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Time-varying dynamic network model for dynamic resting state 
functional connectivity in fMRI and MEG imaging

Fei Jianga,1,*, Huaqing Jinb,1, Yijing Gaoc, Xihe Xiec, Jennifer Cummingsc, Ashish Rajc,2, 
Srikantan Nagarajanc,2

aDepartment of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, 
USA

bDepartment of Statistics and Actuarial Science, the University of Hong Kong, CN, Hong Kong

cDepartment of Radiology and Biomedical Imaging, University of California, San Francisco, CA 
94158, USA

Abstract

Dynamic resting state functional connectivity (RSFC) characterizes fluctuations that occur over 

time in functional brain networks. Existing methods to extract dynamic RSFCs, such as sliding-

window and clustering methods that are inherently non-adaptive, have various limitations such as 

high-dimensionality, an inability to reconstruct brain signals, insufficiency of data for reliable 

estimation, insensitivity to rapid changes in dynamics, and a lack of generalizability across 

multiply functional imaging modalities. To overcome these deficiencies, we develop a novel 

and unifying time-varying dynamic network (TVDN) framework for examining dynamic resting 

state functional connectivity. TVDN includes a generative model that describes the relation 

between a low-dimensional dynamic RSFC and the brain signals, and an inference algorithm 

that automatically and adaptively learns the low-dimensional manifold of dynamic RSFC and 

detects dynamic state transitions in data. TVDN is applicable to multiple modalities of functional 

neuroimaging such as fMRI and MEG/EEG. The estimated low-dimensional dynamic RSFCs 

manifold directly links to the frequency content of brain signals. Hence we can evaluate TVDN 

performance by examining whether learnt features can reconstruct observed brain signals. We 

conduct comprehensive simulations to evaluate TVDN under hypothetical settings. We then 

demonstrate the application of TVDN with real fMRI and MEG data, and compare the results with 

existing benchmarks. Results demonstrate that TVDN is able to correctly capture the dynamics of 
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brain activity and more robustly detect brain state switching both in resting state fMRI and MEG 

data.

Keywords

Brain state switch; Dynamic resting state functional connectivity; Change point detection; 
Functional magnetic resonance; Magnetoencephalography; Multi-modality imaging

1. Introduction

The human brain’s functional activity can be described as highly dynamic functional 

networks arising from a structural network whose fluctuations over time form the basis 

for complex cognitive functions and consciousness (Bassett et al., 2011; Deco and Jirsa, 

2012; Duan et al., 2020; Liu et al., 2022; 2022; Pasquini et al., 2020; Shine et al., 2015). 

This view of brain function highlights the importance of time sensitive descriptions of brain 

network activity for understanding the functional relevance of alterations in the network 

function that may underlie different behavioral states and conditions(Varela et al., 2001). 

Recent experiments using fMRI data have demonstrated that global brain signals transition 

between states of high and low connectivity strength over time (Zalesky et al., 2014) and 

these fluctuations are related to coordinated patterns of network topology (Betzel et al., 

2016). Studies suggest that dynamic fluctuations in the network structure also relate to 

fluctuations in the cognitive function (Shine et al., 2015). Therefore, analyses of functional 

neuroimaging data to examine time-varying reconfiguration of the global network structure 

may provide a unique opportunity to gain insights into the dynamics of functional brain 

networks, their association with behavioral states, and their alterations in disease and 

therapeutic interventions.

To appropriately describe synchronous temporal fluctuations in neuroimaging data, many 

data driven approaches have been used, especially with the resting state functional 

connectivity (RSFC) which describes how brain activity is correlated across regions 

when an explicit task is not being performed. Many studies have shown that this 

functional connectivity provides a powerful and informative framework for exploring brain 

organization (Bullmore and Sporns, 2009; Greicius, 2008; Shine et al., 2015). RSFC studies 

have been described both for blood-oxygen level-dependent (BOLD) data measured with 

functional magnetic resonance imaging (fMRI) (Biswal et al., 1997; Calhoun et al., 2001; 

Greicius et al., 2003) and for faster time scale neural oscillatory network changes measured 

with magnetoencephalography (MEG) (Englot et al., 2015; Ranasinghe et al., 2017) or 

electroencephalography (EEG) imaging (Brookes et al., 2011; Dominguez et al., 2013; 

Hohlefeld et al., 2013). Approaches for RSFC analyses include seed-based correlations 

(Lv et al., 2018), independent component analysis (Beckmann et al., 2005) and dynamic 

mode decomposition (Brunton et al., 2016; Kutz et al., 2016). Recent work has also 

focused on recovering the static RSFC from the underlying structural connectivity via 

graph methods like the network diffusion model (Abdelnour et al., 2014) and algebraic 

spectral graph expansions (Abdelnour et al., 2018; Becker et al., 2018; Meier et al., 2016; 

Tewarie et al., 2020). of dynamic changes in functional network architecture. To date, 
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most existing statistical techniques for RSFC have assumed that the functional connectivity 

structure is stationary over a dataset, which is in direct contrast to emerging data that 

suggest the strength of connectivity between regions is variable over time. Therefore, 

the development of statistical methods that enable exploration of dynamic changes in the 

functional connectivity is currently of great importance to the neuroscience community.

The extension of current techniques to capture the dynamic changes in RSFC during the 

scan period is a lively yet evolving topic. It is well known that the brain at rest is in fact quite 

dynamic, with RSFC capable of changing over a matter of seconds to minutes (Hutchison et 

al., 2013). This time varying pattern, namely the dynamic functional connectivity, has been 

shown to constitute novel imaging biomarkers for identifying neurological dysfunctions 

such as schizophrenia, autism and various forms of dementia (Damaraju et al., 2014; Filippi 

et al., 2019; Long et al., 2020; Ma et al., 2014; Mash et al., 2019; Pasquini et al., 2020; 

Rashid et al., 2016; 2014; Schumacher et al., 2019). For instance, dynamic FC may underlie 

the neuropathology of major depressive disorder (Long et al., 2020), can assess the abnormal 

brain states for schizophrenia (Duan et al., 2020) and it can identify early mild cognitive 

impairment for dementia (Wee et al., 2016) and distinguish Alzheimer’s Disease (AD) 

patients from healthy controls (Schumacher et al., 2019). Thus, the dynamic component of 

RSFC may serve as an additional biomarker of neurological disorders - a key motivation of 

current work.

Currently, the most common approach to extract dynamic RSFCs relies on the sliding-

window method, which generally consists of two steps: (1) divide signals into segments of 

the equal duration; (2) implement the traditional seed based method (Biswal et al., 1995; 

Fox et al., 2005), independent component analysis (Allen et al., 2014; Calhoun et al., 2001; 

van de Ven et al., 2004), or the dynamic mode decomposition method (Brunton et al., 

2016; Kutz et al., 2016) on the segments sequentially. While the sliding-window method 

is practically attractive since it enables the use of earlier static methods in the dynamic 

context, it presents several limitations and trade-offs, which will be discussed in detail in 

Section 4.1. One notable issue is that current methods for dynamic functional connectivity 

(FC) analysis do not account for biological constraints or biophysically realistic models of 

brain activity and state switches. This represents a lost opportunity to overcome some of the 

limitations noted in Section 4.1. Here we propose a novel model for extracting dynamic FC 

that relies on discrete and discontinuous “state changes” in brain activity. Indeed, there is 

mounting evidence that the brain’s dynamics results from its cycling through a number of 

brain-states, i.e., the transient, patterned, quasi-stable states or patterns of the brain activity 

(Coquelet et al., 2021; Croce et al., 2020; Michel and Koenig, 2018), separated by brain 

state switches, such that while the FC during brain states may be considered stationary, 

FC during the transitions between brain states are subject to discontinuous, abrupt or non-

smooth events (Li et al., 2013; Saper et al., 2010; Vidaurre et al., 2017). In addition to 

being more biologically realistic, this approach allows us to benefit from several constraints, 

especially the concept that the spatial features of brain activity might be stationary, while the 

coupling between these stationary structures might be temporally dynamic. For instance, the 

spatial structures may arise from the underlying structural connectivity, while the temporal 

parameters describe the dynamic switching between brain networks over time. Therefore, 

while the spatial structure of the FC patterns is considered stationary due to the linkage 

Jiang et al. Page 3

Neuroimage. Author manuscript; available in PMC 2023 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the structure of the brain, how these spatial features work together is allowed to vary 

over time. It is further possible to constrain the dynamics of the temporal parameters. Rather 

than randomly or continuously traversing through the latent state-space, RSFCs most likely 

undergo discrete and discontinuous shifts, resulting in the concept of “brain states” (Li et al., 

2013; Saper et al., 2010; Vidaurre et al., 2017). Hence we recommend to impose piece-wise 

constancy to these temporally changing coefficients. We show that using these powerful 

constraints, it is possible to overcome the trade-offs and limitations currently pertinent to the 

dynamic RSFC analysis.

We present a unified solution for extracting dynamic FCs from both fMRI and MEG data, 

which directly addresses these limitations. We call this method the time-varying dynamic 

network (TVDN) framework. We develop a novel automatic and provably statistically 

optimal inference algorithm based on the TVDN model to infer the dynamics that underlie 

the model. We extract the stationary spatial features and detect the dynamic brain state 

switches adaptively. The algorithm is able to divide the brain signals into uneven segments, 

each of which contains brain activities in a stationary brain state. Once the parameters 

have been successfully inferred, the entire spatio-temporal noise-free imaging signal can 

be reconstructed through a high dimensional linear forward model - a feature that is rarely 

available in current methods. The algorithm involves a few tuning or hyper-parameters, 

which are automatically selected to minimize the uncertainties of the number of switches 

across independent samples. We expect that the presented TVDN framework will prove 

effective in robustly generating dynamic FC features that will serve as useful biomarkers of 

neurological and neurodegenerative diseases.

2. Materials and methods

The dynamic FC contains spatial and temporal components (Lang et al., 2012). The spatial 

features of the dynamic FC capture the links among brain regions (Alexander-Bloch et al., 

2010; Brier et al., 2014; Geerligs et al., 2015; Sanz-Arigita et al., 2010; Van Den Heuvel et 

al., 2009). The temporal features characterize the state changes of brain activity (Di et al., 

2013; Gonzalez-Castillo et al., 2015; Kitzbichler et al., 2011; Moussa et al., 2011; Shirer et 

al., 2012). Furthermore, the spatial features are constrained by the stable brain structures, 

and hence they must be consistent over the signal sampling time and across the image 

modalities. Moreover, different modalities have distinct temporal resolutions, and therefore 

the temporal features are distinct across the modalities. Considering these characteristics 

of the spatial and temporal features, we develop a novel methodology to extract the time 

invariant spatial features and time varying temporal features. Fig. 1 shows a flowchart of 

the estimation procedure. The purple oval represents TVDN inputs, and red ovals represent 

TVDN outputs. The blue rectangles represent the building blocks of TVDN, which we 

discuss in detail in Section 2.3.3.

2.1. Time-varying dynamic network

Let Xi(t) be the brain signal at time t on the ith brain region of interest (ROI), Xi′(t)
be the derivative of Xi(t) with respect to t with t ∈ [0, T], representing the increment 

of brain activity at time t. Furthermore, let d be the number of ROIs, we write 
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X(t) = {X1(t), …, Xd(t)}T, and X′(t) = {X1′ (t), …, Xd′ (t)}T. In practice, instead of the true signal, 

we observe a noisy signal at n discrete acquisition time points. Denote tj as the jth 

acquisition time, to accommodate the noisy data, we write

Yj = X(tj) + ϵj, (1)

where ϵj, j = 1, …, n, are independent mean zero random errors. Furthermore, we assume

X′(tj) = A(tj)X(tj), (2)

where A(tj) is a time-varying unknown matrix of size d × d. We name model (1) and 

(2) together the time-varying dynamic network (TVDN) model, where the dynamics of 

the resting state functional connectivity are captured by the time-varying matrix A(t). 
Model (2) is a direct extension of the dynamic mode decomposition model (Brunton et 

al., 2016; Kutz et al., 2016). To see the connection, first note that (2) is equivalent to 

X(t + dt) = {A(t)dt + I}X(t), where dt is the unit measurement time and I is an identity matrix. 

When A(t) is a fixed matrix over time, we can consider A(t)dt + I as a constant matrix. 

Then model (2) reduces to the dynamic mode decomposition model extensively studied 

in Brunton et al. (2016) and Kutz et al. (2016). Furthermore, when A(·) is a fixed matrix 

where A(·) = −βℒ, then the model (2) is also a network diffusion model (Abdelnour et 

al., 2014) that explains how brain activations from different ROIs are coupled together to 

generate new signals via the structural connectivity given by the matrix Laplacian ℒ and the 

diffusivity constant β. Other algebraic graph relationships have also been proposed, such that 

A may be given by the eigenvectors of the structural (Abdelnour et al., 2018) or functional 

connectivity matrix (Becker et al., 2018), after a suitable transformation of the eigenvalues. 

While these approaches do not readily accommodate time-varying features of A, they point 

to an important property of the eigenvectors of A, which may be considered as resting state 

networks (RSN) (Abdelnour et al., 2018; 2014). Because these RSNs represent static brain 

connections or other non-dynamic brain substrates, we propose the following constraints that 

together constitute the TVDN model:

1. The eigen-decomposition of A(tj) is in the form of

A(tj) = UΛ(tj)U−1,

where we fix the eigenvector U but allow the eigenvalues to depend on time. 

Under this formulation, U may be considered as a set of spatial features that are 

stationary over time. The absolute magnitudes of the (time-varying) eigenvalues 

govern the relative importance of each of the RSNs. This constraint reflects the 

biological concept that the spatial features of brain activity might be stationary, 

while the coupling between these stationary structures might be temporally 

dynamic.

2. We then impose the condition that dynamicity in FCs arises from discrete and 

potentially discontinuous shifts (“brain state switches”) in activity, which we 

accommodate by allowing the eigenvalues, i.e. diagonal elements of Λ(t), to be 
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piece-wise constant functions of time, reflecting the phenomenon that the brain 

has a tendency to stay within, with sporadic cycling between the RSNs (Vidaurre 

et al., 2017). Therefore, let τ0 = (τk, k = 0, 1, …, M, M + 1; τ0 = 0, τM + 1 = T ) be a 

set of true switching points, dividing the signal to M + 1 stationary segments, we 

write

Λ(t) = Λ(τk) if τk − 1 < t ≤ τk, and Λ(τk) ≠ Λ(τk + 1), Λ(τk) ≠ Λ(τk − 1) .

Such formulation suggests that when t ∈ (τ0k − 1, τ0k], Λ(t) has a constant value at 

Λ(τ0k). And the values of Λ(·) are different at distinct time points that fall into 

two consecutive segments constructed by the switching points.

3. The number of nonzero eigenvalues in Λ(t), t ∈ [0, T] represents the number of 

intrinsic brain states in the brain activity data. It is well known that only a few 

RSNs are typically operational in the brain, and the canonical RSFC can be well 

captured by 7 – 20 such RSNs (Yeo et al., 2011). In prior graph theoretic models 

also, A(·) are assumed to be low rank matrices (Abdelnour et al., 2018; Raj et al., 

2019). It is therefore plausible to assert that the number of such RSNs or brain 

state is quite small. Hence our final constraint is that

rank{A(t)} = rank{Λ(t)} ≤ r ≪ d,

where r is the maximal rank for A(t), t ∈ [0, T], representing the number of 

distinct brain states.

2.2. Model interpretations

Since A(t) is constant in a given segment, the solution of the ordinary differential Eq. (2) in 

the kth segment is given by X(t) = U exp{Λ(τk)(t − τ0k − 1)}U−1X0k, where X0k is the initial 

value at the kth segment and Λ(t) is a constant matrix in the kth segment. Let us define the 

real and imaginary components of the jth eigenvalue as λj = γj + i2πfj. Then the underlying 

signal in the kth segment satisfies

X(t) = ∑
j = 1

r
Uj exp{(γj + i2πfj)(t − τ0k − 1)}{(U−1)j}

T
X0k, (3)

where (U−1j is the jth row of U−1. The real term γj is interpreted as a coefficient that 

determines the growth or decay of the signal during this segment, and the imaginary 

component fj is interpreted as the oscillation frequency of the mode (Kunert-Graf et al., 

2019) in cycles per sample interval, which is 2 seconds for fMRI data and 1/60 seconds for 

MEG data). Therefore, when an estimator for Λ(t), say Λ(t), is available for the kth segment, 

we can directly infer the grow/decay constant in the segment as Re{Λ(t)}f and the signal 

frequency as Im{Λ(t)}f /2π, where f is the sampling frequency of the signals.
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It is worth mentioning that in situations where mulitple modalities are available for the same 

subject, e.g. fMRI and MEG, the spatial features U may be considered to be shared between 

the modalities. In those cases TVDN will be able to aggregate the signals to generate a 

common estimator for U across the modalities. Then this common estimator will be used 

to obtain the modality specific temporal features Λ(t), where the information borrowing is 

clearly embedded in the estimation through sharing U. Augmentation with multi-modal data 

can potentially improve estimation accuracy.

2.3. Estimation of the spatial and temporal features

We estimate the spatial feature U through a kernel based method and detect the critical 

points for brain state switches via a switch detection algorithm.

2.3.1. Notation—Let t1, …, tn denote n signal acquisition time points. We denote Mr and 

Mr×r be the first r column and the first r × r block of M, respectively. Furthermore, define 

∥ ℳ ∥ be the cardinality of an arbitrary set ℳ. Let ‖M‖F be the Frobenius norm of matrix 

M. For a vector a, let ‖a‖1, ‖a‖2 be its L1, L2 norm, respectively. Let M−1 be the generalized 

inverse of matrix M.

2.3.2. B-spline smoothing—To obtain a proper estimator for X(t) and X′(t) from the 

noisy observation Y(t), we first de-noise the signals through the B-spline smoothing as 

follows

Γ = argminΓ ∑
j = 1

n
‖Yj − ΓB(tj)‖2

2,

= ∑
j = 1

n
YjB(tj)T ∑

i = 1

n
B(tj)B(tj)T

−1

and

X(tj) = ΓB(tj), X′(tj) = ΓBr′ (tj),

where B(·) is the bth order B-spline basis with N interior knots and X and X′ are the 

smoothed version of X and X′, respectively. The B-spline estimation generates an estimator 

of A(t). When the sample size increases, this estimator will approach to A(t) consistently as 

shown in Theorem 1 in Appendix E.2. This leads to the consistent estimations of U and Λ(t) 
in the subsequent procedures. The de-noising step is necessary to generate a good estimator 

for X′(t). In practice, people can use other de-noising techniques, such as using Fourier-base 

or eigen-base expansion to approximate X(t). We choose B-spline method because it has 

well established statistical properties.

2.3.3. Estimation of the spatial features U—On these smoothed signals, we estimate 

the matrix A(ts) at any time point of interest ts by minimizing
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ℒ{A(ts)} = ∑
j = 1

n
X′(tj) − A(ts)X(tj)

T X′(tj) − A(ts)X(tj) Kℎ(tj − ts), (4)

where Kℎ( |x | ) = 1/ℎK( |x | /ℎ) is a kernel function with h be the bandwidth. Here Kℎ( |x | ) is 

a deceasing function of |x|. Hence when estimating A(ts), Kℎ( |x | ) weighs the samples higher 

when they are closer to ts. The width h of the kernel controls how “local” the estimator 

of A(t) is; if it is large, then the estimator of A(t) would hardly change over time, and 

it would reduce to the dynamic mode decomposition model (Kunert-Graf et al., 2019). A 

typical choice of Kh(|x|) is the Gaussian density function with the standard deviation h. The 

bandwidth h is often selected to satisfy h → 0 when n → ∞ so that even if n grows, when 

estimate A(ts), the amount of information used in the estimation remains fixed. In Fig. 2, we 

show the weights Kh(t − 180) across t ∈ [1, 360] in seconds for fMRI and weights Kh(t − 

30) across t ∈ [1, 60] in seconds for MEG when the rule-of-thumb bandwidth h (page 48 in 

Silverman (1986)) was selected.

Minimizing ℒ{A(ts)} has a close form solution for A(ts) as

∑
j = 1

n
X′(tj)X(tj)T Kℎ(tj − ts) ∑

j = 1

n
{X(tj)X(tj)T}Kℎ(tj − ts)

−1
,

which is the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) regularly used to 

estimate functions at specific time points.

To account for the fact that M = ∑j = 1
n {X(tj)X(tj)T}Kℎ(tj − ts) can be a low rank matrix, we 

replace the matrix inverse above with a truncated-rank inverse such that all eigenvalues of 

M below a threshold value are set to zero and removed from the pseudo-inverse. Formally, 

define a truncation function ρλ as ρλ(M) = B1diag{σjI(σj > λ), j = 1, …, min(m, n)}B2
T, where 

B1, B2 are the left and right singular vectors and σj is the jth singular value of M. Here 

we choose a truncation threshold b0 = O(ℎ2r + n−1/2N1/2ℎ2d), which is in the order of 

‖XWXT − XWXT‖F /n with W = diag{Kℎ(tj − ts), j = 1, …, n} for a specific time point ts and 

N be the number of B-spline basis. Here, as shown in Theorem 1 in Appendix E.2, the 

first order h2r comes from the kernel smoothing and the second term n−1/2N1/2ℎ2d comes 

from the B-spline smoothing. When n → ∞ and n−1/2N1/2 0 as n → ∞, the error 

‖XWXT − XWXT‖F /n and quantity b0 go to 0 if sufficient samples are collected overtime. 

Thus, the estimation of A(ts) is

A(ts) = ∑
j = 1

n
X′(tj)X(tj)T Kℎ(tj − ts)ρb0

−1 ∑
j = 1

n
{X(tj)X(tj)T}Kℎ(tj − ts) .

The truncation function is specially designed for the high correlated sequences where 

the XWXT is a low rank matrix, but XWXT
 can be full ranked due to the additional 
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estimation error ‖XWXT − XWXT‖F /n. Using the truncation function helps to remove 

spurious eigenvalues, which not only improves the estimation accuracy but also stabilizes 

the computation.

When X is full row rank matrix, let MS ⊆ {1, …, n} be the set of time indices, we can 

show that ‖∑s ∈ MS A(ts) − A(ts)‖F / MS = Op(ℎ2r + n−1 N1/2dr), which goes to 0 when the 

sample size increases under mild conditions. Here, the first term h2r is the order of the 

estimation error in the kernel regression procedure and the second term n−1 N1/2dr is the 

order of the error from the B-spline smoothing procedure. When h → 0 and n−1 N1/2 0
as n → ∞, the estimation error of ∑s ∈ MS A(ts)/ MS  vanishes along with the increment 

of the sample size. This suggests that we need sufficient samples to recover the underlying 

true parameters. This fact also explains the phenomenon in the real data analysis that the 

reconstruction of the MEG signals is better than that of the fMRI signals. Therefore, we 

extract the estimator for U as the eigenvector of ∑s ∈ MS A(ts), denoted as U.

2.3.4. Brain-state switch detection—Define Mr. as the first r rows of matrix M, and 

Mr×r as the first r × r block matrix of M. Because

X′(t) = A(t)X(t) = UrΛr × r(t)(U−1)r . X(t),

after obtaining U we reduce the data dimension as

(U−1)r . X′(t) = Λr × r(t)(U−1)r . X(t) . (5)

It is worth mentioning that multiplying both sides by (U−1)r ⋅ X(t) projects the d dimensional 

ROIs to a lower r dimensional space. Furthermore, Λr×r(t) is a diagonal matrix, which 

contains only r unknown parameters. Such dimension reduction procedure is crucial for 

speeding up and stabilizing the switch detection algorithm, which makes the brain state 

switch detection practically feasible for signals from a large number of ROIs.

Let X′(t) = (U−1)r ⋅ X′(t) and X(t) = (U−1)r ⋅ X(t), we obtain the estimator for true switch 

number M and locations τk’s through minimizing a modified Bayesian information criteria 

(MBIC) defined as

MBIC(τ, M) = ∑
k = 0

M
ℒ(τk + 1, τk + 1) + 2rlog(n)κ(M + 1),

where κ is a constant, and

ℒ(τk + 1, τk + 1) = − ∑
s = τk + 1

τk + 1
log[Φ{X′(s) − ΛkX(s), 0, Σk}]
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with Φ(x, a, s) be the multivariate normal density function with mean a and variance 

covariance matrix s evaluated at x. To solve the minimization problem, we iterate over 

all possible segmentations of the sequence. For the samples in a given segment, say 

s ∈ (τk + 1, τk + 1], we obtain Λk as

Λk = argminΛk ∑
s = τk + 1

τk + 1
{X′(s) − ΛkX(s)}T{X′(s) − ΛkX(s)},

subject to the fact that Λk is a r × r diagonal matrix, and obtain Σk as the estimated sample 

covariates defined as

Σk = ∑
s = τk + 1

τk + 1
{X′(s) − ΛkX(s)}{X′(s) − ΛkX(s)}

T/(τk + 1 − τk) .

We then find the best segmentation, that is the best (τ, M) that minimizes MBIC (τ, M) as 

the estimated locations and number of the switch points. In short, we obtain the estimators as

(τ , M) = argminτ, MMBIC(τ, M) .

We employ the dynamic programming algorithm as detailed in Algorithm 1 following 

Jackson et al. (2005); Killick et al. (2012) to efficiently evaluate all possible segmentations 

and obtain τ  and M. The dynamic programming algorithm finds the optimal value 

recursively, avoiding re-computing the ℒ over overlapped segments (Bellman and Roth, 

1969; Bement and Waterman, 1977; Du et al., 2016a; Yau and Zhao, 2016). The 

computational cost is O(rn2 Mmax) and storage is O(rnMmax), where Mmax is the maximum 

number of switches points in the signal (Du et al., 2016b).

Algorithm 1:

Dynamic programming algorithm.

 Input: (1) Lmin, the minimum distance between two change points; (2) Mmax, the maximum number of changepoints; 
(3) κ value.

 1. For 0 ≤ i ≤ n − Lmin + 1 and i + Lmin ≤ j ≤ n + 1, calculate ℒ(ti, tj).

 2. Initialize H tj ∣ 0 = ℒ(tj + 1, tn + 1), j = 0, …, n − Lmin + 1.

 3. For 1 ≤ s ≤ Mmax and 0 ≤ i ≤ n − s − Lmin, update

H ti ∣ s = min
i + Lmin ≤ j ≤ n − (s − 1)

ℒ(ti + 1, tj) + H tj ∣ s − 1 .

  Record the locations of s change points that yield H t0 s , denoted by Js.

 4. For 1 ≤ s ≤ Mmax, find

   M = argmins H t0 ∣ s + 2r log(n)κ(s + 1).

  The corresponding estimated switch point set is τ = JM.
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 Output: τ  and M.

2.4. Competing methods: Sliding window approaches

We also implement the sliding window approaches: time-varying seed based (TVCOR), 

time-varying principal component analysis (TVPCA) and time-varying dynamic mode 

model (TVDMD). We perform TVCOR, TVPCA and TVDMD as follows where we 

construct windows in different sizes sliding by four frames in each step. Let Sl be the 

set of time point indices in the sliding-window l, l = 1, …, L. For matrix (Yj, tj ∈ Sl), 

TVCOR calculates the pairwise correlation between signals from different ROIs, TVPCA 

extracts the principal components, TVDMD extracts the dynamic modes (Brunton et al., 

2016; Kunert-Graf et al., 2019) from the brain signals. Next we vectorize the resulting 

correlations, principal components and dynamic modes and cluster them into four clusters, 

corresponding to the number of true segments in the simulation. Finally, we obtain the 

switch locations as the time points where the vectorized correlations, principal components 

and dynamic modes switch the cluster memberships.

3. Results

3.1. Simulation study

We construct A(tj) = UΛ(tj)U−1 for j = 1, …, 180, where Λ(s) is diagonal matrix whose 

diagonal terms are eigenvalues and U is the matrix whose columns are eigenvectors and 

eigenvectors estimated from a functional magnetic resonance imaging (fMRI). Here Λ(s) 

is a rank six matrix, which contains three switches at the 50, 99, 144 th time points. We 

simulate data from model (1) and (2), where ϵj = UΛ(1)U−1ξj/10, j = 1, …, n and ξj is a 

sparse error vectors with 10% nonzero entries. Each nonzero element in ξj is independently 

generated from a normal distribution with standard error (t2 − t1)/8. We simulate the data 

100 times with the same set of parameters. Then we implement TVDN to obtain the 

estimated spatial feature U, the switch locations and the temporal features Λ(s), where we 

select κ = 1.53 throughout the simulations so that the algorithm detects the correct number 

of switch points in over 80% of the simulated samples.

We plot the estimated switches in Fig. 3(a). The result shows that TVDN captures the 

brain state switch accurately. To illustrate the estimation results, we reconstruct the data 

by using estimated spatial and temporal features. We show the mean of the estimators at 

selected brain regions and the 95% empirical confidence interval, that includes 2.5% and 

97.5% quantiles of the estimators over 100 simulations in Fig. 3(b). Fig. 3(b) shows that 

TVDN recovers the original noiseless sequence and the confidence intervals cover the true 

signals. We also add an additional simulation scenario when the switch points are distributed 

unevenly across the time in Fig. 12(b) in Appendix B. The result shows that TVDN detects 

the correct switch points in most of the simulations (82%). Finally, we examine the effect 

of B-spline knots selections on TVDN reconstruction errors Fig. 12(c) in Appendix B 

by plotting the distributions of the reconstruction errors across different B-spline knots 

selections. The results show that TVDN is insensitive to the selection of the B-spline knots 
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so that the distributions of the reconstruction errors are consistent across different selections 

of the number of B-spline knots.

In the left panel of Fig. 4(a), we plot the reconstruction errors defined as

∑
s = 1

n
‖Ys − exp ∫

0

ts
A(u)du Y1‖

2

2
, (6)

when different ranks for U are selected in the estimations. The results show that the 

estimation error substantially drops from the setting when r = 4 to the setting when r = 6. 

Furthermore, when r > 6, the reconstruction error starts to incline. The convex phenomenon 

attributes to the tradeoff between the dimension reduction described in (5) and switch 

detection accuracy: when selecting a larger r, the transformation (U−1)r . X(t) contains more 

information in X(t), but it increases the estimation errors for the brain state switch detection 

algorithm; on the other hand, selecting a smaller r improves the switch detection accuracy, 

but (U−1)r . X(t) contains less information in the original data. On the right panel in Fig. 4(a), 

we show the MBIC values when selecting κ = 1.53, which reach the minimum when three 

switches are selected.

We compare TVDN with the sliding window approaches: TVCOR, TVPCA and TVDMD. 

The detailed implementations of these competing methods are described in Section 2.4 

in Appendix. We select six (the rank of A(s)) principal components and dynamic modes 

throughout the simulations.

Fig. 4 (b) plots the distribution of the Hausdorrff distance between the true and estimated 

switches for the different methods. A smaller Hausdorrff distance implies a better 

estimation. It can be seen that the switches from TVDN have the smallest Hausdorrff 

distance with the truth. There are several occasions that the sliding-window approaches 

outperform the TVDN method. This is because we specify the true number of segments 

in the sliding-window approaches, while we leave this parameter unknown in the TVDN 

approach and allow TVDN to choose it adaptively. To illustrate the pattern in more details, 

we plot the resulting switch locations from the sliding-window methods in Fig. 4(c). Fig. 

4(c) shows that none of the three methods correctly identifies the switches. In addition, the 

sliding-window based methods are sensitive to the window size changes, which leads to 

substantial different results when varying the window sizes.

Finally, we adopt the same simulation procedure while assume a time invariant A(s). Then 

we implement TVDN on the resulting high dimensional sequences and reconstruct the 

observed data. We show the mean of the estimators and 95% confidence intervals in Fig. 

12 in Appendix. The results show that even if A(s) is stationary over time, TVDN correctly 

extracts the spatial and temporal features from the brain signals.

3.2. TVDN results for resting state fMRI data

We present the TVDN detection results from one fMRI sequence in Fig. 5(a). We also obtain 

the growth/decay constant Re{Λ( ⋅ )}f and the signal frequency as Im{Λ( ⋅ )}f /2π, where f 
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= 0.5 Hz is the sampling frequency of the fMRI signal. It can be seen from Fig. 5(b) 

that the resting state fMRI brain signals are active in the frequency range between 0.001 

and 0.007 Hz. We calculated the Pearson correlation between the weighted spatial features, 

that is, column sum of UΛ(t), and the seven canonical networks from Yeo et al. (2011)’s 

independent component analysis. As shown in Fig. 5(c), the subject’s weighted spatial 

features have the strongest correlation with the limbic network in the first segment (0.38), 

with the ventral attention network in the second (0.443), third (0.415), sixth (0.432) and 

eighth (0.32) segments, with the dorsal attention network (0.24) in the fourth segment. This 

changing correlation pattern is indicative of brain state switches over time, demonstrating 

that different functional networks are operational at various times. In order to visualize the 

changing spatial patterns, we plotted the weighted spatial features across the segments on 

the brain surface in Fig. 5(d). The results again illustrate that the spatial pattern reflecting 

brain state switches among frontal, parietal and occipital lobes over time. We also present 

the estimated spatial eigen-mode, that is the modulus of the estimated U matrix in (e).

We also plot, in Fig. 13 in Appendix, the pair-wise connectivity measure in each segment, 

defined by exp(−‖x1 − x2‖2), where x1, x2 represent signal sequences from two brain regions. 

Fig. 13 shows that the connectivity increases gradually over time. For comparison we show 

analogous results from TVDOR, TVPCA and TVDMD methods with different window sizes 

in Fig. 14 in the Appendix. The latter results suggest that these existing sliding-window 

methods are sensitive to tuning parameters and do not give coherent switch times when 

different window sizes are selected. Another representative example similar to the above 

is given in Fig. 15; its connectivity measures in Fig. 16 and the results from competing 

methods 17 in Appendix.

3.3. TVDN results for resting state MEG data

We evaluated TVDN on resting state MEG data, where we consider series of de-trended 

MEG source signals with d = 68 ROIs. Note that for MEG data, we did not filter the source 

signals because the high time resolution MEG data contain clear fluctuation trends that are 

not overwhelmed by the noise.

We obtain the detection results as shown in Fig. 6. We also obtain the growth/decay constant 

Re{Λ( ⋅ )}f and the signal frequency as Im{Λ( ⋅ )}f /2π, where f = 60 Hz is the sampling 

frequency for the MEG signal. The results in Fig. 6(a) show that there are seven switches 

in the signal. In addition, the brain is active in the frequency range between 0 to 6 Hz 

as shown in Fig. 6(b). We also plot the correlation between the weighted spatial features 

and the seven canonical network in Fig. 6(c). It can be seen that the subject’s weighted 

spatial features have the strongest correlation with the visual network in the first segment 

(0.31), with the dorsal attention network in the second (0.32), third (0.45), fifth (0.28) 

and sixth (0.44) segments, with limbic network (0.29) in the seventh segment, and with 

frontopartietal network (0.62) in the eighth segment. These correlations are larger than those 

from the resting state fMRI (Fig. 5). Finally, we view the weighted spatial features across the 

segments in Fig. 6(d). We also present the estimated spatial eigen-mode, that is the modulus 

of the estimated U matrix in (e). In addition, we plot, in Fig. 18 in Appendix, the pair-wise 

connectivity measure in each segment, which shows that the connectivity increases from 
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the first to the third segment, decreases from the fourth to the sixth segment, and increases 

again until the end of the time. We further show the results from the existing sliding-window 

methods in Fig. 19 in the Appendix, which demonstrates that the sliding-window methods 

are sensitive to the window size selection. Another representative example is given in Fig. 

20, the corresponding connectivity measures in Fig. 21 and results from competing methods 

in Fig. 22 in Appendix.

3.4. TVDN results for task based MEG data

To validate the accuracy of the brain state switch detection, we evaluate TVDN on MEG 

recordings during a simple eyes-open to eyes-close task-switching experiment, where six 

eye close and open tasks blocks were performed within one minute and the switch times 

were manually labeled. In Fig. 7, we show the detection results based on the MEG data 

from two subjects. Clearly, the switch locations from TVDN are very close to the manually 

labeled ones, which suggests TVDN can correctly identify the brain state switch times. 

Take the first sample as an example, we obtain the growth/decay constant and the signal 

frequency with f = 120 Hz be the sampling frequency for the two task based MEG signals. 

The brain is active in the frequency between 0 to 12 Hz as shown in Fig. 23 (a) in 

Appendix, which is higher than that from the resting state MEG. Furthermore, we obtain 

the band passed signals in alpha band (8–12 Hz), and re-estimated the U and Λ based on 

the filtered the signals. We then calculate the Pearson correlation between the re-estimated 

weighted spatial features and the seven canonical networks. As shown in Fig. 23(b) in 

Appendix, although the correlations with the visual network change over time, the switch 

patterns do not exactly follow the eyes-open and eyes-close states. This implies there are 

brain state changes that are unrelated to the visual network during the data acquisition 

period. Moreover, the brain views of the re-estimated weighted spatial features in Fig. 23(c) 

illustrate that the brain state in alpha band switches in between inferior parietal and supra 

marginal in the parietal lobe in most of the segment, while it switches to occipital lobe 

at the end of the time. We also plot in Fig. 24 in Appendix the pair-wise connectivity 

measure in each segment base on the unfiltered signal, which shows that the connectivity 

decreases from the first to the fourth segment, increases from the fourth to the fifth segment, 

and decreases again to the end of the time. We further show the results from the TVCOR, 

TVPCA, and TVDMD methods in Fig. 25 in Appendix, which suggests none of the methods 

provides robust result across the selected window sizes. Finally, base on the second sample, 

we show the growth/decay constants, signal frequency, correlations with the canonical 

networks and brain views in Fig. 26, the connectivity measures in Fig. 24 and the results 

from competing methods in Fig. 28 in Appendix.

3.5. Comparison to benchmark methods

We implemented TVDN on 103 fMRI datasets. The distribution of the number of switches 

and ranks are displayed in Fig. 8 (a) and (b), respectively, which show around 50% samples 

have eight switches and over 65% samples have seven distinct brain states (ranks) in the 

resting state.

We further evaluated the correlations between TVDN spatial features with the seven 

canonical networks from Yeo et al. (2011)’s independent component analysis under selected 
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κ and r. We extract the spatial features as the moduli of the first r columns of U from each 

subject, and project them to [0, 1] interval. We also implemented the TVPCA, TVDMD 

methods to obtain the corresponding principal components and dynamic modes from each 

segment as the spatial features, and calculated their correlations with the canonical networks. 

We plot the distributions of the maximum correlations between the canonical networks and 

the spatial features from TVDN, TVPCA and TVDMD across 103 samples in Fig. 8(c). 

It can be seen that although TVDN has far fewer spatial features compared with TVPCA 

and TVDMD (each subject has only r spatial features), the distribution of the maximum 

correlation is similar with those from TVPCA and TVDMD. In addition, we plot the 

prediction errors versus the number of switches from TVDN and TVDMD in Fig. 8(d). To 

obtain the prediction error, for each segment in between two consecutive switch points, we 

use the first half of the fMRI records as the training data to estimate A(t) in the segments. 

Then we use the rest of the signals as the testing data, and calculate the related prediction 

errors defined as

Ntest−1 ∑
s

‖Ys − exp ∫0
s
A(u)du Ys0‖2/‖Ys‖

2
,

where Ys is the sth observed signals, Ys0 is first signal in the testing sample, Ntest is the 

total number of testing sample (half of the signal length) and the summation is over the test 

signals. We average the corresponding prediction errors across the segments and individuals 

for the TVDN and TVDMD methods. For the TVDN method, we further construct the 95% 

confidence bands of the prediction errors as 2.5% (lower) and 97.5% (upper) quantiles of the 

errors in the 103 study samples. We do not show the 95% confidence band from TVDMD 

because it almost covers the entire plotted area. Fig. 8(d) shows that TVDN has smaller 

prediction error than TVDMD, especially when the number of switches is larger than four. 

It also suggests that when the number of switches is small, each segment contains sufficient 

samples to recover the large number of parameters in TVDMD. Therefore, when there are 

less than four switches, TVDN and TVDMD perform equally well in prediction as the 

confidence band cover both curves. However, when the number of switches is moderately 

large, the sample in each segment is no longer enough to provide accurate estimations for 

TVDMD parameters. Therefore, the more parsimonious TVDN method yields substantially 

smaller prediction errors than the TVDMD method.

To illustrate the robustness of TVDN, in Fig. 9, we plot the distribution of the number of 

switches from TVDN and the sliding-window methods when different kernel bandwidths 

and window sizes are selected, respectively. Note that the kernel bandwidth in TVDN 

serves the same function as the window sizes in the sliding-window methods. For each 

window size, we adjust the kernel bandwidth so that the lower 2.5% and upper 97.5% of 

the Gaussian kernel correspond to the left and right endpoints of the window, respectively. It 

can be seen that TVCOR, TVPCA and TVDMD are sensitive to the window size selection 

– the larger the window size, the smaller the number of detected brain switches. In contrast, 

TVDN is robust to the kernel bandwidth selection, with only small shifts of the distribution 

center with increasing kernel bandwidth.
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To show the reproducibility of our method, we split the 103 subjects in the fMRI study 

to two samples with approximately equal sample sizes (52/51). We then implement TVDN 

on the two samples separately and study the distributions of the number switch points, the 

ranks, and the correlation of the spatial features with the canonical networks. We present the 

results in Fig. 10. These distributions are coherent in the two samples, which demonstrates 

the reproducibility of TVDN.

3.6. Testing null hypothesis of static functional connectivity

TVDN is designed to estimate the time-varying functional connectivity, it inevitably returns 

time-resolved estimates of functional connectivities that vary to some degree with time. 

It is important to evaluate whether the estimated time varying functional connectivities 

significantly deviate from those that might have been obtained from time series generated 

by a process that lacks state switching (Lurie et al., 2020). To this end, we develop a testing 

procedure to test that whether a sequence contains switch points. More specifically, when a 

sequence has been divided to multiple segments after the TVDN detection, we use the first 

half of the signals in each segment as the training data and the rest of the signals as the 

testing data. Under the alternative hypothesis that there is at least one switch point, we use 

the first half of the signals in each segment to estimate A(t) based on the model X′(t) = 

A(t)X(t). We then predict the second half of the signals using the segment-specific estimator 

for A(t), and calculate the prediction error as

Ntest−1 ∑
k = 1

M
∑

s = 1

nk
‖Yks − exp{A(τk)s}Yk0‖2/‖Yks‖2,

where M is estimated number of switch points, nk is the number of testing sample in the kth 

segment, τk the kth estimated switch points, A(τk) is the estimator for A(τk) based on the 

training data in the kth segment, Yk0 is the initial observed value in the kth segment from 

the testing data and Ntest is the total sample size of the testing data. Note that the summation 

is taken over the testing data on the kth segments. Under the null hypothesis, we combine 

the training data from all segments, and perform a resampling procedure to construct the 

null distribution of the prediction error. More specifically, we sample paires of estimated 

X′(t) and X(t) with replacement from training data and estimate A matrix based on the 

static model X′(t) = AX(t). We then use the estimated A to predict the signals in the testing 

sample and calculate the prediction errors as

Ntest−1 ∑
k = 1

M
∑

s = 1

nk
‖Yks − exp{As}Yk0‖2/‖Yks‖2,

where A is estimator for A using the sampled training data. We repeat this procedure 100 

times and obtain the p-value as the percentage of prediction errors from null distribution that 

are less than the prediction error under the alternative. We show the 100 prediction errors 

under the null hypothesis versus the prediction error under the alternative hypothesis for the 

two resting state and two eye open/closed MEG data in Fig. 11 (a)–(d). The results show 
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that all p-values are less than 0.05, suggesting there is at least one switch point in every 

sequence. Furthermore, we plot the p-values for the fMRI data from 103 healthy subjects in 

Fig. 11(e). The results show that all p-values are less than 0.05, suggesting that every fMRI 

signal has at least one switch point.

4. Discussion and conclusion

We proposed a novel biologically-constrained model of the brain state evolution during 

resting-state functional recording, called the TVDN model. We presented an optimal 

algorithm to infer the model’s parameters and to extract the spatial and temporal features 

from resting state brain signals. The method relies on the assumption that while the spatial 

signatures of RSFC, given by the eigenvectors of the forward model, are static, the evolution 

of temporal features, given by the eigenvalues, is dynamic within the recording duration. We 

developed an eigenvector estimation technique to extract consistent spatial features across 

signal acquisition times. In addition, we proposed a dynamic programming based algorithm 

to detect temporal switches adaptively based on the signal oscillation patterns, under the 

biologically-inspired assumption that state transitions are abrupt rather than smooth in 

time. Using the inferred spatial and temporal features, we can reconstruct the underlying 

mean signals that generate the noisy observations. This may be considered a model-based 

smoothing operation, with several potential applications. Thus, our method is a legitimate 

generative model of dynamic functional activity in the brain. In addition, the ability to 

reconstruct noiseless signals gives the algorithm an opportunity to tune its parameters 

using a reconstruction error metric to be minimized. We evaluated the method on thorough 

simulated data, followed by a rigorous characterization of its performances on empirical 

fMRI and MEG data from the BIL laboratory at UCSF. The simulation study shows that 

TVDN captures the true brain switch locations and is able to recover the true signal that 

generates the observed ones. In the empirical study, for comparison we implemented several 

competing techniques, including TVCOR, TVPCA and TVDMD methods. Compared with 

competing methods, TVDN produces smaller set of spatial features but their correlations 

with the seven canonical networks have the same distributions as those from the TVCOR, 

TVPCA and TVDMD methods. This suggests the smaller set of spatial features from TVDN 

is sufficient to explain the brain connection patterns. Furthermore, TVDN provides more 

robust temporal features, which are adaptive to the signals and noises from different data 

and are insensitive to the tuning parameters, such as kernel bandwidth. In addition, the 

evaluation on the eye-opening-closing task data shows that TVDN captures the brain state 

switches accurately. More importantly, TVDN has significantly smaller prediction errors 

than TVDMD does when predicting “future” activity in the same segment. Last but not 

least, the resulting temporal features include instantaneous estimates of the active oscillation 

frequency of functional activity, thus imparting the method with attributes of a model-based 

alternative to conventional time-frequency analysis.

The ultimate solution to improving the estimation accuracy on fMRI data is to integrate 

multi-modality data into the analysis. It is therefore highly advantageous that TVDN is 

naturally able to handle multimodality data. To understand this aspect intuitively, note 

that the stationary spatial features are by design modality invariant, and can be shared 

across multiple modalities. This imparts the TVDN framework with the ability to integrate 
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information from both fMRI and MEG to estimate the spatial features. For example, we 

could train TVDN on concatenated data (over time) from different modalities to obtain 

shared spatial features. These shared spatial features can then be used to estimate the 

modality-specific temporal features, using information from both fMRI and MEG at each 

step, which will certainly improve estimation accuracy. While in this study we have shown 

how TVDN can operate seamlessly on both fMRI and MEG, we have not integrated the two 

for the current analysis because the data from paired samples are not available. Evaluating 

its performance on synchronized multi-modality data would require larger collaborative 

studies involving both the fMRI and MEG centers.

One question of clinical interest is whether the dynamic RSFC predicts clinical outcomes, 

such as cognitive scores and disease risk. To address the question, the first and foremost 

step is to extract subject-specific dynamic RSFC features. However, the dynamic RSFC 

features from existing sliding-window methods give a set of RSNs of varying numbers 

across subjects, which makes it difficult to explicitly define unique spatial and temporal 

features for each subject. In contrast, TVDN extracts subject-specific dynamic RSFCs from 

both the fMRI and MEG data, which generates explicit spatial and temporal features that can 

be directly used to predict clinical outcomes. Evaluate the relationship between the dynamic 

RSFC features and clinical outcomes may potentially generate novel biomarkers for disease 

prediction.

4.1. Related methods

Sliding-window approaches are the most popular methods to extract dynamic RSFC from 

brain imaging data. However, the most popular seed-based sliding window approaches do 

not typically allow for reconstructing the original brain signals in time or space, since they 

do not require a model of signal generation. And the temporal resolution of the inferred 

dynamic FC is inherently limited by the window length, which in turn is constrained by 

the requirement to have sufficient samples and signal-to-noise ratio within each window. In 

practice, this tradeoff means that only slow changes in brain dynamics can be detected or 

tracked. Furthermore, in almost all current implementations, the sliding-window width is 

typically pre-specified and is not adaptable to the signal statistics or sampling noise in real 

time. In addition, they do not generate common features from the multiple modalities that 

may be available from a single subject (e.g. fMRI and MEG). This impedes information 

sharing across modalities and precludes benefiting from shared or redundant information 

between modalities.

Moreover, these methods typically suffer from very high data dimensionality, since at 

each window, the brain state is given by an entire network or several high-dimensional 

independent components - with no a priori notion of which features are actually evolving 

and which are static. Therefore the ability to detect discrete brain state switches then 

becomes dependent on the ability of unsupervised clustering algorithms like k-means or 

hierarchical clustering, to overcome the so-called“curse of dimensionality”. Finally, most 

dynamic extensions to static FC methods are purely data-driven and are not informed by 

biologically plausible modes of dynamicity in the brain, since they do not constrain which 

brain signal features can change dynamically and how - this aspect is discussed below. 
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Therefore, sliding-window approaches present several limitations that must be overcome to 

gain further progress in critical neuroscience and clinical applications. Several extensions 

of current methods have been proposed to address some of these limitations. To improve 

the sliding-window seed-based correlation approach, Faghiri et al. (2020) proposed a new 

metric replacing Pearson correlation between signals. Furthermore, Vergara et al. (2020) 

proposed a robust method to determine the number of brain states from the sliding window 

methods. Hidden Markov models (Baum and Petrie, 1966) are an another robust alternative 

to capture brain state switches in the frequency domain. Vidaurre et al. (2017) and Quinn 

et al. (2018) used group level data to estimate the model parameters, assuming that study 

subjects share the same latent structure. Vidaurre et al. (2016) combined multivariate auto-

regression model (Penny and Roberts, 2002) and hidden Markov model to obtain brain 

transitions, assuming that brain oscillations depend on the signals in a short time period prior 

to the current time. However, neither the improved sliding window methods nor the hidden 

Markov models are able to extract both the static spatial and dynamic temporal features from 

non-stationary time series. It is possible that further extension of these methods to account 

for both static and dynamic features will prove worthwhile, but out of scope of the current 

work. Furthermore, because the HMM model involves a large number of parameters, ad hoc 

dimension reduction procedures are always performed to reduce the computation burden. 

For example, the computational time of the HMM method proposed in Vidaurre et al. (2018) 

grows polynomially with the number of states. When studying the whole brain signals, the 

number of regions of interest was reduced by using the principal component method, the 

number of latent state was restricted to be a small number, and the time series were split 

to segments using sliding windows to facilitate the computation. The computational time 

of TVDN grows linearly with the number of ROIs (please see the discussion in the last 

paragraph of Section 2.3.4), which avoids restricting the number of brain states and does not 

require to use ad hoc sliding windows to split the time series.

4.2. Limitations and future directions

In our implementation, the tuning parameters of TVDN for fMRI were selected to minimize 

the average reconstruction error, and for MEG they were selected to minimize prediction 

error from cross validation among brain regions. A better tuning strategy might be to use 

cross-validation across individuals, where the data are split between training and testing 

individuals, and the tuning parameters are selected to minimize the prediction error in 

the testing individuals. However, because our switch detection relies on the entire time 

series of the whole brain, there is no existing method to split the study samples and 

validate parameter selection in the temporal switch detection procedure. Furthermore, a 

smaller prediction error may not necessarily imply a better prediction of disease states, like 

neurodegenerative disease risk. When the disease outcomes are available, an appropriate 

parameter selection strategy would be to select the tuning parameters that minimize the 

disease prediction error. Additional data and further research along these lines are ongoing 

in our laboratory.

Generally, fMRI signals have lower signal-to-noise ratio and temporal resolution than 

source-reconstructed MEG signals, which limits the former’s sample size available for 

parameter estimation. Hence, the brian state switching patterns extracted by TVDN from 
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MEG appear clearer than those from fMRI, with larger correlation with canonical networks. 

This suggests that MEG imaging could be a more informative technique to capture dynamic 

RSFC than fMRI. It is possible that alternative smoothing approaches other than the one 

taken here might prove more effective on fMRI. It is possible that deconvolution of the 

hemodynamic response function might be helpful on fMRI data, an aspect that was not 

considered here.

Appendix A.: Additional methods and data preprocessing procedure

A1. Tuning parameter selection

We choose rank r so that the first r moduli of the eigenvalues of ∑tA(t) comprise 80% 

of the total sum of them, where the summation is taken over a random subset of times. 

Furthermore, we select the bandwidth for kernel in (4) to be the rule-of-thumb bandwidth 

times 0.5. Moreover, for the resting state fMRI data, we select κ to minimize the variation 

of the number of switches across the subjects. For the resting state MEG data we select κ 
through resampling over acquisition time. More specifically, for a given κ, we select five 

subsamples, where the jth sample contains data at times 5t + j with j = 1, …, 5 and t = 1, 

…, (n − 5)/5. Since the five sequences are in conjunction with each other, they should have 

similar numbers of switches.

A2. Data and preprocessing

A2.1. fMRI data

Resting state fMRI data from 103 health subject were acquired at the UCSF Neuroimaging 

Center using a Siemens 3T TIM TRIO scanner using a T2* -weighted AC-PC aligned 

echo planar imaging (EPI) sequence with the following parameters: TR = 2000 ms, TE 

= 29 ms, flip angle = 75, FOV = 240 x 240, slice thickness = 3.5 mm. Each fMRI was 

recorded over six minutes with 0.5 Hz sampling rate. Preprocessing included slice-timing 

correction (Cox and Hyde, 1997), image realignment to correct for motion (Jenkinson and 

Smith, 2001), and intensity normalization. The head-motion parameters were estimated 

before any spatiotemporal filtering was used (Jenkinson et al., 2002). After regression of 

nuisance signals, fMRI was coregistered on the T1-weighted anatomical image, and the 

resulting time-series were normalized to MNI space with the non-linear registration from 

ANTS (Avants et al., 2009). Following time series extraction, data were detrended and a 

bandpass filter was applied between 0.009 and 0.08 Hz. To remove the boundary effect from 

the filtering procedure, we removed the first 25 sampling points. Hence, the total length of 

the signal is 155.

A2.2. MEG data

MEG data were acquired in the Biomagnetic Imaging Laboratory at University of California, 

San Francisco (UCSF) with an Omega 2000 whole-head MEG system from CTF Inc. 

(Coquitlam, BC, Canada) with 1200 Hz sampling rate. For resting state data analysis, two 

subjects were instructed simply to keep their eyes closed and stay awake. We collected 4 

trials per subject, each trial of 1-min length with a sampling rate of 1200 Hz. We randomly 
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chose 10 seconds or equivalently 12000 time samples for brain source reconstructions 

for each subject. Additionally, for one subject, MEG data were collected across two 

sessions for an eye-opening-closing task. To measure eye opening and closing, two pairs 

of Electrooculography (EOG) electrodes were placed to the left and right of the eye during 

MEG scans. A potential difference was recorded when the subject blinked eyes and a 

signal peak occurred in the EOG channel of scanned data. We manually labeled EOG 

peaks to indicate time periods of eye opening and closing for TVDN analyses. Across both 

resting and eye-opening task, all MEG sensor locations were co-registered to each subject’s 

anatomical MRI scans. The leadfield for each subject was calculated in NUTMEG (Dalal 

et al., 2004) using a single-sphere head model (two spherical orientation leadfields) and an 

8 mm voxel grid. Each column was normalized to have a norm of unity. The data were 

digitally filtered to remove DC offset and any other noisy artifact outside of the 1 to 45 Hz 

bandpass range.

To infer the neuronal activity in the source space from the MEG recordings, which were in 

sensor space, source localization was performed using time-frequency optimized adaptive 

beamforming (Dalal et al., 2004) using the custom-built open source NUTMEG software 

tool. Since this study focuses on the cortical areas and only the sources belonging to the 68 

cortical regions were selected based on the Desikan-Killiany parcellations. The time-course 

of activity in each of the 68 brain regions was estimated by averaging the time-course of 

source activity estimated from voxels within a 20 mm radius of its centroid.

The resting state MEG data were downsampled to 600 Hz, while the eye-opening-closing 

MEG data were downsampled to 1200 Hz in our analysis.
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Appendix B.: Additional simulation results

Appendix C.: fMRI additional results

Fig. 12. 
(a) The simulation results with no switch. Here A(t) has six ranks. The black lines are 

the true X(t) at four selected regions. The red solid and dash curves are the mean and 

median of the estimators and above and below blue curves are the 95% empirical confidence 

intervals. The figures from left to right represent the results of the estimators whose mean 

squared errors follow on the 0%, 25%, 50%,75% quantiles of the mean squared errors across 

all simulations. The confidence intervals are narrow because the simulated random errors 

have small variabilities. (b) The switch points detection results for the setting when the 

difference between the switch points are significant different. (c) The reconstruction errors 

are insensitive to the number of B-spline knots selection.
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Fig. 13. 
The pairwise connectivity over 90 ROIs from the first fMRI example.

Fig. 14. 
The brain state switch detection is not robust across different window size selections for the 

sliding-window approaches on the first fMRI example.
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Appendix D.: MEG additional results

Fig. 15. 
The results from the second fMRI sample. (a) The real sequences with switch locations 

(black dash lines) detected by TVDN. (b) Changes of growth/decay constant (Re{Λ( ⋅ )}f), 
changes of the frequencies (Im{Λ( ⋅ )}f /2π). (c) The Pearson correlation between the 

weighted spatial features and the seven canonical networks. (d) The weighted spatial 

features across different segments detected by TVDN. (e) The static spatial features i.e. 

the moduli of first r columns of the U matrix.
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Fig. 16. 
The pairwise connectivity over 90 ROIs from the second fMRI example.

Fig. 17. 
The brain state switch detection is not robust across different window size selections for the 

sliding-window approaches on the second fMRI example.
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Fig. 18. 
The pairwise connectivity over 68 ROIs from the first MEG resting state example.

Fig. 19. 
The brain state switch detection is not robust across different window size selections for the 

sliding-window approaches on the first MEG resting state example.

Jiang et al. Page 26

Neuroimage. Author manuscript; available in PMC 2023 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 20. 
The results from the second resting state MEG record. (a) The real sequences with switch 

locations (black dash lines) detected by TVDN. (b) Changes of growth/decay constant 

(Re{Λ( ⋅ )}f), changes of the frequencies (Im{Λ( ⋅ )}f /2π). (c) The Pearson correlation 

between the weighted spatial features and the seven canonical network. (d) The weighted 

spatial features across different segments detected by TVDN. (e) The static spatial features 

i.e. the moduli of first r columns of the U matrix.
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Fig. 21. 
The pairwise connectivity over 68 ROIs from the second MEG resting state example.

Fig. 22. 
The brain state switch detection is not robust across different window size selections for the 

sliding-window approaches on the second MEG resting state example.

Jiang et al. Page 28

Neuroimage. Author manuscript; available in PMC 2023 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 23. 
The results from the first eye-opening-closing MEG record. (a) Changes of growth/

decay constant (Re{Λ( ⋅ )}f), changes of the frequencies (Im{Λ( ⋅ )}f /2π). (b) The Pearson 

correlation between the weighted spatial features and the seven canonical networks. (c) The 

weighted spatial features across different segments detected by TVDN with eye-opening-

closing labels. (e) The static spatial features i.e. the moduli of first r columns of the U 
matrix.
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Fig. 24. 
The pairwise connectivity over 68 ROIs from the first MEG eyes-open and eyes-close 

example.

Fig. 25. 
The brain state switch detection is not robust across different window size selections for the 

sliding-window approaches on the first MEG eye-opening-closing example.

Fig. 26. 
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The results from the second eye-opening-closing MEG record. (a) Changes of growth/

decay constant (Re{Λ( ⋅ )}f), changes of the frequencies (Im{Λ( ⋅ )}f /2π). (b) The Pearson 

correlation between the weighted spatial features and the seven canonical networks. (c) The 

weighted spatial features across different segments detected by TVDN with eye-opening-

closing labels. (e) The static spatial features i.e. the moduli of first r columns of the U 
matrix.

Fig. 27. 
The pairwise connectivity over 68 ROIs from the second MEG eyes-open and eyes-close 

example.
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Fig. 28. 
The brain state switch detection is not robust across different window size selections for the 

sliding-window approaches on the second MEG eye-opening-closing example.

Appendix E.: Statistical consistency

We show the statistics consistency of estimating A(t) and U in the following sections. 

These theoretic results support the statistical convergence rates of A(t) and U presented in 

Section 2.3.3. First we list the regularity conditions that are necessary to prove the statistical 

consistency.

E1. Regularity conditions

A1 In the kernel function Kℎ(t) = K(t/ℎ)/ℎ, K is a second order symmetric kernel 

function that satisfies ∫ K(t)dt = 1, ∫ K2(t)dt < ∞, and ∫ t2 K(t)2dt < ∞. h satisfies 

h → 0 when n → ∞.

A2 Xi(t) is bounded on [0,1].

A3 Define the knots t−b + 1 = ⋯ = t0 = 0 < t1 < … < tN < 1 = tN + 1 = ⋯ = tN + b, 

where N is the number of interior knots and [0, 1] is divided into N + 1 

subintervals. N satisfies N → ∞, N−1 n(logn)−1 → ∞ when n → ∞.

A4 And for t in (τ0k, τ0k + 1]‖A(t)‖op(τ0k + 1 − τ0k)/n ≤ 1, k = 1, …, M0.

Assume Xi(t) ∈ Cq([0, T ]), there is N + b dimensional γ0i, and a bth order Bspline 

such that supx ∈ [0, T ] BT(t)γ0i − Xi(t) = Op(N−s), And denote Γ0 = (γ0i, i = 1, …, d)T.
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A6 Let hp be the distance between the (p + 1)st and pth interior knots and let 

ℎb = max
b ≤ p ≤ N + b

ℎp, ℎs = min
b ≤ p ≤ N + b

ℎp. There exists a constant cℎb, 0 < cℎb < ∞

such that ℎb/ℎs < cℎb. Therefore, ℎb = O(N−1), ℎs = O(N−1).

E2. Theorem of the statistical consistency

We show the consistency of the A(t) and U in Theorem 1. Below we first show that 

the brain activity Xi(t) is a smooth function and can be approximated consistently with 

B-spline function in Proposition 1. By utilizing the results from Proposition 1 and Lemma 1, 

Theorem 1 and Remark 1 establish the consistency of A(t) and U.

Proposition 1. Assume Condition (A4) holdes, for given s, there is a Bspline function 

supt ∈ [0, 1] B(t)Tγ0i − Xi(t) = Op(N−s) with order b > s.

Proof. By the fact that each element in A(s) is a piece-wise constant function we can write

A(t) = ∑
k = 0

M0
Ak I(τ0k/n < t ≤ τ0k + 1/n),

where τ00 = 0 and τ0M0+1 = n. We first show that for t ∈ (τ0k/n, τ0k + 1/n] by the induction

Xi(t) = exp ∑
l = 0

k − 1
Al(τ0l + 1 − τ0l)/n + Ak(t − τ0k/n) X0 . (7)

First (7) holds for t ∈ (τ00/n, τ01/n] because for any constant matrix M, X′(t) = MX(t) as a 

closed form solution as

X(t) = exp(Mt)X0 .

Suppose (7) holds for t ∈ (τ0k/n, τ0k + 1/n], we show that it holds for t ∈ (τ0k + 1/n, τ0k + 2/n]. 
For any t ∈ (τ0k + 1/n, τ0k + 2/n], we have

X(t) = exp{Ak + 1(t − τ0k + 1/n)}X(τ0k + 1/n)
= exp{Ak + 1(t − τ0k + 1)/n)}

exp ∑
l = 0

k − 1
Al(τ0l + 1 − τ0l)/n + Ak(τ0k + 1 − τ0k)/n X0

= exp ∑
l = 0

k
Al(τ0l + 1 − τ0l)/n + Ak + 1(t − τ0k + 1/n) X0,

which is the same as the relation in 7 . Hence, (7) holds.

By the Taylor expansion, t ∈ (τ0k/n, τ0k + 1/n] we have
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X(t) = X(τ0k/n) + ∑
l = 1

s Ak
l (t − τ0k/n)l

l! X(τ0k + 1/n)

+ ∑
l = s

∞ Ak
l (t − τ0k/n)l

l! X(τ0k + 1/n)

= X(τ0k/n) + ∑
l = 1

s Ak
l (t − τ0k/n)l

l! X(τ0k + 1/n) + Rs

where Rs1 = ∑l = s1
∞ Ak

l (t − τ0k/n)l

l! X(τ0k + 1/n). Now by the Condition (A4) that 

‖Ak‖op(τ0k + 1 − τ0k/n) ≤ 1, we have there is a s1 such that

‖Rs1‖2 ≤ ‖ ∑
l = s1

∞ Al(t − τ0k/n)l
l! X(τ0k + 1/n)‖

2

≤ (t − τ0k/n)s1‖Ak
s1‖op‖X(τ0k + 1/n)‖2 ∑

l = 1

∞
1/k!

= (t − τ0k/n)s1‖Ak
s1‖op‖X(τ0k + 1/n)‖2e

= Op(N−s) .

Furthermore, because for any s1 degree polynormal function there is a b ≥ s1 − 1 order exact 

Bspline representation (De Boor, 1978), we have conclude that there is a Bspline function 

B( ⋅ )Tγ0i − Xi(t) = Op(N−s) with order b > s for t ∈ [0, 1]. □

Lemma 1. Assume Bk, k = 1, …, d are B-spline bases with equally distributed knots. There 

is a constant Db > 0 such that for each spline ∑k = 1
d ckBk(t), and for each 1 ≤ p ≤ ∞

Db‖c′‖p ≤ ∫0
1 ∑

k = 1

d
ckBk(t)

p
dt

1/p
≤ ‖c′‖p,

where c′ = {ck{(tk − tk − r)/b}1/p, k = 1, …, d}T
, where d is the number of basis and b is the 

distance between B-spline knots.

Proof. This is a direct consequence of Theorem 5.4.2 on page 145 in DeVore and Lorentz 

(1993). □

Theorem 1. Assume Conditions (A1)–(A6) hold. Let Ux ∈ ℝd × d, Vx ∈ ℝd × n and 

Σx ∈ ℝd × d be the left, right singular vectors and singular value matrix of the rank q matrix 

X, with q ≤ r.

Assume E{‖X(t)‖2} = Op(1) and E{‖ϵ(t)‖2} = Op(1). Suppose
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nN−1{X(t) − X(t)} = G1(t){1 + op(1)}
nN−3/2{X′(t) − X′(t)} = G2(t){1 + op(1)}

G1(t) = nN−1 ∑
i = 1

n
{Yi − Xi(ti)}B(ti)T ∑

i = 1

n
B(ti)B(ti)T

−1
B(t)

G2(t) = nN−3/2 ∑
i = 1

n
{Yi − Xi(ti)}B(ti)T ∑

i = 1

n
B(ti)B(ti)T

−1
B′(t)

G1(t), G2(t) are mean 0 Gaussian vectors with each element to be of order Op(1).

A(ts) ≡ ∑
j = 1

n
Kℎ(tj − ts)X′(tj)X(tj)TρC{ℎ2 + n−1/2N1/2ℎ2d}

−1

∑
j = 1

n
Kℎ(tj − ts)X(tj)X(tj)T ,

for some constant C > 0. And if |MS| = O(n), when h → 0, we have

MS
−1 ∑

s ∈ MS
A(ts) − A(ts)UxqUxqT

F
= D(ℎ2r + n−1/2N1/2d)

for some constant D > 0 and Ur satisfies

Ur − Upr F = Op(ℎ2r + n−1 N1/2d),

where Upqr is the eigenvector of ∑s ∈ MS A(ts)UxqUxq
T .

Proof. Let W = diag{Kh(tj − ts), j = 1, …, n}, for each t s, we have
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n−1 ∑
j = 1

n
Kℎ(tj − ts)X′(tj)X(tj)T

= n−1 ∑
j = 1

n
Kℎ(tj − ts)X′(tj)X(tj)T + R1(ts) + R2(t2)

= n−1 ∑
j = 1

n
Kℎ(tj − ts)A(tj)X(tj)X(tj)T + R1(ts) + R2(t2)

= n−1 ∑
j = 1

n
ℎ−1 K{(tj − ts)/ℎ}A(tj)X(tj)X(tj)T + R1(ts) + R2(t2)

= ∫
0

T
ℎ−1 K{(t − ts)/ℎ}A(t)X(t)X(t)TdPn(t) + R1(ts) + R2(t2)

= ∫
0

T
K(u)A(ts + ℎu)X(ts + ℎu)X(ts + ℎu)TdPn(u) + R1(ts) + R2(t2)

= ∫
0

T
K(u){A(ts) + A′(ts)ℎu + A″(ts)ℎ2u2{1 + op(1)}}X(ts + ℎu)X(ts + ℎu)Td

Pn(u) + R1(ts) + R2(t2)

= A(ts)∫
0

T
K(u)X(ts + ℎu)X(ts + ℎu)Td Pn(u) + ℎ2RkQ1{1 + op(1)} + R1(ts)

+ R2(ts)
= A(ts)XWXT /n + ℎ2 RkQ1{1 + op(1)} + R1(ts) + R2(t2),

(8)

where Pn is the empirical measure of t,

Q1 = {A′(ts)X′(ts)X(ts)T + A′(ts)X(ts)X′(ts)T + A″(ts)X(ts)X(ts)T}, ‖Q1‖F = Op(r),

R1(ts) ≡ n−1 ∑
j = 1

n
Kℎ(tj − ts)X′(tj){X(tj) − X(tj)}

T

= n−1 ∑
j = 1

n
Kℎ(tj − ts)[X′(tj) + n−1/2N3/2G2(tj){1 + op(1)}]

× [n−1/2N1/2G1(tj){1 + op(1)}]T,

(9)

R2(ts) ≡ n−1 ∑
j = 1

n
Kℎ(tj − ts){X′(tj) − X′(tj)}X(tj)T

= n−1 ∑
j = 1

n
Kℎ(tj − ts)n−1/2N3/2G2(tj){1 + op(1)}X(tj)T,

(10)

and recall that

Rk = ∫0
T

K(u)u2 d Pn(u) .

Similarly we have
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n−1 ∑
j = 1

n
Kℎ(tj − ts)X(ts)X(ts)T

= n−1 ∑
j = 1

n
Kℎ(tj − ts)X(ts)X(ts)T + R3(ts) + R4(ts)

= ∫0
T

K(u)X(ts + ℎu)X(ts + ℎu)Td Pn(u) + ℎ2RkQ{1 + op(1)} + R3(ts) + R4(ts)

= XWXT /n + ℎ2RkQ{1 + op(1)} + R3(ts) + R4(ts),

where

Q = {X′(ts)X′(ts)T + X(ts)X″(ts)T + X″(ts)X(ts)T}, ‖Q‖F = Op(r)

R3 ≡ n−1 ∑
j = 1

n
Kℎ(tj − ts){X(ts) − X(ts)}X(ts)T

= n−1 ∑
j = 1

n
Kℎ(tj − ts)n−1/2N1/2G1(ts){1 + op(1)}X(ts)T

R4 ≡ n−1 ∑
j = 1

n
Kℎ(tj − ts)X(ts){X(ts) − X(ts)}T

= n−1 ∑
j = 1

n
Kℎ(tj − ts)[X(ts) + n−1/2 N1/2G1(ts){1 + op(1)}]

× n−1/2 N1/2G1(ts)T{1 + op(1)} .

By the asymptotic bias of the kernel regression estimator, and the fact that R3, R4 are rank d 
matrices, we have

‖R3‖F = C1n−1/2 N1/2ℎ2 d, ‖R4‖F = C2n−1/2 N1/2ℎ2d

for positive constants C1, C2, where the last equality holds by the order of the asymptotic 

bias of the kernel estimator. Furthermore, let Σxq be the upper q × q diagonal matrix of Σx 

and Vxq be first q column of Vx, we can write

XWXT = Ux
ΣxqVxqT WVxqΣxq 0

0 0
UxT .

Hence, as h → 0, there is a C such that
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ρC{ℎ2 + n−1/2N1/2ℎ2d}
−1 n−1 ∑

j = 1

n
Kℎ(tj − ts)X(tj)X(tj)T

= (XWXT /n)−1

= Ux
ΣxqVxq

T WVxqΣxq/n −1 0
0 0

Ux
T .

(11)

Combine (8) and (11), and Condition that A(ts) is rank r matrix, we have

A(ts) − A(ts)UxqUxq
T

= ℎ2RkQ1{1 + op(1)}(XWXT /n)−1

+ R1(ts)(XWXT /n)−1 + R2(t2)(XWXT /n)−1
(12)

= Op(ℎ2r1/2) + R1(ts)(XWXT /n)−1 + R2(t2)(XWXT /n)−1
(13)

The last equality holds because Q1 (XWXT /n)−1 is a rank r matrix and 

‖Q1(XWXT /n)−1‖F = r‖Q1(XWXT /n)−1‖2 = Op( r) by the fact that ‖X(t)‖2 = Op(1) and in 

turn ‖X′(t)‖2 = ‖A(t)X(t)‖2 = ‖A(t)‖op‖X(t)‖2 = Op(1). Furthermore,

‖ MS
−1 ∑

s ∈ MS
R1(ts)(XWXT /n)−1‖

F

= ‖n−1 ∑
j = 1

n
MS

−1 ∑
s ∈ MS

Kℎ(tj − ts)[X′(tj) + n−1/2N3/2G2(tj){1 + op(1)}]

× [n−1/2N1/2G1(tj){1 + op(1)}]T(XWXT /n)−1‖F

= ‖n−1 ∑
j = 1

n
ft(tj)[X′(tj) + n−1/2N3/2G2(tj){1 + op(1)}]

[n−1/2N1/2G1(tj){1 + op(1)}]T

× (XWXT /n)−1‖F
= D1n−1/2N−1/2q,

where D1 is a positive constant and ft(·) is the density function for t. The third line holds 

because MS
−1∑s ∈ MS Kℎ(tj − ts) is a consistant estimator for ft(tj). The last equality holds 

by the arguments as follows. First let

Qa(t) = ft(t)[X′(t) + n−1/2N3/2G2(t){1 + op(1)}]

and qk(t) be its kth element. Then by the definition of G1 in the Theorem statement, the 

second to the last equality can be written as
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‖n−1 ∑
j = 1

n
Qa(tj)B(tj)T ∑

i = 1

n
B(ti)B(ti)T

−1

∑
i = 1

n
B(ti){Yi − X(ti)}T(XWXT /n)−1‖F

× {1 + op(1)}

= ‖∫0
T

Qa(t)B(t)Tdt ∑
i = 1

n
B(ti)B(ti)T

−1

∑
i = 1

n
B(ti){Yi − X(ti)}T(XWXT /n)−1‖F{1 + op(1)} .

≤ ‖∫0
T

Qa(t)B(t)Tdt ∑
i = 1

n
B(ti)B(ti)T

−1
∑

i = 1

n
B(ti){Yi − X(ti)}T‖

op
× (XWXT /n)−1

F{1 + op(1)} .

Now because ∫0
T qk(t)Bl(t)dt = qk(t∗)∫0

T Bl(t)dt = Op(tk − tk − b) = Op(N−1) by the mean value 

theorem and Lemma 1 with p = 1 . Therefore, each element in

∫0
T

Qa(t)B(t)Tdt ∑
i = 1

n
B(ti)B(ti)T

−1

is of order Op(N−1). Furthermore, each element in G1 is of order Op(1), and hence each 

element in

∑
i = 1

n
B(ti)B(ti)T

−1
∑

i = 1

n
B(ti){Yi − X(ti)}T

is of order n−1/2N1/2 by the definition of G1 in the theorem statement. Therefore,

‖n−1 ∑
j = 1

n
Qa(tj)B(tj)T ∑

i = 1

n
B(ti)B(ti)T

−1
{Yi − X(ti)}T‖

max
= Op(n−1/2N1/2N−1) = Op(n−1/2N−1/2)

and hence

‖n−1 ∑
j = 1

n
Qa(tj)B(tj)T ∑

i = 1

n
B(ti)B(ti)T

−1
{Yi − X(ti)}T‖

op
= Op(dn−1/2N−1/2) .

Now combine with the fact that (XWXT /n)−1 is a rank q matrix, we obtain the result in the 

last equality.

Similarly, we have
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MS
−1‖ ∑

s ∈ MS
R2(ts)(XWXT /n)−1‖

F
= D2n−1/2N1/2d

for some positive constants D2. Combine with (12), we have

MS
−1‖ ∑

s ∈ MS
A(ts) − ∑

s ∈ MS
A(ts)UxqUxqT ‖

F
= D(ℎ2r + n−1/2N1/2d)

for positive constant D. The first r column of the eigenvector of MS
−1∑s ∈ MS A(ts)UxqUxq

T

is Up respectively. Hence ‖Ur − Upr‖ = Op(rℎ2 + n−1/2N1/2d) as h → 0. This proves the 

result. □

Remark 1. Theorem 1 shows that when XWXT is a full rank matrix, ∑s ∈ MS A(ts)/ MS

converges to ∑s ∈ MS A(ts)/ MS  consistently. Hence Ur Ur with probability one. If XWXT 

is a low rank matrix, ∑s ∈ MS A(ts)/ MS  converges to a projection of ∑s ∈ MS A(ts)/ MS  on 

the sub-space of Rq, where q is the rank of XWXT. In practice, if XWXT is a low rank 

matrix, we can first project X to full rank sub-space and perform the TVDN algorithm on the 

projected signals. The conditions

nN−1{X(t) − X(t)} = G1(t){1 + op(1)}
nN−3/2{X′(t) − X′(t)} = G2(t){1 + op(1)}

are the general properties of B-spline estimator as shown in (Jiang et al., 2019; 2015). We 

use the result without proof.
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Fig. 1. 
TVDN pipline. The purple ovals represent TVDN inputs, and red oval represents TVDN 

outputs. The blue rectangles represent the building blocks of TVDN. Two multimodality 

kernel examples are provided and will be discussed in Section 2.3.3.
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Fig. 2. 
The weights Kh(t − 180) across t ∈ [1, 360] in seconds for fMRI (left) and weights Kh(t − 

30) across t ∈ [1, 60] in seconds for MEG (right) when the rule-of-thumb bandwidth h.

Jiang et al. Page 46

Neuroimage. Author manuscript; available in PMC 2023 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The simulation results with three switches. TVDN detects the true brain state switches and 

can reconstruct the true signal. (a) Switch times. Red lines are the true switch times and the 

dots are the estimated locations. (b) The black lines are the true X(t) at four selected regions. 

The red solid and dash curves are the mean and median of the estimators and above and 

below blue curves are the 95% empirical confidence intervals. The figures from left to right 

represent the results of the estimators whose mean squared errors fall at the 0%, 25%, 50% 

and 75% quantiles of the mean squared errors across all simulations.
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Fig. 4. 
The simulation results with three switches. Here A(t) has six ranks. (a) Left: the boxplot of 

the reconstruction error in (6) from 100 simulations when choosing different ranks for A(t)
in the estimation. Right: the boxplot of the MBIC values at different number of switches 

when κ = 1.53. (b) Hausdorrff distance between true switches and the estimated switches. 

The window sizes (wsize) selected are 10 (left) and 20 (right) for the sliding-window based 

methods. (c) Chang point locations for window sizes 10 (top) and 20 (bottom) for the 

TVCOR (left), TVPCA (middle) and TVDMD (right) methods.
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Fig. 5. 
The results from the first fMRI dataset. (a) The real sequences with switch locations (black 

dash lines) detected by TVDN. (b) Changes of growth/decay constant (Re{Λ( ⋅ )}f), changes 

of the frequencies (Im{Λ( ⋅ )}f /2π). (c) The Pearson correlation between the weighted spatial 

features and the seven canonical networks. (d) The weighted spatial features across different 

segments detected by TVDN. (e) The static spatial features i.e. the moduli of first r columns 

of the U matrix.
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Fig. 6. 
The results from the first resting state MEG dataset. (a) The real sequences with switch 

locations detected by TVDN. The dash lines are the detected brain state switches. (b) 

Changes of growth/decay constant (Re{Λ( ⋅ )}f), changes of the frequencies (Im{Λ( ⋅ )}f /2π). 
(c) The Pearson correlation between the weighted spatial features and the seven canonical 

networks. (d) The weighted spatial features across different segments detected by TVDN. (e) 

The static spatial features i.e. the moduli of first r columns of the U matrix.
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Fig. 7. 
TVDN captures the task-switching dynamics in two eyes-open to eyes-close task-switching 

MEG records. The the real sequences with switch locations detected by TVDN. The black 

dashed lines are the detected brain state switches. The red solid lines are the manually 

labeled switch times.
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Fig. 8. 
The distribution of the spatial features are similar from different approaches (c) and the 

related prediction errors from TVDN are smaller compare with those from TVDMD, the 

only existing method that allows for the reconstruction of the signals (d). (a) The distribution 

of the number of switches across samples. (b) The distribution of the brain state across 

samples. (c) The distributions of the maximum correlation between the spatial features 

from TVPCA, TVDMD, and TVDN methods with the canonical networks. (d) The average 

related prediction errors from the TVDN and TVDMD methods. The shaded area is the 95% 

confidence band from the TVDN method. The 95% confidence band from TVDMD covers 

the entire plotted area, which we do not show.
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Fig. 9. 
TVDN’s brain state switch detection is robust to the kernel bandwidth selection but the 

sliding-window methods are sensitive to the window size selection. The distributions of 

the switch points when different window sizes (wsize) are chosen for the sliding-window 

methods and different kernel bandwidths are chosen for TVDN. The kernel bandwidths 

are adjusted so that the lower 2.5% and upper 97.5% quantiles of the Gaussian kernel 

correspond to the left and right endpoints of the window, respectively.
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Fig. 10. 
The distributions of the number switch points (a), the ranks (b), and the correlation of the 

spatial features with the canonical networks (c) are the same in the first and second halves of 

the fMRI samples.
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Fig. 11. 
The p-values of testing whether there are switch points. (a), (b) p-values from two MEG 

resting state data examples. (c), (d) p-values from two eye open/closed data examples. 

(e) p-values from 103 fMRI data. The red dots in (a)–(d) are the log of the prediction 

errors across 100 simulations under the null hypothesis. The black line is the log of the 

prediction error of TVDN method under the alternative hypothesis. The red dots in (e) are 

the percentage of errors under null hypothesis that is less than the one from TVDN method. 

The black line is 0.05 cutoff value.
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