does not couple the nearest-neighboring Wannier functions.
That hopping integral is four times smaller (0.13 eV). For Si20, the largest |t̄ijR| is 0.62 eV
and has a hopping distance of 3.5 Å. It is somewhat larger than diamond-Si’s largest |t̄ijR|
and it also does not couple the nearest-neighboring Wannier functions.

Nevertheless, in the nearest-neighbor hopping regime of 1.2–2.1 Å, the largest |t̄ijR| in
Si20 is 0.40 eV. This value is significantly larger than the corresponding |t̄ijR| for diamond-Si
(0.13 eV) in the same regime.

Notably, even though |t̄ijR| for anti-bonding Wannier functions are nearly zero above
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Figure 2.6: Hopping integrals between bonding Wannier functions, as a function of hopping
distance for diamond-Si (black) and Si20 (red).

hopping distance of 9 Å, it does not increase monotonically below 9 Å as the hopping distance
decreases. The distribution of t̄ijR (Fig. 2.7) is more dispersive than that of tijR (Fig. 2.6).
This is likely related to the fact that the anti-bonding Wannier functions (Fig. 2.2b) have
more nodes than the bonding Wannier functions (Fig. 2.2a). They are also more diffuse than
the bonding Wannier functions. In addition, anti-bonding Wannier functions hybridize with
the continuum, making them somewhat sensitive to the choice of the frozen window used in
the Wannier disentanglement [195] procedure. (For consistency, we have chosen the frozen
windows for both diamond-Si and Si20 to span the same energy range, from the conduction
band minimum (CBM) to 3.5 eV above the CBM of diamond-Si.)

Hopping integrals between anti-bonding Wannier states of Si20 are distributed over a
wider energy range than diamond-Si. We expect the larger hopping integrals between the
empty Wannier functions of Si20 to increase the bandwidth of the conduction bands and
lower its lower band edge. This will be further discussed in Sec. 2.3.

Position integral rijR

Now we discuss the third real-space object required to compute the optical absorption:
position operator in the real space representation, rijR, between a bonding Wannier function
and an anti-bonding Wannier function. (The matrix elements between two bonding or two
anti-bonding Wannier functions do not enter into Eq. (2.1).)

For diamond-Si, |rijR|2 is the largest when i and j are both centered on the same bond,
as can be expected. Its value is |rijR|2 = 0.59 Å2 and it is seven times as large than that
between the neighboring bonds (0.09 Å2). For Si20, the largest |rijR|2 are also on the same
bond. Their values for four types of Si20 bonds are nearly the same. Their average value is
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Figure 2.7: Hopping integrals between anti-bonding Wannier functions, as a function of
hopping distance for diamond-Si (black) and Si20 (red).

0.53±0.02 Å2. (The next largest value is only 0.15 Å2.)
Here, two observations can be made. First, we see that in the real space representa-

tion, |rijR|2, like the Hamiltonian, is highly localized. Second, the largest |rijR|2 for Si20

and diamond-Si have nearly the same numerical value. This is likely because the Wannier
functions of Si20 have similar real-space character as those in diamond-Si.

Relating ei and tijR to the optical absorption

Now, we will relate the magnitudes of ei and tijR to the optical absorption in diamond-Si and
Si20. For this purpose, we compute the optical absorption in three model systems, which are
hybrids between diamond-Si and Si20. These hybrid systems have the same Hamiltonian as
Si20, except for some ei, ēi, tijR and t̄ijR which are modified to resemble those in diamond-Si.
Figure 2.8 shows the calculated optical spectra of diamond-Si (in solid black), Si20 (in solid
red), and the hybrid systems (in dashed, dotted-and-dashed, and dotted red).

The dashed red curve in Fig. 2.8 shows the calculated optical absorption of the first
hybrid system, where all on-site energies, ei and ēi, of Si20 are made to be equal to those of
diamond-Si.

The dotted-and-dashed curve in Fig. 2.8 represents the second hybrid system where, on
top of the modifications made for the first hybrid system, hopping integrals tijR between
bonding Wannier functions are modified as well. This modification is done in the following
way. First, we identify hopping integrals in Si20 larger than the nearest-neighbor hopping
integral in diamond-Si (their values are −1.93, −1.45, −1.30, and −1.29 eV). Second, we
modify these hopping integrals so that they are equal to the nearest-neighbor hopping integral
in the diamond-Si (−1.23 eV).
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Figure 2.8: Optical absorption of diamond-Si (black), Si20 (solid red), and two hybrid cases
(dashed, dotted, see text for details). Absorption curves are scissor shifted by 0.6 eV in all
four cases based on our GW -BSE calculation.

Finally, the dotted red curve in Fig. 2.8 shows the optical absorption of the third hybrid
system which, in addition to the modifications made for the first and second hybrid systems,
has modified hopping integrals between the anti-bonding Wannier functions, t̄ijR. Here we
follow the same logic as is used for hopping integrals between the bonding Wannier functions.
We first identify hopping integrals in Si20 in the nearest-neighbor regime that are larger than
the nearest-neighbor hopping integral in diamond-Si (their magnitudes are 0.18, 0.20, 0.23,
0.32, 0.34, and 0.40 eV). Next, we modify these hopping integrals to the nearest-neighbor
hopping integral between anti-bonding states in diamond-Si (0.13 eV).

As can be seen from Fig. 2.8, modifying only ei and ēi shifts the leading edge of the
absorption spectrum of Si20 to a higher energy by about 0.30 eV. This is about 33% of its
difference with diamond-Si. Modifying ei, ēi, and tijR further shifts the leading edge of the
absorption spectrum by another 0.30 eV. When ei, ēi, tijR and t̄ijR are all modified, the
edge of the absorption spectrum is shifted by a total of 0.75 eV from the original calculated
spectrum which accounts for approximately 83% of its difference with diamond-Si.

This behavior can be understood by considering a simple tight-binding model of a peri-
odic one-dimensional mono-atomic chain. The band structure of such a model is given by
e + 2t cos(ka) where e is the on-site energy, t is the hopping integral between the nearest-
neighboring orbitals, and a is the distance between atoms. Therefore, on-site energy e can
be thought of as an average energy of the band while the hopping integral t determines its
bandwidth. This means that smaller ēi − ei and larger tijR and t̄ijR found in Si20 will lower
the average band gap.

The modifications that are made to the hybrid systems do not account for the remaining
17% and an absorption tail at low energy. We attribute this to the following two effects.
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First, we only modified some of the larger hopping integrals in our calculations of the hybrid
models. Second, even though we modified the hopping integrals in our calculations, we have
always kept the crystal structure of Si20 the same. Therefore, relative phases of the Bloch
states between neighboring silicon-bond sites will be different in Si20 and in diamond-Si. In
other words, even if the hopping integrals were somehow made exactly the same in the two
structures, their optical absorption edges may still not be the same because of this effect.
Nevertheless, the total influence of these two effects on the improved optical absorption of
Si20 is rather small (17%) and the majority of the difference can be attributed to the changes
in the on-site energies and hopping integrals.

SC5 and Si24 silicon phases

To demonstrate the generality of our approach, we consider here two other phases of silicon
that also absorb light (without phonon-assisted transitions) at photon energy lower than
diamond-Si. The first phase can be described as a Si superlattice composed of alternating
stacks of bulk-like Si layers intercalated by Seiwatz chains [154]. Each stack is made of five
Si(111) layers of hexagonal diamond-Si. The Seiwatz chains are arranged in a configuration
that results in a simple monoclinic Bravais lattice. We refer to this phase as SC5. The second
phase is a low-density Si24 structure with an open silicon framework [100]. Unlike Si20 we
discussed earlier, none of these two phases have Si-Si bonds in a triangular arrangement.

Repeating the analysis in the previous sections for SC5, we find that all of its bonds have
ēi − ei smaller than that in diamond-Si. In SC5, they range from 9.09 to 9.61 eV. If we
change the on-site energies of SC5 to match those of diamond-Si, we find that the optical
spectrum more closely resembles that of diamond-Si. This change in the on-site energies
accounts for roughly 70% of the change in the optical absorption. Furthermore, if we also
change the hopping integrals of SC5 to match those of diamond-Si, we find another 20% of
the change in the optical absorption. Therefore, the improved calculated optical absorption
edge of SC5 is mostly due to changes in the on-site energies, not hopping integrals. This is
in contrast to Si20 where dominant effect came from the hopping integrals.

Switching now to Si24, our calculation shows that most of the on-site energy differences
(ēi − ei) are larger than those in diamond-Si. Out of 24 bonds in the primitive unit cell,
18 have higher on-site energy differences while only six have smaller differences than that of
diamond-Si. The range of calculated ēi−ei in Si24 ranges from 9.18 to 10.69 eV. We attribute
this to Si24’s open silicon framework and its low density (2.17 g/cm3) [100] as compared to
that of diamond-Si (see Sec. 2.3). If we modify the on-site energies of Si24 so that they are
equal to that of diamond-Si, we find that the onset of optical absorption shifts to a lower
energy. If we also modify the hopping elements, the optical absorption more closely matches
that of diamond-Si. Therefore, we conclude that in the case of Si24, the effect of the on-site
energies on the optical absorption is opposite to that of the hopping integrals.
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2.4 Conclusion

The different structure of Si20, relative to diamond-Si, leads to smaller on-site energy differ-
ences and larger hopping integrals between some of its Wannier functions. We have identified
that most of these differences are due to the strained bonds forming triangles (i.e. type-a
bonds) in Si20. Different on-site energies and large hopping integrals are responsible for
approximately 83% of the improved optical absorption in Si20 for photovoltaic applications
relative to diamond-Si. The remaining difference is attributed to contributions from the
smaller hopping integrals and the effect of the crystal structure on the relative phase of the
electron wave functions.

Introducing strain to the bonds in the crystal structure turns out to be important when
looking for crystal phases of silicon that have band gaps smaller than diamond-Si. However,
as strain may reduce the band gap of diamond-Si, it also reduces the stability of the crystal
structure. It is possible that a large band gap reduction may require a strain that is too
large for the crystal structure to be thermodynamically stable. Hence, in the search for a
practically viable silicon crystal phase that has a band gap smaller than that of diamond-
Si, it is a balance between reducing the band gap and increasing the strain in the crystal
structure.
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Chapter 3

Ab initio Study of Hot Electrons in
GaAs

3.1 Introduction

Hot carriers (HCs) generated by the absorption of light or injection at a contact are commonly
found in many advanced technologies [56, 58, 60, 86, 206, 166, 38, 29, 145]. In electronics,
the operation of high-speed devices is controlled by HC dynamics, and HC injection is a key
degradation mechanism in transistors [71, 204]. In solar cells and plasmonics, recent work
has focused on extracting the kinetic energy of HCs before cooling [38, 145], a process defined
here as the energy loss of HCs, ultimately leading to thermal equilibrium. HC dynamics is
also crucial to interpret time-resolved spectroscopy experiments used to study excited states
in condensed matter [189]. This situation has sparked a renewed interest in HCs in a broad
range of materials of technological relevance.

Experimental characterization of HCs is challenging because of the subpicosecond timescale
associated with the electron-phonon (e-ph) and electron-electron (e-e) scattering processes
regulating HC dynamics. For example, HCs can be studied using ultrafast spectroscopy,
but microscopic interpretation of time-resolved spectra requires accurate theoretical models.
However, modeling of HCs thus far has been dominated by empirical approaches, which
do not provide atomistic details and use ad hoc parameters to fit experiments [56, 88].
Notwithstanding the pioneering role of these early studies, the availability of accurate ab ini-
tio computational methods based on density functional theory (DFT) [137] and many-body
perturbation theory [83] enables studies of HCs with superior accuracy, broad applicability,
and no need for fitting parameters.

Hot electrons in gallium arsenide (GaAs) are of particular interest because of the high
electron mobility and multivalley character of the conduction band. Electrons excited at
energies greater than ∼0.5 eV above the conduction band minimum (CBM) can transfer
from the Γ to the L and X valleys, with energy minima at ∼0.25 and ∼0.45 eV above
the CBM, respectively [126]. Such intervalley scattering processes play a crucial role in hot
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electron cooling and transport at high electric fields.
Ample experimental data exist on hot electron transport and cooling in GaAs [189, 54,

184, 189, 241]. The interpretation of these experiments relies on Monte Carlo simulations
using multiple parameters fit to experimental results. For example, Fischetti and Laux [56]
used two empirical deformation potentials to model electron scattering induced by optical
and acoustic phonons. Additionally, Fischetti and Laux [56] used simplified band structure
and phonon dispersions. We note that, because multiple parameter sets can fit experimental
results, the HC scattering rates due to different physical processes obtained empirically are
not uniquely determined [56, 88].

Although heuristic approaches can provide some insight into HC dynamics of well-
characterized materials (e.g., GaAs), there is a lack of generally applicable, predictive, and
parameter-free approaches to study HCs.

Here, we carry out ab initio calculations of hot electrons in GaAs with energies up to 5 eV
above the CBM. Our ability to use extremely fine grids in the Brillouin zone (BZ) allows us
to resolve hot electron scattering in the conduction band with unprecedented accuracy. We
focus here on three main findings. First, our overall computed e-ph scattering rates are in
excellent agreement with those in previous semiempirical calculations in Ref. [56] that com-
bine multiple empirical parameters. The advantage of our approach is the ability to compute
the electronic band and momentum dependence of the e-ph scattering rates without fitting
parameters. Second, we show that both optical and acoustic modes contribute substantially
to e-ph scattering, with a dominant scattering from transverse acoustic (TA) modes. This
result challenges the tenet that HCs lose energy mainly through longitudinal optical (LO)
phonon emission. Third, our calculations provide valuable means for quantitative interpre-
tation of experiments of hot electron cooling in GaAs. In particular, the ultrafast (∼50 fs)
e-ph relaxation times that we compute at the onset of the X valley are in excellent agreement
with the fastest decay time observed in ultrafast optical experiments [54, 184, 241]. This
signal was attributed by some [54] to e-e scattering and by others [241] to e-ph scattering.
The excellent agreement with time decay signals in time-resolved experiments shows the
dominant role of e-ph scattering for hot electron cooling at low carrier density.

Our approach combines electronic band structures computed ab initio using the GW
(where G is the Green function, W is the screened Coulomb potential, and GW is the dia-
gram employed for the electron exchange-correlation interactions) method [83] with phonon
dispersions from density functional perturbation theory (DFPT) [11], and it is entirely free
of empirical parameters. We compute the e-ph matrix elements using a Wannier function
formalism [67] on very fine BZ grids and are able to resolve e-ph scattering for the different
conduction band valleys. The e-e rates for hot electrons - also known as impact ionization (II)
rates - are computed using the GW method [83, 78], and thus include dynamical screening
effects. Additional details of our calculations are discussed in Sec. 3.4.
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3.2 Results and Discussion

Accurate determination of e-ph scattering rates is essential to understand HC cooling with
microscopic detail. Fig. 3.1A shows the computed e-ph scattering rates for hot electrons
in GaAs with energies up to 5 eV above the CBM. Throughout this chapter, all energies
are referenced to the CBM. The e-ph scattering rates follow trends similar to the electronic
density of states (DOS), consistent with the fact that the DOS reflects the available phase
space for e-ph scattering. At a fixed energy, the scattering rates are distributed over a range
of values caused by the k dependence of the e-ph matrix elements (here, k is the crystal
momentum of the electronic state in the BZ). We find a significant spread in the scattering
rates for a fixed energy by up to ∼25% of their average value.

We carry out a quantitative analysis of the contributions from the individual phonon
modes to the e-ph scattering rates. Analytical treatments of e-ph scattering in polar materials
have relied extensively on the Fröhlich Hamiltonian [59, 127, 254], which couples electrons
to LO phonons. This fact has often led to the assumption that e-ph scattering in polar
materials is primarily caused by coupling of electrons with LO phonon modes. Fig. 3.1 B
and C shows that all optical and acoustic modes contribute substantially to e-ph scattering
in GaAs. Our calculations show that the TA modes provide the single largest contribution
to e-ph scattering, whereas the LO modes possess the greatest scattering rates among the
optical modes. The scattering rates from acoustic modes are overall roughly two times the
value of the optical modes. These results highlight the limitations of previous models using
LO phonon scattering alone and emphasize the need for ab initio calculations with fine k
grids to obtain quantitative evaluations of e-ph scattering.

Figure 3.1: e-ph scattering in GaAs. (A) e-ph scattering rates for hot electrons in GaAs
shown together with the electronic DOS. The zero of the energy axis is the CBM. The
contributions to the total e-ph scattering rate in A from the acoustic and optical phonons
are shown in B and C, respectively. LA, TA, LO, and TO label e-ph scattering induced by
LA, TA, LO, and TO phonons in B and C. The sum of the scattering rates in B and C equals
the total scattering rate in A.
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The total ab initio e-ph scattering rates (i.e., summed over all modes) computed here are
in excellent agreement with those obtained by Fischetti and Laux [56] (Fig. 3.2A), who used
empirical deformation potentials to describe the coupling to optical and acoustic modes
and the Fröhlich Hamiltonian to take into account the long-range effect on electrons of
the LO phonons. Their empirical approach yields e-ph scattering rates able to reproduce
experimental velocity-field curves in Monte Carlo calculations. The agreement with the total
e-ph scattering rates fit to experiment highlights the accuracy of our ab initio approach and
validates the Monte Carlo simulations carried out in Ref. [56]. Clearly, the additional benefit
of our approach is the ability to compute e-ph scattering rates in the absence of experimental
data. The agreement obtained here is striking given that multiple empirical parameters were
used in Ref. [56]. We provide a detailed analysis of this result to understand the differences
between previous semiempirical e-ph calculations and our ab initio approach.

Figure 3.2: Comparison of ab initio and semiempirical calculations. (A) e-ph scattering
rates from all modes in our work vs. those in Ref. [56]. (B) Contributions of individual
phononmodes to the e-ph scattering rate for ab initio calculations (solid lines) carried out in
this work and semiempirical calculations (dashed lines) that we reproduce using the param-
eters in Ref. [56]. The curves shown are the k-averaged scattering rates for (Left) acoustic
modes and (Right) optical modes.

As noted by Ziman [254], accurate calculations of e-ph matrix elements are the nub of
the e-ph interaction. For a scattering process connecting two electronic states that differ
in crystal momentum by Zq, the e-ph matrix element is an integral of the initial and final
Bloch states and the change in the crystal potential caused by a phonon with wavevector
q (Eq. 2). Direct computation of such e-ph matrix elements within the adiabatic approx-
imation requires knowledge of the potential acting on the electrons as well as the phonon
eigenvectors and Bloch states in the entire BZ. Computation of these quantities has become
possible owing to the advent of DFT and related methods [137], which were later extended
to compute and interpolate e-ph matrix elements on fine reciprocal space grids [67, 59]. Such
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detailed calculations were technically unfeasible in the early days of semiconductor physics
and in particular, at the time of the work in Ref. [56]. The e-ph matrix elements were often
approximated by mode-dependent parameters called deformation potentials [56, 88, 254] and
multiplied by an overlap integral over the unit cell between the initial and final electronic
states [56, 254]. In polar materials, such as GaAs, the Fröhlich Hamiltonian [59] was added
explicitly to take into account the long-range electric fields generated by LO vibrations of
the ions. The deformation potentials were then tuned until agreement with carrier velocity
vs. electric field or other transport data was achieved in Monte Carlo calculations using the
computed e-ph scattering rates. However, because multiple deformation potentials are used
in such semiempirical e-ph calculations, different choices of the parameters are able to repro-
duce the total e-ph scattering rates and thus, the experimental data. The contributions of
individual phonon modes are, thus, ambiguously determined in the semiempirical approach,
because they are arbitrarily set by the particular choice of the deformation potentials. In
contrast, individual phonon contributions are uniquely determined in ab initio calculations.

To carry out a quantitative comparison of the individual phonon mode contributions with
the work by Fischetti and Laux [56], we attempted to reproduce their calculations by combin-
ing our band structures and phonon dispersions with their deformation potential parameters
(Methods). The total e-ph scattering rates obtained with this approach agree well with
Ref. [56], thus guaranteeing that we correctly reproduced their calculations. Fig. 3.2B shows
a comparison between this work and Ref. [56] of the e-ph scattering rates from individual
phonon modes. Despite the fact that the total scattering rates are in excellent agreement,
we find that the scattering rates from individual phonon modes largely differ in the two
approaches. Compared with our ab initio calculations, scattering by longitudinal acoustic
(LA) phonons is largely underestimated, and scattering by LO phonons is largely overesti-
mated in Ref. [56]. In addition, scattering by transverse optical (TO) phonons is slightly
underestimated, whereas scattering by TA phonons is adequately described in Ref. [56]. The
too-large LO e-ph scattering rates in Ref. [56] seem to be compensated by too-small acoustic
scattering rates compared with our calculations as a consequence of the arbitrary choice of
deformation potential parameters for acoustic phonons. The different LO scattering rates
are caused by a key difference between the ab initio treatment of the e-ph interaction in
polar materials and semiempirical theories. In the ab initio approach, explicit inclusion of
the Fröhlich Hamiltonian becomes redundant, because it assumes the concept of rigid ions
carrying a net charge. Inclusion of both Fröhlich and nonpolar matrix elements for LO
phonons in semiempirical treatments is clearly ad hoc, because it arbitrarily separates the
long- and short-range e-ph interactions, which are taken into account on the same footing in
ab initio calculations. Future work will be necessary to more fully establish the differences
between the ab initio approach based on DFT adopted here and semiempirical theories for
a range of polar and nonpolar materials.

The main practical challenge to control HC dynamics in devices is the subpicosecond
timescale for HC cooling. This situation has led to extensive studies with ultrafast pump-
probe spectroscopies to understand the microscopic details of HC cooling. Fig. 3.3A shows
our computed e-ph relaxation times (defined here as the inverses of the e-ph scattering rates)
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for energies up to 1.5 eV. We find relaxation times of ∼1.5 ps, 200 fs, and 50 fs at energies
near the bottom of the Γ , L, and X valleys, respectively. Within an optical phonon energy
(∼40 meV in GaAs) of the onset energy of the valleys, the e-ph relaxation times increase
rapidly as the carrier energy approaches the valley minima because of the decrease in the
DOS of the given valley and the resulting decrease in the phase space for intravalley e-ph
scattering.

Figure 3.3: e-ph relaxation times in GaAs. (A) e-ph relaxation times of hot electrons
in GaAs. Up to EX , data points shown in yellow originate from electronic states in the Γ
valley, and data points shown in green originate from states at the bottom of the L valley. At
energies above EX , states in red and blue are located near the X and L valleys, respectively.
(B) Schematic of the states and valleys giving rise to the e-ph scattering rates in A.

The energy range above EX has been studied extensively in ultrafast optical experiments
because of the coexistence of the Γ , L, and X valleys. We find that the relaxation times
decrease rapidly from ∼200 fs at EL to ∼10 fs at 1.5 eV energy and remain nearly constant
above 1.5 eV. At the onset of the X valley at energy EX , the scattering rates split into
two different curves, with one set of scattering rates higher than the other by ∼10%. The
higher scattering rates are associated with hot electron states in the X valleys, whereas the
lower scattering rates stem from hot electrons in the L valleys. The distinct behavior of the
two sets of states extends up to 1.5 eV and thus, for ∼1 eV above EX . We remark that
existing models of e-ph scattering in GaAs have so far relied on energy- but not k-dependent
scattering rates. Our calculations show that the scattering rates for the L and X valleys
are slightly different, thus complicating the hot electron dynamics caused by intervalley
scattering.

Below, we use our calculations to analyze previous experiments of hot electron cooling
after excitation with ∼2 eV light [54, 184, 189, 241]. These experiments use time-resolved
absorption and luminescence measurements with sub-100-fs time resolutions and report in-
elastic scattering of the hot electrons over tens of femtoseconds. Such ultrafast inelastic
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processes were attributed by some to e-e scattering [54], even at low carrier density, where
e-e scattering is typically minimal [188]. Other works attributed the fast inelastic scattering
to e-ph processes. For example, Young et al. [241] have carried out transient absorption
experiments at different carrier densities and found that the decay of the absorption bleach-
ing signal shows little variation with carrier density. At low carrier density, where e-ph is
typically the dominant inelastic scattering process, Young et al. [241] find that the recovery
of the bleaching at 2 eV can be fit by three exponentials with decay times of 35 fs, 185 fs,
and 1.4 ps and attribute these features to e-ph scattering. We find that the decay times
in the work in Ref. [241] are in excellent agreement with the relaxation times presented in
Fig. 3.3A, which are discussed next.

The valence band edge of GaAs is split at Γ because of the spin-orbit interaction into two
valence band maximum (VBM) states (heavy- and light-hole bands) and the split-off (SO)
band located 350 meV below the VBM. Given the ∼1.4-eV gap of GaAs, pumping with 2 eV
light, thus, generates hot electron populations at energies of ∼0.5 eV above the CBM because
of excitation from the heavy- and light-hole bands and ∼0.15 eV because of excitation from
the SO band [241]. Our computed e-ph relaxation time of ∼50 fs at 0.5 eV above the CBM
is in very good agreement with the 35-fs decay signal found experimentally by Young et al.
[241] and attributed to intervalley scattering from the Γ to the L and X valleys. In addition,
the 185-fs timescale attributed in Ref. [241] to e-ph scattering of electrons excited from the
SO band agrees well with the ∼200-fs relaxation time that we predict at the bottom of the
L valley. Finally, the 1.4-ps rate for the overall carrier cooling is in agreement with a fast
transfer to the Γ valley followed by cooling to the CBM with ∼1.5-ps relaxation time as
found in our calculations.

In comparing experimental decay times of the bleaching signal with computed e-ph re-
laxation times, one must keep in mind that the pump pulse has a finite energy resolution
and thus, generates a pocket of carriers with a spread in energy. The probe pulse also has
a finite energy resolution and captures average carrier relaxation times from several states.
Given these differences and considering the rapid variation of the computed e-ph scattering
rates around EL, we believe that the attribution in Ref. [241] of the 185-fs decay signal to the
electrons excited from the SO band is correct and consistent with our calculation. Although
a direct comparison of state-specific e-ph relaxation times (i.e., state lifetimes) with decay
times in transient absorption experiments is approximate, we believe it is justified here by the
fact that the probe populates well-defined conduction band states; therefore, the bleaching
decay time in Ref. [241] can be interpreted as the relaxation time or state lifetime of specific
conduction band states, consistent with the interpretation given in Ref. [241]. Our data seem
to confirm the interpretation in Ref. [241] that the e-ph interaction alone can account for
the ultrafast inelastic scattering at low carrier density observed in several experiments [54,
184, 189, 241].

To further show that e-ph scattering dominates the cooling of low-energy hot electrons,
we carry out GW calculations of the II rates (Sec. 3.4), which are shown in Fig. 3.4. The
II rates are well-fit by a Keldysh formula: ΓII = α · (E − Eth)β, where ΓII is the II rate,
Eth is a threshold energy for the onset of II, and α and β are fitting coefficients. Similar to
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previous work [56, 164, 96], we use a threshold Eth = 1.7 eV for the onset of II and obtain
fitting coefficients of α = 1013 s−1 and β = 2.36. The threshold is numerically close to the
GW band gap of GaAs, and the value of β deviates from the parabolic trend (i.e., β = 2)
found in the free electron gas [127] caused by the multiband character of GaAs. The II rates
become greater than the e-ph rates at energy higher than ∼6 eV, and we, thus, predict that
energy loss for hot electrons with energy higher than 6 eV is dominated by inelastic II and
Auger processes. Because of the use of the random phase approximation (RPA) screening
in the GW formalism, our approach can provide accurate rates for interband II processes
induced by the screened Coulomb interaction. However, phonon-assisted II processes are not
included in the GW formalism and may result in underestimating the experimental II rates.

Figure 3.4: II rates in GaAs. II rates computed with the GW method shown together with
the Keldysh fit. The energies are referenced to the CBM and extend to ∼5 eV above the II
threshold.

In assessing the accuracy of our calculations, we note that recent ab initio calculations
of Auger scattering (i.e., the inverse process of II) show that phonon-assisted Auger rates
are at least one order of magnitude higher than the Auger rates caused by the Coulomb
interaction alone [97]. This finding suggests that accurate calculations of II rates caused
by the Coulomb interaction should underestimate the experimental II rates caused by the
absence of phonon-assisted processes. The empirical II rates calculations in Ref. [56] should
be able to yield the correct order of magnitude for the II rates because of their accurate
e-ph rates and the fit to experiment data. The absence of phonon-assisted processes in our
approach justifies our lower II rates compared with those in Ref. [56] (Fig. 3.5). However,
even with the II rates in Ref. [56], our conclusions are unchanged regarding the dominant role
of the e-ph scattering for hot electron cooling up to ∼2 eV energy as used in the experiments
considered here.
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Figure 3.5: Comparison between the GW II rates in this work (black curve) and those in
Ref. [56] (red curve). Shown are the Keldysh fits of the two datasets.

Finally, we note that our e-e scattering rates do not include e-e scattering among excited
carriers within the conduction band, namely processes whereby a hot electron loses energy
by transferring it to another conduction band electron. At high carrier density (e.g., greater
than 1018 cm−3), this mechanism is important to achieve equilibrium within the hot electron
gas, because it leads to the establishment of a hot electron temperature and a corresponding
HC Fermi-Dirac distribution. Our scattering rates are, thus, expected to be accurate only
at relatively low carrier density. We note that at high carrier density the GW formalism
can, in principle, account for e-e scattering within the conduction band provided that the
dielectric screening and Green functions are appropriately computed with an additional
assumed out-of-equilibrium initial carrier distribution or alternatively, a hot Fermi-Dirac
distribution. However, one problem associated with this approach is that such e-e scattering
processes are so fast that they usually take place while the pump pulse is still on; therefore,
an initial carrier distribution cannot be defined for the computation of the GW self-energy.
To circumvent this bottleneck, truly nonequilibrium ab initio theories need to be developed
(for example, by evolving in time nonequilibrium Green’s functions on the Keldysh contour
[97]), which is beyond the scope of this study.

3.3 Conclusion

In summary, although the theoretical interpretation of HC dynamics and time-resolved spec-
troscopy without empirical parameters is still in its infancy, our ab initio calculations show
excellent agreement with semiempirical e-ph scattering rates and ultrafast spectroscopy data.
Taken together, these results show the dominant role of e-ph scattering in hot electron cooling
in GaAs. Our work further highlights the need to treat e-ph interactions in GaAs (and more
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broadly, polar semiconductors) with models going beyond the Fröhlich Hamiltonian and in-
clude all phonon modes on the same footing with ab initio calculations of e-ph scattering.
Although such calculations are currently computationally expensive and highly specialized,
our recent improvements in the algorithms (to be reported in the future) can make them
more broadly accessible. The computational approach to study HCs and ultrafast electron
scattering shown in this work is general and can be applied to semiconductors, insulators,
metals, surfaces, and nanostructures. HCs are relevant in several branches of materials sci-
ence and applied physics, including electronics, optoelectronics, semiconductor physics, solar
energy, plasmonics, and spectroscopy. In several cases of practical interest (e.g., solar energy
conversion, plasmonics, and photocatalysis), HCs are generated at low density, and there-
fore, the approach developed here can capture HC cooling processes of relevance in these
applications.

3.4 Methods

We carry out ab initio calculations on GaAs in the diamond structure with a DFT-relaxed
lattice parameter of 5.55 Å. The ground-state electronic structure is computed within the
local density approximation (LDA) of DFT using the QUANTUM ESPRESSO code [27,
161, 66]. Norm-conserving pseudopotentials are used to describe the core-valence interaction
[208], and a kinetic energy cutoff of 45 Ry is used for the plane-wave basis set; e-ph and II
calculations are discussed below.

e-ph Scattering Calculations

Lattice dynamical properties are computed by means of DFPT [241]. We use an in-house
modified version of the EPW code [149] to compute the imaginary part of the lowest order
e-ph self-energy, Im (Σe−ph

n,k ) , for the Bloch state of energy εn,k at band n and k point in the
BZ:

Im(Σe−ph
n,k ) =

∑
m,λ,q

|gλ,qn,m,k|
2Im

[
Nλ,q + 1− fm,k

εn,k − εm,k+q − h̄ωλ,q − iη
+

Nλ,q + fm,k
εn,k − εm,k+q + h̄ωλ,q − iη

]
(3.1)

where εn,k is the GW quasiparticle energy, h̄ωλ,q is the energy of a phonon with polarization
λ and wavevector q in the BZ, fm,k and Nλ,q are Fermi and Bose occupation numbers,
respectively (evaluated here at room temperature), and η is a small Lorentzian broadening
(here, we use η = 10 meV). In Eq. 3.1, the key quantities are the e-ph matrix elements,
which are defined as

gλ,qn,m,k =

√
h̄

2Mωλ,q
〈Ψm,k+q|∂λ,qV |Ψn,k〉 (3.2)
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where Ψn,k is the Kohn-Sham wave function for band n and k in the BZ, ∂λ,qV is the variation
of the Kohn-Sham potential for a unit displacement of the nuclei along the phonon mode of
polarization λ and wavevector q, and M is the mass of the unit cell. The e-ph scattering rate
Γe−phn,k is computed from the imaginary part of the self-energy as Γe−phn,k = 2

h̄
· Im(Σe−ph

n,k ), and

the relaxation time τn,k = (Γe−phn,k )−1 is the inverse of the scattering rate. We remark that
this procedure is equivalent to applying perturbation theory in the lowest order of the e-ph
perturbation [127]. We first compute the electronic states on an 8× 8× 8 k-point grid using
DFT corrected with the GW self energies and the vibrational states on an 8× 8× 8 q-point
grid using DFPT. The e-ph matrix elements are computed using these coarse grids. We
then interpolate the quantities needed to evaluate the e-ph self-energy on significantly finer
grids using an interpolation procedure based on Wannier functions implemented in the EPW
code [149]. Our fine grids consist in a 40× 40× 40 k-point grid and up to 512,000 random
q points in the BZ. Such fine grids allow us to fully converge the self-energy in Eq. 3.1.
The scattering rates for the individual phonon modes shown in Fig. 3.1 are computed by
restricting the summation in Eq. 3.1 to a given phonon mode (i.e., a given phonon branch
and thus, a given value of λ). The e-ph relaxation times near the bottomof the valleys in
Fig. 3.3 were computed separately with fine grids up to 200 × 200 × 200 k points around
the minimum of each valley to resolve the relaxation times. Convergence with respect to
all parameters was carefully tested. The converged e-ph calculations shown in this work
require computing ∼10 trillion e-ph matrix elements; these matrix elements are used on the
fly to compute the e-ph self-energy, because their storage would require tens of terabytes of
memory.

To reproduce the semiempirical calculations in Ref. [56], we set the square modulus of the
matrix elements to |gλ,qn,m,k|2 = | h̄

2Mωλ,q
|·∆2

λ(q)·I2(q) , where ∆λ(q) is the deformation potential

for the phonon mode λ, and the overlap integral is computed in the rigid ion approximation
[254], yielding I(x) = 3[x cos(x) − sin(x)/x3, where x = qr0 and r0 is the Wigner-Seitz cell
radius [254]. The deformation potentials are taken from Ref. [56]. (i) For optical phonons,
∆OP (q) = b ·q, where b = 5.0 eV for electron energy above 0.3 eV and b = 7.0 eV for electron
energy below 0.3 eV. (ii) For acoustic phonons, ∆AC(q) = a, where a = 2.1 · 108 eV/cm for
electron energy above 0.3 eV and a = 0 eV for electron energy below 0.3 eV. (iii) For LO

phonons, we add the Fröhlich contribution ∆2
LO,F = [ h̄

2Mωλ,q
]−1 · [πe2h̄ωLO

Vucq2
] · ( 1

ε∞
− 1

ε0
), where

h̄ωLO is the LO phonon energy at the BZ center, Vuc is the volume of the unit cell, and ε∞
and ε0 are the high and low frequency dielectric constants of GaAs, respectively. All electron
energies above are referenced to the CBM.

Impact Ionization (II) Calculations

We carry out full-frequency GW calculations [83, 78] using the BerkeleyGW code [46] to
compute the imaginary part of the GW self-energy, Here, Im(ΣGW

n,k ) denotes the diagonal
matrix element of the imaginary part of the GW self-energy for the Kohn-Sham state |n,k〉,
and we compute Im(ΣGW

n,k ) on shell (i.e., we evaluate it at the LDA eigenvalues). Kinetic
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energy cutoffs of 10 and 45 Ry are used for the screened and bare Coulomb interactions,
respectively, and 70 empty bands are used to compute the dielectric screening and the Green’s
function. For the GW calculations, the PARATEC code was used for the ground-state DFT
LDA calculation, and we used the one-shot G0W0 approximation. Although a fine sampling
of the BZ is essential to converge the e-ph self-energy, we find that an 8× 8× 8 k-point grid
is sufficient to converge the imaginary part of the GW self-energy. The data shown here
are obtained with a Ga pseudopotential with the d states in the core. We have verified that
including the semicore d states of Ga as valence states does not lead to significant changes
in the II rates, which validates our approach, because only the imaginary part of the GW
self-energy is of interest here. Details of the implementation of the imaginary part of the
GW self-energy in our code can be found in Refs. [46, 196].
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Chapter 4

Substrate-Induced Dynamical
Anti-Screening of Excitons in
Quasi-2D Materials

4.1 Introduction

Electrons in an atomically thin quasi-two-dimensional (quasi-2D) material, such as a transi-
tion metal dichalcogenide (TMD) monolayer, are confined in their motions and experience
reduced intrinsic dielectric screening. As a result, electron-electron and electron-hole inter-
actions within the material are enhanced, leading to large bandgap renormalization due to
self-energy effects and tightly bound excitons [132, 168, 33, 211, 169]. In the out-of-plane
direction orthogonal to the periodic crystal plane, the Coulomb field of the electrons extends
outside of the quasi-2D material. Hence, unlike in a bulk three-dimensional (3D) material,
electrons in a quasi-2D material are sensitive to the screening environment due to the sub-
strate or any encapsulating material. This substrate screening effect can drastically modify
the quasiparticle (QP) excitation energy and the exciton binding energy and can be exploited
to bring about new applications and optoelectronic devices, such as rectifier without atomic
heterostructures [117, 211, 20, 113, 199, 167, 173, 174, 212, 215].

The ab initio GW [83] and GW plus Bethe-Salpeter equation (GW -BSE) [178] ap-
proaches are parameters-free and based on the many-body perturbation theory. They are
respectively regarded as accurate formalisms to study the quasiparticle and optical properties
of quasi-2D materials and are naturally applicable for this class of systems, i.e., 2D materials
in different environments. However, since such heterostructures often form incommensurate
or nearly incommensurate lattices, several computationally simpler approaches have been
recently proposed to deal with the structural complexity. For neutral excitonic optical exci-
tations, which typically only involve long-wavelength electron-hole interactions, it is common
to include substrate screening using an effective dielectric constant or the Rytova-Keldysh’s
model [181, 99]. However, these models do not contain the microscopic local field effects, and
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hence, they are not suitable for the calculations of the QP bandgap within the ab initio GW
approach, and also depend on fitting the substrate dielectric screening based on ab initio
calculations [40].

Due to the importance of accurately capturing the screening environment and its local
fields, various approaches have been employed in the past to calculate the electronic and
optical properties of quasi-2D materials that also include dielectric screening due to the sub-
strates [84, 148, 171, 62, 177, 205, 117, 197, 12, 211, 6, 20, 52, 106, 49, 48, 167, 146, 194, 222,
112, 234, 121]. Most approaches are based on the fact that when wavefunction hybridization
between the quasi-2D material and the substrate is small, the noninteracting irreducible
polarizability can be computed separately for the two subsystems [117]. An important sim-
plification developed in Ref. [211] takes advantage of the fact that substrate screening is
often nearly translationally invariant in the quasi-2D plane (i.e., screening within the quasi-
2D material is unchanged if the substrate is displaced along its periodic direction), allowing
one to circumvent calculations that explicitly depend on the geometry of a supercell that
contains both the quasi-2D material and the substrate [211, 20, 113, 146, 167, 212]. Variants
of this approach have also been developed: when substrate screening is not translationally
invariant along the in-plane directions, such as for molecular adsorbates, a folding scheme
and a real-space truncation of the polarizability have been implemented [121, 234]. For a
layered substrate, a quantum electrostatic heterostructure model has been proposed that
further simplifies the substrate into a composition of different layers coupled together elec-
trostatically [6, 106, 194, 222]. Finally, using a model dielectric function, substrate screening
has been included explicitly within the so-called GdW approximation [177, 48], wherein the
ab initio calculated dielectric matrix is replaced by a model dielectric function. The metallic
surface has also been modeled using a classical local function based on the Drude dielectric
function [197]. The classical image-charge model has also been used to include substrate
screening [84, 148, 171, 62, 205, 52], in what is often referred to as the DFT+Σ approach. In
hybrid quantum-classical approaches, the GW QP self-energy of the quantum-mechanical
subsystem is embedded in an environment that contributes to screening based on molecular
mechanics [49, 112]. In all cases, calculations have found that the exciton binding energy
of a supported quasi-2D material decreases relative to the freestanding case and that this
renormalization is nearly canceled by a reduction of the QP bandgap, in such a way that
the lowest exciton excitation energy barely changes.

The large binding energies of excitons and their changes by the substrate also raise
the question of whether it is still appropriate to approximate the screened, time-dependent
electron-hole interaction in the BSE as being instantaneous, a common practice known as
the static approximation to the BSE [178, 136, 13, 61, 138], even though there are instances
in which the frequency dependence has been shown to be important, such as for some noble
metals [136] and doped systems of reduced dimensionality [61]. While the BSE should
be rigorously solved in a fully frequency-dependent fashion, the most important energy at
which screening takes place is at the exciton binding energy [178]. Consequently, the static
approximation to the BSE is often reasonable: for a bulk 3D semiconductor or insulator,
the dielectric function is nearly constant in the small-energy range that the exciton binding



CHAPTER 4. SUBSTRATE-INDUCED DYNAMICAL ANTI-SCREENING OF
EXCITONS IN QUASI-2D MATERIALS 35

energies fall into; for metals, even though the dielectric screening varies drastically in this
energy range, screening is overall large and the exciton binding energy is typically very
small, with the important exceptions mentioned above [136, 61]. The case of a quasi-2D
material supported by a metallic substrate is expected to be another example for which this
approximation breaks down, since a quasi-2D material has large exciton binding energies of
a few hundred meV, and screening from the substrate changes considerably as a function of
wavevector in this energy range.

In this work, we study the effects that the wavevector and frequency dependences of
substrate screening have on the quasiparticle and excitonic properties of monolayer TMDs for
a range of substrates. We show that a physical phenomenon of antiscreening emerges when
a quasi-2D insulator is supported by a metallic substrate. This effect is due to the presence
of low-energy surface plasmons in metallic substrates, which act as mediating bosons for the
electron-hole interactions in the quasi-2D material. Remarkably, these retarded interactions
have an attractive component (i.e., they may enhance the interactions) that is analogous to
the Bardeen-Pines [10] attractive phonon-mediated electron-electron interactions. In order
to observe this effect in calculations, it is necessary to perform our ab initio GW and GW -
BSE calculations carefully and treat the wavevector and frequency dependences of substrate
screening on the same footing. For example, a k-point sampling as dense as 3000× 3000 is
needed to capture the correct long-wavelength behavior of screening in metallic substrates.

As we show, the frequency dependence of screening by the metallic substrate is of
paramount importance in this regime, and the static approximation severely overscreens
the electron-hole interaction of an exciton, yielding unphysical results. Moreover, the antis-
creening effect will also not be observed if the static approximation is used. We also derive
a frequency-dependent polarizability of an ideal-metal model to elucidate the intricate and
non-trivial coupling of the spatial-energy variations.

This Chapter is organized as follows. In Sec. 4.2, we describe how we incorporate screen-
ing from the substrate into our GW and GW -BSE calculations through the in-plane sub-
strate average (IPSA) approximation. We then introduce the ideal-metal model (IMM) for
the substrate. In Sec. 4.3, we discuss how the QP self-energy and the exciton binding energies
are modified by the presence of a substrate. In Sec. 4.4, we report our conclusions.

4.2 Theoretical and Computational Approaches

In-plane Substrate Averaging (IPSA) Approximation

This class of structurally complex systems involving a quasi-2D material and a substrate
can be very efficiently tackled if we make use of the fact that the van der Waals interactions
between the quasi-2D layer and its supporting substrate are typically weak, leading to spatial
separation between these two subsystems with minimal wavefunction hybridization. If the
interface is also incommensurate, this hybridization is even weaker [123, 223] due to the lack
of long-ranged periodicity.
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In Ref. [211], the in-plane substrate averaging (IPSA) approximation [211, 20, 113, 167,
212] was introduced. It takes advantage of this spatial separation to efficiently compute the
substrate effect on the quasiparticle and optical properties of the quasi-2D material by as-
suming that the noninteracting irreducible polarizability χ0(r, r′) of the total system, which
is related to the many-electron screening, is a sum of the contribution from the quasi-2D
material χ0

TMD(r, r′), and the contribution from the substrate χ0
sub(r, r′). This separation

becomes exact in the limit of vanishing wavefunction hybridization between these two sub-
systems. The main physical approximation in IPSA is then to neglect the atomistic details of
the substrate screening in the in-plane directions, which is exact in the long-wavelength limit.
This is equivalent to assuming that the substrate polarizability is translationally invariant
in these directions and therefore the microscopic local field effects due to the substrate in
the in-plane x- and y-directions (but not the out-of-plane z-direction) can be ignored,

χ0
sub(r, r′) ≈ χ0

sub(x− x′; y − y′; z, z′). (4.1)

The noninteracting irreducible polarizability χ0(r, r′) is related to the random-phase approxi-
mation (RPA) of the dielectric matrix ε(r, r′) through ε(r, r′) = δ(r− r′)−

∫
dr′′vc(r− r′′)χ0(r′′, r′).

In this work, the substrate is not assumed to be homogeneous [211, 20, 146] (unless otherwise
specified), layered [6] or have an analytic form [99, 177, 197, 48].

To verify the validity of not including local field effects due to the substrate in the in-
plane directions, we carry out GW and GW -BSE calculations for a set-up consisting of an
untwisted bilayer WSe2, for which the closest Se atoms in the two layers are separated by 4 Å
in the out-of-plane direction. Even though this distance is larger than the typical distance
of ∼3.1 to ∼3.4 Å between a quasi-2D material and its substrate, hybridization effects are
much larger between the two layers of an untwisted bilayer WSe2 due to the proximity of
the Se atoms and long-ranged periodicity. We, therefore, artificially increase the interlayer
distance to decrease the hybridization between the two layers, to the level of hybridization
that is similar to when WSe2 is supported by a real substrate. For such a system, we see
that the IPSA approximation introduces an error of only a few meV in the QP and exciton
excitation energies (see the first two columns of Table 4.1).

The major advantage of the IPSA approximation is that it avoids the need of many-
body perturbation theory calculations of a very large supercell that explicitly contains both
the quasi-2D material and the substrate. Hence, as opposed to an otherwise expensive
calculation, the effective computational cost of a GW -BSE calculation that incorporates
substrate screening using our approach is nearly the same as a GW -BSE calculation for a unit
cell of the quasi-2D material only. Moreover, since substrate effects are longer-ranged effects
than electron-electron interactions within the quasi-2D material, the perturbative change in
the GW QP self-energy of the quasi-2D material due to the substrate, ∆ΣTMD ≈ iGTMD∆W
[where ∆W = (ε−1

TMD+sub − ε−1
TMD)vc, and ε−1

TMD+sub and ε−1
TMD are respectively the inverse

dielectric matrices of the combined system and the TMD-only subsystem] can be evaluated
using a much smaller energy cutoff (Es) for the number of components in the plane-wave
basis set and correspondingly fewer bands (Nb) in the summation over empty states for
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Table 4.1: Calculated exciton binding energies Eb, exciton excitation energies Exct and QP
bandgap EQP

gap of bilayer WSe2, for which the closest Se in the two layers are separated by

4 Å in the out-of-plane direction. In the first two columns, one (mono)layer is treated as an
effective system embedded in the screening environment due to the second (mono)layer. In
the first column, local field effects of screening due to the second layer is neglected in the
in-plane directions but still explicitly included in the out-of-plane direction. In the second
column, all local field effects of screening due to the second layer are included. In the third
column, we report the results of exact calculations for an explicit bilayer WSe2 system.
(We use the following notations: ml for monolayer and bl for bilayer.) Precision to 1 meV
obtained from ab initio calculations is given in parenthesis.

ml+ml
with in-plane

local field (eV)

ml+ml
without in-plane
local field (eV)

bl
exact

calc (eV)

E1s
b 0.40(0) 0.39(6) 0.38(2)

E2s
b 0.22(4) 0.22(1) 0.21(3)

E1s
xct 1.65(9) 1.65(8) 1.65(4)

E2s
xct 1.83(5) 1.83(3) 1.82(2)

EQP
gap 2.06(0) 2.05(5) 2.03(6)

the computation of the noninteracting irreducible polarizability and the self-energy for this
purpose. For instance, in our calculations of a pristine monolayer freestanding WSe2, we
employ a plane-wave cutoff of Es = 35 Ry when calculating the dielectric matrix and the
self-energy, including Nb = 26450 bands for both calculations. However, when calculating
the perturbative change in the QP self-energy of WSe2 due to substrate screening by hBN, a
much smaller plane-wave cutoff of Es = 6 Ry is used and only Nb = 1116 bands are included,
and the result is found to already be converged to better than 5 meV. See Sec. 5.1 for more
details.

Using the IPSA approach, one can calculate not only the renormalizations of the QP
bandgap EQP

gap due to screening from a substrate, but also compute the changes in the abso-
lute QP excitation energies (e.g., conduction band minimum and valence band maximum)
[212], exciton excitation energies Exct and exciton binding energies Eb. For this approach to
be accurate, wavefunction hybridization between the quasi-2D material and the substrate in
the combined system should be minimal. In Sec. 5.3, we plot the projections of the wavefunc-
tions of the combined system onto the wavefunctions of the quasi-2D material. While the
hybridization is small for a wide variety of substrates, including SiO2, hBN, and graphene,
we find that it is markedly larger for Au, making this approach less appropriate for such a
substrate.

In this work, the GW QP self-energies and the GW -BSE exciton excitation energies are
computed using the BerkeleyGW [83, 178, 46] package. The QP self-energies are cal-
culated using the eigenvalue-self-consistent, fully-frequency-dependent GW 0 approximation.
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The full frequency-dependent dielectric matrices for monolayer MoS2, MoSe2 and WSe2 are
calculated on effective [94] q-grids of 1143×1143, 1100×1100 and 1102×1102, respectively,
using a total of 26450 bands. An energy cutoff of 35 Ry is used to calculate the dielectric ma-
trix and the self-energy. The frequency-dependent BSE is solved self-consistently to obtain
the exciton excitation energies. The electron-hole interaction kernel of the BSE Hamiltonian
is interpolated from a uniform k-grid of 72 × 72 to a finer uniform k-grid of 1440 × 1440,
using directly calculated matrix elements for q-points of density equivalent to 5184 × 5184
[178, 94]. The TMD-substrate distances are determined in separate DFT calculations that
also incorporate van der Waals interactions (vdW-DFC09x) [39] and dipole corrections [14,
142] by minimizing the energies of the systems. For computational details, see Sec. 5.1.

Frequency and Wavevector Dependences

An important aspect of this work is the study of the frequency dependence of the dielectric
matrix when calculating the GW self-energy and solving the BSE, without resorting to static
approximations or plasmon-pole models [83, 116, 68]. This is particularly important for a
metallic substrate because its dielectric screening displays coupled spatial-energy variations
even at small frequencies ω. In this work, we include the frequency dependence of the
dielectric matrix self-consistently when solving the BSE to obtain exciton excitation energies
(see Sec. 4.3). While this is a computationally expensive step that is often neglected in ab
initio calculations because its effects are usually minor for dielectric substrates, we find that
it quantitatively and qualitatively changes the exciton energies if the substrate is metallic.

In addition to the dynamical effects, the small-q dependence of the polarizability matrix
is also important and non-trivial for a quasi-2D material [168, 169] and are accurately cap-
tured using non-uniform Brillouin-zone sampling approaches [94]. In general, since Wannier
excitons are low-energy and spatially extended excitations, small-ω and small-q dependences
have to be calculated accurately and on equal footing (Sec. 5.1).

Screening in an Ideal-Metal Model (IMM)

To more clearly elucidate the intricate frequency and wavevector dependences of screening
by metallic substrates, we derive here an expression for the irreducible polarizability of a
grounded ideal-metal model substrate: a semiclassical model which at steady state com-
pletely screens any external potential above its surface by inducing a 2D surface charge like
a classical ideal metal. The model also displays retardation effects based on the Lindhard
theory for the 2D electron gas. For the full derivation and a more detailed discussion, see
Sec. 5.2.

The associated irreducible polarizability for this surface-charge-inducing ideal-metal model
(IMM), χ0

GG′,IMM(q, ω), is decomposed as a product of two terms using the following ansatz,

χ0
GG′,IMM(q, ω) ≡ χ0

GG′,static(q)f 0
L(q + G‖, ω)δG‖,G′‖ . (4.2)
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The first term χ0
GG′,static(q) corresponds to the irreducible polarizability of a static classi-

cal ideal metal, which has, for instance, no retardation effects or information regarding the
Fermi surface. The delta function δG‖,G′‖ emphasizes the fact that G and G′ components

of χ0
GG′,static(q), f 0

L(q + G‖, ω) and therefore χ0
GG′,IMM(q, ω) are diagonal in the in-plane di-

rections, due to the translational invariance of this model and the homogeneous 2D electron
gas in the in-plane directions. This ansatz makes the drastic but physically-motivated as-
sumption that the frequency response in the in-plane directions is independent of the G⊥ and
G′⊥ components. The irreducible polarizability is computed numerically from the reducible
polarizability χGG′,static(q), using the following matrix equation,

χ0
static(q) = [1 + vc(q)χstatic(q)]−1χstatic(q), (4.3)

where vc is the (truncated) Coulomb potential [85]. The static reducible polarizability of a
classical ideal metal, χGG′,static(q), is derived by us in Sec. 5.3 to be,

χGG′,static(q) = −eiG⊥z
δG‖G′‖I(q,G‖, G

′
⊥)

vc(q + G′)
e−iG⊥z, (4.4)

where

I(q,G‖, G
′
⊥) = V

|q + G‖|
[
1− e−L2 |q+G‖| cos(L

2
G′⊥)

]
L
2
(G′2⊥ + |q + G‖|2)

,

z is the position of the substrate, L is the length of the unit cell in the out-of-plane di-
rection and V is the volume of the crystal. Note also that χGG′,static(q), and therefore
χ0
GG′,IMM(q, ω), are diagonal in the in-plane directions, as should be expected, since our

model is translationally invariant in the in-plane directions.
The second term f 0

L(q + G‖, ω) in Eq. (4.2) contains the frequency-dependent retardation
effects of the screening response of the substrate. As we detail in Sec. 5.3, f 0

L(q + G‖, ω)
is taken from the Lindhard function of a 2D metal, which is χ0

L(q + G‖, ω) through the
following defining equation,

χ0
L(q + G‖, ω) ≡ χ0

L,static f
0
L(q + G‖, ω), (4.5)

where χ0
L,static = limq→0 χ

0
L(q, 0). As our response function in Eq. (4.2) also captures the

out-of-plane local field effects of screening due to the induced surface charge at the surface
of an ideal-metal substrate, it is a function of G⊥, is thus z-dependent and contains the
distance dependence between the substrate and the quasi-2D material. In this work, the
ideal-metal substrate is positioned at a distance from the quasi-2D material that is the same
as the distance the charge center of the closest pz orbital of the doped 14-layer graphene
substrate is from the quasi-2D material. The charge centers are defined using the peaks
in the calculated ab initio noninteracting irreducible polarizability χ0(z = z′) of a doped
14-layer graphene substrate for q → 0. In addition, f 0

L(q + G‖, ω) depends on the Fermi
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wavevector kF . We set kF to 0.72 Å−1 using the calculated Fermi surface of a doped 14-layer
graphene substrate and can be regarded as a highly screening metallic substrate. (For the
corresponding hole concentrations of the doped n-layered graphene, see Sec. 4.3.)

Together, Eqs. (4.2), (4.3) and (4.4) form a set of equations that are physically motivated,
yet simple and easy to implement in first-principles calculations such as in the ab initio
GW -BSE approach, in the physically meaningful limit that is the upper bound of saturated
metallic substrate screening. Its simplicity contrasts sharply with the otherwise numerically
intensive computation of the polarizability of a metallic substrate, which requires a very
dense k-point sampling and can be difficult to converge.

Importantly, our surface-charge-inducing ideal-metal model is robust. It correctly repro-
duces the QP-bandgap renormalizations that are calculated ab initio in the limit of saturated
metallic screening of multiple-layer graphene (Table 4.2). Additionally, it is also able to re-
produce the |q + G| dependence of ε−1

G=G′,static(q) of a doped monolayer graphene that has
been calculated ab initio in the long-wavelength limit of G⊥ = G′⊥ = 0 (Fig. 4.1) and most
features of the local field effects in the out-of-plane direction.

This is because our ideal-metal model screens by inducing a 2D surface charge that cor-
rectly reproduces the surface of an ideal-metal substrate, including the local field effects. Our
model improves upon the traditional image-charge (substrate) model, which has a screening
response that is not given by a surface charge, but by an image charge inside the substrate.
For a given value of G = G′, the traditional image-charge model screens constantly for all
q’s and does not agree with the microscopic screening response of doped graphene.

4.3 Results

Quasiparticle Bandgap Renormalization

In this Section, we calculate the QP-bandgap renormalizations of three monolayer TMDs,
namely MoS2, MoSe2 and WSe2, supported by 13 selected substrates (Table 4.2), including
bilayer hBN, 4.8-nm-thick (10-layer) crystalline film of polytetrafluoroethylene (PTFE), 4.5-
nm-thick SiO2, 4.3-nm-thick (14-layer) hBN, doped and undoped n-layered graphene and
ideal n-layered metal (Fig. 4.2). In this work, the doped n-layered graphene is always gated
at 0.3 eV [211] below the charge neutrality point, which is mimicked by rigidly lowering
the Fermi level of an intrinsic undoped sample. This corresponds to hole-doping of p =
9.6 × 1012 cm−2, 2.4 × 1013 cm−2 and 2.0 × 1014 cm−2 for the monolayer, bilayer, and 14-
layer graphene samples, respectively. The selection of these substrates is experimentally
motivated and covers a range of electrical conductivities, from insulators and semiconductors
to semimetals and metals. In some cases, we also consider the scenario in which the monolayer
TMD is not only screened from below by the substrate (i.e., substrate only), but also screened
from above by a capping layer of the same material (i.e., encapsulated).

Firstly, we find, as expected, that insulators and semiconductors screen less than semimet-
als and metals (Table 4.2 and Fig. 4.2). The larger is the screening by the substrate, the
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larger is the bandgap renormalization of the TMD. For monolayer WSe2, a 14-layer hBN
substrate renormalizes its bandgap by 120 meV, whereas a doped 14-layer graphene substrate
renormalizes its bandgap by 330 meV, which is more than twice as much.

Secondly, this renormalization is not a simple function of the macroscopic dielectric con-
stants of the substrates (Fig. 4.2). Due to the importance of substrate screening, it is
common practice [53, 193, 82, 182] to incorporate substrate screening using a momentum-
independent effective dielectric constant defined as the average of the macroscopic dielectric
constants of the media above and below the TMD, i.e., εenv = (εabove + εbelow)/2. Using this
conventional model, it is equivalent to replacing the substrate by a homogeneous dielectric
medium that permeates throughout space, responding locally to an external potential. This
approximation always overestimates substrate screening (Fig. 4.2) because it assumes that
the substrate overlaps spatially with the sample. For monolayer WSe2, this overestimation of
the QP-bandgap renormalization can exceed the upper bound of saturated metallic screening
(390 meV) by more than 400 meV (Fig. 4.2). Moreover, the choice of a correct macroscopic
dielectric constant for the substrate can be difficult or ill-defined for some materials, particu-
larly if the substrate is metallic since ε(q, ω) will then be strongly dependent on the screening
frequency ω as q → 0, or if the substrate is quasi-2D since ε(q, ω) will then vary non-trivially
with q [169]. In fact, ε(q, ω) of a semiconducting quasi-2D material always approaches 1
as q → 0, due to the lack of long-ranged electronic screening [169]. As a result, the range
of experimentally measured macroscopic dielectric constants for some materials is large and
can be a source of controversy (e.g., it reportedly ranges from 2 to 16 for graphene [91, 176,
193, 182]).

Thirdly, the effect of substrate screening by layered substrates saturates very quickly with
(layer-)thickness for metallic and semimetallic substrates, but is saturated only at very large
thickness for semiconducting and insulating substrates (Table 4.2). For monolayer WSe2, an
ideal-metal substrate leads to a bandgap renormalization of 330 meV. This is the same as
the renormalization by doped bilayer graphene and doped 14-layer graphene substrates and
is only 10 meV larger than the renormalization by a doped monolayer graphene substrate.
Substrate screening by doped graphene layers is already saturated at two-layer thickness.
For a hBN substrate, a 14-layer hBN renormalizes the bandgap by 120 meV while a bilayer
hBN substrate renormalizes the bandgap by half as much (60 meV). Even with a 14-layer
thickness of hBN, the renormalization of the bandgap is less than half of the renormalization
in the limit of saturated metallic screening of 330 meV. This also addresses a long-standing
discussion in the literature regarding the layer dependence of substrate screening by n-layered
graphene [131, 173].

Fourthly, the ratio of the calculated bandgap renormalization due to substrate versus
encapsulation screening ranges from 1.2 to 1.8 (Table 4.2). The classical image-charge model
predicts this ratio to be 1.4. Interestingly, this may run counter to a näıve expectation that if
the monolayer TMD sample is not only screened from below by a substrate, but also screened
from the above by a capping layer of the same material, the bandgap renormalization due to
encapsulation will be twice as large as the renormalization due to the substrate only. This
is not correct, because even though the substrate alone may induce a potential of φind in
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the sample, the addition of a capping layer will not induce an additional potential of exactly
φind in the sample. The potential induced by the capping layer is now a response to not only
the charges in the sample but also the induced charges in the substrate. We show in the
Sec. 5.3 that the total induced potential at the center of the sample upon encapsulation is
an alternating harmonic series that sums up to 2 ln 2φind = 1.4φind.

Fifthly, the maximum calculated renormalization of the QP bandgap of any of the three
monolayer TMDs due to the selected substrates and encapsulations we have studied is
0.4 eV (Table 4.2). This is close to the largest experimental QP-gap renormalization of
0.3 eV reported in Ref. [173] when monolayer WS2 is encapsulated by non-intrinsic mono-
layer graphene. In our calculations, when monolayer WSe2 is encapsulated in doped 14-layer
graphene or the ideal metal model, the QP bandgap of monolayer WSe2 is reduced by
390 meV, which is 20% of its freestanding QP bandgap (2.19 eV). This percentage of renor-
malization is large, and our calculated result also serves to inform the maximum extent of
bandgap renormalization that one can expect to obtain by tuning the dielectric screening
environment in an experiment.

Lastly, we emphasize that substrate renormalization of the bandgap cannot be correctly
calculated at the DFT level within the local-density (LDA) and generalized-gradient ap-
proximations (GGA) because under these approximations, the exchange-correlation poten-
tial Vxc(r) in the DFT Hamiltonian is local by construction. Substrate screening is non-local
and can be very long-ranged (e.g., for insulating substrates) [148]. In a GW calculation,
screening of the Coulomb potential due to the substrate W (r, r′, ω) is manifestly non-local.
When MoS2 is renormalized by a bilayer hBN substrate, the QP-bandgap renormalization
is 60 meV (Table 4.2). When the DFT bandgap of MoS2 is calculated in the presence of the
same substrate, the change in the bandgap is negligible (5 meV).

Exciton Binding Energy Renormalization

In this section, we calculate the substrate renormalizations of the exciton energies in quasi-
2D materials using the GW -BSE approach. Throughout this section, we focus on pristine
monolayer WSe2 as our prototypical quasi-2D material, as screened by three substrates with
increasing dielectric constants, namely, 4.5-nm-thick SiO2, 4.3-nm-thick (14-layer) hBN and
an ideal metal.

Firstly, just as the QP bandgap decreases as screening increases (Fig. 4.2), the exciton
binding energy Eb also decreases as screening increases (Fig. 4.3a and Table 4.3). When a
freestanding WSe2 is screened by SiO2, hBN and an ideal metal, the calculated QP bandgap
decreases by 80, 120 and 330 meV, respectively (Table 4.2). Meanwhile, the 1s exciton
binding energy E1s

b of 520 meV for a freestanding monolayer WSe2, decreases by 70, 110
and 260 meV (Table 4.3). As screening increases, the QP bandgap decreases by almost
as much as the decrease in the exciton binding energy so that the 1s exciton excitation
energy (and hence the optical gap) remains approximately constant, as was also observed
experimentally in Ref. [173]. Between a freestanding WSe2 and when it is screened by an
ideal-metal substrate, the calculated 1s exciton excitation energy decreases by only 70 meV.
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When a hBN-screened monolayer WSe2 has its substrate replaced by SiO2, the calculated 1s
and 2s exciton excitation energies decrease by 10 and 30 meV, respectively (Table 4.3), which
are the same as (and in good agreement) with the experimental measurements of Ref. [173].

Secondly, although the 1s exciton excitation energy remains almost constant across differ-
ent substrates, the exciton wavefunctions have changed (Table 4.3). As substrate screening
increases, the exciton wavefunctions becomes more spatially extended in real space. The
root-mean-squared (rms) radius of the exciton envelope function of the 1s exciton increases
from 13.8 Å for freestanding WSe2, to 14.5 Å, 14.9 Å and 17.5 Å when screened by a 4.5-nm-
thick SiO2, a 4.3-nm-thick hBN and an ideal metal, respectively. The ratio of the oscillator
strengths of the 2s to 1s excitons also decreases from 0.25 to 0.22, 0.20 and 0.11 as screening
increases (Table 4.3), indicating that the 2s states become even more spatially extended
and relatively less strongly bound compared to the 1s states as the screening environment
becomes stronger. In general, as dielectric screening due to the substrate increases, electron-
hole interactions within the exciton become weaker. The exciton wavefunctions become more
spatially extended in real space, reducing the oscillator strengths of the exciton, leading to
decreases in the intensity of the sharp peaks in the optical spectrum [167]. We note that in
experiments, for a freestanding quasi-2D material, impurities and disorder at its surfaces can
also result in the broadening of the absorption peaks in the optical spectrum [73], leading
to sharper features upon encapsulation despite increased screening from the encapsulation
[174].

Thirdly, when a quasi-2D material is freestanding or screened by an insulator or semi-
conductor, a static approximation for the dielectric screening is very good, giving exciton
binding energies, Eb, that are within 10 meV of those calculated using dynamical screening
(Table 4.3). This is because the dielectric function is approximately constant with respect to
ω in the energy range around the exciton binding energy, Eb. However, when the quasi-2D
material sits on a metallic substrate, we find that it is important to account for the frequency
dependence of the dielectric matrix in solving the BSE. This is because dielectric screening
of a metal changes drastically in the energy range of a few hundred meV typical of exciton
binding energies in quasi-2D semiconductors (Sec. 5.3). Moreover, as the substrate screening
increases, the exciton binding energy decreases and the exciton becomes more spatially ex-
tended in real space (or localized in reciprocal space), entering the regime near q ≈ 0 where
the dielectric function of the metal is a singular function, limit of which depends strongly on
the direction along which the singularity is approached. For finite non-zero frequencies, in
the limit of q → 0 (the dynamical long-wavelength limit), the dielectric function of a metal
always approaches 1. In the static limit, in which ω = 0, however, the dielectric function of a
2D metal diverges like 1/q as q → 0. Since the bound exciton should rigorously be screened
at the frequency of the binding energy, this means that if a static screening is employed, the
exciton will be dramatically overscreened.

Indeed, static versus dynamical screening for a metallic substrate leads to qualitatively
different results. In Table 4.3 and Fig. 4.3a, we see that if static screening is employed, the
electron-hole interaction is reduced to the point that the quasi-2D material only supports
a single bound exciton state (within the accuracy of our calculation that has a finite k-
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point sampling of up to 1440× 1440), whereas multiple bound excitons remain if dynamical
screening is employed. Moreover, solving the BSE using the static approximation leads to
unphysical results: the 1s exciton on a metallic substrate becomes higher in energy than that
in freestanding monolayer WSe2 (Fig. 4.3a). We note, as a technical detail, that in practical
calculations, if the k-point sampling of the electron wavefunction is not converged, the cal-
culated static dielectric function of a quasi-2D metal will mimic the dielectric behavior of a
small-gap semiconductor and will be finite as q → 0. This leads to a fortuitous cancellation
of errors in the calculation of the exciton excitation energies that, for example, will lower
the calculated excitation energy of the 1s exciton. This nonetheless obscures the correct
physics behind the frequency-dependent screening, e.g., a strictly positive dielectric function
in this case means that, despite the cancellation of errors, the true antiscreening effects (as
we discuss below) will never be correctly calculated.

Interestingly, unlike the renormalization of the exciton binding energy, the renormaliza-
tion of the QP self-energy by an ideal-metal substrate is fairly insensitive to the small-q and
small-ω variations in the dynamical long-wavelength limit of the dielectric function. Set-
ting f 0

L(q + G‖, ω) to 1 in Eq. (4.2) gives the same QP bandgap renormalization to within
5 meV. This reflects the fact that while a Wannier-like exciton in quasi-2D materials is very
extended in real space (typically spanning several nm in the quasi-2D plane) and is therefore
very sensitive to screening at small q’s, the QP self-energy is relatively more sensitive to the
screening environment at shorter length scales on the order of the crystal lattice constant
(typically spanning several Å).

Finally, we note that optical experiments [50, 132, 33, 34, 173] frequently rely on theo-
retical models to deduce the QP bandgap EQP

gap from measured exciton excitation energies,
leading to uncertainty in obtaining the QP bandgap from optical experiments. For the sys-
tems we studied, the s-like excitons are the states that are optically active, even though this
needs not be the case in general. The first two lowest-lying (i.e., 1s and 2s) excitonic states
are also the states with the largest oscillator strengths and are thus most easily accessible
experimentally using linear optics. By measuring the difference between the excitation en-
ergies of the 1s and 2s excitons ∆12 (= E2s

xct − E1s
xct), the QP bandgap is usually deduced

based on an assumption of the ratio η (= E1s
b /∆12), where E1s

b (= EQP
gap−E1s

xct) is the binding
energy of the lowest-lying bright excitonic state. In Ref. [173], for instance, η is considered
to be bounded between 9

8
to 2, where the lower bound (η = 9

8
) was from the 2D hydrogenic

model and the upper bound (η = 2) was obtained by using the experimental s-like exciton
excitation energies for a monolayer of WS2 on a SiO2 substrate fit to results from a potential
of the Rytova-Keldysh form in the long-wavelength limit [33].

It is widely hypothesized that η will approach the lower bound of the 2D hydrogenic
model as the external screening increases. This is because as external screening increases,
screening is expected to become a constant at the relevant length-scale of an exciton. When
we approximate the effect of the substrate as a homogeneous local screening that has the
magnitude of the substrate’s dielectric constant (εenv), we find that the ratio η indeed de-
creases as the environmental dielectric constant increases, approaching the limit of the 2D
hydrogenic model for large εenv (Fig. 4.3a). In fact, as εenv →∞, the attractive electron-hole
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interactions become so strongly screened that there are no more bound excitons. However,
in our fully ab initio calculations with dynamical screening, the ratio η ranges from 2.2 to 2.7
(Table 4.3) with greater deviations from the 2D hydrogenic limit if the external screening is
metallic. For freestanding monolayer WSe2 and WSe2 screened by semiconducting and insu-
lating substrates of finite thicknesses, the calculated ratio η is consistently 2.2. Intriguingly,
for an ideal-metal substrate, the calculated ratio η in the static limit is ∼1.0, but 2.7 when
the frequency dependence of the screening is properly accounted for. This large deviation
can be understood from the structure of the poles in the dielectric function at different fre-
quencies. Following Ref. [169], we define an effective 2D dielectric function ε2D

eff (q, ω), which
we plot in Fig. 4.3c as a function of q for ω = 0 and an exemplary finite frequency. At finite
frequency, the pole moves away from q = 0, and the dielectric function becomes less than 1
in the small-q region.

Consequently, excitons screened by a metallic substrate experience an antiscreening effect
as they become more extended in real space (i.e., more localized in reciprocal space), resulting
in anomalously strong electron-hole interactions (and concomitant larger exciton binding
energies) for excited exciton states. We emphasize that such an antiscreening is only apparent
when the dynamical screening is used, as the pole in the dielectric function occurs at q → 0
in the static limit. This antiscreening is also a unique property of metallic substrates as
the dielectric function of insulators, semiconductors and semimetals (like intrinsic graphene)
are strictly positive for all q’s and relevant frequencies. Hence, we predict that, contrary
to previous expectations, the excitonic Rydberg series in monolayer TMDs supported on a
metallic substrate will be even more non-hydrogenic than in freestanding monolayer TMDs.
Our predictions can, for example, be tested by measuring the first few excited excitonic
states on a gate-tunable substrate, such as doped graphene.

4.4 Conclusion

We perform first-principles atomistic calculations to understand the effects of substrate
screening on the renormalization of QP energies and exciton binding energies. By care-
fully treating the wavevector and frequency dependences of screening, as well as solving the
dynamical BSE, we find that the QP bandgap and exciton binding energies are renormalized
in a non-trivial fashion which does not depend solely on the macroscopic dielectric constant
of the substrate.

We find that substrate screening is thickness-dependent and saturates at small thickness
for metals but saturates at large thickness for insulators. Encapsulation increases the QP-
bandgap renormalization by ∼0.4 times, when compared to substrate-only screening. By
tuning the dielectric screening environment, it is possible to achieve QP-bandgap renormal-
ization that is as large as 20% of the QP bandgap itself for the systems we investigated.

Finally, we find that metallic substrates can lead to the antiscreening of excitonic states.
Higher-energy excitonic states, which are more localized in reciprocal space, experience a
screening environment from the metallic substrate, which can be smaller than 1 and even
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negative, in the small-wavevector limit as q approaches 0. This leads to the ratio of the
binding energies of 2s versus 1s excitons to be larger when the monolayer TMD is screened by
a metallic substrate, than when the monolayer TMD is freestanding. This can be measured
in experiments with gated substrates. Our predictions open up the possibility of not only
using substrate to tune the QP and optical properties of quasi-2D systems, but also couple
excitations such as 2D plasmons with excitons in atomically thin materials.
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Figure 4.1: Diagonal elements of the inverse dielectric matrices of doped monolayer graphene,
ideal-metal (surface-charge) model and image-charge model. Here, a is the lattice constant
of graphene, the out-of-plane components are set to G⊥ = G′⊥ = 0.
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Figure 4.2: Calculated GW 0 QP bandgaps of monolayer WSe2 on different substrates ( )
and encapsulations ( ). The substrates are plotted along the horizontal axis using their
experimental dielectric constants. The experimental dielectric constants used for PTFE [18,
51], SiO2 [159], hBN [47], n-layered graphene [176] are 2.1, 4.6, 6.1 and 15, respectively. Also
plotted using a dashed line is the calculated QP bandgap of monolayer WSe2 when substrate
screening is included using the substrate dielectric constant as in the conventional model
(i.e., homogeneous local screening).
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Figure 4.3: (a) Calculated GW -BSE exciton excitation energies of the four lowest-lying
excitons ( ) and GW QP bandgaps ( ) of WSe2 on different substrates. The substrates are
plotted along the horizontal axis using their experimental dielectric constants as in Fig. 4.2.
Also plotted using dashed lines are the excitation energies when substrate screening is in-
cluded using the substrate dielectric constant as in the conventional model (i.e., homogeneous
local screening). For ideal metal model as the substrate, excitation energies are calculated
using dynamical and static screening. (b) Exciton envelope functions of the three lowest-
lying bright excitons of freestanding monolayer WSe2. (c) Effective 2D dielectric function of
monolayer WSe2 when screened by an ideal-metal model substrate at static frequency (dark
blue) and 0.3 eV (red).
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Chapter 5

Theoretical Concepts and Methods
for Screening in Quasi-2D Materials

5.1 DFT Calculations

Density-functional theory (DFT) calculations for the monolayer TMDs (MoS2, MoSe2 and
WSe2) and the substrates (bilayer hBN, 4.8-nm-thick (10-layer) crystalline film of poly-
tetrafluoroethylene (PTFE), 4.5-nm-thick SiO2, 4.3-nm-thick (14-layer) hBN, doped and
undoped n-layered graphene) are carried out using the Quantum ESPRESSO [66] package.
We use a plane-wave basis set, norm-conserving scalar-relativistic pseudopotentials. For
monolayer WSe2, the generalized gradient approximation (GGA-PBE) [162, 183, 74] is used
for electron exchange and correlation. For other monolayer TMDs and substrates, the local
density approximation (LDA) [27, 161] is used. To accurately capture the exchange contri-
bution to the GW quasiparticle (QP) self-energy of the monolayer TMDs, semi-cores states
are included in the pseudopotentials for the transition metals. For Mo, 4s and 4p semi-core
states and the 4d and 5s valence states are included. For W, 5s, 5p, 6s semi-core states and
the 5d valence states are included. The kinetic energy cutoff for the DFT calculation is set
at 80 Ry for the plane-wave expansion of the wavefunctions.

In our calculations, the length of the periodic supercell for all monolayer TMDs and
substrates in the out-of-plane direction is set to be Lz = 120 Å. Crystal structures of mono-
layer MoS2 [242], MoSe2 [211] and WSe2 [185] have in-plane lattice constants of 3.1643 Å,
3.2890 Å and 3.2820 Å and thicknesses of 3.1663 Å, 3.3374 Å and 3.3411 Å when measured
from the centers of the chalcogenide (S or Se) atoms. The hBN substrate [225] has an in-
plane lattice constant of 2.5040 Å, and interlayer separation of 3.3306 Å. n-layered graphene
substrate [209] has an in-plane lattice constant of 2.4640 Å, and has an interlayer separation
of 3.3555 Å. For the 4.5-nm-thick SiO2 substrate, we use the α-quartz polymorph [76] that
is terminated at the (001)-surface (Z-cut) and have lattice constants of a = 4.9141 Å and
c = 5.4061 Å. Unsaturated Si at the surfaces are passivated using H-atoms and the positions
of these Si and H at the surface are obtained by minimizing every force component to less
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than 10−8 Ry/Bohr radius and the total energy to less than 10−8 Ry. For PTFE, we use a
supercell with an orthorhombic crystal lattice (a = 2.6578 Å, b = 5.5494 Å). The C-C bonds
of the polymer chains are oriented parallel to the in-plane directions of MoS2. Ten layers of
PTFE (4.83-nm thick) are used.

The MoS2-substrate distances are determined in separate DFT calculations that also
incorporate van der Waals interactions (vdW-DFC09x) [39] and dipole corrections [14, 142]
by minimizing the energies of the systems. When the substrates are SiO2, PTFE, n-layered
graphene and hBN, these distances are found to be 2.6 Å, 2.9 Å, 3.3 Åand 3.3 Å, respectively,
in the out-of-plane direction. For MoSe2 and WSe2 which are terminated by Se instead of
S, these distances are found to be larger by 0.1 Å.

5.2 GW -BSE Calculations

The QP self-energies and the GW -BSE exciton energy levels are computed with the Berke-
leyGW [46, 178, 83] package. In the GW and GW -BSE calculations, the Coulomb interac-
tion beyond 60 Å in the z-direction (i.e., out-of-plane) is always truncated [85].

The QP self-energies are calculated using the eigenvalue-self-consistent, full-frequency
GW 0 approximation. The full frequency-dependent dielectric matrices for monolayer MoS2,
MoSe2, WSe2 are calculated on effective [94] q-grids of 1143× 1143, 1100× 1100 and 1102×
1102, which are expanded from a uniform q-grid of 6× 6 using 10 subsampled points. When
calculating the dielectric matrices for all three monolayer TMDs, a total of 26450 bands are
used and the energy cutoff used to calculate the screened exchange is set at 35 Ry. The
periodic supercell cells used for the GW -BSE calculations are the same as those used in
Sec. 5.1 for the DFT calculations and have an Lz = 120 Å.

To calculate the low-lying exciton energy levels, the Bethe-Salpeter Equation (BSE)
[178] is solved using the calculated QP energies. The electron-hole interaction kernel of the
BSE Hamiltonian is first calculated on a uniform k-grid of 72× 72, using one valence band
and one conduction band and a dielectric matrix that is calculated on uniform q-grid of
72 × 72 using 1400 bands and a 5 Ry-energy cutoff for the screened exchange. To obtain
the envelope function of the lowest four exciton wavefunctions, the BSE Hamiltonian is
diagonalized iteratively using interaction kernel matrix elements that are interpolated [94,
178] from the uniform 72× 72 k-grid to a finer uniform k-grid of 1440× 1440, using directly-
calculated matrix elements for q-points of a density equivalent to 5184 × 5184. Since the
lowest-lying exciton wavefunctions are localized [168] in reciprocal space, the kernel matrix
elements are only interpolated onto a round patch of k-points centered at the K-valley.
The radius of the patch is 0.155 times the length of a reciprocal lattice vector (which is
0.181 Bohr−1 for WSe2). To solve the frequency-dependent BSE self-consistently, we take
advantage of the fact that the exciton is highly localized at the K-valley, such that that
EQP
c − EQP

v is approximately a constant for all k-points of the exciton wavefunction. With
this approximation, we solve the BSE equation self-consistently for every exciton, using
a screening frequency that corresponds to the exciton binding energy. In this work, all
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oscillator strengths of the excitons are calculated for light that is polarized in the in-plane
direction, in the bond-direction between a transition metal and chalcogenide.

Screening due to the substrates and encapsulations are included during the calculation of
the QP energies and the energy levels of the excitons using the in-plane substrate-averaging
(IPSA) approximation (see Sec. 4.2). In this approach, substrate screening is assumed to be
translationally invariant. For this, we calculate the non-interacting polarizability χ0

GG′(q) of
the substrates. Small q’s corresponding to the subsampled q-points of the monolayer TMDs
are always computed directly. Large q’s for each substrate are calculated on a different
uniform grid and interpolated onto χ0

GG′(q). As mentioned in Sec. 5.1, the length of the
periodic supercells of all substrates in the out-of-plane direction is fixed at Lz = 120 Å. The
dimensions of the supercells of the substrates, namely, bilayer hBN, 4.8-nm-thick PTFE,
4.5-nm-thick SiO2, 14-layer hBN, doped and undoped n-layered graphene are also the same
as those used in Sec. 5.1 for the DFT calculations. For bilayer and 14-layer hBN, the DFT
wavefunctions are calculated on k-grid of 8 × 8 and using a kinetic energy cutoff of 60 Ry.
Its χ0

GG′(q) is calculated on a uniform q-grid of 8× 8, using a screened energy cutoff of 6 Ry
and 1116 bands for the summation over empty states. For the 4.5-nm-thick SiO2, the DFT
wavefunctions are calculated on a uniform k-grid of 5×5 and using a kinetic energy cutoff of
60 Ry. Its χ0

GG′(q) is calculated on a uniform q-grid of 5× 5, using a screened energy cutoff
of 6 Ry and 4350 bands. For 4.8-nm-thick PTFE, the DFT wavefunctions are calculated
on k-grid of 8 × 4 and using a kinetic energy cutoff of 100 Ry. Its χ0

GG′(q) is calculated
on a q-grid of 8 × 4, a screened energy cutoff of 8 Ry and 4700 bands. When substrate
screening is added using a momentum-independent effective dielectric constant, a value of
1001 is assumed to be infinite screening (Fig. 4.2).

For intrinsic (undoped) graphene, the DFT wavefunctions are calculated with a kinetic
energy cutoff of 60 Ry. To calculate the small subsampled q-points of χ0

GG′(q) and in order
to sample the k-points at the Dirac point accurately, wavefunctions for bands crossing the
Fermi level are calculated on a fractal k-grid. Starting with a uniform k-grid of density 25×25,
the k-grid is progressively subdivided by half near the K and K’ valleys, up till a maximum
density of 212 × 212 at the K and K’ valleys. Nonlinear broadening that corresponds to the
nonlinear k-point sampling is also used to calculate χ0

GG′ . For each k-point, broadening is
set to a maximum of 0.2 eV or the energy difference between each conduction band and
the valence band that are being summed over, if it is smaller. This is important to ensure
that the poles of χ0

GG′(q) are located at the right frequencies. For other q-points, the DFT
wavefunctions are calculated on a uniform k-grid of 10× 10 and χ0

GG′(q) is calculated on a
uniform q-grid of 10× 10, using an energy cutoff of 8 Ry and 1700 bands in the summation
over empty states for the computation of the noninteracting polarizability and the self-energy.

For doped n-layered graphene, doping is achieved in the rigid band model by lowering
the Fermi-level from the Dirac point by 0.3 eV (p-doped) [211]. To calculate the small
subsampled q-points of χ0

GG′(q), the k-points of the wavefunctions at the Fermi surface are
calculated at a density that is at least twice the density of the q-grid for intraband excitations.
This corresponds to a k-point density ranging from 46 × 46 to 2938 × 2938. Nonlinear
broadening that corresponds to the k-point sampling is also used to calculate χ0

GG′(q) to
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ensure correct pole positions. For interband transitions of small q’s and transition of all other
q-points, the DFT wavefunctions are calculated on a uniform k-grid of 10× 10 and χ0

GG′(q)
is calculated on a uniform q-grid of 10 × 10, using an screened energy cutoff of 8 Ry and
1700 bands in the summation over empty states for the computation of the noninteracting
polarizability and the self-energy.

With these parameters, we ensure that the calculated GW bandgaps are converged to
better than 0.1 eV, and that the relative GW -bandgap renormalization across different
substrates are converged to better than 0.01 eV. The exciton energy levels are also converged
to better than 0.1 eV and the exciton binding energies and relative renormalization across
different substrates are converged to better than 0.01 eV.

5.3 Derivation of the Ideal-Metal Substrate Model

In this work, an ideal-metal substrate model is defined as a semiclassical model which at
steady state completely screens any external potential above its surface by inducing a 2D
surface charge like a classical ideal metal. The model also displays retardation effects based
on the Lindhard theory for the 2D electron gas. It serves as the theoretical upper bound
of saturated metallic substrate screening. In this section, we first define the interacting
polarizability χGG′(q, ω) and then use it to derive the static response function of the ideal-
metal substrate model(s), before finally extending it to finite frequencies using the frequency-
dependence of the Lindhard function χ0

L(q +G,ω).

Interacting Polarizability

The interacting polarizability χ(r, r′, t − t′) is the time-dependent linear response function
of the particle density ρind(r, t) to an external potential φext(r

′, t′), defined as,

χ(r, r′, t− t′) =
δρind(r, t)

δφext(r′, t′)
, (5.1)

such that,

ρind(r, t) =

∫
V
dr′
∫ t

−∞
dt′χ(r, r′, t− t′)φext(r

′, t′). (5.2)

Here, V is the large crystal volume in real space that satisfies the Born-von Karmen periodic
boundary conditions. Also, due to the time translation symmetry of the response function,
χ depends only on the time difference t− t′, making ρind in Eq. (5.2) a convolution of χ and
φext in the time domain and a product in the frequency domain,

ρind(r, ω) =

∫
V
dr′χ(r, r′, ω)φext(r

′, ω). (5.3)
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Fourier transforming Eq. (5.3) from the real-space representation to the momentum-space
representation and using the conventions as defined in Sec. 5.7, we get

ρind(q, ω) =
1

V
∑
q′

χ(q,q′, ω)φext(q
′, ω)

=
1

V
∑
q′

χ(q,q′, ω)vc(q
′)ρext(q

′, ω), (5.4)

where vc is the Coulomb interaction. We will first define q as the momentum wavevector
spanning the whole reciprocal space. Here, we used the classical electromagnetic theory
relating φext(q, ω) = vc(q)ρext(q, ω). For a crystal with translation vectors R in real space,
the discrete spatial translational symmetry of the system dictates that χ(q,q′) is zero unless
q− q′ = G. Further restricting q to the First Brillouin Zone, we rewrite Eq. (5.4) as,

ρind(q + G, ω) =
1

V
∑
G′

[χ(q + G,q + G′, ω)vc(q + G′)

× ρext(q + G′, ω)]

=
1

V
∑
G′

[χGG′(q, ω)vc(q + G′)

× ρext(q + G′, ω)]

ρind
G (q, ω) =

1

V
∑
G′

χGG′(q, ω)vcG′(q)ρext
G′ (q, ω), (5.5)

which will be used to derive the static response functions χGG′,static(q) of the image point
charge model (Sec. 5.3) and of the surface charge model (Sec. 5.3).

Classical Static Response

In this subsection, we derive the classical static response functions χGG′,static(q) of two metal
substrate models. The static response function χGG′,static(q) is the response in the static
limit, in which the substrate perfectly screens the external potential.

Image-Point-Charge Response

Classical electrostatics yields that in the presence of an external potential originating from
a static external charge, a grounded ideal-metal substrate will induce a potential above
the substrate that is identical to the potential that would have been induced by an image
charge (of an opposite sign) (Fig. 5.1) in the absence of the substrate. In the simplest
approximation, one can assume that an external charge will cause a response in the substrate
as if an image charge has been induced at the opposite side of the surface plane. For this
reason, the response function of a substrate is sometimes modelled by an image point charge
model. Here, we derive the image-point-charge response, because it is easy and will help
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Figure 5.1: Image-point-charge model in a periodic supercell. In this model, the point
charge ρext induces an image charge ρind. In the limit where V → ∞, there will be no
periodic images. In practical calculations, the periodic supercell has a finite volume. To
avoid interactions between the periodic images, the Coulomb potential vc(q + G) used to
calculate the response function χGG′,static(q) is appropriately truncated in the out-of-plane
direction [85].

the reader understand the derivation of the surface-charge response below that is physically
more accurate.

We begin by defining a general position for the external point charge rext such that,

rext‖ = b,

rext⊥ = a.

Since the position of the induced charge rind is,

rind = rext − 2a,

the particle density distributions of the external and induced charges in the real-space rep-
resentation can both be written in terms of rext as,

ρext(r; rext) = δ(r− rext), (5.6)

ρind(r; rext) = −δ[r− (rext − 2a)], (5.7)

and their Fourier transforms to the reciprocal-space representation become,

ρext(q + G; rext) = e−i(q+G)·rext , (5.8)

ρind(q + G; rext) = −e−i(q+G)·(rext−2a). (5.9)
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Finally, substituting Eqs. (5.8) and (5.9) into Eq. (5.5), we solve for χGG′,static(q) using
Eq. (5.5),

−e−i(q+G)·(rext−2a) =
1

V
∑
G′

χGG′,static(q)vc(q + G′)e−i(q+G′)·rext ,

−e−iG·(b−a) =
1

V
∑
G′

χGG′,static(q)vc(q + G′)e−iG
′·(b+a),

−
∫
V
drext e

−iG·(b−a)eiG̃
′·(b+a) =

1

V
∑
G′

χGG′,static(q)vc(q + G′)

∫
V
drext e

−iG′·(b+a)eiG̃
′·(b+a),

−
∫
V
dbda ei(−G+G̃)·bei(G+G̃)·a =

1

V
∑
G′

χGG′,static(q)vc(q + G′)

∫
V
dbda ei(−G

′+G̃)·bei(−G
′+G̃)·a,

−
∫
V
dbda ei(−G‖+G̃‖)·bei(G⊥+G̃⊥)a =

1

V
∑
G′

χGG′,static(q)vc(q + G′)

∫
V
dbda ei(−G

′
‖+G̃‖)·bei(−G

′
⊥+G̃⊥)a,

−δG‖G̃‖δG⊥,−G̃⊥ =
1

V
∑
G′

χGG′,static(q)vc(q + G′) δG′G̃,

−δG‖G′‖δG⊥,−G′⊥ =
1

V
χGG′,static(q)vc(q + G′),

χGG′,static(q) = −V
δG‖G′‖δG⊥,−G′⊥
vc(q + G′)

. (5.10)

Diagonality of the response function χGG′,static(q) in the in-plane directions in reciprocal
space necessarily means that screening is translationally-invariant in the in-plane directions
in real space. This comes from the infinitesimal translational invariance of the system along
the in-plane directions. To understand this, suppose the external charge ρext(r; rext +∆rext‖)
is displaced in real space by ∆rext‖. In this model, we expect its induced charge ρind(r; rext +
∆rext‖) to also be displaced by the same amount in real space, such that χGG′,static(q) in
reciprocal space will be phase-shifted accordingly,

ei(q+G)·∆rext‖χ(q + G,q + G′)e−i(q+G′)·∆rext‖ . (5.11)

If χ(q + G,q + G′) is non-zero for G‖ 6= G′‖, then χ is not invariant under the translational
displacement of ρext(r; rext + ∆rext) in real space.

Note, however, that this image point charge model is not entirely correct, because even
though an image charge reproduces the correct induced potential in the region above the
substrate, it induces a mirrored potential within the substrate, when in fact the potential
within the substrate is always zero for a metal. The physically-correct response should be
one that induces a surface charge at the metal surface (See Fig. 5.2).

Surface-Charge Response

Here, we derive the quasi-2D ideal-metal model (IMM) substrate (Fig. 5.2). Classical elec-
tromagnetism dictates that at the interface between free space and the ideal-metal substrate,
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Figure 5.2: Surface-charge-inducing ideal metal model (IMM) in a periodic supercell of
height L. In this model, the point charge ρext induces a quasi-2D surface charge ρind. In
the limit where V → ∞, there will be no periodic images. In practical calculations, the
periodic supercell has a finite volume. To avoid interaction between the periodic images,
the Coulomb potential vc(q + G) used to calculate the response function χGG′,static(q) is
appropriately truncated in the out-of-plane direction [85].

the normal derivative of the total potential φtot is discontinuous. According to the Gauss’s
law, this corresponds to a collection of bound surface charges at the surface of the ideal-metal
substrate. The particle density distributions of this external point charge ρext(r; rext) and
induced surface charge ρind(r; rext) [70, 87, 63] can be given in terms of rext by,

ρext(r; rext) = δ(r− rext),

= δ(r− a), (5.12)

ρind(r; rext) = ρind(s, θ, z; rext)

= −|a|
2π

δ(z)

s2 + |a|2
, (5.13)

in cylindrical coordinates in an analogy of Eqs. (5.6) and (5.7), where we use the same
definitions, i.e., rext‖ = b and rext⊥ = a, but set b = 0 for simiplicity. Also analogous to
Eqs. (5.8) and (5.9), the Fourier transform of ρext(r; rext) and ρind(r; rext) are given by,

ρext(q + G; rext) = e−i(q+G)·a, (5.14)

ρind(q + G; rext) =

∫
V
drρind(r; rext)e

−i(q+G)·r

= −|a|
2π

∫
V
dr

δ(z)

s2 + |a|2
e−i(q+G)·r
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= −|a|
2π

∫
V
s ds dθ dz

δ(z)

s2 + |a|2
e−i(q+G‖)·se−iG⊥z

= −|a|
2π

∫
S
s ds dθ

1

s2 + |a|2
e−i|q+G‖||s| cos θ

= −|a|
2π

∫ ∞
0

ds

∫ 2π

0

dθ
s

s2 + |a|2
e−i|q+G‖||s| cos θ

= −|a|
2π

2π

∫ ∞
0

s ds
1

(s2 + |a|2)
3
2

J0(|q + G‖|s)

= −|a|
2π

2πH0

{
1

(s2 + |a|2)
3
2

}

= −|a|
2π

2π
e−|q+G‖||a|

|a|
= −e−|q+G‖||a|, (5.15)

where J0(x) is the Bessel function of the first kind and zeroth order, H0{f(s)} is the zeroth-
order Hankel transform of f(s). Eq. (5.15) can now be generalized to an arbitrary b using
the Shift Theorem,

ρind(q + G; rext) = −e−|q+G‖||a|e−i(q+G‖)·b. (5.16)

Finally, similar to our derivation of Eq. (5.10), χGG′,static(q) can be solved by substituting
Eqs. (5.14) and (5.16) into Eq. (5.5),

−e−|q+G‖||a|e−i(q+G‖)·b =
1

V
∑
G′

χGG′,static(q)vc(q + G′)e−i(q+G′)·rext ,

−e−|q+G‖||a|e−i(q+G‖)·b =
1

V
∑
G′

χGG′,static(q)vc(q + G′)e−i(q+G′)·(b+a),

−e−|q+G‖||a|e−iG‖·b =
1

V
∑
G′

χGG′,static(q)vc(q + G′)e−iG
′
‖·be−iG

′
⊥a,

−e−|q+G‖||a|δG‖G′‖ =
1

V
∑
G′⊥

χGG′,static(q)vc(q + G′)e−iG
′
⊥a,

−

(∫ L
2

−L
2

da e−|q+G‖||a|eiG̃⊥a

)
δG‖G′‖ =

1

V
∑
G′⊥

χGG′,static(q)vc(q + G′)

(∫ L
2

−L
2

da ei(−G
′
⊥+G̃⊥)a

)
,

−

(∫ L
2

−L
2

da e−|q+G‖||a|eiG̃⊥a

)
δG‖G′‖ =

1

V
∑
G′⊥

χGG′,static(q)vc(q + G′)L δG′⊥G̃⊥ ,

−

(
1

L

∫ L
2

−L
2

da e−|q+G‖||a|eiG
′
⊥a

)
δG‖G′‖ =

1

V
χGG′,static(q)vc(q + G′),
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χGG′,static(q) = −V
δG‖G′‖

vc(q + G′)

(
1

L

∫ L
2

−L
2

da e−|q+G‖||a|eiG
′
⊥a

)
︸ ︷︷ ︸

I(q,G‖,G′⊥)

,

χGG′,static(q) = −V
δG‖G′‖I(q,G‖, G

′
⊥)

vc(q + G′)
. (5.17)

Note that function I(q,G‖, G
′
⊥) peaks at q+G‖ = 0 and G′⊥ = 0. In the limit of L→∞,

I(q,G‖, G
′
⊥) → δq+G‖,0δG′⊥,0. Similar to the image-point-charge response function in Eq.

(5.10), χGG′,static(q) for a surface-charge response is also diagonal in G‖ and G′‖. Unlike
the image-point-charge response function, however, the surface-charge response function is
a constant for all G⊥ (since the induced charge is a delta function in the z-direction). Now,
we will proceed to evaluate I(q,G‖, G

′
⊥). For a general G′⊥ and noting that G′⊥ is discrete,

we get

I(q,G‖, G
′
⊥) =

1

L

∫ L
2

−L
2

da e−|q+G‖||a|eiG
′
⊥a

=
e−

L
2

(iG′⊥+|q+G‖|)
[
−iG′⊥(−1 + eiG

′
⊥L)− (1 + eiG

′
⊥L − 2e

L
2

(iG′⊥+|q+G‖|))|q + G‖|
]

L (G′2⊥ + |q + G‖|2)

=
e−

L
2
|q+G‖|

L
2
(G′2⊥ + |q + G‖|2)

[
G′⊥ sin(

L

2
G′⊥)− |q + G‖| cos(

L

2
G′⊥)

]
+

|q + G‖|
L
2
(G′2⊥ + |q + G‖|2)

=
|q + G‖|

[
1− e−L2 |q+G‖| cos(L

2
G′⊥)

]
L
2
(G′2⊥ + |q + G‖|2)

. (5.18)

With Eqs. (5.17) and (5.18), we have derived a static perfectly-screening surface-charge
response. According to the Uniqueness Theorem of electrostatics, this response by a quasi-
2D metal is equivalent to the screening by a semi-infinite metal (Fig. 5.3). We also showed
numerically that this response function χGG′,static(q) also reproduces the calculated |q + G|-
dependence of ε−1

G=G′(q) of doped monolayer graphene, unlike its image-point-charge coun-
terpart.

Semi-classical Full Frequency-Dependent Response

Since our static surface-charge response (Eq. (5.17)) is derived using a classical model, we
also derive the time-dependence of its dynamical response using a classical starting point. In
this subsection, we will show that even though we begin our derivation using the semiclassical
Boltzmann transport equation, we will arrive at similar result as the Lindhard equation.

Frequency-dependence of the dynamical response of the induced surface charge can be
understood from the time-dependence of its motion in the in-plane directions. In the classical
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Figure 5.3: Perfect screening by a surface-charge-inducing quasi-2D ideal-metal model
(IMM) (a) is equivalent to screening by a semi-infinite metal (b) according to the Uniqueness
Theorem.

picture, this motion is constrained by particle conservation and the rate of change of its
momentum. The induced particle density, ρind

k = ρind
k (r, t), changes with time according to

the semiclassical Boltzmann transport equation [22],

dρind
k

dt
=

(
∂ρind

k

∂t

)
collision

, (5.19)

where on the LHS, its total derivative describes the dynamics of a single particle,

dρind
k

dt
=
∂ρind

k

∂t
+
∂k

∂t
·∇kρ

ind
k +

∂r

∂t
·∇rρ

ind
k , (5.20)

with the effects of the total (single-particle) potential φtot(r, t) showing up through the force
it exerts on the particle,

∂k

∂t
= −∇rφtot(r, t). (5.21)

Collisions scatter electrons between different k-states and the change in number of elec-
trons in a given k-state is described by the collision term on the RHS of Eq. (5.19). Without
interparticle collisions, the number of electrons in a given k-state is conserved and collision
term on the RHS of Eq. (5.19) will be zero. Using the Relaxation Time Approximation, the
collision term in the Boltzmann equation is replaced using an infinitesimal imaginary shift
of ω (i.e., ω → ω + iη), where η is a real finite positive number.

Finally, substituting Eqs. (5.20) and (5.21) into Eq. (5.19) and performing a Fourier
transform from the (r,t)-space to (q,ω)-space, we get,

−i(ω + iη)ρind
k − iφtot(q, ω)q ·∇kρ

ind
k + iρind

k vk · q = 0, (5.22)
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where now, ρind
k = ρind

k (q, ω), and q is the momentum wavevector that spans the whole recip-
rocal space. Using Eq. (5.22), the total induced particle density ρind(q, ω) can be expressed
as the linear response to the total potential φtot(q, ω),

ρind(q, ω) =
2

V
∑
k

ρind
k (q, ω)

=
2

V
∑
k

q ·∇kρ
ind
k

−ω − iη + vk · q
φtot(q, ω)

=
2

V
∑
k

vk · q
(
− ∂ρk

∂Ek

)
−vk · q + ω + iη

φtot(q, ω)

=
2

V
∑
k

(Ek+q − Ek)
(
− ∂ρF

∂Ek

)
−Ek+q + Ek + ω + iη

φtot(q, ω)

=
2

V
∑
k

ρF (Ek)− ρF (Ek+q)

−Ek+q + Ek + ω + iη︸ ︷︷ ︸
χ0
L(q,ω)

φtot(q, ω), (5.23)

where χ0
L(q, ω) is the response function. The factor of 2 comes from spin degeneracy. In the

fourth line, we consider the low-energy linear response limit, in which ρk is replaced by the
equilibrium Fermi-Dirac distribution ρ0

k(E) = ρF (E), and that vk = dEk

dk
and ∂ρF

∂Ek
are both

constants to first order.
Interestingly, starting from a semiclassical origin, we arrive at the Lindhard response

function χ0
L(q, ω) in the limit η → 0+, which has the exact same form as Eq. (5.23). For

the Lindhard function, time-dependence is governed by the (time-dependent) Schrödinger
Equation, φext(r

′, t′) is a small perturbation and ρind(q, ω) is the change in the expectation
value of the particle density operator to linear order.

The Lindhard function can be decomposed into a static part χ0
L,static and the frequency-

dependent part f 0
L(q, ω) through the following defining equation,

χ0
L(q, ω) ≡ χ0

L,staticf
0
L(q, ω). (5.24)

On the RHS, the first factor χ0
L,static = limq→0 χ

0
L(q, 0) = −D(EF ) is the static limit of

the Lindhard function, and is equal to the negative of the density of states D(E) at the
Fermi Level EF . It is a measure of the number of excited states available to the system at
vanishing excitation energy and may be identified as having similar meaning as Eq. (5.17).
Eq. (5.17), however, depends on q and G. The second factor f 0

L(q, ω) contains the (time- or
frequency-dependence) of the charge response.

Motivated by the similarity between our equation (Eq. (5.17)) and the 2D Lindhard
function (Eq. (5.24)) and that Eq. (5.17) is diagonal in (G‖,G

′
‖), we extend our static

response function (Eq. (5.17)) to finite frequencies by expressing it using the following ansatz,

χ0
GG′,IMM(q, ω) ≡ χ0

GG′,static(q)f 0
L(q + G‖, ω)δG‖,G′‖ , (5.25)
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where we make the drastic but physically-motivated assumption that the frequency response
in the in-plane directions is independent of the G⊥ and G′⊥ components. Here, q is again
restricted to the First Brillouin Zone, as in Eq. (5.4). The first term on the RHS χ0

GG′,static(q)
is the (noninteracting) response function of a static ideal metal (ω = 0), and the sec-
ond term f 0

L(q + G‖, ω) describes its Lindhard-like frequency- and phase-space-dependences.
The delta function δG‖,G′‖ emphasizes the fact that G and G′ components of χ0

GG′,static(q),

f 0
L(q + G‖, ω) and therefore χ0

GG′,IMM(q, ω) are diagonal in the in-plane directions, due to the
translational invariance of this model and the homogeneous 2D electron gas in the in-plane
directions.

Unlike the original Lindhard function for 2D metals (Eq. (5.24)), however, our model
(Eqs. (5.25) and (5.17)) is a function of G⊥ and implicitly includes the distance-dependence
between the metallic substrate and the quasi-2D material. In this work, the ideal-metal
substrate is positioned at a distance from the quasi-2D material that is the same as the
distance the charge center of the closest pz orbital of the doped 14-layer graphene substrate is
from the quasi-2D material. The charge centers are defined using the peaks in the calculated
ab initio noninteracting polarizability χ0(z = z′) of a doped 14-layer graphene substrate for
q → 0. In addition, f 0

L(q + G‖, ω) depends on the Fermi wavevector kF . Since the electron
density determines kF and is different for different metals, kF represents a fitting parameter
that our model requires. We set kF to 0.72 Å−1 using the calculated Fermi surface of a doped
14-layer graphene substrate and can be regarded as a highly screening metallic substrate.

Note that both the 2D Lindhard function χ0
L(q, ω) and our dynamical response func-

tion χ0
GG′,IMM(q, ω) are derived as responses of non-interacting electrons to effective (single-

particle) total potentials φtot (Eqs. (5.21) and (5.22)). In the language of Feynman diagram-
matic analysis, this is also known as the noninteracting polarizability. The static response
function (Eq. (5.17)) that we have derived in Sec. 5.3 is for the response to an external
potential φext (Eqs. (5.3) and (5.12)), and is also known as the interacting polarizability.
The noninteracting polarizability and the interacting polarizability are related by the Dyson
equation,

χGG′,static(q) =
χ0
GG′,static(q)

1− vc(q + G)χ0
GG′,static(q)

, (5.26)

where vc(q + G) is the Coulomb potential truncated [85] in the out-of-plane direction to
avoid interactions between the periodic images (Figs. 5.1 and 5.2).

5.4 Singularity in Electron-Hole Continuum of a 2D

metal

The dielectric screening εG,G′(q, ω) of a metal changes drastically in the small-ω and small-q
regime (Fig. 5.4). This is the same energy and length scales as those of a bound Wannier
exciton, which has binding energies (Eb) that can be hundreds of meV or smaller and wave-
functions that span several nm in real space (corresponding to tenths of Å−1 in reciprocal
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Figure 5.4: The right panel show the plot of Re[χ0(q+G,ω)] for a 2D electron gas in color
scale. The region of the (q+G,ω)-plane in which Im[χ0(q+G,ω)] differs from zero is known
as the electron-hole continuum. The left panel shows the zoomed-in region for small-q and
small-ω, which is the relevant length and energy scales of a Wannier exciton. Here, q is the
momentum wavevector restricted to the First Brillouin Zone.

space) (Table 4.3). In this regime, the noninteracting polarizability function χ0
GG′(q, ω) (and

therefore the dielectric function εG,G′) is a singular function in the limit of q → 0 and ω → 0
and its limit depends strongly on the direction along which the singularity is approached.
In the dynamical long-wavelength limit, the origin is approached along the ω-axis at q = 0.
Here, χ0

00(q, ω) always approaches 0, 1/ε−1
00 (q, ω) always approaches 1 and is insensitive to

the exact value of ω. It is also the limit one should use to calculate the exciton energy level
because Eb is always small but finite. In the static limit, the origin is approached along the
q-axis at ω = 0 and limq→0 χ

0
00(q, 0) approaches a constant that is equal to −D(EF ) and

limq→0 1/ε−1
00 (q, 0) diverges like 1/q for a 2D metal. This means that for a properly-converged

calculation, static screening always dramatically overscreens at small q and that Eb calcu-
lated using static screening will be severely underestimated. In Table 4.3, we see that static
screening overscreens by so much that the 1s exciton becomes its only bound state.

The above discussion can also be seen graphically from Fig. 5.5, where the BSE of WSe2

on ideal metal is solved at different screening frequencies ω. The increase in the calculated
binding energies Eb for the 1s, 2p and 2s excitons from a static calculation to a finite-
frequency calculation at 0.05 eV is almost 0.2 eV. However, for screenings at finite frequencies
ranging 0.05 to 0.40 eV, the binding energies vary by a maximum of only 0.01 eV and is
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comparatively insensitive to the exact value of ω.

Figure 5.5: Calculated binding energies Eb at different screening frequencies ω.

5.5 QP Bandgap Renormalization due to Substrate

and Encapsulation

In this section, for notational simplicity, we will assume that the interacting polarizability χ
is translationally-invariant in time and space, i.e. χ(rt, r′t′) = χ(r − r′; t − t′), such that it
can be written as a product in the momentum and frequency space. With this simplification,
the total potential φtot(q, ω) and the inverse dielectric function ε−1(q, ω) can be written in
terms of the interacting polarizability χ(q, ω) as,

φtot(q, ω) = φext(q, ω) + φind(q, ω)

= φext(q, ω) + vc(q)χ(q, ω)φext(q, ω)

= [1 + vc(q)χ(q, ω)]φext(q, ω),

ε−1(q, ω) =
δφtot(q, ω)

δφext(q, ω)

= 1 + vc(q)χ(q, ω).
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Defining ∆W (q, ω) as the change in screening within the quasi-2D material due to the
addition of a substrate, we get

∆W (q, ω) = ∆ε−1(q, ω)vc

= [vc(q)∆χ(q, ω)]vc(q). (5.27)

The change in screening ∆W (q, ω) is related to the QP bandgap renormalization of the
quasi-2D material, ∆Σ = iG∆W . From Eq. (5.1), we know that with the addition of a
substrate, the induced potential within the quasi-2D material φind(q, ω) in response to the
same external potential φext(q, ω) is modified by,

∆φind,sub(q, ω) = vc(q)∆χ(q, ω)φext(q, ω), (5.28)

Comparing Eqs. (5.27) and (5.28), we see that ∆φind,sub is proportional to the QP bandgap
renormalization ∆Σ brought about by the substrate.

Figure 5.6: Image charges due to substrate (a) and encapsulation (b)

In this discussion of estimating band gap renormalization, we revert to the image charge
model because we are only interested in the change in potential induced within the quasi-2D
material in response to its own charged particles ∆φind,sub. When a substrate is added below
a free-standing quasi-2D material, a charged particle ρext in the quasi-2D material at z = 0
(Fig. 5.6a) induces an image charged particle ρind in the substrate at z = −2d. Through the
Coulomb interaction, this corresponds to inducing a potential of ∆φind within the quasi-2D
material at z = 0,

∆φind,sub = − 1

2d
.
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Now, if the quasi-2D material is not only screened by a substrate but also an encapsulating
capping layer, the charged particle ρext in the quasi-2D material at z = 0 does not just induce
image charged particles ρind in the substrate at z = −2d and the capping layer at z = +2d
because they alone do not preserve the original boundary conditions. Instead, an infinite
series of image charges is needed. Through the Coulomb interaction, this corresponds to
inducing a potential of ∆φind,enc in the quasi-2D material at z = 0 (Fig. 5.6b),

∆φind,enc = −1

d
+

1

2d
− 1

3d
+

1

4d
− . . .

= −2 ln(2)× 1

2d
= 1.4×∆φind,sub.

In other words, every image charge generates a new one, continuing indefinitely and leading
to an infinite number of images.

5.6 Wavefunction Hybridization between the

Substrate and Quasi-2D Material

In this section, we use monolayer MoS2 as the prototypical quasi-2D material. The left
column of Fig. (5.7) shows the DFT bandstructures of monolayer MoS2 in a supercell with-
out substrates. The right column of Fig. (5.7) shows the bandstructures of supercells of
monolayer MoS2 with three separate commensurate substrates, namely, monolayer undoped
graphene, bilayer hBN and three layers of (001)-terminated gold, which are projected onto
the atomic orbitals of monolayer MoS2. We see that when monolayer MoS2 is on graphene,
wavefunction hybridization is minimal and the original wavefunction of monolayer MoS2 is
preserved. For monolayer MoS2 on hBN, even though there is some wavefunction hybridiza-
tion between monolayer MoS2 and hBN, the main features of the MoS2 bandstructure is
preserved. When monolayer MoS2 is grown on Au, wavefunction hybridization is larger.
Except for the preservation of the conduction band minimum and valence band maximum at
the K-valley, much of monolayer MoS2’s wavefunctions has changed, hybridizing with Au to
some extent. In these three calculation, the supercell geometry containing both the quasi-2D
material and the substrate is determined by minimizing the strain to no more than 4%.

5.7 Conventions for Fourier Series Expansion

Following the conventions used by Bruus and Flensberg [22], we consider a function f(r)
that is periodic and continuous. For simplicity, we will assume that the repeat unit is a
three-dimensional orthorhombic (i.e. rectangular) box of side lengths Lx, Ly and Lz and a
volume of V = LxLyLz. Each repeat unit has Nx, Ny and Nz identical lattices in the ex, ey
and ez directions. The lattice constants for each (direct) lattice is ax, ay and az.
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Figure 5.7: DFT bandstructures of monolayer MoS2 (a,c,e) and MoS2 on monolayer undoped
graphene (b), bilayer hBN (d) and three layers of (001)-terminated gold (e).

For a periodic function such as f(r),

f(r) = f(r + Lxex) = f(r + Lyey) = f(r + Lzez) (5.29)

= f(r + axNxex) = f(r + ayNyey) = f(r + azNzez), (5.30)

it can be written as a Fourier series. In our convention, the prefactor of 1
V is included in the
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expansion, such that

f(r) =
1

V
∑
k

fke
ik·r, (5.31)

where

kx =
2πnx
Lx

=
2π

ax

nx
Nx

= bx
nx
Nx

, nx = 0, 1, · · · , Nx − 1, (5.32)

ky =
2πny
Ly

=
2π

ay

ny
Ny

= by
ny
Ny

, ny = 0, 1, · · · , Ny − 1, (5.33)

kz =
2πnz
Lz

=
2π

az

nz
Nz

= bz
nz
Nz

, nz = 0, 1, · · · , Nz − 1. (5.34)

Here, bx, by and bz are the lattice constants of the reciprocal lattice.
In this convention, the Fourier coefficient, fk, is given by

fk =

∫
V

drf(r)e−ik·r, (5.35)

and does not contain the prefactor of 1
V . Eqs. (5.31) and (5.35) define the conventions we

are using for our Fourier series expansion. Note that prefactor of 1
V is found in the former

but not the latter.
This discussion can be generalized from an orthorhombic lattice to any Bravais lattice,

which is a three-dimensional parallelpiped defined by three noncoplanar lattice vectors (a1,
a2 and a3) In the more general case, ax, ay and az generalizes to a1, a2 and a3, which are
the primitive vectors of the crystal lattice, while bx, by and bz generalizes to b1, b2 and b3,
which are the primitive vectors of the reciprocal lattice, such that

bi · aj = 2πδij. (5.36)

Note also that in the limit where V → ∞, the summation over k will be replaced by
integral over k, i.e. ∑

k

→ V
(2π)3

∫
dk. (5.37)
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Chapter 6

A Dielectric-Defined Lateral
Heterojunction in a Monolayer
Semiconductor

6.1 Introduction

Atomically thin semiconductors, such as monolayer transition metal dichalcogenides (TMDs)
[217, 23, 226], provide a platform for investigating nanoscale quantum phenomena [172, 130,
42] and have a range of potential applications in nanoelectronics [55, 90, 35]. A freestanding
monolayer of a transition metal dichalcogenide experiences a reduced dielectric screening
and an enhanced Coulomb interaction by virtue of its atomically thin structure. In contrast
to bulk materials, electric field lines between charges inside a monolayer can extend sub-
stantially outside of the layer [168, 33, 169]. This leads to an ineffective intrinsic screening
that enhances electronic interaction and leads to large exciton binding energies between 0.2
to 0.7 eV in these materials [168, 33, 169, 211, 238, 246, 253, 79, 248]. Furthermore, the
electronic band structure of atomically thin 2D layers is not completely intrinsic to the ma-
terial and can be strongly affected by the surrounding environment [211, 103, 199, 180, 173,
36]. With both electron and hole experiencing the screening, the conduction and valence
band edges shift in the opposite direction [169, 211, 180, 36]. Ab initio calculations predict
that there is a monotonic decrease of electronic bandgap energy with increasing dielectric
screening, where the reduction of bandgap can reach the order of hundreds of meV relative
to the bandgap of a freestanding monolayer [211, 199, 173, 20, 6, 106, 156]. Recent scan-
ning tunnelling spectroscopy and optical spectroscopy [199, 173] studies provided evidence
that the bandgap renormalization phenomenon in atomically thin 2D semiconductors can
indeed be significant. Such bandgap renormalization may have a profound effect on electri-
cal transport in atomically thin 2D semiconductors; yet, the effect has not been investigated
thoroughly and its implications in the development of applications based on 2D materials
remains unclear.
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In this chapter, we design lateral heterojunctions within a homogeneous MoS2 mono-
layer exploiting the dielectric-dependent bandgap renormalization and explore its influence
on electrical transport. We prepared a continuous monolayer MoS2 which has a segment
on a high-ε substrate and an adjacent segment on a low-ε substrate (Fig. 6.1a). Due to
the different degree of renormalization of the electronic bandgap introduced by the two
substrates on each segment, the monolayer MoS2 forms an in-plane type-I heterojunction
above the boundary of the two substrates (Fig. 6.1b,c). We used this sample configuration
to perform Kelvin Probe Force Microscopy (KPFM) and electrical transport measurements
across the heterojunction. KPFM [151, 141] examines the local variation of surface potential
across the device channel [207] and provides a direct determination of the band offset of the
MoS2 heterojunction from the dielectric engineering. Electrical measurements show that
the presence of the heterostructure has a significant effect on electrical transport through
the device, leading to a strong asymmetric rectification behavior. The experimentally ob-
served transport phenomena can also be qualitatively reproduced in a numerical simulation
of the device, which exhibits several unique aspects arising from the atomically thin lay-
ers. Such dielectric-defined heterostructure behavior can be important for understanding
electrical transport behavior in atomically thin 2D layers and provide a new approach for
engineering 2D nanoelectronic devices [172, 57].

Theoretical calculations [180, 36, 113, 167] show that the change in the bandgap of the 2D
layer due to dielectric screening effect by the substrate(s) is most dramatic when the 2D layer
has a low intrinsic dielectric constant (ε). In addition, a high contrast from the dielectric
screening environment involving a low-ε substrate and a high-ε substrate is desirable to
introduce a significant change in the bandgap of the 2D layer at the heterojunction. We
choose the fluoropolymer Cytop (ε = 2.0 to 2.1) and hBN (ε(0) = 6.9, ε(∞) = 5.0 normal to
c-axis [64]) to serve as the and substrates respectively. The fluoropolymer Cytop substrate
is one of the materials with the lowest dielectric constant that still allows ease of processing
and device fabrication. Meanwhile, the straight edges of as-exfoliated thin hBN flake provide
a boundary that is atomically sharp for a well-defined junction area. Moreover, both Cytop
[118] and hBN [44] are known to be insulating layer with a low density of surface trap states.

6.2 Heterojunction device design and electrical

measurement

We transferred a monolayer of MoS2 atop the boundary of an hBN flake on a Cytop film
and then fabricated electrical contacts onto the monolayer to form a device channel that is
perpendicular to the Cytop/hBN substrate boundary (Fig. 6.2a). The electrical measure-
ments are then performed in 4-terminal configuration to minimize the influence of contacts.
Fig. 6.2b shows the I-V measurement of the device for different back gatesource voltages
(which we shall refer to as “gate voltage” for brevity) Vgs > 0 V, which correspond to
electron doping. With the MoS2 segment on Cytop grounded, the device exhibited a rectifi-
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Figure 6.1: Engineering 2D heterojunctions through dielectric-dependent bandgap renor-
malization. a, Schematic illustration of the heterostructure. Two substrates with different
dielectric constant (εlow < εhigh) are used to locally vary the MoS2 electronic bandgap. b,
The expected band alignment of isolated monolayer MoS2 situated on the low-ε substrate
(Cytop) and on the high-ε substrate (hBN), respectively. The segments of MoS2 monolayers
on Cytop and on hBN are assumed to have the same electron doping density from the electro-
static gating. c, The band alignment from b if the MoS2 segments on the two substrates are
in contact and reach equilibrium following Anderson’s rule. A type-I lateral heterojunction
forms with an energy barrier for electron transport in the conduction band.

cation behavior that is reminiscent of a diode. This rectification behavior is consistent with
the expected type-I heterojunction formation drawn in Fig. 6.1c, where the MoS2 segments
above the εlow and εhigh substrates have different electronic bandgap due to dielectric screen-
ing. This behavior is similar to an n-n heterojunction with MoS2 segment on Cytop (hBN)
containing the depletion (accumulation) regime [203].

In comparison, the reference MoS2 monolayer device on a uniform Cytop film exhibits lin-
ear Ohmic-like behavior (Fig. 6.2c), suggesting that the rectification arises from the presence
of the heterojunction at the boundary between high-ε and low-ε substrates. Furthermore, we
also conducted control experiments with MoS2 monolayer on a step edge of an hBN flake that
otherwise supports a uniform dielectric environment. Such control device shows symmetric
output curves, which also substantiates that the rectification cannot be attributed only to
the presence of step edge (e.g., strain-induced or otherwise) without introducing dielectric
contrast.

A prominent feature of our MoS2 heterojunction device behavior is that the I-V curve
at forward bias that is higher than Vch ≈ 0.1 V is mostly linear. This behavior is commonly
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Figure 6.2: Current-voltage characteristics of a MoS2 heterojunction device. a, Optical
micrograph of a MoS2 monolayer that is partially situated on Cytop and on hBN substrates.
The white dashed line denotes the location of the monolayer that acts as the device channel.
The MoS2 segment on hBN received the high bias potential (drain). Scale bar: 2 µm. b,
The output characteristics of the device with various back gating at a temperature of 200
K. c, The output characteristics of a reference MoS2 monolayer device on a uniform Cytop
substrate measured at 200 K. Inset: The micrograph of the reference device. Scale bar: 2
µm. d, The output characteristics of the heterojunction device at 17 K on a log-log scale.
The forward bias current is fitted with a straight line that extrapolates to a turn-on voltage
of 90 mV. Inset: the same data on a linear scale.

found in a real diode, which can be described by a piecewise linear model with a “turn-on”
voltage (Vt) before the device appears to be Ohmic-like [186]. The turn-on voltage is often
correlated to the potential landscape of the diode (e.g., built-in voltage in Si p-n diode),
and it provides an estimate of conduction band offset across the heterojunction. Our low-
temperature transport measurements yield a turn-on voltage Vt ∼ 90 mV in the device (17 K,
Fig. 6.2d).

6.3 KPFM characterization

Fig. 6.3a illustrates the KPFM measurement configuration, where lift mode with a constant
tip height (h = 30 nm) is used and the DC component of bias voltage (Vbias) is applied to
the sample. Fig. 6.3b displays the topography scan of atomic force microscope (AFM) from
the MoS2 heterojunction area at the Cytop/hBN substrate boundary. The averaged height
profile (Fig. 6.3c) shows that the thickness of the hBN is around 10 nm. The exposed top
surface in our devices allows for direct KPFM characterization.

As KPFM typically requires the sample to be sufficiently conducting, we performed
KPFM on the MoS2 when it is electrostatically gated to its on-state (electron accumulation)
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Figure 6.3: KPFM characterization of the MoS2 heterojunction formation from differences
in the degree of local dielectric screening. a, Schematic of the KPFM set-up with Vbias applied
to the sample. For the measurements herein, the device is back gated to Vgs = 50 V and
the lift height of the tip is set to h = 30 nm. b, The topography image recorded in tapping
mode AFM. c, The height profile, averaged from the area inside the white dashed rectangle
in b. d, The spatially mapped Vbias from the same area as in b. e, The Vbias profile from
d, also averaged similarly from the same area as in c. Given that ∆Ec = −e∆Vbias in the
measurement configuration, the KPFM result demonstrates that the conduction band edge of
MoS2 on the Cytop substrate is higher by 90 meV than that of MoS2 on hBN. f, Results from
GW calculations of the bandgap and band alignment of monolayer MoS2 that is freestanding
without a substrate screening effect (left), placed on a surface of a fluoropolymer (middle),
and placed on a hBN substrate (right). Scale bars in b and d correspond to 500 nm.

at high gate voltage. Figure 6.3d shows the map of Vbias that was applied to the sample to
cancel the electrostatic force between the tip and the sample, which is imaged at Vgs = 50 V.
Meanwhile, Fig. 6.3e shows the corresponding averaged Vbias profile. The Vbias magnitude is
related to the work function of the sample and that of the tip by Wf,sample = eVbias +Wf,tip.
Therefore, the difference in local work function between two segments of the sample that are
imaged by the same tip is given by:

∆Wf,sample = eVbias (6.1)

Two distinct areal regions of Vbias are seen in Fig. 6.3d that correlates well with the two
segments of MoS2 on Cytop and hBN from the topographic image (Fig. 6.3b). By using the
averaged line profile in Fig. 6.3e, we therefore conclude that the work function difference (
∆Wf = ∆Wf,low −∆Wf.high) of MoS2 on the Cytop and hBN substrate is −90± 20 meV at
Vgs = 50 V. Here, the negative sign means that the vacuum level of MoS2 on Cytop is lower
than that on hBN.
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The conduction band offset can be obtained from the work function difference by

∆Ec = −∆Wf − kT ln

[
exp(πh̄

2nlow

m∗kT
)− 1

exp(
πh̄2nhigh

m∗kT
)− 1

]
(6.2)

with the carrier density n = Cg(Vgs−Vth)/e, where Vth is the gate threshold voltage, and m∗

is the effective mass of electrons. Because the serial gate capacitance (Cg) at εhigh and εlow

side of the device does not differ significantly (the geometric capacitance of the 285 nm SiO2

substrate dominates the serial capacitance), the ratio nlow/nhigh becomes closer to unity at
high gate voltage. Applying these considerations to equation Eq. 6.2 in combination with
Eq. 6.1 suggests that performing the measurement at the high gate voltage provides two
major benefits: first, it counters the doping contribution from the environment to allow
the relative carrier density on both sides of the junction to be more balanced since the
charge density is dominated by that induced by the gate. Secondly, as the consequence
of nlow/nhigh ≈ 1, KPFM measurements at high gate voltage allow direct interpretation
of the conduction band offset from the Vbias contrast. Figure 6.3e therefore implies that
∆Ec ≈ −e∆Vbias ∼ 90 meV for our experimental condition, i.e., Ec for MoS2 on Cytop is
positioned higher than that on hBN.

The heterojunction measured by KPFM is consistent with the electrical transport data.
It suggests that dielectric engineered bandgap difference is around ∆Eg ≈ 2∆Ec = −180±
40 meV (illustrated in Fig. 6.1c), assuming electron-hole symmetry. We compare this ex-
perimental result with the theoretical calculation of the electronic bandgap of MoS2 within
the ab initio GW0 approach as implemented in the BerkeleyGW package [83, 178, 46] and
account for the dielectric screening effect from the substrates using the in-plane substrate
averaging approach (details regarding the GW0 calculation is in Sec. 6.7) [211, 167]. The
GW0 calculation shows that the bandgap of MoS2 on a similar dielectric fluoropolymer as
Cytop, after accounting of surface roughness (Fig. 6.5), is larger than that of MoS2 on hBN
by 120±40 meV, of which the CBM offset is ∼ 70 ± 20 meV (Fig. 6.3f). Our calculations
reveal that the roughness of the Cytop surface decreases the effective dielectric screening
experienced by MoS2; the same calculation performed on a perfectly smooth Cytop-like sub-
strate results in a CBM offset of ∼ 40 meV. The calculated bandgap and CBM offset agree
well with the experimental results, with overlapping error bars. The CBM and VBM offsets
are also approximately symmetric.

6.4 Energy band modelling

We model the electrical potential and charge transport through the junction numerically
to understand the unusual electrical transport from an atomically thin 2D heterojunction.
While the rectification behavior of the heterojunction is consistent with the predicted band
alignment in Fig. 6.1c, the transport data cannot be aptly modelled with a thermionic
emission theory commonly used to describe a Schottky diode, in which the current level
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predicted from a thermionic emission mechanism is several orders of magnitude larger than
that measured herein. The thermionic emission model fails in atomically thin 2D layers
because these 2D materials tend to have rather low mobility, and the drift-diffusion behavior
of charge carriers plays a dominant role in the transport across the heterojunction [203].
To accurately model the device behavior, we introduce a carrier density dependent electron
mobility in MoS2 by µ(n) = µ0/[1+exp(α−n+n0)]. Here, the mobility has a constant value of
µ0 at high doping but drops significantly at low doping. This functional form is reminiscent
to an activated behavior with a certain density of trap states, and the relevant parameters
are obtained through gate-dependent transport data from a homogeneous MoS2 monolayer.
The density-dependent mobility is especially relevant at the depletion region, which would
experience increased local electrical resistance due to lowered carrier density (Fig. 6.4d).

Fig. 6.4 shows the calculated band diagram and the associated band bending of MoS2

around the Cytop and hBN substrates for the conduction band edges at zero, forward,
and reverse applied bias. The electron density n0 at x < 0 (at Cytop) is assumed to
be ∼ 2 × 1012 cm−2. The zero bias calculation result (Fig. 6.4a) captures the built-in
potential on each side of the junction (ψ1 and ψ2 for MoS2 on hBN and Cytop, respectively)
because of the work function differences between the two segments of MoS2. In the case of
a biased channel, the current flow is a response of a voltage drop over the whole channel:
Vch = EF (z = −L) − EF (z = L) that shifts the Fermi level out of equilibrium. However,
we see from both Figs. 6.4b and 6.4c that the voltage drop primarily transpires at the
heterojunction, ensuring that the heterojunction property to define the I-V behavior of the
device.

In the forward bias (Fig. 6.4b), the voltage drop across the heterojunction reduces the
net built-in potential into ψ1 − V1 and ψ2 − V2, respectively. A net current will flow with
the electrons moving from the segment on Cytop to that on hBN. At a finite temperature,
electrons moving in this direction will see an energy barrier for transport across the het-
erojunction. However, this energy barrier becomes negligible at a sufficiently large applied
bias Vch > Vt, as illustrated in Fig. 6.4b. In other words, ψ2 − V2 ≈ 0 and the transport
across the junction should be mostly dominated by the sheet resistance of MoS2 away from
the junction and appears Ohmic-like. As an approximation, the ψ2 − V2 ≈ 0 condition is
achieved when the total built-in voltage across the junction: ψi = ψ1 + ψ2 ≈ Vt. We be-
lieve that this picture might explain the I-V behavior for the heterojunction as discussed in
Fig. 6.2. An equivalent diode circuit for the junction is shown in the inset of Fig. 6.4b: the
heterojunction is comprised of an internal built-in potential Vt that needs to be compensated
by applying an external potential, following which the current-voltage behavior is dictated
by a resistance RS in series due to the MoS2 segment away from the junction. Our simulated
I-V plot (Fig. 6.4e) reproduces the threshold-like behavior of the device.
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Figure 6.4: Simulation results of the energy band bending at the 2D heterojunction. a-
c, The conduction band edges and Fermi levels are calculated at zero bias (a), forward
bias (current: 80 nA µm−1) (b) and reverse bias (current: −6 nA µm−1) (c) conditions.
In the three cases, the MoS2 segment on Cytop is assigned to be electrically grounded.
Under a small forward bias (Vch = V1 + V2), an electron traversing the heterojunction from
the segment on Cytop to that on hBN experiences an energy barrier due to the built-in
voltage. However, for large enough bias beyond the turn-on voltage (Vch > Vt), electrons
traversing the heterojunction (blue circle) do not experience a significant energy barrier and
the current-voltage characteristic is determined by the resistance of the channel instead of
the junction. Inset in b, a schematic of the diode modelling according to piecewise linear
model. d, Carrier density distribution across the junction under different bias conditions.
e, Simulated current-voltage characteristics with a carrier-density-dependent mobility. All
calculations are performed using a carrier density of 2.0× 1012 cm−2 at 140 K.

6.5 Conclusions

We have reported an operational device application of bandgap renormalization in 2D materi-
als via dielectric screening, and shown that a dielectric-engineered lateral heterojunction can
strongly modify electrical transport in monolayer MoS2. Since heterostructures are funda-
mental building blocks in electronics, such dielectric engineering can provide a powerful new
route for realizing more complex device architecture. Our findings also have implications for
the efforts to incorporate 2D materials in optoelectronics, in order to improve functionality
(for example, spin-valley current for information encoding [93]) and drive miniaturization [3,
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45].
In practical applications, all aspects of manufacturing must be considered. For instance,

the monolithic integration of 2D materials in circuitry requires interfacing with other compo-
nents, such as substrate, electrodes, and interconnections. Each component may screen the
2D materials, resulting in different degree of bandgap renormalization across the channel.
Notably, the bandgap of MX2 should decrease significantly upon interfacing with electrodes
due to the high permittivity of metals and thus a heterojunction is expected to form at each
border between the MX2 segments with and without metal contact. Although the behavior
of metal-MX2 junction is dominated by other mechanisms such as Fermi-level pinning [43,
65], recent work suggests the possibility to prevent pinning by minimizing disorders and
interface states at the metal-MX2 junction [41, 120]. At such limit, accounting for bandgap
renormalization is essential to fully understand the physics of electrical contact to MX2

monolayers.
Although we have used Cytop and hBN substrates in order to simplify fabrication, the

bandgap renormalization is a general phenomenon in 2D semiconductors and the heterojunc-
tion should form with other combinations of dielectrics. The constraint for low-ε substrate
may be satisfied by other established materials in industry, such as electronic-grade plastic
substrates [128, 200] with well-developed scalability and processability. Additionally, an ad-
vantage of such polymeric surfaces is the absence of dangling bonds, leading to a low density
of surface trap sites. If conventional high-ε dielectrics are used, an abrupt heterojunction is
affordable by patterning with state-of-the-art microfabrication technology. Another scalable
approach also includes using CVD-grown 2D lateral heterojunction as the substrate if the
material combination has a significant dielectric contrast [111, 122]. We also believe that
the influence from interface trapping and substrate doping for non-optimized surface can be
minimized if the heterojunction is operated at high carrier density as defined by the elec-
trostatic gating, where the difference in the work functions between low- and high-ε channel
segments are primarily due to the bandgap renormalization.

6.6 Methods

Device fabrication

Cytop (CYTOP CTL-809M, Asahi Glass Co.) is mixed into CTL180 (Asahi Glass Co.) in
2:7 v/v and spincoated at 1000 rpm for 1 min to a uniform thickness of ∼70 nm on highly
doped Si substrates with 285 nm SiO2. The Cytop-coated substrate is then heated at a
hotplate for 5 min at 100◦C and then 5 min at 150◦C. Crystal of hBN is then exfoliated on
the Cytop surface. The hBN flakes with thickness of 5-15 nm that have a flat side edge are
identified from optical microscopy and confirmed with AFM imaging. Monolayers of MoS2

are exfoliated onto a PDMS stamp and dry-transferred [26, 107] to the flat edge of such hBN
flake. For all devices, 100 nm Au film is deposited for the electrode of MoS2 using a standard
electron beam lithography (EBL) process with two layers of EBL resist (495PMMA A4 and
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950PMMA A4, MicroChem). We found that exposing the Cytop film to a short, low power
N2 plasma (10 sccm, 5 W for 1 s) before the hBN exfoliation can help to produce better
spincoating of the resists on Cytop.

KPFM

KPFM were performed using a Multimode AFM with grounded tip and biased sample. A
blunted Si cantilever with ∼50 nm Au film coating was used for the imaging. The mea-
surement was performed in surface potential mode with a lift-height of 30 nm and a drive
amplitude of 2 V. The high lift-height was chosen to avoid interaction between the metal
tip and the monolayer MoS2 that can introduce additional screening effect. The AFM in-
strument is housed inside a home-made enclosure that is flushed with a constant flow of dry
nitrogen to provide an inert atmosphere.

6.7 GW0 calculations for the CBM offsets and change

in bandgap of MoS2 due to dielectric screening

from the substrates

We first carry out density-functional theory (DFT) calculations as implemented in the Quan-
tum ESPRESSO [66] package using a plane-wave basis set, norm-conserving pseudopotentials
and the local density approximation (LDA) [27, 161] for electron exchange and correlation.
With the Kohn-Sham wave functions, we then calculate the quasiparticle (QP) self-energies
using the eigenvalue-self-consistent, full-frequency GW0 approximation with the BerkeleyGW
[46] package. To include substrate screening when calculating the quasiparticle energies,
we adopt the in-plane substrate-averaging (IPSA) [211] approximation, in which the non-
interacting polarizability of the substrate is added onto the full dielectric matrix of MoS2,
while neglecting only the in-plane local (Gx 6= Gx′ or Gy 6= Gy′) fields but explicitly in-
cluding all out-of-plane local fields (Gz 6= Gz′). In all our GW0 calculations, the c-axis of
all supercells is defined as the out-of-plane direction, and the length of the supercell in this
confined direction is always set to be Lz = 120 Å, unless otherwise stated. Also, for clarity,
we will adopt the following nomenclature: the CBM of free-standing MoS2 will be labeled as
CBMfsMoS2 and the CBM of MoS2 when screened by substrate A will be labeled as CBMA.
The same nomenclature will also be applied to the VBM.

We first compute the quasiparticle energies of monolayer MoS2, using a structure with
an in-plane lattice constant [242] of 3.16 Å and a thickness of 3.17 Å measured from the
centers of the S atoms. The kinetic energy cutoff for the DFT calculation is set at 80 Ry
for the plane-wave expansion of the wave functions. For the GW0 calculations, the dielectric
matrix is calculated on an effective [94] q grid of 1143 × 1143, expanded from a regular q
grid of 6× 6. When calculating the dielectric matrix, a total of 26450 bands is used and the
energy cutoff used to calculate the screened exchange is set at 35 Ry.



CHAPTER 6. A DIELECTRIC-DEFINED LATERAL HETEROJUNCTION IN A
MONOLAYER SEMICONDUCTOR 81

To calculate CBMCytop, we note that the interface between Cytop and MoS2 is very rough
since Cytop is spin coated. According to the AFM data (Fig. 6.5), the height profile of Cytop
fluctuates within a range of ±2 nm. Moreover, since Cytop has a very low dielectric constant
(ε = 2.0− 2.1), one can consider CBMfsMoS2 as the upper bound of CBMCytop. To determine
the lower bound of CBMCytop, we approximate the screening environment of Cytop, which
has an amorphous structure, as that of polytetrafluoroethylene (PTFE), which is crystalline.
Apart from the crystal order, the two compounds have a very similar bulk dielectric constant
(ε ∼ 2) and chemical composition (mainly C and F atoms), though PTFE is expected to
have a slightly larger dielectric constant because it is more densely packed. In our model for
PTFE, we use a supercell with an orthorhombic crystal lattice (a = 2.66 Å, b = 5.55 Å). The
C-C bonds of the polymer chains are oriented parallel to the in-plane directions of MoS2. In
our calculations, we use 7 layers of PTFE (3.3-nm thick) and position them such that F atom
of the topmost layer of PTFE is 2 nm away from the nearest S of MoS2 in the out-of-plane
direction. The DFT energy cutoff is set at 100 Ry, and 4700 bands and an energy cutoff of
8 Ry are used to calculate the substrate polarizability matrix. Our GW0 calculation shows
that CBMCytop is at most 10 meV lower than CBMfsMoS2 , while VBMCytop is at most 10 meV
higher relative to VBMfsMoS2 . We note that it is very important to take into account the
roughness of the fluoropolymer. If we place MoS2 right on top of PTFE with a relaxed
distance of 2.9 Å between the adjacent layers of F and S atoms, we find that CBMPTFE is
33 meV lower than CBMfsMoS2 , while VBMPTFE is 25 meV higher than VBMfsMoS2 .

For hBN, we will consider the upper bound of the CBM in the scenario where there is no
electron doping of MoS2 due to the substrate. The MoS2-substrate distance is determined
by minimizing the energy of the system in a separate DFT calculation that also incorporates
van der Waals interactions (vdW-DFC09x) [39] and dipole corrections [14, 142]. Using a
supercell of Lz = 22.5 Å that consists of 4 × 4 monolayer MoS2 unit cells stacked on top
of 5 × 5 bilayer hBN unit cells, we relax the MoS2-substrate distance in the out-of-plane
direction and determine the separation between the topmost BN layer and the nearest S
layer of MoS2 to be 3.30 Å. To calculate the quasiparticle self-energies, we construct a slab
consisting of 14 BN layers that is 4.3-nm thick and has an in-plane lattice constant [225] of
2.50 Å. The DFT energy cutoff is set at 60 Ry. An energy cutoff of 6 Ry and 1117 bands are
used to calculate the substrate polarizability matrix. In the experiment, MoS2 is screened
by hBN that is ∼10.1-nm thick, which is in turn situated on top of Cytop (Fig. 6.3a).
Hence, we will extrapolate the substrate correction by hBN from 14 layers of substrate to
a substrate of semi-infinite thickness. The extrapolation is carried out by also calculating
the substrate corrections for 2-, 6- and 10-layer thick substrates and fitting the relation
of substrate correction to substrate thickness with an exponential function. In the GW0

calculation, we find that CBMhBN is −76 meV relative to CBMfsMoS2 , and that VBMhBN is
65 meV relative to CBMfsMoS2 .

Due to the proximity of hBN to MoS2, the segment of MoS2 above hBN is also susceptible
to other contributions that close the band gap and lower the CBM, such as, (1) wave function
hybridization between the orbitals of MoS2 and hBN and, (2) electron doping of MoS2 by
hBN due to possible extrinsic effects like interfacial dipoles, electrostatic gating and vacancy
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defects, that are not included in the IPSA approximation. From simpler model calculations,
we estimate that the error from neglecting wave function hybridization is less than 10 meV.
This, however, is a signed error, i.e., hybridization should decrease the CBMhBN. The second
contribution due to electron doping is experimentally constrained using a large back gate
voltage Vgs and a thick SiO2 substrate. Using Eq. 6.2, the maximum error can be determined
also to be ∼10 meV, which is also a signed error that decreases CBMhBN.

By taking the difference between the CBMhBN and CBMCytop, the CBM offset can be
determined to be of the order of 70±20 meV; the VBM offset can be determined to be
60±20 meV by taking the difference of VBMhBN and VBMCytop. We stress that we do
not include the doping effect into our calculations (which increases both the CBM and
VBM offsets) but rather include them as error bars. In all, the QP band gap changes by
∼ 120 ± 40 meV. Finally, note that when calculating the quasiparticle energies of MoS2 as
screened by a substrate, the energy cutoff that is used to calculate the screened exchange (e.g.
6 Ry) can smaller than that used for MoS2 (i.e. 35 Ry) because in the IPSA approximation,
substrate correction to the self-energy is calculated as a perturbation. In hBN, for example,
it is found that the QP gap is already converged to less than 4 meV with a cutoff of 6 Ry.

Figure 6.5: AFM height profile of a typical Cytop surface. a, AFM image. b, Height profile
along the white dashed line in a
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Chapter 7

Valley-dependent Exciton Fine
Structure and Autler-Townes
Doublets from Berry Phases in
Monolayer MoSe2

7.1 Introduction

In the momentum space of atomically-thin transition metal dichalcogenides (TMDs), a pair
of degenerate exciton states are present at the K and K’-valleys, producing a valley degree
of freedom that is analogous to the electron spin [233, 232, 25]. The electrons in the K
and K’-valleys acquire a finite Berry phase when they traverse in a loop around the band
extrema, with the phase equal in magnitude but opposite in sign at the K and K’-valleys, as
required by the time-reversal symmetry [230, 233, 232, 25]. The Berry phase not only has
close connections to the optical selection rules that allow optical generation and detection
of the valley-polarized carriers by circularly polarized photons [233, 232, 25, 237, 129, 245],
but also plays a central role in novel electron dynamics and transport phenomena in TMD
and graphene layers, such as the valley Hall effect [249, 153, 130, 232, 231].

In principle the Berry phase, together with other effects from inversion symmetry break-
ing, can have profound consequences for the wavefunction and energy spectrum of the ex-
cited states in two-dimensional (2D) materials. TMD monolayers are known to host strongly
bound excitons with a remarkably large exciton binding energy due to enhanced Coulomb
interactions in 2D [211, 33, 238]. It was recently predicted that the Berry curvature of Bloch
states can add an anomalous term to the group velocity of electrons and holes and creates
an energy splitting between exciton states with opposite angular momentum [230, 32, 251,
198, 210, 15, 224], as illustrated in Fig. 7.1a. Figure 7.1b shows a simplified exciton energy
spectrum illustrating the exciton fine structure based on our ab initio GW -Bethe-Salpeter
equation (GW -BSE) calculations. The 2p+ and 2p− exciton states are split in energy with
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opposite order for the K and K’ valleys due to the opposite chirality in the two valleys
[251, 198, 210, 232]. Such novel exciton fine structure, which embodies important wavefunc-
tion properties arising from the Bloch band geometry, can strongly modify the intraexcitonic
light-matter interactions. Experimental observation of this predicted exciton spectrum, how-
ever, has been challenging, because it requires new spectroscopic probe that can distinguish
both the momentum valley and the exciton angular momentum.

Here, we report the first observation of the Berry-phase effect in the exciton energy
spectrum of MoSe2 monolayer using intraexciton optical Stark spectroscopy. We demonstrate
that the degeneracy between the 2p±-exciton states is lifted by the Berry phase effect, and
enabling a valley-dependent Autler-Townes doublet from strong intraexciton light-matter
coupling. We coherently drive the intraexciton transitions using circularly-polarized infrared
radiation, which couples the 1s exciton to the 2p+ or 2p− states selectively through the pump
photon polarization (solid arrowed lines in Fig. 7.1b). The pump-induced changes in the 1s
exciton transition are detected by circularly polarized probes, which selectively measure
the K or K’-valley excitons. Independent control of pump and probe photon polarization
enables us to distinguish the exciton fine structures in the K and K’-valleys. We determine
an energy splitting of 14 meV between the 2p+ and 2p− exciton states within a single valley,
and this energy splitting changes sign between K and K’-valleys. We determine the 1s-2p
transition dipole moment to be 55±6 Debye. This leads to an optical Stark shift that is
almost 40 times larger than the interband counterpart [239, 101, 192] under the same pump
detuning and driving optical field strength. Such strong and valley-dependent intraexciton
transitions open-up new pathways for the coherent manipulation of quantum states in 2D
semiconducting materials using infrared radiation.

7.2 Results and Discussion

To investigate the fine structure of the excitonic p-manifold, we fabricated a high quality
MoSe2 monolayer that is encapsulated in hexagonal boron nitride (hBN) layers using me-
chanical exfoliation and stacking following Ref. [239]. The sandwiched hBN-MoSe2-hBN
heterostructure was then transferred to an alumina-coated silver surface (Fig. 7.1c). The de-
vice was kept in vacuum at 77 K for all optical measurements. Fig. 7.1d shows the reflection
contrast spectrum of the MoSe2 monolayer, which exhibits a prominent A-exciton absorption
feature at energy E1s = 1.627 eV with a full width half maximum (FWHM) of 9 meV. This
A-exciton peak arises from the optical transition between the ground state and the lowest
energy 1s exciton state in MoSe2 monolayer, which is well-separated from the higher-lying
exciton states due to strong Coulomb interactions in TMD monolayers [15, 224, 238, 216].

We use intraexciton optical Stark spectroscopy with helicity-defined pump and probe light
to selectively access the 2p+ or 2p− exciton states in the K and K’-valleys. As illustrated in
Fig. 7.1b, we drive the 1s-2p+ intraexciton transition coherently with a σ+-polarized infrared
pump and monitor the photoinduced changes in the 1s exciton absorption at K and K’-
valleys with σ+ and σ−-optical probes, respectively. Quantum-mechanical coupling between
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the infrared photon field and the 1s-2p+ electronic transition leads to an avoided-crossing
behavior that modifies the 1s-exciton state systematically with the changing infrared photon
energy, as illustrated in Fig. 7.1e. Specifically, the |1s, nh̄ω〉 and |2p+, (n− 1)h̄ω〉 states
hybridize when driven by the infrared pump in the “dressed atom” picture, where n is the
integer number of infrared pump photons at frequency ω. When the infrared photon energy
is below (above) the 1s-2p+ resonance, the non-resonant hybridization leads to a decreased
(increased) energy for the 1s exciton state. When the infrared photons are resonant with the
1s-2p+ transition, perfect hybridization between |1s, nh̄ω〉 and |2p+, (n− 1)h̄ω〉 states lead
to an energy splitting in the 1s exciton absorption. The pump-induced optical Stark shift
and splitting of 1s exciton in K and K’-valleys can be detected from the 1s exciton absorption
spectrum by using σ+ and σ−-polarized probe light, respectively. This allows us to explicitly
identify the 1s-2p+ intraexciton transition in each valley. Since the infrared pump photon
energy is much lower than the transition energy of 1s exciton, our measurement scheme
probes only the coherent optical Stark effects without non-coherent contribution from real
carrier generation.

Figures 7.2a-c show the transient reflection signals for the σ+-polarized probe, which
measures the photoinduced changes of the K-valley exciton transition upon excitation with
σ+-infrared pump of different energies (Ep). The driving pump has an effective driving
intensity (Ieff) of 7±1 MW/cm2, which corresponds to a local optical field strength (Eeff) of
70±10 kV/cm. The colors in Fig. 7.2a-c represent the pump-induced change of the probe
reflectivity ∆R , which is directly proportional to the change of absorption. The positive
(negative) ∆R , is proportional to the decrease (increase) of absorption. The horizontal
and vertical axes show the probe energy and pump-probe time delay τ , respectively. Strong
transient signals are present for pump-probe delay closed to zero and they become negligible
at pump probe delays larger than 500 fs. These instantaneous signals confirm the optical
responses arise from coherent optical Stark effects. By changing the driving energy of the
σ+-pump, the optical response varies significantly. Figures 7.2d-e display the corresponding
transient spectra of the K-valley exciton at τ = 0 ps. At Ep = 120 meV, the absorption
of K-valley exciton exhibits a decrease above E1s and an increase below E1s, corresponding
to a red-shift of the 1s exciton resonance due to the optical Stark effect. The photoinduced
responses is opposite for Ep = 170 meV, which is dominated by transition energy blue-shift.
The spectrum at Ep = 142 meV, on the other hand, shows an increase of absorption at
energies both above and below E1s and a reduction of absorption at E1s, which is consistent
with an energy splitting of the 1s exciton peak.

The evolution of the 1s exciton absorption in monolayer MoSe2 under coherent infrared
driving can be better visualized directly from the optical absorption spectra characterized by
the imaginary part of optical susceptibility (χim) [114]. Figure 7.3a displays the absorption
spectra of the 1s exciton at τ = 0 ps for both K and K’-valleys driven by σ+-polarized infrared
radiation of different photon energies. It shows clearly that the 1s exciton transition exhibits
avoided-crossing behavior in both valleys, which evolves gradually from energy blueshift to
splitting and then to redshift as the pump photon energy is decreased. However, there is an
important distinction between the K and K’ valley spectra: the resonant coupling between
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the σ+-infrared photons and the 1s-2p+ intraexciton transition, which splits the 1s exciton
resonance, occurs at driving photon energy of 142 meV and 128 meV in K and K’-valleys,
respectively. It shows that the 1s-2p+ intraexciton transition energy differs by 14 meV for
the K and K’ valleys. Due to the time-reversal symmetry between K and K’-valleys in
MoSe2 monolayer, this observation also indicates that the 2p+ and 2p− exciton states are
non-degenerate and has an energy difference of 14 meV in a single valley. (See Fig. 7.1b)

We further plot the blue- and red-shifted 1s resonance as a function of the infrared pump
photon energy in Fig. 7.3b. We find that the energy shifts induced by the intraexciton
optical Stark effect are almost 40 times larger than its interband counterpart at the same
pump intensity and resonance detuning [239, 101, 192].

Since the driving photon energy is closed to the 1s-2p+ transition and strongly off-
resonant from the interband transition, our observation can be qualitatively understood using
a model describing a driven three-state system as illustrated in Fig. 7.1b and Fig. 7.1e. Un-
der σ+-pump radiation, |1s, nh̄ω〉 hybridizes with |2p+, (n− 1)h̄ω〉, which can be described
by the effective Hamiltonian

Heff =

(
E1s + iγ1s

V1
2

V1
2

E1s + |E1s−2p+| − Ep + iγ2p+

)
(7.1)

Here V1 is proportional to the 1s-2p+ intraexciton transition dipole moment µ1s−2p+ via V1 =
µ1s−2p+ Eeff , where Eeff is the local optical field strength on the sample. Ep, E1s and E1s−2p+

denote the pump photon energy, the 1s exciton energy and the 1s-2p+ intra-exciton transition
energy, respectively. γ1s and γ2p+ are the half width at half maximum of the 1s and 2p+

exciton modes, respectively. Direct diagonalization of the effective Hamiltonian yields two
new eigenstates |α〉 and |β〉, which are energetically separated by

√
V 2

1 + (∆ + iγ2p+ − iγ1s)2,
where ∆ ≡ Ep−|E1s−2p+| is the detuning energy. The optical absorption of the probe photon
to the new eigenstates can then be computed.

Fig. 7.3b displays the calculated absorption spectra at different driving energy. The
E1s−2p+ used in the fitting is 142 meV and 128 meV for K and K’ valleys, respectively. From
the fitting to the experimental data, we extract the exciton-photon coupling constant V1

of 8 meV, which corresponds to a 1s-2p+ intraexciton transition dipole moment µ1s−2p+ of
55±6 Debye. The µ1s−2p+ is almost 6 times larger than that effective dipole moment in the
interband exciton optical Stark effect [239, 101, 192], and it leads to a nearly 40 times larger
optical Stark shift under the same driving intensity and detuning.

To better understand the experimental results, we performed ab initio GW -BSE calcula-
tions using the BerkeleyGW[178, 46, 83] package to determine the exciton energy levels and
optical selection rules of exciton and intraexciton transitions in monolayer MoSe2. In these
calculations, environmental screening effects from the hexagonal boron nitride (hBN) encap-
sulation layers are included19 from first-principles (see Sec. 7.4). The simulation confirms
the energy level diagram of the 1s, 2p+, and 2p− excitons and the optical selection rules in K
and K’-valleys in Fig. 7.1b. Our calculations find that the energies of the 1s and 2p− exciton
states are separated by 117 meV, with 2p+ exciton states further separated by 7 meV in
K-valley. The energetic order of 2p+, and 2p− excitons states is opposite in the K’-valley, as
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a result of time-reversal symmetry. Although the 2p± excitons are dark in linear optics, they
are optically active when coupled to the 1s exciton with circularly-polarized light (Fig. 7.1b).
For example, our calculations show that the 1s-2p+ intraexciton transition couple exclusively
to the left-handed circularly polarized (denoted as σ+) light with a transition dipole moment
of 42 Debye. The 1s-2p− intraexciton transition, on the other hand, coupled exclusively to
the right-handed circularly polarized (denoted as σ−) light. The experimentally observed
intraexciton dipole moment and valley-dependent exciton fine structure match reasonably
well with the ab initio GW -BSE calculations.

The combination of 2p±-exciton splitting and extremely strong intraexcitonic light-matter
interaction allow us to observe valley-dependent Autler-Townes doublets at higher pump in-
tensity in MoSe2 monolayer. Towards this goal, we fabricated a hBN-encapsulated MoSe2

heterostructure on a zinc-sulphide (ZnS) substrate, where the local field factor on the sample
for the infrared pump light is more favorable than that for MoSe2 on alumina coated silver
substrate. In this device the 1s-2p+ intraexciton transition energies for the K and K’-valleys
are determined to be 150 meV and 138 meV, respectively. Figure 7.4a shows the absorption
spectra of the 1s exciton at τ = 0 ps for K and K’-valleys under series of excitation inten-
sity. The σ+-pump driving energy is set to 150 meV, which is on resonant with the 1s-2p+

transition in the K-valley but positively detuned from the 1s-2p+ transition in the K’-valley.
We observe contrasting coherent phenomena between the K and K’-valleys: 1s exciton tran-
sition exhibits a striking splitting into the Autler-Townes doublet in the K-valley, but shows
a mostly blueshift in the K’-valley. On the other hand, when the σ+-pump energy is tuned
to 138 meV, which is negatively detuned from the 1s-2p+ transition in the K-valley but on
resonant with the 1s-2p+ transition in K’-valley, the 1s exciton transition shows red shift in
the K-valley but a clear Autler-Townes doublet in the K’-valley (Fig. 7.4b). Fig. 7.4c,d show
the splitting energy in the Autler-Townes doublet at resonant excitation scales linearly with
the excitation field strength, as expected from Eq. 7.2 [8, 9]. At an effective driving intensity
of 50±10 MW/cm2, which corresponds to a local optical field strength of 200±20 kV/cm,
the Autler-Townes splitting can reach ∼24 meV in both valleys. This Autler-Townes dou-
blet leads to a valley-dependent electromagnetically induced transparency in the 1s exciton
transition, where the absorption at the 1s exciton resonance is reduced by more than 10-fold
compared to the undriven exciton (Fig. 7.4a, b). Our findings offer a new and effective path-
way to coherently manipulate the quantum states and excitonic excitations using infrared
radiation coupled to the 1s-2p+ intraexciton transition.

7.3 Materials and Methods

Sample Fabrication

The MoSe2 monolayer encapsulated in hBN flakes were prepared with a polyethylene tereph-
thalate (PET) stamp by a dry transfer method [239]. Monolayer MoSe2 and hBN flakes were
first exfoliated onto silicon substrate with a 90 nm oxide layer. We used PET stamp to pick-
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up the top hBN flake, monolayer MoSe2, and bottom hBN flake in sequence with accurate
alignment based on an optical microscope. The hBN/MoSe2/hBN heterostructure was then
stamped on a silver substrate coated with a 85 nm alumina layer or on a zinc sulphide (ZnS)
substrate. Polymer and samples were heated to 60◦C for the pick-up and 130◦C for the
stamping process. Finally, the PET was dissolved in dichloromethane for 12 hours at room
temperature. The sample temperature was kept at 77 K in a liquid-nitrogen cooled cryostat
equipped with BaF2 window during optical measurements.

Intraexciton Optical Stark Spectroscopy

Pump-probe spectroscopy study is based on a regenerative amplifier seed by a mode-locked
oscillator (Light Conversion PHAROS). The regenerative amplifier delivers femotosecond
pulses at a repetition rate of 150 kHz and a pulse duration of ∼250 fs, which were split
into two beams. One beam was used to pump an optical parametric amplifier and the other
beam was focused onto a sapphire crystal to generate supercontinuum light (500 to 1100 nm)
for probe pulses. Femtosecond mid-infrared pump pulses with tunable photon energies were
generated via difference frequency mixing of the idler pulses from the optical parametric
amplifier and residual of fundamental output (1026 nm) from regenerative amplifier in a
1 mm thick silver gallium sulphide (AGS) crystal. The mid-infrared pulse duration is∼400 fs.
The pump-probe time delay was controlled by a motorized delay stage. The probe light was
detected by high sensitivity CCD line camera operated at 1000 Hz. The helicity of pump
and probe pulses was independently controlled using Fresnel rhomb and broadband quarter-
waveplates, respectively. The experiment followed a reflection configuration with a normal
incidence and collinear pump-probe geometry, where the absorption spectra are extracted
from the reflectance contrast.

7.4 GW -BSE calculations of MoSe2

Density-functional theory (DFT) calculation of monolayer MoSe2 as implemented in the
Quantum ESPRESSO[66] package is first carried out to obtain the Kohn-Sham wavefunc-
tions. We use a plane-wave basis set, norm-conserving scalar-relativistic pseudopotentials
and the local density approximation (LDA) for electron exchange and correlation [27, 161].
The Mo 4s and 4p semi-core states and the 4d and 5s valence states are included in the
calculation to accurately capture the exchange contribution to the self-energy. The mono-
layer MoSe2 crystal structure has a lattice constant4 of 3.29 Å and a thickness of 3.34 Å as
measured from the centers of the Se atoms. The length of the supercell in the out-of-plane
direction is set to be Lz = 120 Å. The kinetic energy cutoff for the DFT calculation is set at
80 Ry for the plane-wave expansion of the wavefunctions. Using the calculated Kohn-Sham
wavefunctions, the GW quasiparticle (QP) self-energies and the GW -BSE exciton energy
levels are then computed with the BerkeleyGW package [83, 178, 46]. In our GW -BSE
calculations, the Coulomb interaction is always truncated6 in the out-of-plane direction.
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The quasiparticle self-energies are calculated using the eigenvalue-self-consistent, full-
frequency GW0 approximation. The full frequency-dependent dielectric matrix is calculated
on an effective [94] q-grid of 1100× 1100, expanded from a regular q-grid of 6× 6 using 10
subsampled points. When calculating the dielectric matrix, a total of 26450 bands is used
and the energy cutoff used to calculate the screened exchange is set at 35 Ry.

To calculate the exciton energy levels, the Bethe-Salpeter Equation (BSE) is solved using
the calculated QP energies. Static screening [178] is used as an approximation for dynamical
screening since the MoSe2 monolayer encapsulated in hBN layers is an intrinsic semiconductor
with negligible doping. The screening behavior is therefore constant for frequencies of the
order of the binding energy. The electron-hole interaction kernel of the BSE Hamiltonian
HBSE is first calculated on a regular k-grid of 72 × 72, using a static dielectric matrix
that is calculated on regular q-grid of 72 × 72 using 1400 bands and a 5 Ry energy cutoff
for the screened exchange. To obtain the envelope function of the exciton wavefunctions,
the BSE Hamiltonian is fully diagonalized using interaction kernel matrix elements that are
interpolated [94, 178] from the regular 72×72 k-grid to a finer k-grid of 648×648. To calculate
the energy levels of the first few exciton states, the kernel matrix elements are interpolated
[94] onto an even finer k-grid of 1440 × 1440 by diagonalizing the BSE Hamiltonian using
the Lanczos algorithm [190]. Since the exciton wavefunctions are localized in the reciprocal
space [168], the kernel matrix elements are only interpolated onto a round patch of k-points
centered at the K-valley of radius 0.181 Bohr−1. Finally, the optical transition dipole moment
between the initial exciton state |Si〉 to the final exciton state |Sf〉, i.e. ε̂ · 〈Sf |µ|Si〉, is
calculated as follows:

ε̂ · 〈Sf |µ|Si〉 = |q|ε̂ · 〈Sf |− re + rh|Si〉

=
|q|ε̂

i(Ωf − Ωi)
· (−〈Sf |ve|Si〉+ 〈Sf |vh|Si〉) (7.2)

where ε̂ is the polarization of the light inducing the transition, r is the position operators, v
is the velocity operator, Ω is the exciton energy and the subscripts e and h label the electron
and hole of the exciton.

Screening due to hBN-encapsulation is included during the calculation of the quasipar-
ticle energies and the energy levels of the excitons using the in-plane substrate-averaging
(IPSA) [211] approximation. In this approximation, the substrate screening is assumed to
be translationally invariant, i.e. averaged in the in-plane direction. Theoretically, this means
that the non-interacting polarizability of the encapsulation is added onto the full dielectric
matrix of MoSe2, including explicitly all out-of-plane local fields (Gz 6= Gz′) and neglect-
ing only the in-plane local (Gx 6= G′x or Gy 6= Gy′) fields. This IPSA approximation has
been shown to accurately capture the substrate-screening effects on the quasiparticle band
structures and excitonic energy levels of transition metal dichalcogenide monolayer4. The
MoSe2-hBN distance is determined in a separate DFT calculation by minimizing the en-
ergy of the system that also incorporates van der Waals interactions (vdW-DFC09x) [39] and
dipole corrections [14, 142]. The separation between the Se layer of MoSe2 and its nearest
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BN layer of the encapsulation is found to be 3.4 Å in the out-of-plane direction. To calculate
the screening by hBN within the IPSA approximation, we construct a slab consisting of 14
hBN layers that is 4.3-nm thick and has an in-plane lattice constant [225] of 2.50 Å. The
DFT energy cutoff is set at 60 Ry. A screened energy cutoff of 6 Ry and 1117 bands are
used to calculate the polarizability matrix of the encapsulation.

The solution of the BSE Hamiltonian HBSE gives the two-particle exciton wavefunction,

|S〉 =
∑
vck

Avck |ψck〉 |ψ∗vk〉 (7.3)

where Avck is the amplitude of the free electron-hole pair that is the direct product of an elec-
tron state |ψck〉 and a hole state |ψ∗vk〉. The coefficients Avck describes the envelope function
of the exciton wavefunction in reciprocal space. Since light has a negligible momentum, we
consider only excitons with zero center-of-mass momenta. Our calculated energy difference
between the |2p−〉 and |2p+〉 states is 7 meV whereas the energy difference between the lower
|2p〉 state and the |1s〉 state is 117 meV.

The first column in Fig. 7.5 shows the amplitude-squared real-space plot of the envelope
function of the 1s and 2p states of a hydrogenic exciton. In such hydrogenic excitons, the 2p
states of opposite angular momenta are degenerate, so linear combinations of their envelope
functions can be chosen to be real, with well-defined axial directions (x and y), i.e.

|2px〉 =
1√
2

(|2p+〉+ |2p−〉) (7.4)

|2py〉 =
1

i
√

2
(|2p+〉 − |2p−〉) (7.5)

These states are still exciton eigenstates in a hydrogenic model. In Fig. 7.5, the |2px〉
and |2py〉 states are plotted by assuming that the |2p±〉 states are degenerate and that |2px〉
and |2py〉 states are linear combinations of the |2p±〉 states.

The second column of Fig. 7.5 shows the amplitude-squared envelope-functions of the|2p±〉
states of MoSe2 monolayer in real-space obtained from the first-principles calculation. The
two-fold degeneracy of the |2p±〉 exciton states is broken and their linear combinations no
longer define eigenstates, i.e. neither |2px〉 nor |2py〉 is an eigenfunction of the system. This
can be understood from the fact that the MoSe2 monolayer does not have an inversion sym-
metry, the |2px〉 and |2py〉 states do not separately possess the three-fold rotational symmetry
of the crystal, unlike the non-degenerate |2p±〉 eigenstates.

In the third column of Fig. 7.5, we show the exciton envelope function of the |2p+〉 and
|2p−〉 states in the reciprocal space at the K-valley. The ordering of the |2p±〉 states is
reversed at the K’-valley due to time-reversal symmetry. Here, we use a smooth gauge as
defined in Ref. [168]. Under this hydrogenic gauge choice, the envelope function of |1s〉 is
chosen to be entirely real while those of |2p+〉 and |2p−〉 states have complex phases, enabling
optical coupling via σ+ and σ−-polarized infrared radiation respectively. We further calculate
the optical transition dipole moments between the |1s〉 and |2p±〉 states using Eq. 7.2. The
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calculation shows that a resonant σ+-polarized light can strongly couple the 1s-2p+ transition
with a transition dipole moment of 41.5 Debye, while the coupling between the 1s-2p−
transition with σ+-polarized light is negligibly weak. The coupling by σ−-polarized light
shows the opposite behaviour, i.e., the transition dipole moment for the 1s-2p+ transition
under σ−-polarized light radiation is 45.2 Debye but negligibly weak for the 1s-2p+ transition.
Such selective coupling of 1s-2p± transition is consistent with the experimental findings shown
above.

The point group of the TMD monolayer is D3h. Considering the optical transitions, the
symmetry element that is relevant to the intraexciton selection rules is the 3-fold rotational
symmetry (C3). We adopted the convention and notation used in Ref. [69], and labelled
the quantum number (pseudo-angular momentum) of 1s, 2p+, and 2p− states under the C3

rotation in Fig. 7.5.

7.5 Convention Used for Circularly-Polarized Light

In the literature, two opposite conventions have been used to describe circularly-polarized
light. Depending on the convention, a particular circularly-polarized light can be described
as right-handed or left-handed, and clockwise or anti-clockwise. In this section, we will be
describing the convention that we are using in this chapter.

Decomposition of Circularly-Polarized Light into Two
Linearly-Polarized Light

A circularly polarized light can be decomposed into two orthogonal linearly-polarized light
of equal amplitude. In this section, we will focus our discussion on the optical transition
induced from one state to another upon the absorption of a photon. Hence the wave is
represented by the sinusoidal function of (kz−ωt). For transitions that lead to the emission
of a photon, the argument of the sinusoidal function should be replaced by (ωt− kz).

For a classical light wave travelling in the +z-direction that is circularly-polarized in a
particular handedness, its constituent waves can be expressed as,

Ex(z, t) = x̂
E0√

2
cos(kz − ωt)

Ey(z, t) = ŷ
E0√

2
cos(kz − ωt− π

2
)

= ŷ
E0√

2
sin(kz − ωt), (7.6)

with the resultant circularly polarized light being,

EL(z, t) =
E0√

2
[x̂ cos(kz − ωt) + ŷ sin(kz − ωt)], (7.7)
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where L labels the angular momentum of the light.
Re-writing Eqs. (7.6-7.7) using complex phasor notation, we get,

Ex(z, t) = x̂
E0√

2
exp[i(kz − ωt)]

Ey(z, t) = ŷ
E0√

2
exp[i(kz − ωt− π

2
)]

= ŷ
E0√

2
exp[i(kz − ωt)]e−i

π
2

= ŷ
E0√

2
exp[i(kz − ωt)](−i),

and the resultant circularly polarized light will become,

EL(z, t) = (x̂− iŷ)
E0√

2
exp[i(kz − ωt)].

Angular Momentum L of Circularly-Polarized Light

On some arbitrary plane z = z0 and using Eq. 7.7, we see that when t = 0, E = E0(x̂ cos(kz0)+
ŷ sin(kz0)) . When t = +kz0

ω
, E = E0(x̂ cos(0) + ŷ sin(0)) = E0x̂. The phasor diagram is

plotted out in Fig. 7.6. For a test charge on the z = z0 plane, the photon will impart an
angular momentum of L = −h̄ẑ to the test charge, where ẑ is the propagating direction
of the light. Here, we define the direction of the angular momentum using the right-hand
rule, in which a positive angular momentum will have the same direction as the propagating
direction of the light.

Naming Convention of Circularly-Polarized Light: Left or Right, Clockwise or
Anticlockwise

To name the polarization of light in Eq. (7.7), there are two different conventions. One
convention is defined from the point of view of the source. In this convention, left- or right-
handedness is determined by pointing the person’s left or right thumb away from the source,
in the same direction that the wave is propagating, and matching the curling of one’s fingers
to the direction of the spatial rotation of the field at a given point in space. In this source’s
point-of-view convention, the circularly-polarized light in Eq. (7.7) is left-handed.

The other convention is defined from the point of view of the receiver. In this convention,
left- or right- handedness is determined by pointing the person’s left or right thumb towards
the source, against the direction of propagation, and then matching the curling of one’s
fingers to the temporal rotation of the field. Using the receiver’s point-of-view instead, the
circularly-polarized light in Eq. (7.7) is right-handed.

In both conventions, right-handedness corresponds to a clockwise rotation and left-
handedness corresponds to an anti-clockwise rotation.
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Summary

For light with L = −h̄ẑ:

• E−(z, t) = E0√
2
[x̂ cos(kz − ωt) + ŷ sin(kz − ωt)] or

• E−(z, t) = (x̂− iŷ)E0√
2

exp[i(kz − ωt)] in phasor notation

• Left-handed or anti-clockwise in the source’s point-of-view convention.

• Right-handed or clockwise in the receiver’s point-of-view convention.

For light with L = +h̄ẑ:

• E+(z, t) = E0√
2
[x̂ cos(kz − ωt)− ŷ sin(kz − ωt)] or

• E+(z, t) = (x̂ + iŷ)E0√
2

exp[i(kz − ωt)] in phasor notation.

• Right-handed or clockwise in the source’s point-of-view convention.

• Left-handed or anti-clockwise in the receiver’s point-of-view convention.

To avoid confusion, in this chapter, we label the circular polarization of the light using its
angular momentum. σ+-polarized light has L = +h̄ẑ while σ−-polarized light has L = −h̄ẑ.

7.6 Convention Used to Define the Angular

Momentum of Exciton Wavefunction

The relative motion of the electron and the hole in an exciton is similar to that of the
electron and the proton inside a hydrogen atom. As a result, the effective mass equation of
an exciton resembles the Schrödinger Equation for a hydrogen atom. As a result, exciton
states are often expressed as solutions of the hydrogen atom.

2D exciton states can be described using solutions of the Schrödinger Equation of a 2D
hydrogen atom,15 in which a bound state is described by a radial quantum number nr and
an azimuthal quantum number m, such that the principle quantum number is given by
n = nr + |m|. In this chapter, we define our exciton states using the principle quantum
number n and the azimuthal quantum number m. It should also be noted that unlike the
solutions for a 2D hydrogen atom, experimentally-observed 2D exciton states describe an
interaction of spatially-confined electrons within a quasi-2D material in a three-dimensional
space. As such, its screening is not completely two-dimensional and the resulting ordering
of the exciton eigen-energies may not be exactly identical to that of a 2D hydrogen atom, in
what is also known as the nonhydrogenic Rydberg series. [168, 224, 169]

The time-independent solution of the 2D hydrogen Schrodinger Equation in circular co-
ordinates Ψn

m(r, ϕ) admits separable solutions of the form Ψn
m(r, ϕ) = Rn

|m|(r)Φm(ϕ), where
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Ψ(r, ϕ) is the hydrogen wavefunction, Rn
|m| is the radial function, Φm is the azimuthal func-

tion, r is the radial coordinate and φ is angular coordinate. The solution of the azimuthal
function can be given as,

〈ϕ|Φm〉 = Φm(ϕ) =
eimϕ√

2π
(7.8)

such that the exciton wavefunction of a specific azimuthal angular momentum m can be
defined as

〈Φm|Sn〉 =

∫ 2π

0

dϕ 〈Φm|ϕ〉 〈ϕ|Sn〉

=

∫ 2π

0

dϕ
e−imϕ√

2π
〈ϕ|Sn〉 (7.9)

If the states of opposite angular momenta are degenerate, such as the unperturbed so-
lutions of the 2D hydrogen Schrödinger equation, and since these states are complex con-
jugates of each other, linear combinations of the states give real wavefunctions that also
eigen-solution of the Schrödinger equation that are easier to visualize and frequently used in
literature. This is because linear combination of two degenerate eigenfunctions gives a new
eigenfunction with the same eigenvalue.

Specifically for |2p±〉 states (i.e. n = 2 and m = ±1), which are given by,

〈rϕ|2p+〉 = Ψ2
1(r, ϕ)

= R2
|1|(r)Φ1(ϕ)

〈rϕ|2p−〉 = Ψ2
−1(r, ϕ)

= R2
|−1|(r)Φ−1(ϕ),

their linear combinations can be written in terms of the |2px〉 and |2py〉 states, i.e.

〈rϕ|2px〉 = Ψ2px(r, ϕ)

=
1√
2

(Ψ2
1 + Ψ2

−1)(r, ϕ)

=
1√
2
R2
|1|(r)(Φ1(ϕ) + Φ−1(ϕ))

=
1

2
√
π
R2
|1|(r) cos(ϕ)

=
1

2
√
π
R2
|1|(r)

x

r

〈rϕ|2py〉 = Ψ2py(r, ϕ)

=
1

i
√

2
(Ψ2

1 −Ψ2
−1)(r, ϕ)
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=
1

i
√

2
R2
|1|(r)(Φ1(ϕ)− Φ−1(ϕ))

=
1

i2
√
π
R2
|1|(r) sin(ϕ)

=
1

i2
√
π
R2
|1|(r)

y

r
. (7.10)

Reversely, |2p±〉 states can also be written in terms of the |2px〉 and |2py〉 states as follows:

|2p+〉 =
1√
2

(|2px〉+ i |2py〉)

|2p−〉 =
1√
2

(|2px〉 − i |2py〉) (7.11)

In conclusion, if we are to define the azimuthal angular momentum m of the exciton
wavefunction as in Eqs. (7.8, 7.9), then it is equivalent to defining the wavefunctions as
linear combinations of real wavefunctions as in Eq. (7.11). It is important to note that since
the Berry curvature results in a perturbation of the BSE equation, 2p+ and 2p− exciton
states are not degenerate in a GW -BSE calculation and hence 2px and 2py are separately
not good eigen-functions of the BSE Hamiltonian.

The above defines the convention that is used in our chapter. This definition for the
angular momentum of the exciton state is consistent with our definition for the angular
momentum of circularly-polarized light in Sec. 7.5 and is immediately obvious by comparing
7.11 with the phasor notation that is used for circularly-polarized light. Our definition for
the angular momentum of the exciton state is the same that those used by Refs. [224, 198].
In Ref. [251], the radial quantum number nr is used instead of the principle quantum number
n. In addition, m in Ref. [251] is defined using a different convention from ours (See Eq. 14
in Ref. [251], and Eq. 7.9 of this Section), and hence has an opposite sign.
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Figure 7.1: Schematics of exciton spectrum and optical transition in MoSe2 monolayer. a.
Diagram illustrating the effects of Berry curvature Ωe and Ωh on the energy of exciton. The
electron and hole acquire an anomalous velocity ∇×Ω in a central potential V(r), resulting
in a lift of the degeneracy between the exciton states with opposite angular momentum.
b. Illustration of the optical transition and selection rules for one-photon and two-photon
excitations in the K and K’ valleys of MoSe2 monolayer. |g〉, |1s〉, |2p−〉, and |2p+〉 denote
the ground state, 1s, 2p−, and 2p+-exciton states, respectively. The symbol σ+ and σ−

denotes left and right circular polarization state, respectively. c. Optical micrograph of
monolayer MoSe2 encapsulated by hBN layers on alumina coated silver substrate. The scale
bar corresponds to 50 µm. d. The reflection contrast of hBN encapsulated MoSe2 monolayer
on alumina coated silver surface at 77 K. It shows prominent A-exciton resonance at 1.627 eV
with a FWHM of ≈9 meV. e. Schematic diagram illustrating the avoided-crossing behavior
due to quantum-mechanical coupling between the infrared photons field and the 1s-2p+

electronic transition. The dashed lines show the energy difference between the |g, nh̄ω〉 and
the unperturbed |1s, nh̄ω〉 and |2p+, (n− 1)h̄ω〉 states as a function of the infrared pump
photon energy. The bare |2p+, (n− 1)h̄ω〉 state has one fewer pump photon than the bare
|1s, nh̄ω〉 state, and will have a total energy decreasing linearly with the pump photon energy.
The blue and red solid lines show the dressed exciton states from quantum hybridization.
The arrows show the optical transitions from the ground state to the dressed 1s exciton
state.
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Figure 7.2: Transient reflection spectra of K-valley exciton transitions. a-c. Two-
dimensional plot of transient reflection spectra of the K-valley 1s-exciton resonance of MoSe2

at 77 K following photoexcitation with σ+-polarized infrared pump at photon energy of (a)
120 meV, (b) 142 meV and (c) 170 meV. The color scale, vertical axis and horizontal axis
represent the relative reflectivity change ∆R /R, the pump-probe time delay τ , and the probe
photon energy, respectively. The positive (negative) ∆R /R represents decrease (increase)
of absorption. The photoinduced absorption in the K-valley 1s-exciton is monitored by σ+-
polarized probes. The signals are finite only when the pump and probe pulses overlap in
time, indicating an instantaneous coherent response and negligible excitation of real exciton
population. d-f. At τ = 0 ps, the coherent signals for σ+-probes exhibit spectral responses
that are characteristic of (d) energy redshift to (e) splitting and then to (f) energy blueshift
as the driving photon energy is increased from 120 meV to 170 meV.
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Figure 7.3: Valley-dependent intraexciton optical Stark effect. a-b. Experimentally ob-
served (a) and calculated (b) photoinduced absorption spectra of MoSe2 monolayer at τ =
0 ps under various σ+- pump excitation energy for the K and K’ valleys. The dashed-lines
indicate the peak position of unperturbed A-exciton. The dotted lines are guides to the
eyes for the peak position at different driving energies. The spectra are offset for clarity and
labelled according to the excitation energy (meV). The spectra evolve from energy redshift
to splitting and then to blueshift, as the driving energy is increased. The calculation is based
on the Hamiltonian shown in Eq. 7.2. Exciton-photon coupling leads to avoided-crossing and
the observed peak splitting at resonant coupling. This resonant coupling occurs at driving
photon energy of 142 meV and 128 meV in the K and K’ valleys, respectively. It corresponds
to a Berry-phase induced 1s-2p+ intraexciton transition energy difference of 14 meV. c. Mea-
sured 1s exciton peak position (circles) in the K and K’ valleys as a function of σ+-infrared
pump photon energy for an effective driving intensity is 7±1 MW/cm2. The greyscale shows
the relative strength of optical transition. The solid lines show the calculated dressed-exciton
states based on the Hamiltonian shown in Eq. 7.2.
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Figure 7.4: Valley-dependent Autler-Townes splitting. a-b. Photoinduced absorption spec-
tra of MoSe2 monolayer on ZnS substrate at τ = 0 ps for a series of σ+-pump intensity
at driving energy of (a) 150 meV and (b) 138 meV for K and K’-valley. The dashed-lines
indicate peak position of undriven A-exciton. The spectra are offset and labelled according
to the effective driving intensity (MW/cm2). c-d. The dependence of Autler-Townes split-
ting energy in K and K’-valley on the squared root of effective pump intensity (

√
Ieff ) ) for

driving photon energy of (c) 150 meV and (d) 138 meV, respectively. The top axis shows the
corresponding effective local optical field strength (Eeff). The splitting energies are obtained
from fitting the photoinduced absorption lines with two Lorentzian lines. The dashed lines
are fitting obtained from the Hamiltonian shown in Eq. 7.2.
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Figure 7.5: Plots of the exciton energy levels and their envelope functions in real and
reciprocal space using a hydrogenic gauge.
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Figure 7.6: Angular momentum of circularly-polarized light.
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Chapter 8

Dynamics of Symmetry-breaking
Stacking Boundaries in Bilayer MoS2

8.1 Introduction

Crystal symmetry in a material dictates its physical properties. Manipulating its symmetry
provides a pathway to achieve novel and unusual functionalities. This is particularly relevant
for two-dimensional (2D) materials, promising candidates for numerous applications, includ-
ing next-generation flexible electronics. In bilayer graphene, for example, symmetry-inversion
at a “soliton” stacking boundary between AB and BA stacked regions [4, 24] leads to robust,
topologically protected 1D conducting channels at the domain walls [95, 247, 213]. In other
2D materials such as transition metal dichalcogenides (TMDs), the non-centrosymmetric
crystal structure of the monolayer form leads to valley selectivity, and holds promise for
applications in spintronics and valleytronics [232, 129, 245, 130].

One prototypical example of 2D TMDs is monolayer H-phase MoS2. Monolayer H-phase
MoS2 is non-centrosymmetric and has a lattice constant of a = 3.16 Å (Fig. 8.1). The broken
inversion symmetry, in addition to strong spin-orbit interactions, leads to the splitting of
valence bands and spin-valley coupling [232], enabling valley selectivity when excited by
circularly polarized light [129, 245, 130]. However, inversion symmetry is restored in bilayer
2H-phase MoS2 - a phase that is naturally found and most commonly observed (also known to
adopt AA’ stacking sequence in Fig. 8.1). To break the inversion symmetry in bilayer MoS2,
a vertical electrical field can be applied [110]. Another way to introduce asymmetry in bilayer
and multilayer MoS2 is to engineer the stacking sequence by folding [92] or transferring [244,
81] exfoliated single-layer MoS2, or by using chemical synthesis methods such as chemical
vapor transport (CVT) [202] and chemical vapor deposition (CVD) [235, 124, 119, 227].
Two commonly observed stacking sequences in CVD/CVT grown MoS2 are AA’ stacking
and AB stacking (a representative schematic of AB stacking is shown in Fig. 8.1), which
are nearly energetically degenerate [235, 77]. Repeated AB stacking forms the 3R phase of
MoS2, in which centro-symmetry is broken throughout the bulk. A recent study shows that
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valley-dependent spin-polarization is realized in CVT synthesized 3R-phase bulk MoS2 [202].

Figure 8.1: Ball-and-stick models for monolayer H-phase MoS2, and AB (R phase) and
AA’ (2H-phase) stacked bilayer MoS2, viewed from the top and the side, with red balls
representing Mo atoms and blue balls representing S atoms. The lattice constant (a) for
monolayer H phase MoS2 is 3.16 Å, and the Mo lattice distance in one layer MoS2 (a1) is
2.74 Å, as indicated by red shadings in the schematics for both AB and AA’ bilayers.

In this work, we demonstrate a novel way in which the symmetry of bilayer MoS2 can
be engineered via the creation of nanoscale stacking boundaries that separate domains with
different inversion symmetries. We show that in bilayer MoS2 the transition from AB to
AA’ stacking or from AA’ to AB stacking can be realized by heating and electron-irradiating
the AA’ or AB stacked bilayer MoS2 inside an aberration-corrected scanning transmission
electron microscope (STEM). By using in-situ atomic-resolution STEM annular-dark field
(ADF) imaging, we identify atomically sharp stacking boundaries between these two dif-
ferently stacked domains. Combined with first-principles density functional theory (DFT)
calculations, we investigate the atomic-scale dynamics of the domain nucleation and growth.
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DFT calculation also reveals the existence of highly localized metallic states at the domain
boundaries.

8.2 Results and Discussion

Bilayer MoS2 studied here is grown on SiO2/Si substrates via a modified CVD method based
on Refs. [243, 147]. The as-grown MoS2 flakes are then transferred to a Protochip heating
TEM grid via the PMMA transfer method [201]. The Protochip TEM grid holder has the
ability to heat the sample up to 1000◦C with minimal local temperature variation. We use
atomic-resolution STEM ADF imaging operated at 80 keV to track the stacking sequence
change in bilayer MoS2. STEM ADF images show the 2D projection of atomic positions of
the layered material, and the intensity in STEM ADF images is closely related to the atomic
number and thickness of the material. Since Mo and S have significantly different atomic
numbers (Mo: 42 and S: 16), STEM ADF imaging is an ideal tool to identify the atomic
species at different lattice positions and thus revealing the atomic structure of single- and
few-layer MoS2. High-resolution STEM ADF imaging has been used to visualize the atomic
arrangement in single- and few-layer MoS2, including stacking sequences, grain boundaries,
point defects, edge sites and even phase transformation [235, 243, 147, 252, 115]. In our
study, the electron beam serves two functions: (1) it facilitates in-situ imaging of local
atomic structure and changes thereof in bilayer MoS2; (2) it provides energy (in addition
to the high temperature thermal bath) to stimulate local atomic movement. To make this
atomic movement slow enough for real-time STEM tracking, an electron dose as low as 7×106

electrons/nm2 s is applied. Although the electron energy of 80 keV is close to the threshold
for S vacancy formation in monolayer MoS2 [105], we are still able to image the regions of
interest in bilayer samples for over 3 minutes. Movies composed of continuous STEM ADF
imaging allows the transition between different stacking sequences to be recorded.

In our in-situ STEM study, we start from a CVD-grown pristine MoS2 bilayer with a
uniform stacking sequence of AB or AA’. Transitions between different stacking sequences
are observed at 350◦C and 400◦C. Below, we focus on the representative case where the
AB stacking is locally transformed into AA’ stacking at 400◦C. Different stacking sequences
are identified by comparing the experimental STEM ADF image with multi-slice simulation
results, as shown in Figs. 8.2d and 8.2e. There are three distinct lattice points in the
original AB stacked bilayer MoS2 (Fig. 8.1): (1) the highest intensity corresponds to the
2D projection of the Mo-S-S column (with Mo from the top layer and S-S from the bottom
layer); (2) the second highest intensity corresponds to the Mo column from the bottom layer;
and (3) the weakest intensity corresponds to the S-S column projected from the top layer.
When viewed from the top (Fig. 8.1), the Mo-S-S columns and Mo columns are configured
in a hexagonal lattice with three-fold symmetry, while the hollow centers of the hexagonal
lattice are occupied by the S-S columns. As the electron beam scans in the AB stacked
region (as shown in Figs. 8.2a and 8.2d) for 14 seconds, local atomic rearrangement occurs
(marked by an orange ellipse in Fig. 8.2b). Strikingly, after another 14 seconds of scanning
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in the same area, a triangular region with AA’ stacking appears as shown in Figs. 8.2c and
8.2e. In this case, the three stacking boundaries between AA’ and AB stacked regions form
extremely rapidly and stay stationary as the scan continues.

In contrast, stacking boundaries can also be induced more gradually by using a lower
electron beam intensity. Here, to study the dynamics of the transition between stacking
sequences, continuous STEM ADF images are recorded as shown in Fig. 8.3. Figures 8.3a to
8.3d show the evolution of a fixed area in the bilayer MoS2 sample in increments of 7 seconds.
As a position reference between frames, red dotted circles mark the same atom from Fig. 8.3a
to 8.3d, while dashed red triangles connect the same three lattice points from Fig. 8.3a to
3h. It is instructive to consider the nucleation of the stacking boundaries. Figures 3a and 3e
(Fig. 8.3e is an enlarged image of the purple-squared area in Fig. 8.3a) show the original AB
stacked bilayer MoS2 at t = 0 s. At t = 7 s, local atomic rearrangement and a relative shift
between the two MoS2 layers are observed (Figs. 8.3b and 8.3f). The shift leads to the linear
features as seen at the lower left corner of Fig. 8.3b (enclosed in a pink box). The separation
between these linear features (orange lines in Fig. 8.3f) is 2.7 ± 0.05 Å, which is equivalent

to the single-layer Mo lattice periodicity a1 (=
√

2
2

a, Fig. 8.1). Simulated STEM ADF image
shows that a relative in-plane displacement [4] u = 1

3
a1 agrees well with the experiment.

The lateral shift between layers can be a source of large local strain, which may trigger other
structural rearrangement or defects. For example, for a local region we observe obvious
shrinkage of the projected Mo-Mo distance (green lines in Fig. 8.3f). This lattice distortion
is most likely caused by S vacancy line defects which have also been observed in single-layer
MoS2 samples under TEM [219, 104] due to the “knock-on” effect by the electron beam,
as the electron beam’s energy (80 keV) is close to the threshold for S vacancy formation in
single-layer MoS2. Interstitial atoms and missing S-S columns are also observed in Fig. 8.3f,
as indicated by white arrows and blue arrows respectively. These interstitial atoms and
vacancies are highly mobile under combined electron irradiation and thermal heating, and
eventually lead to the nucleation of AA’ stacked region shown in Fig. 8.3g (blue hexagons).
A straight stacking boundary (the orange line in Fig. 8.3g) is formed between AA’ and AB
stacked regions. We also notice that once the AA’ stacked domain nucleates the interlayer
shift (which originally concentrates at the lower left corner in Fig. 8.3b) significantly reduces.
Therefore, it is likely that the nucleation and formation of the AA’ stacked region release
the strain caused by the interlayer shift, and the decrease in elastic energy compensates for
the energy gain due to the newly formed stacking boundaries.

The AA’ stacked region grows under continuous electron beam irradiation, from∼2.88 nm2

in Fig. 8.3c to ∼4.75 nm2 in Fig. 8.3d after 7 seconds. At this point, a second straight stack-
ing boundary on the right (Fig. 8.3h) forms at 60◦ with respect to the left boundary. Since
the corner where these two boundaries meet is pinned by some defects, the AA’ stacked re-
gion cannot expand upwards and has to grow downwards in the direction indicated by vector
W. It is worth noting that when we image and heat the as-grown AA’ stacked bilayer MoS2

under the same conditions, triangular AB stacked domains can also nucleate and grow from
the originally AA’ stacked region. This two-way transition between AA’ and AB stacked
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bilayer MoS2 suggests that the difference in total energy between AA’ and AB stacked bi-
layer MoS2 is very small, and excitations such as thermal energy and electron irradiation can
overcome the energy barrier to allow the transition between these two stacking sequences. It
is worth noting that we did not observe stacking boundary formation at a lower temperature
such as 300◦C or a higher temperature (> 400◦C, where Mo and S atoms can be knocked out
by the electron beam easily). This indicates the thermal annealing at a certain temperature
provides the right amount of energy to assist the motion of S atoms (which is the key step for
the stacking sequence transition) while maintaining the crystal framework. In addition, we
always observe stacking sequence transition seconds or tens of seconds after we start imaging
an area, although we have let the sample stay at a certain temperature for a while (> 30
minutes) before the imaging. This indicates the local interaction between the electron beam
and the sample during the STEM imaging is the trigger for the stacking sequence transition.

We now examine the atomic structure of the stacking boundaries between the AB and
AA’ stacked regions (Fig. 8.4a). The atomic structure shown in the STEM images of these
boundaries has three main characteristics: (1) Mo lattices are continuous from the AA’
stacked region to the AB stacked region, which means that the Mo atoms in both regions
remain roughly at their original positions; (2) The hollow centers of the hexagonal lattices
at the boundary are occupied by fewer S atoms compared to the original AB stacked bilayer
MoS2, as shown in the experimental STEM ADF image in Fig. 8.4d (top panel); (3) the
Mo-Mo distance near the boundary has decreased. These observations are possible because
Mo-S-S columns and Mo columns in AB stacked bilayer MoS2 show different intensities in
ADF images. We then can differentiate the Mo atoms in the top layer from those in the
bottom layer based on this intensity difference. In Fig. 8.4a, three solid lines connect the
Mo lattice points at the boundaries in the top layer (labeled as B1, B2 and B3 respectively),
while the dashed lines connect the Mo lattice points at the boundaries in the bottom layer.
The Mo-Mo distances of both layers at these boundaries are shorter than that of bulk MoS2,
which has also been observed in monolayer MoS2 with S line defects [219, 104]. Averaged
over six boundaries, the average Mo lattice distance at the stacking boundaries is ∼2.3 Å in
the top layer, and ∼2.5 Å in the bottom layer (Fig. 8.4b). This indicates the top layer and
bottom layer may experience different energetics due to electron-matter interaction.

To further quantify and understand the exact atomic structure at the stacking bound-
aries, we perform first-principles DFT calculations [66] on different boundary structures (see
Sec. 8.4 for computational details). The boundary structure in Fig. 8.4c best satisfies the
three experimentally observed characteristics mentioned above, and is stabilized by having a
T-phase-like structure. The simulated STEM ADF image of this boundary structure agrees
very well with the experimental results (Fig. 8.4d). Moreover, our calculations show that
compressive strain due to Mo-Mo distance shrinkage favors the formation of S vacancies
(see Sec. 8.4). This indicates that the nucleation of this T-phase-like boundary probably
originates from the formation of S line-defects, which are commonly observed in single-layer
MoS2 under extensive electron beam irradiation [219, 104]. To understand each step of this
boundary formation, we rely on DFT calculations to identify the minimum-energy path for
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the nucleation and growth of AA’ stacked region from the original AB stacking (Fig. 8.4f,
only top MoS2 layer is shown in color). Here, we use r to represent the reaction coordinate
of domain growth, and the energy change associated with each step is plotted in Fig. 8.4e.
At r = 0.0, a domain wall (shaded orange in Fig. 8.4f) is formed by ejecting the top S atoms
(blue balls) in the top MoS2 layer. This leaves the bottom S atoms (black balls) exposed.
Subsequent domain growth is achieved by the migration of the nearest S atoms in the top
MoS2 layer towards the domain wall. This process only involves S atoms in the top layer
of bilayer MoS2, because the energy absorbed by the bottom MoS2 layer from the electron
beam is significantly reduced due to the shielding effect by the top layer30. The minimum-
energy path for the S migration in the top MoS2 layer is composed of two steps: (1) the
top S atoms of the top layer migrating first (r = 0.25); followed by (2) the bottom S atoms
of the same layer migrating (r = 0.5), which is also a local energy minimum (Fig. 8.4e).
At this point, a unit cell of AA’ stacking is formed (Fig. 8.4f). Subsequent expansion of
the AA’ region involves the repetition of the above two S migration steps (Fig. 8.4f). Since
the energy barrier for each migration step is small, ranging from 0.15 eV to 1.05 eV per
atom (Fig. 8.4e), this domain growth process can be easily activated by the 80 keV electron
beam used in the experiment. This S migrating process has also been previously reported
for the H-to-H’ transition in monolayer MoS2 [115], which is also observed in our experi-
ment. Notably, this inversion domain formation in monolayer MoS2 alone cannot explain
our experimentally obtained atomically sharp stacking boundaries, which require both do-
main inversion in the top layer via S migrating and bonding modification in the bottom
layer at the boundaries (Fig. 8.4). This indicates a strong interlayer interaction is the key
to forming atomically sharp stacking boundaries in bilayer MoS2. We emphasize the novel
integration of different inversion symmetries in the same bilayer MoS2 sample via creation
of atomically sharp stacking boundaries between different stacking sequences.

Finally, we calculate the electronic band structure of the boundary, and find in-gap
states localized at the domain wall (see Sec. 8.4 for details). To identify states from the
boundary, we project the band structure onto atomic wave functions of atoms near the
stacking boundary (Fig. 8.5a). In the band structure (Fig. 8.5b), states with contributions
from Mo and S atoms adjacent to the domain wall are colored red and blue respectively,
while contributions from atoms in the bulk are colored gray. We see that, importantly, the
presence of the domain wall introduces metallic in-gap states that are absent in either AA’
or AB stacked MoS2 bilayer. Similar in-gap states have also been observed at the edges23,31
and mirror twin boundaries [243, 252, 255] of monolayer MoS2. The in-gap states in our
case are composed primarily of 4d-states from Mo atoms bordering the domain wall. From
the contour lines of the integrated charge density in Fig. 8.5a, we see that these in-gap
states are exponentially localized at the domain wall. We note that DFT-LDA has a well-
known tendency to underestimate bandgaps and overestimate occupied bandwidths [152].
Appropriate theory of higher levels such as the GW approximation [83, 168, 169] must be
used to obtain quantitatively accurate quasiparticle band structures. Here, LDA already
provides a good description of qualitative features and wave function character.
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8.3 Conclusion

In summary, we have demonstrated a novel way to engineer domains with different inversion
symmetries in bilayer MoS2 through the synergy of thermal excitation and electron irradia-
tion. Using our method, we are able to reversibly convert between regions of AA’ and AB
stacking, thus switching between stacking sequences that result in different valley polariza-
tion. Through a first-principles study, we find that there are highly localized metallic states
at the atomically sharp stacking boundaries. We propose that this approach may be used
to reversibly pattern regions of different inversion symmetries, as well as controllably embed
defect lines with different transport properties, within 2D semiconductors. This method of
domain and symmetry engineering can be generalized to other TMDs. We hope that this
study will inspire greater interest in future studies of valleytronics control and defect state
patterning in atomically thin MoS2 and other TMDs via nanoscale symmetry engineering.

8.4 First-principle calculations

First-principles calculations in a supercell geometry containing the grain boundaries were
carried out based on density functional theory (DFT) as implemented in the Quantum
ESPRESSO [66] package using ultrasoft [214, 175] pseudopotentials for electron-ion interac-
tion and the local density approximation (LDA) [161, 27] for electron exchange and correla-
tion. When required, the atomic positions are relaxed by minimizing every force component
on the ions to less than 10−4 Ry/Å. During relaxation, the kinetic energy cutoff is set to 80
Ry for the plane-wave expansion of the wave functions and 500 Ry for the charge densities.
A Γ-centered Monkhorst-Pack [144] grid is used for integration over the Brillouin zone of
the supercell. With these parameters and a k grid of 15× 15× 1, the lattice parameter of a
fully-relaxed AB-stacked MoS2 bilayer is determined to be 3.13 Å which compares favorably
to the experimental value of 3.16 Å. In our calculation, we also confirm that AA’ and AB
stackings are nearly degenerate in energy1, with a fully-relaxed AA’-stacked bilayer being
only 0.0007 eV per MoS2 lower in energy than a fully-relaxed AB-stacked bilayer.

There are several different types of stacking boundaries that can be formed between
AA’ and AB stacked domains in bilayer MoS2. Here, we focus on those that are consistent
with the experimental observations as discussed in Fig. 8.4. To find the most energetically
stable boundary that matches the experimental observations, in our calculations the Mo-Mo
distance in the bottom layer is fixed at 2.5 Å and the top layer is allowed to relax. As shown
in Fig. 8.6, the Mo-Mo distance in the top layer is ∼2.55 Å at locations far away from the
boundary, and changes gradually to ∼2.5 Å close to the boundary, and suddenly drops to
2.3 Å right at the boundary. This sudden shrinkage of Mo-Mo distance at the boundary is
due to the S deficiency. This result agrees with the experimental observation.

For the band structure calculation, a periodic supercell that is made up of 13×1×1 unit
cells (Fig. 8.7) is constructed. It is 25 Å long in the c direction, which is also the out-of-plane
direction of the bilayer. The bilayer and its periodic image are separated by a vacuum space
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of at least 15 Å. The bottom layer of the MoS2 bilayer is periodic in the a and b directions
while the top layer is periodic in the b direction. In the STEM images, the bilayer is shown to
be reasonably flat within at least a 100 nm × 100 nm region. Hence, the structure is relaxed
by constraining the Mo atoms from both layers into two separate planes while allowing for
the full relaxation of the S atoms and interlayer distance. In our band structure calculations,
the kinetic energy cutoff is set to 55 Ry and 500 Ry for the wave functions and the charge
densities respectively. It uses fully relativistic ultrasoft pseudopotentials and includes spin-
orbit coupling10. The self-consistent calculation for the charge densities are performed on a
1× 15× 1 k grid.

Due to the periodic nature of the supercell and the structure of MoS2, an N × 1 × 1
supercell will always contain two inequivalent domain walls. The S-deficient domain wall 1
instead of S-absent domain wall 2 agrees with our experimental observation, so we project
the band structure of the supercell onto atomic wave functions of atoms near the domain
wall 1 to distinguish the contributions from these two stacking boundaries. As the model is
periodic in the b direction, we plot the band structure (as shown in Fig. 8.5b) along a path
in reciprocal space parallel to this direction.

We observe in-gap states in the calculated band structure at this domain wall as shown
in Figs. 8.5b and 8.8c. These in-gap states are robust and exist in different domain wall
structures. As an example, we here show the band structure of another domain wall labeled
domain wall 3, which is different from both the experimentally observed domain wall 1 and
domain wall 2 (Fig. 8.7). Separate band structure calculations for the domain walls 1 and 3
are shown in Figs. 8.8c and 8.8d, respectively. Even though the domain wall structures are
different, the main features of the band structures remain the same. Domain wall 3, however,
has three in-gap boundary states that form Dirac cones unperturbed by spin-orbit coupling.
H passivation of the dangling bonds at the domain walls also does not change these main
features (Figs. 8.8e and 8.8f). They, however, lower some of the high-energy valence states
back into the bulk.

Formation Energy Calculation

The formation energy Ef needed to form one S vacancy in a neutral state is given by
Ef = Ed

tot − E0
tot + nµS , where Ed

tot is the total energy of the supercell with defects, E0
tot

is the total energy of the supercell with no defects, n is the number of S atoms removed
and µS is the chemical potential of the S atom(s) removed. The chemical potential µS of S
depends on the experimental growth conditions but is theoretically bounded by two limits.
The upper limit of µS is the energy of S in an S-rich environment. The lower limit of µS is
constrained by µMo + 2µS = µMoS2 (the thermodynamic equilibrium between the Mo and S
particle reservoirs and MoS2) and the upper limit of µMo, which is the energy of Mo in a
Mo-rich environment. In this chapter, we use the chemical potential of S in crystalline α-S8

for µS in a S-rich environment, the chemical potential of Mo in crystalline bcc Mo metal for
in a Mo-rich environment and the chemical potential of a strained AB-stacked bilayer for
µMoS2 . This limits µS to an energy window of 1.11 eV.
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To calculate the formation energy of 2 at% S vacancy, we use a 3× 3× 1 supercell with
54 atoms and evaluate the energy needed to remove one S. In our calculation, we find that
the energy needed to form 2 at% S vacancy is reduced by ∼1.51 eV under strain, from a
theoretical range of 1.84 to 2.95 eV to a range of 0.33 to 1.44 eV (a reduction of more than
50%). To calculate the formation energy of a linear defect of S vacancy from a pristine
AB-stacked bilayer (at r = 0.0) (Fig. 8.4f), we use a 9 × 1 × 1 supercell. This is also the
supercell used to calculate the migration barriers of domain wall propagation. We evaluate
the energy needed to form a line of S vacancies in a pristine AB-stacked bilayer at r = 0.0
(Fig. 8.4f), where both the top and bottom S atoms are removed. We calculate that it costs
0.34 to 1.45 eV per atom to remove the top S. Once it is removed, it costs 0.4 eV less (−0.03
to 1.07 eV per atom) to remove the bottom S. In fact, the removal of the second S may even
be spontaneous, given the negative formation energy. In all, the total nucleation energy of
the domain wall ranges from 0.31 to 2.52 eV per atom (or 0.01 to 0.10 eV per nm of domain
wall).

Interestingly, the presence of in-gap states is robust under strain, minor structural dis-
tortions, with and without H passivation and exist also for other kinds of domain wall
structures. Similar in-gap states have also been observed at the edges [252, 160] and mirror
twin boundaries [252, 243, 255] of monolayer MoS2. Dangling bonds at the domain wall lead
to p-type doping, since some valence electrons are not paired, causing states to increase in
energy compared to pristine bilayer MoS2. If these dangling bonds are passivated with H,
the high-energy valence states will decrease in energy.
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Figure 8.2: Stitching of AB and AA’ stacked regions with sharp stacking boundaries in
bilayer MoS2. (a) High-resolution STEM ADF image taken at time 0s, showing AB stacked
bilayer MoS2. (b) After 14 s of scanning in the same area, rearrangement of atoms occurred,
as highlighted by the orange ellipse. at the center of this AB stacked region, (c) High-
resolution STEM ADF image showing a triangular AA’ stacked region (highlighted by an
orange circle) surrounded by AB stacked region. This image was taken 14 seconds after (b)
and is from the same area as (b). (d) (e), STEM ADF images from AB stacked region in
(a) and AA’ stacked region in (c), respectively, with the intensity averaged over more than
10 unit cells of the same stacking sequence. The experimental results are compared to the
multislice simulation [102] of STEM ADF images of AB and AA’ stacked bilayer MoS2 under
the same experimental imaging condition in (d) and (e), respectively. All images in (d) and
(e) are plotted on the same absolute scale. Scale bars in (a) (b) and (c) are 1 nm.
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Figure 8.3: Nucleation and motion of the stacking boundaries in bilayer MoS2 at 400◦C.
(a)-(d), STEM ADF image series of structural change in bilayer MoS2 from the same area as
time evolves from left to right. Red circles and triangles in these images highlight the same
atoms and lattice points in this area. e-h, enlarged images of the area highlighted with purple
squares in a-d respectively. e, At t = 0 s, AB stacked bilayer MoS2 with the lattice points
connected by blue lines. The S-S columns from the top layer occupy the hollow centers of the
hexagonal lattices in this image. f, At t = 7 s, local atomic rearrangement starts to occur,
which triggers the nucleation of AA’ stacked domain. Large-area linear features with spacing
2.74 Å (orange lines) are due to the interlayer lateral shift between the top and bottom MoS2

layers. Other structural changes are also observed, such as extra atoms (white arrowheads)
and local shrinkage of projected Mo-Mo distance (green lines). g, At t = 14 s, AA’ stacked
region grows to ∼2.88 nm2. h, At t = 21 s, AA’ stacked region grows to 4.75 nm2 as outlined
by the blue hexagons. The angle between the two straight stacking boundaries is 60◦. The
growth direction for the AA’ stacked region is now along vector W. Scale bars in (e)-(h) are
5 Å.
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Figure 8.4: Atomic structure at the stacking boundaries. (a) A typical triangular AA’
stacked domain is connected to the AB stacked domain by atomically sharp boundaries. At
the three boundaries (labelled B1, B2, B3), Mo lattices from the top layer are outlined by
solid lines, and those from the bottom layer are outlined by dashed lines. Scale bar is 5 Å.
(b) Summary of Mo lattice distances measured at six boundaries of two cases where AA’
and AB domains are stitched together. Blue triangles represent the Mo lattice distances
from the top layer, and red dots represent the Mo lattice distances from the bottom layer.
The Mo lattice distances in the top layer at these boundaries shrink more than those in the
bottom layer, indicating more severe structural change thus more energy injection from the
electron beam into the top layer. (c) Schematic of the boundary structure obtained from
DFT calculations. The dimensions of this boundary structure agree with the experimentally
observed most dominant boundary structure. This boundary structure features a T-phase-
like structure. (d) Experimental STEM ADF image at a typical stacking boundary, with the
intensity averaged over 5 unit cells across the boundary, compared to the simulated STEM
ADF image based on the atomic model in (c). The experimental and simulated STEM ADF
images are plotted on the same color scale. (e) Energy barrier per atom as S migrates during
domain wall propagation. (f) Schematic diagram of domain wall nucleation (r = 0.0) and
domain growth (r > 0.0), starting from a pristine, strained AB-stacked bilayer.



CHAPTER 8. DYNAMICS OF SYMMETRY-BREAKING STACKING BOUNDARIES
IN BILAYER MOS2 114

Figure 8.5: First-principles modelling of domain walls. (a) Atomic structure of the domain
wall. The left side shows the AB domain while the right side shows the AA’ domain,
separated by the domain wall. The top half of the figure shows both the top and bottom
layers of the bilayer, superposed with the 15% isosurface of the charge densities of the
boundary states. The bottom half of the figure shows only the top layer, superposed with
the contour lines of the same charge densities on a two-dimensional cut of the Mo plane. (b)
Band structure of the domain wall within DFT in the local density approximation (LDA).
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Figure 8.6: (a) Atomic structure of the domain wall separating AB and AA’ domains. (b)
shows the calculated change in the Mo-Mo distance of the top (red) and bottom (black)
layers close to the domain wall in (a). In the top layer, S deficiency at the domain wall
causes the Mo-Mo distance to narrow.
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Figure 8.7: The 13× 1× 1 supercell used for band structure calculation
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Figure 8.8: (a) and (b), Atomic structures of domain walls 1 and 3, respectively. Band
structures of domain walls 1 and 3, without H passivation (c and d) and with H passivation
(e and f).
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