
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Symmetric Agency Graphs Facilitate and Improve the Quality of Virtual Network
Embedding

Permalink
https://escholarship.org/uc/item/6wz6n471

Journal
Symmetry, 10(3)

ISSN
2073-8994

Authors
Zhao, Chenggui
Parhami, Behrooz

Publication Date
2018

DOI
10.3390/sym10030063

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wz6n471
https://escholarship.org
http://www.cdlib.org/

symmetryS S

Article

Symmetric Agency Graphs Facilitate and Improve the
Quality of Virtual Network Embedding

Chenggui Zhao 1,2,*,† and Behrooz Parhami 2,‡

1 School of Information, Yunnan University of Finance and Economics, Kunming 650221, China
2 Department of Electrical & Computer Engineering, University of California, Santa Barbara, CA 93106-9560,

USA; parhami@ece.ucsb.edu
* Correspondence: zhaochenggui@126.com; Tel.: +86-871-186-6910-5511
† Chenggui Zhao was an academic visitor at Department of Electrical & Computer Engineering,

University of California, Santa Barbara, during 9/25/2016–9/25/2017.
‡ B. Parhami is a Life Fellow of IEEE, a Fellow of IET and British Computer Society.

Received: 3 February 2018 ; Accepted: 8 March 2018; Published: 11 March 2018

Abstract: Virtual network embedding (VNE) is a key technology in network virtualization.
Advantages of network symmetry are well known in the design of load-balanced routing algorithms
and in network performance analysis. Our work in this paper shows that benefits of graph symmetry
also extend to the domain of network embedding. Specifically, we propose an efficient VNE method
based on modular and structured agency guidance, a regular graph function. The proposed method,
which is based on symmetric intermediate graphs, offers two main advantages. Firstly, characteristics
of the intermediate structures enhance the computational efficiency of the VNE process. Secondly,
the static agency network modeled with such intermediate structures improves the quality of the
resulting embedding. These two advantages of our method are elaborated upon and verified by
examples and simulations, respectively. In addition, we present a theoretical analysis explaining the
reasons behind the benefits offered by such middleware.

Keywords: resource provisioning; network assignment; graph algorithms; network optimization;
network simulations; overlay and other logical network structures

MSC: 68M10

1. Introduction

1.1. Research Advances in Virtual Network Embedding

Network virtualization (NV) technology [1] represents a promising way of overcoming the
network ossification problem, via providing an efficient solution to the mismatch between various
Internet applications and rigid substrate physical network (SPN) architecture. Success in applying NV
to allocation of computational resources in cloud data centers [1] encourages researchers to explore
more efficient solutions and reliable schemes for realizing NV.

The main objects in NV are called virtual networks, which will be provided by Internet Service
Provider (ISP) in next-generation network architecture. One virtual network consists of virtual nodes
connected by virtual links. In essence, the virtual nodes are logical function entries that are constructed
by allocating computational or communication resources from ISPs to provide user-expected services.
This function of resource allocation is known as virtual network embedding (VNE). The term
embedding is sometimes equivalent to mapping, provisioning or assignment. The process of virtual
network embedding maps virtual nodes in VN to the resource nodes in SPN, and virtual links to the
physical paths in SPN.

Symmetry 2018, 10, 63; doi:10.3390/sym10030063 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym10030063
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 63 2 of 17

As key parts of NV technology, VN embedding and scheduling have received a great deal of
attention from researchers since 2008. At first, static VNE algorithms, running in an offline mode, were
considered [2]. In this approach, after the user VN is embedded into SPN by a mapping φ, the mapping
φ need not be reconstructed when the property and status of SPN are changed.

Generally, the virtual network request (VNR) always arrives and leaves dynamically (almost
randomly), and it is not known a priori. Thus, the VNE algorithm must process the continuously
arriving VNRs in real time, along with the current status of the SPN, and needs to implement VNE
in an online scheme. Even though the static VNE has a relatively simple algorithmic design, it is still
difficult to apply practically, since its model relies on assumptions that do not hold in practice. Thus,
online VNE has been pursued by Marquezan et al. [3], who begin by presenting a distributed way
of solving dynamic type VNE. They then reorganize SPN to renew the embedding of VN when the
original VNR changes, but the connection between VN nodes and links is not coordinated. Houidi [4]
has proposed a fault-tolerant VNE scheme to tackle the node and link failures in SPN.

Currently, the main research focus is still on mathematical optimization and heuristics.
Optimization approaches still derive φ by linear or integer programming, but with added objects
reflecting varied user demands, changed SPN structure and performance, and relaxed optimization
limitation to mitigate the computational complexity of solving VNE. Heuristic algorithms usually try
to achieve a near-optimal solution, and contributions focus on improving the quality of VNE solution,
i.e., closing the gap between approximate and optimal solutions. The various works in two approaches
can be characterized as survivable/dependable VNE; multiple InPs [5], and topology-aware VNE [6,7].
Furthermore, VNE for special SPN has also garnered some attention, as in the case of datacenters,
optical networks, and wireless networks. For example, Beck et al. [8] proposes a distributed and
parallel framework called DPVNE to implement VNE, in which several VNE algorithms are run
to map VNR into SPN so that the single point pressure in SPN is reduced and overall efficiency is
improved. Zhang et al. [9] provide opportunistic resource sharing VNE scheme called ORS to deal
with time-dependent VNRs, with time-slot allocation expressed as an optimization problem.

The online VNE with multiple InPs has also been discussed by Shen et al. [5], who employ a
broker-like entity to make centralized decisions, with an information-sharing scheme providing part
of InP’s information, while keeping its privacy. Their scheme uses integer programming to settle
VNE in polynomial time. Their VNE scheme achieves 80–90% efficacy over other methods under the
assumption of all SPN information being known.

Distributed and parallel algorithms are preferred for realizing VNE among multiple InPs.
Houidi et al. [10] proposed a distributed method to solve the cross-domain (multiple InPs) VNE,
regardless of network scale. Generally, parallel and distributed algorithms become desirable, if not
necessary, when dealing with large-scale input objects, which requires the work to be extended to more
SPN locations. Beck et al. [8] introduced an algorithmic framework named DPVNE to implement VNE
in a parallel and distributed fashion. In their scheme, the SPN is clustered as levels, via a multi-level
recursive bisection algorithm. Next, they determine the delegate nodes in each cluster to receive VNR
and select the most appropriate to process it, setting the deadlock tree for each cluster to deal with
parallel embedding of many VNRs to avoid conflicts in utilizing the resources of the SPN. Although
experiments show that DPVNE can simultaneously process many VNRs with a low communication
overhead and comparable embedding cost compared to centralized algorithms, the computational
complexity of dynamic real-time embedding is unknown. Moreover, selecting the delegate nodes and
embedding VNE in all clusters, usually with irregular topologies, also present difficult challenges.
Houidi et al. [4] reconfigured the VNE in a distributed real-time scheme. However, the influence of
existing VNE on the reconfiguration necessitates a formal approach, and the scheme usually entails a
large overhead in message communication.

The main drawback of optimization type VNE methods is that they have a high computational
complexity. Actually, when connecting the VNE to the multi-way separator problem, solving it
is NP-hard [1]. Accordingly, Xue et al. [11] has aimed to implement VNE with a partition, using

Symmetry 2018, 10, 63 3 of 17

concurrency. The method called NC-DSBA utilizes a dynamically balanced service to improve the
efficiency of VNE.

There are also other innovative approaches in the VNE field. Zhang et al. [9] postulate the
application of an opportunistic mechanism to resource sharing in VNE. Cheng and Su [7] focus on
the topology of SPN, coordinating the mapping of nodes and links. In the node-mapping stage,
the topological properties of nodes in the physical network are considered as the most significant
parameter of the VNE. They then emulate PageRank, Google’s method of ranking web pages, to rank
the nodes for associating VN nodes with SPN nodes. Ultimately, the relations of node association are
merged into the VNE algorithm to improve efficiency and acceptance ratio. Ref. [5] formulates VNE
across-domain physical networks. Zhang and Gao [6] rank the nodes of SPN by topological properties
to embed the users’ VN.

1.2. The Role of Network Symmetry

Readers of this journal hardly need to be reminded of the theoretical and practical importance of
symmetry in nature and various technical domains. We thus focus in this section on the benefits
of network symmetry in the design, analysis, management, and applications of computer and
communications networks [12], factors that motivated us to pursue the line of research described in this
paper. Sometimes, complete symmetry can be troublesome, and we must resort to symmetry-breaking
methods to make progress by preventing or removing deadlocks and other points of indecision [13]. In
a vast majority of instances, however, symmetry is an ally of network designer, evaluator, manager, and
user because it leads to simplifications and efficiencies, advantages that we demonstrate for solving
the VNE problem in this paper.

Symmetric networks lack a weakest point that might lead to service disruptions as a result of
random malfunctions or deliberate attacks, and they lend themselves better to the use of distributed
diagnostic methods [14]. They lead to simpler routing and load-balancing algorithms [15,16] because
all nodes have the same view of the system and thus execute identical component tasks as part
of the overall algorithm. The interchangeable parts of a symmetric network allow the system to
more easily recover from the effects of node and link failures [17]. It has been proven that the
ratio of network diameter to the average internode distance is upper-bounded by 2 in symmetric
networks [18], thus making the diameter, which is an easily derived quantity, a good predictor of
network performance. The average internode distance, which is a better predictor of actual network
performance, is, by comparion, much harder to compute and much more sensitive to assumptions
about link and node capacities, especially under failure scenarios.

Wide-area and local-area computer networks grow in an ad hoc manner, based on communications
needs and geographic considerations. They are thus often irregular. However, given that such
networks tend to contain a large number of nodes and links, lack of symmetry isn’t a major
drawback. Such networks are often characterized as small-world or scale-free networks [19] that
exhibit strong advantages in the face of failures, congestions, and other routing difficulties. Distributed
decision-making reduces the complexity burden for many applications. However, for global
resource management and mapping of user computations to such a network, topological irregularity
creates immense computational burdens. Interconnection networks for parallel processing are more
controllable in terms of topology, be they implemented by cables within equipment racks or by
etched/printed paths on microchips or printed circuit-boards. It would be nice if the benefits of
symmetry could be extended to all domains, including those in which topological symmetry is
non-existent. Our work reported here represents a step in this direction.

1.3. Application of Symmetry to Our Scheme

Mainly, our VNE scheme employs the graph symmetry for two purposes: raising efficiency of
VNE via symmetric graph auxiliary, and stabilizing VNE process via symmetric graph inducement.

Symmetry 2018, 10, 63 4 of 17

To reduce the complexity of embedding a virtual network H into an irregular substrate network
G, one can select a static topology model K to assist the embedding. The main advance of using an
auxiliary K is that some good algorithm properties can be induced from K to H and G such that the
related algorithms are probably simplified and enhanced after VNE is implemented, like routing and
load balancing. As shown in Figure 1, we obtain a generalized subgraph homomorphism in (a) and
isomorphism in (b) to model the abstract embedding H into G relying on a regular hypercube topology
Cube(3). As aforementioned, a static model K with symmetry properties may reduce the complexity
of embedding H to G. From the viewpoints of mathematics, one can solve φ1 to map K to G, and φ2

to map H to K so as to obtain the final φ = φ2φ1 to embed H to G. It should be noticed that the two
structures related to φ1 are relatively static, and of the other two ones related to φ2, the larger one
generally keeps static. The total time complexity to solve φ1 and φ2 is reduced apparently than to solve
φ independently.

G

ab ab1
1101

10

000

110

111

010

011

101

100

00100

H

(a)

G

ab abc
1101

10

000

110

111

010

011

101

100

001
00

H

(b)

Figure 1. Using the static Cube(3) as a substrate network model to reduce virtual network embedding
problem into the generalized subgraph homomorphism in (a) and isomorphism in (b).

2. Defining and Modeling of VNE

In general, network virtualization represents the user demand as a virtual network in which the
nodes and links indicate the resource and communication demands, respectively. Then, the virtual
network embedding (VNE) algorithm, designed by SPN, embeds VN into SPN by way of resource
allocation. The performance and impact of the NV system are influenced by its VNE scheme. Thus,
efficient VNE solution is a key element in NV. Theoretically, VNE can be modeled as a generalized
subgraph homomorphism from VN to SPN, which is a map keeping the adjacency relation along SPN
nodes. The graph H abstracting VN is embedded into graph G representing SPN. This embedding
should satisfy some constraints over the requested and provided resources, and it should optimize
some parameters of interest to user and virtual network providers (VNP), such as maximal provider
revenue and accepted ratio, and minimal embedding cost. To gain an intuition for grasping these
notions, consider a two-level architectural model for virtual network embedding depicted in Figure 2.

InP2

InP1

1

0.5
1

VNRiVNR2

10

0.5

0.1

0.1

641288

 256 4 64

 16

8

1

164

32

1

128512
2

2

2
2

128

VNR1

SN

......
 256

Figure 2. A two-level architectural model for virtual network embedding, with the correspondence
between virtual edge and physical edge for InP2 omitted. The numbers in circles indicate the switching
capacity of the routing and switching devices, and the ones near the links represent the transmission
bandwidth, in Gbps. Virtual-to-physical edge correspondence is marked by distinct colors.

Symmetry 2018, 10, 63 5 of 17

Finding the optimal solution to a general graph embedding with constraints is an NP-hard
problem. Thus, much research has dealt with designing heuristic algorithms to solve it [2,7,11,20,21],
an area which has received much attention in recent years with the spread of network virtualization.

Let G = (VG, EG, R•, R−) represent the SPN provided by the Infrastructure Provider (InP), where
VG denotes the set of physical nodes and EG the set of physical links. Assume the existence of n types
of physical resources and m types of physical links, and let R• be the vector space consisting of the
available resource vector, namely,

R• = R•1 × R•2 × . . . × R•n, and R− be the vector space consisting of the available bandwidth
vector, namely, R− = R−1 × R−2 × . . .× R−m . Likewise, let H = (VH , EH) represent a virtual network
request (VNR) from user, where VH denotes the set of virtual nodes and EH the set of virtual links.
Let c• : VG → R• and c− : EG → R− be two functions representing the available resources of
the nodes and links of SPN. Let d• : VG → R• and d− : EG → R− be two functions representing
the allocated resources of the nodes and links of SPN. Then, the problem of embedding H into G
can be modeled as finding two functions φ• : VH → VG and φ− : EH → EG, which are subject to
∀v ∈ VH , d(v) ≤ c•(φ•(v)) and ∀e ∈ EH , d−(e) ≤ c−(φ−(e)). If we merge these two functions as a
pair of maps φ = (φ•, φ−) and the objective is to minimize the cost of embedding operation, then the
current known methods to find φ can be characterized as solving following optimization problem:

arg min
φ
{cost(φ)|cost(φ) = ∑

e∈EH
∑

l∈φ−(e)
cost(d−(l))

+ ∑
v∈VH

∑
u∈φ•(v)

cost(d•(u)), (1)

where cost(x) denotes the cost of the variable x. This problem is NP-hard [1].

3. Presentation and Analysis of Our Scheme

3.1. Overall Description of Scheme

Many relevant optimization problems are known to be NP-Hard. Heuristic algorithms exhibit
multiple representation forms without a common framework, which makes their evaluation non-trivial.
Thus, more precise models and efficient solution methods are called for. Additionally, structural
features should be considered to improve the quality of algorithm with regard to practical applications.
Techniques incorporating structural properties are expected to lead to more accurate and efficient
solutions. The fundamental reason behind this situation is that real-time embeddings among highly
random networks are usually hard to implement.

In order to increase the determinism of embedding the virtual network H into an irregular physical
network, it is reasonable to create a static intermediate network, which we call agency network (AN),
represented as graph K, as an auxiliary model between VN and SN. Theoretically, K should induce
some desirable algorithmic properties to H and G such that simplified embedding can be discovered
through it. Firstly, K should hold a low complexity in embedding VN and SN to it. Furthermore, some
common algorithms such as routing should have a tendency to be easier in K than in SN. There are
a few symmetric networks, including the well-known hypercube, swapped networks [22], as well
as their biswapped [23] derivatives, which meet these two characteristics, and can be considered as
suitable candidates for the intermediate network K.

From a mathematical viewpoint, one can find ϕ1 to embed K to G, and φ2 to embed H to K, so as
to obtain the final φ to embed H to G, by merging φ1 and φ2 as φ = φ2φ1. It should be noted that the
two structures related to φ1 are relatively changeless and of the other ones related to φ2, generally,
the larger one remains static. Thus, the total time complexity of deriving φ1 and φ2 maybe less than
that of deriving φ directly. As shown in Figure 3, we obtain a generalized subgraph homomorphism in

Symmetry 2018, 10, 63 6 of 17

Figure 3a and isomorphism in Figure 3b to model the abstract embedding of H into G, relying on the
regular static hypercube topology.

-5 0 5 10 15 20 25 30 35 40 45
1E-3

0.01

0.1

1

10

100

1000

10000

R
un

tim
e

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
ASG-SP

(a)

0 10 20 30 40

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

VN
R

 A
cc

ep
ta

nc
e

R
at

io

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(b)

0 10 20 30 40
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

 C
os

t R
ev

en
ue

 R
at

io

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(c)

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90
N

od
e

U
til

iz
at

io
n

R
at

io

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(d)

Figure 3. Performance and quality comparisons of our scheme with three representative VNE
schemes for embedding a random VN into a random SN. (a) Runtime; (b) VNR acceptance ratio;
(c) Cost/revenue ratio; (d) Node utilization ratio.

We now describe the concrete procedure of our proposed algorithm, called virtual network
embedding through symmetric agency graph (SAG). To assist in understanding the critical steps,
description of the algorithm is intertwined with a simple example.

3.2. Details of our Scheme

In this section, we first describe the fundamental principle of our proposed algorithm
SAG. Then, we introduce three procedures of the algorithm, accompanied by a simple example.
The presentation of each procedure is composed of the general description, pseudo-code elaboration,
and figure explanation. A performance analysis of SAG at the end of this section provides the needed
theoretical support.

Observe that almost all the substrate networks commonly exhibit a structural characteristic in
which they have modular communication links (twisted-pair, optical fiber, and wireless transmission
media) and processing nodes (router, switch node, and sever), though they are geographically scattered
in different locations in the world. In essence, our scheme is to construct a symmetric graph agency to
enhance the efficiency of virtual network embedding and accuracy of mapping. Putting it another way,
this scheme decomposes the node and link mappings of VNE into two steps. Initially, we utilize the

Symmetry 2018, 10, 63 7 of 17

modular feature of VN and SN to re arrange the links and nodes of the seemingly unstructured VN
and SN such that they are statically registered to a modular intermediate network AN. Then, relying
on the guidance of AN, the substrate resources of optimal matching of the virtual demands will be
discovered. Next, we explain the critical steps of this scheme, supplemented with its execution details.
The pseudo-code for Algorithm 1 can be interpreted as follows.

Algorithm 1 SAG-SP

Input: virtual network VN=((V(H), E(H)) and substrate network SN = ((V(G), E(G));
Output: virtual network mapping f which embeds V(H) and E(H) onto V(G) and E(G),

respectively;
1: procedure PARTITIONSNODES . Split SN nodes into node groups with respect to resource

properties;
2: end procedure
3: if SN is splited into r Groups then
4: select ANModel with r modules; . Select an appropriate symmetric graph model K as agency

network (AN) which has modules equal to the number of node groups;
5: end if
6: procedure REGISTERSNNODES . Register the node groups of SN to the modules of K, then register

the nodes and links in groups of SN to the nodes and links in modules of AN;
7: end procedure
8: procedure EMBEDDING(VN,SN) . Map the VN nodes and links to the corresponding ones

of AN,Agency AN locates VN nodes and links to the ones of SN, and return the node and link
mappings φ = (φ•, φ−) to user;

9: end procedure

3.2.1. Create a Symmetric Graph Agency, Based on Splitting the Substrate Network

The nodes and links of substrate network are split into groups. A modular and structured
agency network is built for redistributing these grouped nodes and edges. The modularity of AN
guarantees that each node group is correlated to a module that can induce the node mapping efficiently.
Simultaneously, the structured module of the redistributed nodes and links can share precise and
efficient routing algorithm such that discovering a link-balanced path required by a VNR is less
complex. As listed in the pseudo code, Algorithm 2 partitions the nodes of VN and SN in terms of
node weights. The weight of a node is assigned as the ratio between its performance and its cost.
A majority of previous VNE algorithms pay more attention to minimizing the cost of embedding,
and maximizing the SNP revenue. However, a VNE scheme is truly promising if and only if it can
meet the performance requirement of customers at an attractive price. Although price and cost are two
different notions, they are often linked, in that a low cost usually implies an acceptable price to users.
Given a well partitioned SN, algorithm SAG selects a symmetric graph topology architecture as an
agency network model for rearranging the nodes and links of SN.

Algorithm 2 Pseudocode: partitionSNodes

1: procedure PARTITIONSNODES
2: c← max(SNnodes.capacity);
3: level← f loor(log2 c);
4: for (int i:level) do
5: nodesGroup[i]=null;
6: nodesGroup[i].capacity=2i;
7: for (sn:SNodes) do
8: if (sn.capacity.isClosest(2i)) then
9: nodesGroup[i].add(sn);

10: end if
11: end for
12: end for
13: end procedure

Symmetry 2018, 10, 63 8 of 17

Figure 4a illustrates a substrate network G and a virtual network H that has been embedded,
where the weights and the labels of SN nodes are expressed together as nonnegative integers [0, 1, . . . , n].
All nodes were split into two groups G1 = {0, 1, 2, 3} and G2 = {4, 5, 6, 7}, and a 2-modular structured
network hypercube has been selected to act as the agency network.

G un
kn

ow
n

1101

10

0

 6

 7

 2

 3

 5

 4

1

00

H

(a)

(x
) 10
=(
ab

c)
2

Cluster K2Cluster K1

K

x
=a

bc

111011

101001

110010

100000

G

0

 6

 7

 2

 3

 5

 4

1

(b)

(0
bc

)=
bc

Cluster H2

Cluster H1

(1
bc

)=
bc

 11 01

 10 00

H

Cluster K2
Cluster K1

K

111011

101001

110010

100000

(c)

000

G

1101

10

0

 6

 7

 2

 3

 5

 4

1

00

H

(d)

Figure 4. As an example of implementing the SAG algorithm, (a) the virtual network H to be embedded
into the substrate network G by mapping φ; (b) initially, the substrate network G is registered to a
2-module cube network K by mapping φ1; (c) then, the virtual network H is embedded into K by
mapping φ2 with a decomposition of embedding into two subsets corresponding to the two modules
of H and K, respectively; (d) the mapping φ embedding H into G is found by merging mappings φ1

and φ2.

Symmetry 2018, 10, 63 9 of 17

3.2.2. Register the Resources of SN to AN

Subsequently, each node of SN is registered into that of symmetric agency graph with the closest
node weight, and a link of SN is registered into an edge if there is an edge between two endpoints
of this link in AN. Otherwise, an optimal path between two endpoints will be registered. Algorithm
3 (see the pseudo code) maps all nodes of SN to AN. It starts by discovering the closest node group
matching each SN node, and registering an exact position in a real interval that is maintained by a
node in the found AN module. The range of interval accommodating in k-th SAG node is [2k−1, 2k],
with a mechanism familiar with an efficient P2P lookup structure Chord [24]. In order to map links of
SN to AN, the function optimalPath(x, y) executes the weighted Dijkstra algorithm for determining
the optimal path connecting two AN nodes x and y. Then, the SN link whose two endpoints were
mapped to x and y is embedded to this derived optimal path. Note that the bandwidth and delay of
links are taken into consideration in calculating their weights.

Algorithm 3 Pseudocode: registerSNnodes

1: procedure PREGISTERSNNODES
2: for (int i: numGroups) do
3: AN.module[i]← SN.nodesGroup[i]
4: for (sNode : nodesGroup[i]) do
5: if (sNode : aNode.interval) then
6: aNode←map(sNode);
7: end if
8: end for
9: for(sLink:SN.links)

10: x=map(sLink.head);
11: y=map(sLink.tail);
12: if((x, y) in AN.links)
13: (x, y)←map(sLink);
14: else
15: optimalPath (x, y)←map(sLink);
16: end if
17: end for
18: end for
19: end procedure

To give the reader a feel for the statement above, Figure 4a depicts a scenario that SN nodes
have been registered to two well-structured modules K1 and K2 through a mapping φ1. In particular,
the mapping φ1 has been ideally simplified for clarifying the description.

3.2.3. Embed VN to SN via AN

Algorithm 4 performs mapping φ2, integrates it with φ1, and deduces the overall mapping φ.
This process initializes with a preprocessing step, which ranks the nodes of VN according to their
weighs. When mapping a VN node, directly locate its lower goal module in AN, and map this VN
node to a node in located AN module with optimally matched weight. Finally, by integrating this
mapping with the one derived in the stage of registering SN nodes, we have derived a mapping from
VN to SN through AN as an intermediary. In order to assess how well our scheme functions for solving
a VNE problem, its efficiency will be analyzed later.

At first sight, it seems that decomposing φ into two independent mappings φ1 and φ2 instead
of exploring a direct embedding may lead to redundant work. However, there are theoretical and
experimental indications that such a two-stage method is indeed beneficial for solving VNE problem
under multiple practical circumstances. Actually, compared with the dynamically varied virtual
network requests, the structure and state of the substrate network keep fairly static. Empirically,
this will reduce the complexity of finding and maintaining the mapping φ1 between K and G.
Additionally, obtaining the mapping φ2 between H and K generally holds a lower complexity since the
ordered VN nodes are able to rapidly match a goal in a set of ordered nodes located at a well-structured

Symmetry 2018, 10, 63 10 of 17

network. Simultaneously, the link spanning them will be mapped more simply because the routing
related algorithms, such as the one of Dijkstra’s shortest path, can be implemented more efficiently.
For example, as illustrated in Figure 4c, all nodes of H and K are partitioned into two groups, and the
node with label xbc of K is mapped into one with label bc by a mapping φ2(xbc) = bc made possible
by the property of being symmetric. Finally, the overall embedding φ is derived after merging φ1 with
φ2 in Figure 4d.

Algorithm 4 Pseudocode: embedding

1: procedure EMBEDDING(VN,SN)
2: orderedVNodes=sort(VN.nodes);
3: orderedVLinks=sort(VN.links);
4: for (vn: orderedVNodes) do
5: aNode← AM.findCandidate(vn);
6: sNode← AM.locate(aNode);
7: sNode←map(vn);
8: end for
9: for (vLink:orderedVLinks) do

10: aLink← shortestPath(vLink,AM);
11: sLink← locate(aLink);
12: sLink←map(vLink);
13: end for
14: end procedure

3.3. Efficiency Analysis

As already stated, resolving the problem formulated by Equation (1) is NP-hard. Recent research
therefore focuses on exploring approximate algorithms that generally treat VNE as an issue analogous
to the node assignment or matching between a graph and its subgraphs or other graphs. The problem
of assigning or matching nodes of a graph to its subgraphs or other graphs has received broad attention
in machine learning and related fields, where graph-based data are used. The problem has emerged as
subgraph isomorphism detection, that is, discovering a hidden goal usually expressed as subgraphs in
a given graph pattern. The same problem has emerged in molecular biology, where it was equivalently
defined as network alignment for identifying possible mappings between the nodes representing
the proteins of protein networks to understand how proteins in the cell interact with others [25].
The essence of network alignment is to find an isomorphic subgraph between the two networks,
a problem that is known in graph theory as the problem of maximum common subgraph. A majority
of combinatorial optimization problems alluded to in the discussion above are NP-complete. Graph
isomorphism or (maximum) subgraph isomorphism are both challenging problems in theoretical
computer science. Though virtual network mapping has also been treated as subgraph isomorphism
detection [26], it is perhaps more complicated than subgraph isomorphism because one node or link in
SN can accommodate multiple VN nodes or links, and one link in VN can be mapped into a path in
SN. Generally speaking, this means an explosive growth in number of combinatorial enumerations.
It is slightly more accurate to formulate virtual network mapping as seeking a p-homomorphism
between a graph H and a subgraph of other graph G, where p-homomorphism is formally defined by
Fan et al. [27] as follows.

Definition [27] (p-homomorphism): Graph H1 is said to be p-homomorphic to H2, denoted by
H1 → H2, if there exists a mapping σ from H1 to H2 such that, for each edge (u1, v1) in H1, there
exists a nonempty path u2 . . . v2 in H2 such that σ(u1) = u2 and σ(v1) = v2, i.e., each edge from u1 is
mapped to a path emanating from u2. The mapping is referred to as a p-hom mapping from H1 to H2.
In particular, if mapping σ is a one to one(injective) p-hom mapping, then graph H1 is further said to
be 1-1 p-hom to H2. �

In order to understand the NP-completeness degree of a general VNE, let us estimate the time
complexity devoted to this task. Determining whether graph H1 is p-hom or 1-1 p-hom to its subgraph
H2 cannot be accomplished in polynomial time. This suggests that no matter how we embed a virtual

Symmetry 2018, 10, 63 11 of 17

node to a substrate node, that is, one-to-one or multiple-to-one, VNE is intractable in polynomial time.
Theorem 1 ([27]) confirms this conclusion via a formal generalization. For more details of its proof,
please refer to Appendix A of [27].

Theorem 1. Given graphs H1 and H2, it is NP-complete to decide whether H1 is p-hom or 1-1 p-hom to H2.

In order to get around the intractability of VNE problem, much recent research has focused on
devising efficient heuristic algorithms (e.g., [2,6,7,9]). Unfortunately, no algorithm can find the p-hom
mappings within O(nε−1) of its optimal runtime. This means that, if guaranteeing embedding quality
is desired, VNE is hard to approximate. This fact has been referred to as the approximation hardness
of p-hom related problems, and formalized as Theorem 2 ([27]).

Theorem 2. The p-hom related problems are not approximable within O(nε−1) for any constant ε, where n is
the maximal number of nodes in graphs H1 and H2.

We now proceed with Theorem 3 that demonstrates our SAG algorithm to be capable of
approaching this lower bound, thus providing a performance guarantee on embedding quality. In the
SAG algorithm, assume that the substrate network with n nodes has been registered to a AN with a
number of modules r such that the i-th (i = 1, 2, . . . , r) module contains ni nodes, and all m nodes of
the virtual network are associated with these modules, such that there are mi(i = 1, 2, . . . , r) nodes that
are embedded into module i. Theorem 3 shows that SAG reaches O(n) complexity under the condition
r ≥ m.

Theorem 3. Let n and m be the number of SN and VN nodes and denote by ni and mi be the number of SN and
VN nodes corresponding to the ith module of r AN modules, respectively. Assume that the weights of SN and
VN nodes conform to the uniform probability distribution. If r ≥ m, then SAG can find a p-hom mapping from
graph H to a subgraph H2 of G within time O(n).

Proof. Denote by Hi and Gi the groups of SN and VN nodes that have been registered to the ith AN
module. Let Xij be a set of random variables whose values are set to Xij = 1 if the ith SN or VN node
is associated with the node group Gj with probability pj, where pj represents the probability that a
randomly selected node lies in Gj. Then, nj = ∑0≤i≤n−1 Xij and nj ∼ b(n, pj), where b(n, pj) denotes
the binomial distribution. Likewise, mj = ∑0≤i≤n−1 Yij and mj ∼ b(n, qj). The complexity of algorithm
SAG can be expressed as T = ∑1≤i≤r mini according to the embedding procedure. By the precondition
of node weights being uniform, it can be deduced from the mathematical expectation properties of
binomial distribution that

E(T) = ∑
1≤i≤r

E(mi)E(ni) = mn ∑
1≤i≤r

pjqj = nm/r ≤ n.

In essence, this theorem establishes that, for a symmetric graph AN, our algorithm can embed an
VN with limited size to an SN in a time linearly growing with the scale of networks. Experimental
results support this theoretical argument, where SAG runtime exhibits nearly linear growth upon
increasing the size of the substrate network with uniform increments.

4. Simulation Results

In this section, we report on the results of a number of simulations conducted to experimentally
validate performance and quality of algorithm SAG. The experimental platform is facilitated with
software IDE Eclipse (Neon, Eclipse Foundation, Ottawa, ON, Canada) under the 32-bit Windows 7
operating system (Microsoft Corporation, Redmond, Washington, D.C., USA), and hardware CPU

Symmetry 2018, 10, 63 12 of 17

Intel(R) Core(TM) i7 5600-U @2.6 GHz with 8.0 GB RAM (Intel Corporation, Santa Clara, CA,
USA). All simulations generate the results with Alevin 2.1, developed by Beck et al. [28], which
has successfully functioned as a significant simulation framework for examining virtual network
embedding algorithms.

We encoded algorithm SAG with programming language Java to generate subclass extending
the class GenericMappingAlgorithm that has been realized as an algorithmic framework of generic
VNE algorithms, and implemented all simulations under multiple experimental circumstances under
various associated scenarios. In addition, we enriched the java package vnreal.generators of Alevin to
allow more network topologies to be derived from it, including the well-structured hypercube network,
and the highly-modular swapped networks. The latter class is established by an approach of selecting a
graph from the list of network generator as the basic graph, then connecting n copies of this basic graph
by n(n− 1)/2 edges called swapped links. The process of each experiment can be decomposed into
network generation, algorithm configuration and execution, and algorithm evaluation, with various
experimental configurations.

The experimental steps and corresponding configurations are further detailed in Table 1.
In addition, a comparison of SAG with a couple of representative VNE algorithms, that have been cited
as the focus of considerable VNE research, has been conducted in terms of runtime, VNR acceptance
ratio, cost revenue ratio (C/R), and node utilization ratio (NU), factors that have been recognized as
effective means of assessing VNE algorithms. Eventually, the results of comparison have been figured
to perceive the effect of varied topologies and scale of VN and SN on VNE performance and quality.

Table 1. Experimental parameters of network generation, a and b being constant factors.

Value SN Size VN Size VNs Num. Demand Resource

Min 5 2 5 10 10
Max 250 51 5 1000 1000

k-term a(k + 1) b(k + 1) 5 [10,1000] [10,1000]

4.1. Scenario Generation

The step of network generation goes through establishing network topology, adding resources to
SN, as well as adding demands to VN. Two network topologies, the Fat-tree topology suggested in [29],
and the randomly constructed network, which have been recognized as practical topologies modelling
datacenters and the Internet, respectively, are selected as the SN models. The random topologies are
generated with a probability 0.5 of connecting a pair of nodes. The number n and m of SN and VN
nodes increase linearly with the iteration i of experiment n = a(i + 1) and m = b(i + 1), where a and b
are constant factors controlling the growth of SN and VN, respectively. For the topology of agency
network, a swapped network S(C) is chosen, in which the swapped approach is used to construct an
expanded network based on the factor graph being an n−node ring. Refer to [22] for more details
regarding how to build a swapped network. The configuration parameters of network generation are
listed in Table 1.

4.2. Algorithm Configuration

Algorithms chosen for our experimental evaluation involve three representative VNE algorithms,
which have been proposed in [7,20,30] described in Table 2. These algorithms along with our proposed
SAG are executed on identical scenarios and parameter configurations. In order to observe the
performance of SAG, all algorithms chosen for evaluation were run 40–50 times under identical
scenario set-ups, but increasing size of SN and VN, as reflected in Table 1. In the stage of mapping
nodes, the weights of CPU nodes are set to 1, and the candidates of a VN node are limited within
a distance of 20 hops away from it. The situation of node overload has not yet been considered. In
the stage of mapping links, the parameter k of mapping a VN link to a length-k shortest path is set to

Symmetry 2018, 10, 63 13 of 17

k = 2, and the weights on link bandwidth conform to the uniform distribution in interval [min, max]
(see Table 1).

Table 2. Representative VNE approaches chosen for evaluation.

Algorithm Reference Brief Description

GAR-SP Yu et al. [20] VNE preferentially using available resources for node mapping and
k-shortest paths for link mapping. Google Scholar [31] citations: 932

DViNE-SP Chowdhury et al. [30] VNE with coordinated strategy in two stages where node mapping
is implemented by mixed integer programming (MIP) and link
mapping with k-shortest paths. Google Scholar [31] citations: 660

RW-MM-SP Cheng et al. [7] VNE ranking nodes with topology properties for node mapping and
k-shortest paths for link mapping. Google Scholar [31] citations: 327

4.3. Evaluation Results

The simulation proceeds with a set of widely applied network topologies, as listed in Table 1.
In addition, the evaluation focuses on a collection of well-recognized VNE evaluation metrics, such
as runtime, VNR acceptance ratio, cost revenue ratio (C/R), and node utilization ratio (NU), for
assessing the competitiveness of our proposal. We expected that our algorithm would outperform its
counterparts at least with respect to runtime, without guarantee of benefits in other metrics. Note
that an intermediate network is perhaps capable of deducing the complexity of matching an objective
resource to a request node, but we cannot be sure that this matching is accurate and low-cost. The
results of performing all algorithms 40–50 times confirm that our strategy behaves with the expected
runtime. Likewise, it generates a high-quality approximate solution in terms of other evaluation
metrics. This means that SAG’s gains in efficiency come without loss of quality. Because we are
primarily interested in the type of shortest path that VNE approaches, experiments regarding the kinds
of path splitting have not yet been performed.

The results of comparisons with other algorithms in multiple metrics listed above are depicted
in Figures 3 and 5. We analyze these results by producing curves, and start the evaluation of each
metric with a brief introduction to this that metric. We address the evaluation of SAG in three domains:
efficiency, quality, and extensibility.

• Embedding efficiency

In the past, efficiency has not been widely considered as a criterion for assessing algorithms.
Most previous VNE approaches [1,7,11,20,21,30] focus on quality-related metrics such as cost, revenue,
node/link utilization, and node/link stress. However, the runtime of a VNE algorithm has a substantial
effect on deployment in real applications, as pointed out in [8], where a distributed and parallel
mechanism is proposed to improve efficiency. Actually, when our experiment reached the 46th
iteration on randomly generated SN with 230 nodes, as shown in Figure 5, the optimization package
GLPK 4.7 reached its time limit and stopped searching for solutions. This is why we were forced to
reduce the originally scheduled 50 iterations in our experiment to 40 (Figure 3).

With respect to runtime, our algorithm exhibits an apparent improvement over DViNE-SP and
RW-MM-SP, and also performs better than GAR-SP, as depicted in Figures 3a and 5a. The simulation
producing Figure 3a was conducted on a pair of randomly generated VN and SN. Through a
40-iteration test, SAG-SP embedded 71 percent of virtual network requests (VNR acceptance ratio)
within average runtime 1.25, amounting to a less than half of GAR-SP’s 2.58. Unfortunately, the other
two tested algorithms, DViNE-SP and RW-MM-SP, exhibited poor efficiency with average runtimes
of 111.33 and 27.20. As depicted in Figure 5a, an analogous trend in runtime can be observed from
other experimental scenarios of embedding a random VN into a fat tree SN. In the case of fat tree
SN, SAG-SP has a lower VNR acceptance ratio than in the case of random SN, and a moderate VNR

Symmetry 2018, 10, 63 14 of 17

acceptance ratio compared to other algorithms. This motivates us to strive for improved results in
follow-up research.

0 10 20 30 40 50
0.01

0.1

1

10

100

1000

10000

R
un

tim
e

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(a)

0 10 20 30 40 50

0

20

40

60

80

100

VN
R

 A
cc

ep
ta

nc
e

R
at

io

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(b)

0 10 20 30 40 50

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

 C
os

t R
ev

en
ue

 R
at

io

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(c)

0 10 20 30 40 50

0

20

40

60

80

100

120
N

od
e

U
til

iz
at

io
n

R
at

io

Experimental Periods

 GAR-SP
 DViNE-SP
 RW-MM-SP
 ASG-SP

(d)

Figure 5. Comparisons in performance and quality of SAG with three representative VNE schemes for
embedding random VN into fat-tree SN. (a) runtime; (b) VNR acceptance ratio; (c) cost/revenue ratio;
(d) node utilization ratio.

• Embedding quality

The acceptance ratio is the ratio of successfully embedded virtual networks, which also reflects
the number of VNRs that could not be embedded (rejected)by a VNE algorithm. The cost metric ratio
reflects the amount of resources used by an embedding. As in previous approaches, cost is defined as
the sum of the substrate resources allocated to the VNR. The revenue sums the revenue of the VNRs
that were successfully mapped and the revenue of those that were not mapped. The cost-revenue
ratio (C/R) measures the proportion of cost spent in the substrate network, taking into account the
revenue that has been mapped. The lower the cost-revenue, the better the mapping quality. The
node utilization (NU) of SN is calculated as the ratio of used CPU cycles to the number of nodes in it.
It reflects the proportion of resources being utilized to meet the currently accepted VNRs.

On the randomly generated SN, SAG-SP generates a highest average VNR acceptance ratio 71%,
lowest average cost/revenue ratio 1.20, and the second largest average node utilization ratio 33.70
compared with the other three algorithms, as listed in Table 3 and Table 4. More broadly, Figure 3a,c,d
demonstrates that SAG-SP produces more competitive values with regard to three VNE evaluation
metrics than the other three approaches. The only exception being that SAG-SP lags behind DViNE-SP
in node utilization ratio. This anomaly is probably due to the fact that DViNE-SP, as the exclusively

Symmetry 2018, 10, 63 15 of 17

optimization-based VNE approach being tested achieves an exact solution from its objective function
that assigns SN resources to VN more precisely. On the other hand, we also notice that sometimes the
experimental results yield unstable distributions in terms of cost/revenue ratio and node utilization
ratio in the case of the Fat-tree SN. In this regard, our future research plans include attempts at
understanding how topological features of SN affect stability in our algorithm, so that we can fine-tune
it to behave more stably on fat-tree class networks. Overall, our algorithm is capable of trading off
performance and quality better than other approaches, including for fat-tree SN.

Table 3. Comparison of the average values of the evaluation metrics from 40 test iterations executed on
randomly generated VN and SN

Algorithm Runtime (s) Acceptance C/R NU

GAR-SP 2.58 0.64 1.27 32.41
DViNE-SP 111.33 0.67 1.21 34.29

RW-MM-SP 27.20 0.63 1.23 31.42
SAG-SP 1.25 0.71 1.20 33.70

• Scalability

To assess the scalability of presented method, our experimental setup handles increasingly various
VN and SN sizes, with a more extensive VN range, varying from 2 to 100. Note that the number of
VN nodes ranges from 2 to 20 in [20], 20 to 40 in [26], and 20 to 100 in [7]. It can be observed from
Figures 3 and 5 that our approach exhibits greater advantages as the network sizes grow. It exhibits a
nearly linearly increasing runtime with the growth of VN and SN sizes. In the 40th iteration of our
experiment, when the VN and SN networks reach the maximal sizes of 200 and 80, SAG-SP’s runtime
is 4.32, compared with 9.66, 9.99, and 659.39 for its counterparts GAR-SP, RW-MM-SP, and DViNE-SP,
respectively, with a nearly equal mapping quality.

Table 4. A comparison in performance and quality of VNE algorithms when the VN and SN networks
are enlarged to maximal sizes of 200 and 80 (reached in the 40th iteration of our experiment),
respectively, to demonstrate the scalability of our strategy

Algorithm Runtime Acceptance C/R NU

GAR-SP 9.66 80% 1.23 35.57
DViNE-SP 659.39 40% 1.19 43.89

RW-MM-SP 9.99 80% 1.27 36.00
SAG-SP 4.32 80% 1.32 41.00

As stated earlier, it is an extremely challenging goal to achieve optimal or nearly optimal solutions
for addressing a general VNE problem. Besides runtime, the rest of the parameters reflecting VNE
quality appear to fluctuate in the process of increasing VN and SN nodes. This implies that stability
should also be a concern in assessing our method and competing approaches. In fact, a higher VNR
acceptance ratio only reflects to what extent a VNR can be fulfilled technically. A holistic concept
termed “acceptance” may be required to gauge the extent to which users and providers achieve an
agreement, regardless of technical or business factors. In this regard, efficiency and stability are most
essential standards to affect user’s decision in current user-centered environment.

5. Conclusions

Virtual network embedding is a fairly substantial part in network virtualization technology, and
the latter may be qualified as a promising approach to overcoming the ossification problem arising in
future network architectures. The computational intractability of optimization-based approaches, and
the uncertain quality of heuristic algorithms have triggered vast amounts of research.

Symmetry 2018, 10, 63 16 of 17

Our work brings forth the notion of using the structural characteristics of an intermediate network
to facilitate the process of virtual network embedding. We have conducted a theoretical analysis and a
series of simulation studies on multiple scenarios to validate that our strategy of using an appropriate
agency network can accelerate the algorithm’s runtime, while maintaining the quality for a general
VNE task.

An important observation arising from our experimental work is that current VNE algorithms
lack stability. Theoretically, we are also interested in exploring the potential correlation of network
topology with the quality of VNE. Our future research will cover these two problems, which will no
doubt come with many challenges.

Acknowledgments: Chenggui Zhao’s work was supported by the National Science Foundation of China,
Grant No. 61562089.

Author Contributions: Chenggui Zhao performed the theoretical derivation, experiments, and wrote the paper;
Behrooz Parhami checked the derivation, and revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

InP Infrastructure Provider
ISP Internet Service Provider
SN Substrate Network
VN Virtual Network
VNE Virtual Network Embedding
VNP Virtual Network Provider
VNR Virtual Network Request

References

1. Fischer, A.; Botero, J.F.; Beck, M.T.; De Meer, H.; Hesselbach, X. Virtual network embedding: A survey.
IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906.

2. Lee, T.H.; Tursunova, S.; Choi, T.S. Graph clustering based provisioning algorithm for virtual network
embedding. In Proceedings of the 2012 IEEE Network Operations and Management Symposium (NOMS),
Maui, HI, USA, 16–20 April 2012.

3. Marquezan, C.C.; Granville, L.Z.; Nunzi, G.; Brunner, M. Distributed autonomic resource management for
network virtualization. In Proceedings of the 2010 IEEE Network operations and management symposium
(NOMS), Osaka, Japan, 19–23 April 2010; pp. 463–470.

4. Houidi, I.; Louati, W.; Ameur, W.B.; Zeghlache, D. Virtual network provisioning across multiple substrate
networks. Comput. Netw. 2011, 55, 1011–1023.

5. Shen, M.; Xu, K.; Yang, K.; Chen, H.H. Towards efficient virtual network embedding across multiple network
domains. In Proceedings of the 2014 IEEE 22nd International Symposium of Quality of Service (IWQoS),
Hong Kong, China, 2 October 2014; pp. 61–70.

6. Zhang, D.; Gao, L. Virtual network mapping through locality-aware topological potential and Influence
node ranking. Chin. J. Electron. 2014, 23, 61–64.

7. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual network embedding through
topology-aware node ranking. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 38–47.

8. Beck, M.T.; Fischer, A.; Botero, J.F.; Linnhoff-Popien, C.; de Meer, H. Distributed and scalable embedding of
virtual networks. J. Netw. Comput. Appl. 2015, 56, 124–136.

9. Zhang, S.; Qian, Z.; Wu, J.; Lu, S.; Epstein, L. Virtual network embedding with opportunistic resource
sharing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 816–827.

10. Houidi, I.; Louati, W.; Zeghlache, D. A distributed virtual network mapping algorithm. In Proceedings
of the IEEE International Conference on Communications, ICC’08, Beijing, China, 19–23 May 2008; IEEE:
Piscataway, NJ, USA, 2008; pp. 5634–5640.

Symmetry 2018, 10, 63 17 of 17

11. Xue, J.; You, J.; Wang, J.; Deng, F. Nodes clustering and dynamic service balance awareness based virtual
network embedding. In Proceedings of the TENCON 2013–2013 IEEE Region 10 Conference (31194), Xi’an,
China, 22–25 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4.

12. Lakshmivarahan, S.; Jwo, J.S.; Dhall, S.K. Symmetry in interconnection networks based on Cayley graphs of
permutation groups: A survey. Parallel Comput. 1993, 19, 361–407.

13. Itai, A.; Rodeh, M. Symmetry Breaking in Distributed Networks; Academic Press, Inc.: Cambridge, MA, USA,
1990; pp. 60–87.

14. Parhami, B.; Tao, S. Taxonomy and Overview of Distributed Malfunction Diagnosis in Networks of Intelligent
Nodes. J. Comput. Sci. Eng. 2016, 13, 23–31.

15. Wang, N.C.; Hung, Y.P. Multicast Communication in Wormhole-Routed 2D Torus Networks with Hamiltonian
Cycle Model; Elsevier: North-Holland, The Netherlands, 2009; pp. 70–78.

16. Zhao, C.; Xiao, W.; Parhami, B. Load-balancing on swapped or OTIS networks. J. Parallel Distrib. Comput.
2009, 69, 389–399.

17. Dekker, A.H.; Colbert, B.D. Network robustness and graph topology. In Proceedings of the Australasian
Conference on Computer Science, Dunedin, New Zealand, 18–22 January 2004; pp. 359–368.

18. Parhami, B.; Yeh, C.H. Why Network Diameter is Still Important. In Proceedings of the International
Conference on Communications in Computing, Las Vegas, NV, USA, 26–29 June 2000.

19. Wang, X.F.; Chen, G. Complex networks: Small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 2003,
3, 6–20.

20. Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: Substrate support for path
splitting and migration. ACM Sigcomm Comput. Commun. Rev. 2008, 38, 17–29.

21. Aron, M.; Druschel, P.; Zwaenepoel, W. Cluster reserves: A mechanism for resource management in
cluster-based network servers. ACM SIGMETRICS Perform. Evaluation Rev. 2000, 28, 90–101.

22. Parhami, B. Swapped interconnection networks: Topological, performance, and robustness attributes.
J. Parallel Distrib. Comput. 2005, 65, 1443–1452.

23. Xiao, W.; Parhami, B.; Chen, W.; He, M.; Wei, W. Biswapped networks: A family of interconnection
architectures with advantages over swapped or OTIS networks. Int. J. Comput. Math. 2011, 88, 2669–2684.

24. Stoica, I.; Morris, R.; Karger, D.; Kaashoek, M.F.; Balakrishnan, H. Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications; ACM: New York, NY, USA, 2001; pp. 149–160.

25. Singh, R.; Xu, J.; Berger, B. Pairwise global alignment of protein interaction networks by matching
neighborhood topology. In Research in Computational Molecular Biology; Springer: Berlin/Heidelberg,
Germany, 2007, pp. 16–31.

26. Lischka, J.; Karl, H. A virtual network mapping algorithm based on subgraph isomorphism detection.
In Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and Architectures, Barcelona,
Spain, 17 August 2009; ACM: New York, NY, USA, 2009; pp. 81–88.

27. Fan, W.; Li, J.; Ma, S.; Wang, H.; Wu, Y. Graph homomorphism revisited for graph matching.
Proc. VLDB Endow. 2010, 3, 1161–1172.

28. Beck, M.T.; Linnhoff-Popien, C.; Fischer, A.; Kokot, F.; de Meer, H. A simulation framework for Virtual
Network Embedding algorithms. In Proceedings of the 2014 16th International Telecommunications Network
Strategy and Planning Symposium (Networks), Funchal, Portugal, 17–19 September 2014; IEEE: Piscataway,
NJ, USA, 2014; pp. 1–6.

29. Leiserson, C.E. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Comput.
2012, C-34, 892–901.

30. Chowdhury, M.; Rahman, M.R.; Boutaba, R. Vineyard: Virtual network embedding algorithms with
coordinated node and link mapping. IEEE/ACM Trans. Netw. (TON) 2012, 20, 206–219.

31. Google. Available online: https://scholar.google.com (accessed on 1 April 2017).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://scholar.google.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Advances in Virtual Network Embedding
	The Role of Network Symmetry
	Application of Symmetry to Our Scheme

	Defining and Modeling of VNE
	Presentation and Analysis of Our Scheme
	 Overall Description of Scheme
	Details of our Scheme
	Create a Symmetric Graph Agency, Based on Splitting the Substrate Network
	Register the Resources of SN to AN
	Embed VN to SN via AN

	Efficiency Analysis

	Simulation Results
	Scenario Generation
	Algorithm Configuration
	Evaluation Results

	Conclusions
	References

