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Gastrointestinal Disease Outbreak Detection Using Multiple
Data Streams from Electronic Medical Records

Sharon K. Greene,1 Jie Huang,2 Allyson M. Abrams,1 Debra Gilliss,3 Mary Reed,2

Richard Platt,1 Susan S. Huang,4 and Martin Kulldorff1

Abstract

Background: Passive reporting and laboratory testing delays may limit gastrointestinal (GI) disease outbreak
detection. Healthcare systems routinely collect clinical data in electronic medical records (EMRs) that could be
used for surveillance. This study’s primary objective was to identify data streams from EMRs that may perform
well for GI outbreak detection. Methods: Zip code-specific daily episode counts in 2009 were generated for 22
syndromic and laboratory-based data streams from Kaiser Permanente Northern California EMRs, covering 3.3
million members. Data streams included outpatient and inpatient diagnosis codes, antidiarrheal medication
dispensings, stool culture orders, and positive microbiology tests for six GI pathogens. Prospective daily sur-
veillance was mimicked using the space-time permutation scan statistic in single and multi-stream analyses, and
space-time clusters were identified. Serotype relatedness was assessed for isolates in two Salmonella clusters.
Results: Potential outbreaks included a cluster of 18 stool cultures ordered over 5 days in one zip code and a
Salmonella cluster in three zip codes over 9 days, in which at least five of six cases had the same rare serotype. In
all, 28 potential outbreaks were identified using single stream analyses, with signals in outpatient diagnosis
codes most common. Multi-stream analyses identified additional potential outbreaks and in one example, im-
proved the timeliness of detection. Conclusions: GI disease-related data streams can be used to identify potential
outbreaks when generated from EMRs with extensive regional coverage. This process can supplement tradi-
tional GI outbreak reports to health departments, which frequently consist of outbreaks in well-defined settings
(e.g., day care centers and restaurants) with no laboratory-confirmed pathogen. Data streams most promising for
surveillance included microbiology test results, stool culture orders, and outpatient diagnoses. In particular,
clusters of microbiology tests positive for specific pathogens could be identified in EMRs and used to prioritize
further testing at state health departments, potentially improving outbreak detection.

Introduction

In 2007, foodborne disease outbreaks were associated
with over 21,000 reported illnesses in the United States

(CDC, 2010b). Health departments (HDs) are commonly no-
tified of focal (e.g., restaurant-associated) outbreaks by pas-
sive reports from clinicians or patients. These reports may be
incomplete, delayed, and/or non-representative. Outbreaks
of intermediate scope, such as those caused by contaminated
commercial products, are often detected via laboratory test-
ing. HDs can monitor for unusual increases in passive labo-
ratory-based reports of notifiable diseases (CDC, 2009b) or for
clusters of isolates with identical pulsed-field gel electropho-

resis (PFGE) patterns (Swaminathan et al., 2001; Gerner-Smidt
et al., 2006). However, some gastrointestinal (GI) pathogens
are not nationally notifiable (e.g., norovirus, campylobacter-
iosis), and due to resource limitations at HDs, laboratory
testing may be delayed. Generalized outbreaks (e.g., seasonal
rotavirus increases) are seldom reported to HDs.

In electronic medical records (EMRs), healthcare systems
routinely collect GI disease-related clinical and laboratory
data. Using these data may improve the timeliness and rep-
resentativeness of outbreak surveillance. A prior evaluation of
1 year of EMR data in four states for nine syndromes, in-
cluding upper and lower GI, did not identify any clusters of
public health interest (Yih et al., 2010); however, only
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ambulatory care (AC) diagnoses were used, though other
data streams may be more informative. It is also possible that
no single clinical data stream is optimal for surveillance, but
that multiple syndromic and laboratory data sources could be
useful to identify outbreaks.

Space-time clusters in laboratory-based data have been
identified for Escherichia coli O157 (Pearl et al., 2006) and Shi-
gella ( Jones et al., 2006; Stelling et al., 2009). Syndromic sur-
veillance for GI outbreaks has been evaluated using AC
diagnoses (Yih et al., 2005, 2010), emergency department (ED)
chief complaints (Balter et al., 2005; Kulldorff et al., 2005),
telephone helplines (Caudle et al., 2009), and medication sales
(Kirian and Weintraub, 2010; Pelat et al., 2010). To facilitate
capacity planning, one hospital conducted univariate tem-
poral analyses of three streams and determined that GI
complaints in free text were more useful for rotavirus out-
break detection than either rotavirus antigen laboratory tests
or diarrheal disease discharge diagnoses (Levin and Raman,
2005). To our knowledge, no study has used the same patient
population to evaluate multiple EMR data streams for spatio-
temporal GI outbreak detection.

Prior work using EMR data to detect localized excess in-
fluenza-like illness (ILI) suggested that AC diagnoses, reverse
transcription–polymerase chain reaction (RT-PCR) tests or-
dered, and antiviral dispensings were most useful for sur-
veillance (Greene et al., 2011). However, the analogous data
streams may not be useful for GI outbreak detection. ILI is
caused by respiratory viruses transmitted person-to-person,
peaks each winter in temperate climates, and has widespread
illness activity. In contrast, GI illness has heterogeneous viral,
bacterial, parasitic, and chemical etiologies; is transmitted
person-to-person via the fecal-oral route or by a contaminated
vehicle; may or may not have a demonstrable seasonal pat-
tern; and the scale may be attributable to a highly localized
point source or an internationally disseminated product. True
increased ILI activity should be reflected across all streams
around the same time, but true increased GI activity may be
detectable in only some streams. For example, lower GI syn-
drome and positive Shigella tests may reflect a shigellosis
outbreak, while upper GI syndrome and positive norovirus
tests may reflect a norovirus outbreak.

The objectives of this study were to use data from a com-
prehensive regional health system to (1) create syndromic and
laboratory-based data streams for GI disease from EMRs, (2)
mimic near real-time prospective surveillance to identify
which streams perform well for outbreak detection, and (3)
compare results of single stream and multi-stream analyses.

Methods

Study population

Kaiser Permanente Northern California (KPNC) is a large,
integrated healthcare delivery system utilizing comprehen-
sive EMRs with inpatient, outpatient, laboratory, and phar-
macy data. As of January 2009, KPNC included 18 medical
centers and 3.3 million members, representing approximately
22% of the total population residing in 46 counties (951 zip
codes) in the Central Valley and San Francisco Bay area.
KPNC laboratory-based reports of notifiable diseases are sent
to the local HD, which in turn report them to the California
Department of Public Health (CDPH) (Backer et al., 2001;
California Code of Regulations, 2009).

Data streams

Twenty-two data streams were analyzed, based on syn-
dromic definitions (n = 14), prescription drug dispensings
(n = 1), microbiology tests ordered (n = 1), and microbiology
test results (n = 6) (Table 1). Syndromic definitions were
adapted from lists previously developed by a Centers for
Disease Control and Prevention/Department of Defense
working group (CDC, 2003). Upper GI (UGI) captured
vomiting, and lower GI (LGI) captured diarrhea and gastro-
enteritis (Table 2). Each stream consisted of residential zip
code-specific daily episode counts in 2009. Within each
stream, an ‘‘episode’’ was the first patient encounter after at
least 42 days with no encounter ( Jung et al., 2009).

Additional streams were generated but ultimately ex-
cluded from analyses. Pathogen-specific ICD-9 codes were
excluded because of unreliability, e.g., there were fewer ICD-9
code episodes for Salmonella (003.0, 003.20, 003.29, 003.8,
003.9) than laboratory tests positive for Salmonella, and ICD-9
codes are assigned before test results become available. Mi-
crobiology test results for specific pathogens (e.g., rotavirus
antigen tests) were excluded due to low usage.

Univariate single stream analyses

Near real-time prospective surveillance was mimicked by
analyzing data ‘‘each day.’’ The prospective space-time per-
mutation scan statistic (Kulldorff et al., 2005) was used to
detect and evaluate the strength of potential outbreaks. Using
a variable-sized cylinder, where the circular base represents
space and the height represents time, the method scans the
geographic area for potential outbreaks at different locations,
with different radii and lengths of time. For each location and
cylinder size, a likelihood ratio-based test statistic compares
the observed number of cases within the cylinders with what
would be expected if the spatial and temporal locations of all
cases were independent of each other so that there is no space-
time interaction. As such, it adjusts for any purely spatial and
any purely temporal clusters. The cylinder with the maximum
likelihood ratio is the most likely cluster, the least likely to
have occurred by chance. Calculations were done using
SaTScan� (www.satscan.org).

The maximum geographical size of the cylinder was set to
contain at most 50% of the observed episodes, and the maxi-
mum temporal size was set to 14 days. Since the weekly
pattern of health-seeking behavior may vary geographically,
we adjusted for space by day-of-week interaction, with holi-
days treated as Sundays and the day after holidays treated as
Mondays. The surveillance period was January 1 to December
31, 2009. A 365-day rolling control period established local
baselines for each zip code.

To determine statistical significance, 9,999 Monte Carlo
simulations (Dwass, 1957) were performed ‘‘each day.’’ The
recurrence interval (RI) for each cluster represents the length
of follow-up required to expect one cluster at least as unusual
as the observed cluster by chance (Kleinman et al., 2004). The
single stream RIs were statistically adjusted for multiple
testing in terms of the thousands of cylinders considered for
each data stream, but not for the fact that 22 different single
streams were analyzed. In Table 7 below, where only five
streams were considered, we also present RIs that were not
only adjusted for the many cylinders, but also for the five
streams analyzed. This was done by dividing each RI by five.
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For streams other than tests positive for GI pathogens, all
clusters from prospective analyses with RI of > 365 days were
identified. Clusters from the same stream on consecutive days
and overlapping in space were grouped together into ‘‘cluster
sequences.’’ These cluster sequences were then compared
across streams, and sequences with at least 1-day temporal
overlap and spatial overlap (cluster center in other cluster)
were further grouped together into ‘‘potential outbreaks.’’

For the six streams of tests positive for GI pathogens,
clusters with RI of > 60 days were identified. This lower RI
threshold was selected because of the sparseness of microbi-
ology data, and because the trigger to begin a cluster inves-
tigation may be lower for these streams, which are more
specific for acute infections than the syndromic streams.

The epidemiological interpretation of clusters is subjective.
Clusters may be prioritized for possible investigation by si-
multaneously weighing (1) the number of observed cases (the
greater, the more urgent the need for a public health inter-
vention), (2) the observed/expected number of cases (the

greater, the more excess risk), (3) the RI (the greater, the less
likely the observed clustering is due to chance), and (4) the
degree of localization (a smaller radius more strongly
suggests a common source or localized person-to-person
transmission).

Multi-stream analyses

Multivariate analyses use multiple streams in the same
statistical analysis (Burkom et al., 2005; Kulldorff et al., 2007;
Rolka et al., 2007). Five streams were included in multivariate
analyses: three microbiology-based streams were selected
because cluster detection could prompt case interviews and
PFGE testing of isolates, and two syndromic streams were
selected based on frequency of episodes and contribution to
potential outbreak detection in single stream analyses. To
avoid multicollinearity across streams, a patient appearing in
more than one stream within 14 days was retained in only one
stream. A priority order of increasing frequency was used so

Table 1. Data Stream Definitions

Category # Data stream Notes

UGI and LGI, ICD-9
code based

1 UGI in AC ICD-9 codes in Table 2
2 LGI in AC
3 UGI in ED
4 LGI in ED
5 UGI hospital discharge Primary discharge diagnosis
6 LGI hospital discharge
7 GI in AC, < 5 year-olds UGI and LGI diagnosis codes combined.

< 5 year-olds are the age category at highest
risk for rotavirus gastroenteritis (Peck and
Bresee 2006), and a population at higher risk
for outbreaks in daycare centers and petting
zoos.

8 GI in ED, < 5 year-olds
9 GI hospital discharge,

< 5 year-olds

10 UGI in AC with Rx Antibiotics (Rx) were identified using National
Drug Codes for macrolides, quinolones,
metronidazole, and trimethoprim-
sulfamethoxazole

11 LGI in AC with Rx
12 UGI in ED with Rx
13 LGI in ED with Rx
14 GI hospital admission Text strings for vomiting, diarrhea, and

gastroenteritis, with exclusions for chronic
diarrhea, pregnancy, chemotherapy, and
intoxication (Chapman et al., 2010; Chapman
2011)

Prescription
antidiarrheals

15 Antidiarrheal
dispensing

NDCs for diphenoxylate and loperamide.
Note that a portion of these dispensings
would reflect prescriptions in advance of
international travel, rather than acute illness
treatment.
Over-the-counter anti-diarrheal agents were
not considered, as relevant clinician
recommendations for symptomatic treatment
would be captured only sporadically in EMR
text fields.

Microbiology tests
ordered in any setting

16 Stool culture tests

Microbiology tests
positive for GI
pathogens

17 Campylobacter Positive stool culture test. Analyzed according to
date test ordered, not according to lagged date
when test results became available.

18 Salmonella
19 Shigella
20 E. coli O157:H7
21 Vibrio parahaemolyticus
22 Cryptosporidium Positive stain

AC, ambulatory care; ED, emergency department; GI, gastrointestinal; LGI, lower gastrointestinal; Rx, antibiotic prescription; UGI, upper
gastrointestinal.
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that patients would be retained in the stream in which they
were most proportionally informative: E. coli O157:H7, Sal-
monella, Campylobacter, LGI in ED, and LGI in AC.

With these five streams, the multivariate scan statistic si-
multaneously searched for clusters in all 31 possible combi-
nations of one or more streams, adjusting for the multiple
testing inherent in both the thousands of cylinders evaluated
for each combination and in the 31 data stream combinations
evaluated. On each surveillance day, the combined log-like-
lihood was defined as the sum of the individual log-likeli-
hoods for those streams with more observed events than
expected (Kulldorff et al., 2007). The maximum cylinder size
and other settings were the same as for the single stream
analyses.

State HD data

For context, but not for direct comparison with potential
outbreaks identified using KPNC data, we compiled a list of
GI disease outbreaks known to CDPH occurring in non-in-
stitutional settings affecting any of the 16 counties for which
KPNC had ‡ 10% population coverage. One author (D.G.)
provided preliminary GI illness outbreak reports, which had

been sent to CDPH by local HDs soon after outbreak detec-
tion. CDPH’s final foodborne disease outbreak reports re-
flected the best available information after completed
outbreak investigations. The preliminary and final outbreak
reports were unlinked and represented separate information
sources.

The CDPH state laboratory performs Salmonella serotyping.
Previously collected serotype information was obtained to
evaluate the two potential Salmonella outbreaks with the most
observed cases identified in KPNC EMR data.

Results

Figure 1 shows the frequencies and seasonal patterning of
the 22 data streams. The relative frequencies of pathogens
(Fig. 1A) were consistent with the most common laboratory-
confirmed infections in 2009 at the California FoodNet site
(CDC, 2010a).

Single stream analyses

In an illustrative potential outbreak, a signal occurred on
November 9, 2009 for stool culture tests ordered, with signals
continuing over the subsequent four days (Tables 3 and 4,
#19). Ultimately, 18 tests were ordered in one zip code over 5
days, with less than four tests expected. Statistically, this was
very unlikely to occur by chance. No corresponding cluster
was detected of tests positive for any of the six specific
pathogens under surveillance, but the cluster could have re-
flected an outbreak of a viral pathogen.

In single stream analyses of 16 non-pathogen-specific
streams, 24 potential outbreaks were detected using a 365-day
RI threshold (Table 4). Of the 16 streams, two had no clusters
with RI of > 365 days: UGI with Rx, in the AC and ED settings.
Three streams each contributed to the identification of > 5
potential outbreaks, all diagnoses in outpatient settings: LGI
in ED, UGI in ED, and LGI in AC.

In single stream analyses of six pathogen-specific streams,
five potential outbreaks (two Campylobacter and three Salmo-
nella) were detected using a 60-day RI threshold (Table 5). In
potential outbreak B, serotype information was available for
five of the six isolates, all from patients residing in one zip
code. All isolates were Salmonella enterica serotype Thompson.
Nationwide, Salmonella serotype Thompson represents only
1% of all serotyped Salmonella isolates (CDC, 2008), which
suggests this may have been an outbreak with a common
source or person-to-person transmission. This event was only
detected using microbiology data, not with any of the less
specific and noisier syndromic streams.

In potential outbreak C, serotype information was available
for all 10 isolates: four Enteritidis (the most common serotype
(CDC 2010a)), three Montevideo, one Heidelberg, one In-
fantis, and one Paratyphi B L( + ) tartrate + . This mix of se-
rotypes over 10 days across 71 zip codes is unlikely to
represent a common source outbreak.

Multi-stream analyses

Multivariate analyses detected six potential multi-stream
outbreaks (Table 6), two of which were not detected in single
stream analyses. Some potential outbreaks were detected by
both single and multi-stream analyses, but at different RI
strengths. Table 7 shows examples where multi-stream

Table 2. Syndromic Definitions for Upper and Lower

Gastrointestinal Illness

Syndrome Definition

International
Classification of
Diseases, Ninth
Revision codes

UGI illness Epidemic vomiting
syndrome

078.82

Gastritis and duodenitis 535.0, 535.4,
535.5, 535.6

Persistent vomiting 536.2
Nausea and vomiting 787.0

LGI illness Other bacterial food
poisoning

005.89, 005.9

Intestinal infection due
to other organisms

008.49

Bacterial enteritis
unspecified

008.5

Enteritis due to other
viral enteritis

008.69

Intestinal infection due
to other organism
not elsewhere
classified

008.8

Ill-defined intestinal
infections

009

Regional enteritis 555.0, 555.1,
555.2

Other and unspecified
noninfectious
gastroenteritis and
colitis

558.2, 558.9

Unspecified disorder of
intestine

569.9

Visible peristalsis 787.4
Diarrhea 787.91

LGI, lower gastrointestinal; UGI, upper gastrointestinal.
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analyses detected a cluster with a higher RI than single stream
analyses, and vice versa. In one example centered in Firebaugh
over 6 days, multi-stream analysis resulted in more timely de-
tection of a potential outbreak than single stream analysis (Fig.
2). Maps of clusters on all days in 2009 with signals in either
single or multi-stream analyses are available (see Supplemen-
tary Material available online at www.liebertonline.com/fpd).

Outbreaks reported to CDPH

Twenty-four GI outbreaks affecting the study area in 2009
were reported to CDPH. Three were multi-state outbreaks
associated with contaminated commercial food products
(Nielsen et al., 2010; CDC, 2009a; FDA, 2009). Two additional
outbreaks were laboratory-confirmed: a restaurant-based
norovirus outbreak (n = 8) and a home-based E. coli O157:H7
outbreak (n = 5). The remaining 19 reported outbreaks had no
laboratory-confirmed etiology, were mostly in restaurants

and child day care centers, and had few reported cases (me-
dian, 10; range, 3–35).

Discussion

GI disease-related data streams can be generated from
EMRs and prospectively used to identify potential outbreaks
in settings with extensive regional coverage, such as KPNC.
Different surveillance systems will have different strengths
and weaknesses, and one should not expect EMR data
streams to detect all outbreaks reported to CDPH and vice
versa. Not all true outbreaks are recognized, and not all rec-
ognized outbreaks are reported (CDC, 2010b). In addition, the
three multi-state outbreaks known to CDPH may have clus-
tered only in time but not in space within the catchment area,
so that they could not be detected by spatial methods. Also,
with a median number of nine cases, the other 21 outbreaks
reported to CDPH would have been difficult to detect. Given

FIG. 1. Monthly number of episodes in data streams related to gastrointestinal illness in Kaiser Permanente Northern
California, 2008–2009. (A) Data streams for microbiology tests positive for specific pathogens (n = 6). (B) Non-laboratory-
based data streams with ‡ 10,000 episodes in 2009 (n = 7). (C) Non-laboratory-based data streams with < 10,000 episodes in
2009 (n = 9). Legend indicates data stream and number of episodes in 2009.

Table 3. Illustrative Potential Outbreak: Stool Culture Tests Ordered

over Five Consecutive Days in One Zip Code

Start date Signal date
Number of
zip codes Observed (O) Expected (E) O/E

Recurrence
interval (days)

11/9/09 11/9/09 1 9 0.6 14.4 3,333
11/9/09 11/10/09 1 11 1.4 8.1 769
11/9/09 11/11/09 1 14 2.1 6.8 2,000
11/9/09 11/12/09 1 17 2.7 6.4 5,000
11/9/09 11/13/09 1 18 3.4 5.4 10,000
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the 22% KPNC population coverage, on average, only two
cases in each outbreak would be KPNC members. Thus,
monitoring EMR streams would complement rather than re-
place traditional outbreak detection systems, which typically
detect outbreaks in well-defined settings with no laboratory-
confirmed pathogen.

Several EMR streams emerged as most promising for GI
outbreak detection. First, microbiology test results are very
specific for acute enteric illness, and even with a low RI, a
cluster suggestive of a true outbreak was identified of ge-
netically related isolates (Table 5, potential outbreak B).
Also, stool culture orders reflect clinician suspicion of acute
illness and disproportionately represent patients with
bloody diarrhea and diarrhea duration of ‡ 3 days (Scallan
et al., 2006); it is unknown whether the intriguing potential
outbreak identified (Table 3) reflected a true outbreak or
something else, but it represents the type of event that public
health officials may be interested in prospectively detecting.
Finally, outpatient diagnoses contributed to the most po-
tential outbreaks (Table 4). Data are rapidly available in the
KPNC EMR: diagnoses and stool culture orders typically
within one day, and positive stool culture test results in a
median of three days. Multi-stream analyses could identify
potential outbreaks too faint for detection in single stream
analyses (Table 7) and improve the timeliness of detection
(Fig. 2), but were not consistently superior or inferior to
single stream analyses.

Several limitations should be noted. First, analyses were by
zip code of patient residence, so point source outbreaks where
people congregate, then disperse, may be missed. Second,
only a portion of the total population are KPNC members,
and only a fraction of members with GI illness will seek care
or submit a stool specimen and thus appear in an EMR;
generally, about 20% of patients with an acute diarrheal ill-
ness seek medical care, and 4% submit a stool specimen ( Jones
et al., 2007). Hence, an EMR-based surveillance system cannot
be expected to detect very small outbreaks. Third, we evalu-
ated only one geographical area during 1 year. The apparent
relative strengths across streams could be different in other
places or years.

Microbiology test results in EMRs seem to be especially
promising for outbreak detection. Given limited resources
and competing priorities within HDs, there are delays in
serotyping and an inability to perform PFGE testing on all
isolates. Currently at CDPH, Salmonella isolates are prioritized
for investigation (e.g., patient interview and/or PFGE testing)
based on the presence of an unusual serotype, an increase in a
common serotype, or recognized clusters. An alert of a cluster
of Campylobacter isolates might trigger CDPH to collect case
report details or conduct PFGE testing, which are non-routine
activities for campylobacteriosis. HDs could strengthen co-
operative partnerships with healthcare systems like KPNC,
such that in addition to routinely submitting their isolates to
the HD for possible further testing, laboratories in these
healthcare systems could provide HDs with counts of mi-
crobiology tests ordered and positive, by zip code, for auto-
mated daily analyses at the HD, in order to identify unusual
space-time clustering. In concert with other strategies for near
real-time laboratory-based surveillance (Nielsen et al., 2006;
Miller et al., 2010), this could more efficiently prioritize test-
ing and patient interviews, potentially improving outbreak
detection.
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Table 7. Six Illustrative Examples in Which Single and Multi-Stream Analyses

Detect the Same Cluster with Different Strength

Did single or multi-stream
analysis detect cluster
with higher recurrence
interval?

Signal date
(2009)

Recurrence interval
from single stream analysis,
not adjusted for the five data

streams evaluated

Recurrence interval
from single stream analysis,

adjusted for the five data
streams evaluated

Recurrence interval
from multi-stream analysis,

adjusted for the 31 combinations
of the five data streams evaluatedLGI in AC LGI in ED LGI in AC LGI in ED

Multi-stream 7-May 33 118 7 24 435
15-Jul 2,500 189 500 38 10,000
26-Oct 227 – 45 – 417

Single stream 30-Mar – 1,111 – 222 84
10-Jul 5,000 – 1,000 – 313
21-Jul – 10,000 – 2,000 2,000

AC, ambulatory care; ED, emergency department; LGI, lower gastrointestinal illness.

FIG. 2. Illustrative example where multi-stream analysis had more timely detection of a potential outbreak than single
stream analysis. On May 10, multivariate analysis first detected a cluster, with a recurrence interval of 667. The next day on
May 11, the single stream analysis of lower gastrointestinal illness (LGI) in the emergency department (ED) first detected the
same cluster. On May 12, the single stream analysis of lower gastrointestinal illness (LGI) in ambulatory care (AC) detected a
cluster, but it was geographically offset. On May 13, the single stream analysis of LGI in AC detected the same cluster that the
multivariate analysis first detected 3 days earlier. Color images available online at www.liebertonline.com/fpd
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