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Abstract

Purpose—To couple quantitative compositional MRI, gait analysis, and machine learning 

multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder 

accompanied by biochemical and morphological changes in the articular cartilage, modulated by 

skeletal biomechanics and gait. While we can now acquire detailed information about the knee 

joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis 

and disease management of knee OA.

Materials and Methods—We mapped 178 subjects in a multidimensional space integrating: 

demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and 

T2 and R2-R1ρ (1/T2−1/T1ρ) acquired at 3T and whole-organ magnetic resonance imaging score 

morphological grading. Topological data analysis (TDA) and Kolmogorov–Smirnov test were 

adopted for data integration, analysis, and hypothesis generation. Regression models were used for 

hypothesis testing.

Results—The results of the TDA showed a network composed of three main patient 

subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P 
= 1.45*10−8, T1ρ medial tibia P = 1.05*10−5), the presence of femoral cartilage defects (P = 

0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10−4) were key markers in 

the subpopulation classification. Within one of the subpopulations we observed an association 

between the composite metric R2-R1ρ and the longitudinal progression of cartilage lesions.
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Conclusion—The analysis presented demonstrates some of the complex multitissue biochemical 

and biomechanical interactions that define joint degeneration and OA using a multidimensional 

approach, and potentially indicates that R2-R1ρ may be an imaging biomarker for early OA.

Level of Evidence—3

Osteoarthritis (OA) is a complex and multifactorial disorder and a leading cause of chronic 

disability. OA prevalence in the United States is conservatively estimated at 26.9 million US 

adults,1 with estimated annual costs up to $15 billion.1–3

Magnetic resonance imaging (MRI) plays a central role in OA diagnosis and research, and in 

the last few years has shed light on disease etiology, identifying potential treatment 

pathways, and prediction of long-term outcome.4 Scoring systems of knee morphological 

defects, such as the whole-organ magnetic resonance imaging score (WORMS), have been 

extensively used.5 However, these morphological assessments are not able to capture the 

early biochemical changes that occur in OA.6

MR-derived compositional imaging such as T1ρ and T2 relaxation time techniques can 

capture early degeneration and have been extensively used to assess the structural and 

biochemical properties of cartilage.6 While T2 relaxation times are primarily affected by 

hydration and collagen structure due to dipolar interactions,7 the spin-lock techniques used 

in T1ρ reduce dipolar interactions, obtaining a biomarker sensitive to chemical exchange on 

proteoglycan and water protons,8 although T1ρ changes in cartilage may be affected by 

hydration and collagen structure as well.9

In addition, in the last few years there was a growing interest in the analysis of relaxation 

rate dispersions, R1ρ (1/T1ρ) and R2 (1/T2), as possible early imaging biomarkers, which 

several studies have correlated with cartilage quality, specifically the chemical and diffusive 

exchange at higher fields.10 A recent in vivo study11 explored the usage of R2–R1ρ as a 

composite metric for the biochemical characterization of the articular cartilage in subjects 

after anterior cruciate ligament (ACL) injury and reconstruction, demonstrating that R2–R1ρ 
values were predictors of the change in pain perception 6 months after ACL reconstruction.

Kinematics and kinetics analyses provide additional tools for OA assessment, producing 

clinically relevant data.12 Increased knee adduction moment and adduction moment impulse 

result in higher medial tibiofemoral joint (TFJ) loading in the knee, and have been well 

documented to be related to the presence, severity, and progression of medial compartment 

TFJ OA. At the patellofemoral joint (PFJ), increased knee flexion moment is indicative of 

higher quadriceps force, which can result in greater compressive force at the PFJ and higher 

PFJ stress.25,26

Since OA involves the entire joint including interconnected morphological, biochemical, and 

biomechanical aspects, the separate analysis of each contributing factor is unable to fully 

capture the complex nature of this multifactorial disease. In this study we applied a novel 

multidimensional data analysis tool, based on data topology, to analyze a dataset including: 

cartilage compositional MRI data obtained through T1ρ and T2 relaxation time and R2-R1ρ 
relaxation rate, gait kinematics and kinetics, and MRI morphological grading using 
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WORMS. The aims were 1) mining latent patterns in the complex multidimensional data, 

analyzing all the variables simultaneously; and 2) identifying imaging biomarkers able to 

predict the longitudinal progression of cartilage lesions in subjects with and without 

radiographic signs of OA.

Materials and Methods

Subjects

The subjects included in the analysis are part of an ongoing longitudinal case–control study 

aimed to study the effect of loading in subjects with and without OA. The subjects were 

recruited via posted flyers from the local community. The inclusion criteria for OA patients 

were: age >35 years, knee pain, aching, or stiffness on most days per month during the past 

year, or use of medication for knee pain on most days per month during the past year, and 

definite radiographic evidence of knee OA (Kellgren–Lawrence [KL] >1). The inclusion 

criteria for controls were: age >35 years, no knee pain or stiffness in either knee or use of 

medications for knee pain in the last year, and no radiographic evidence of OA (KL 1) on 

either knee. The exclusion criteria for all subjects were 1) concurrent use of an 

investigational drug, 2) history of fracture or surgical intervention in the studied knee, and 3) 

contraindications to MRI. A total of 178 subjects were included in this study. All subjects 

gave informed consent, and the study was carried out in accordance with the regulations of 

the Committee for Human Research at our institution.

Demographic information including age, gender, body mass index (BMI), and race were 

collected at the time of recruitment; after the first visit patients were followed up annually 

for 3 years. At each visit subjects filled out Patients Reported Outcomes Measures (PROMs) 

aimed to assess patients pain, symptoms, stiffness, function, knee-related quality of life, and 

physical activity levels. Specifically, PROMs surveys collected for this study were: knee 

outcomes in osteoarthritis scores (KOOS),13 Western Ontario and McMaster Universities 

osteoarthritis index (WOMAC),14 and Marx physical activity scale.15 Knee radiographs 

were acquired and evaluated by a musculoskeletal radiologist with more then 20 years of 

experience using the KL scoring system.16 KL repeatability was previously assessed with 

kappa score ranging between 0.67–0.98 when 1403 subjects from the Rotterdam study were 

considered.17,18

Figure 1 shows a diagram of all the data categories collected and used to built a 366D 

feature vector for the description of each subjects; the variables were categorized as: 

demographic (nine variables), clinical data or PROMs (23 variables), X-rays (two variables), 

morphological MRI (44 variables), compositional MRI (256 variables), and biomechanics 

(32 variables). Supplementary Table 1 includes a data dictionary of all variables.

All the information collected and results of the quantitative analysis were stored in a 

centralized Research Electronic Data Capture (RedCap) database.19 Supplementary Figure 1 

shows a more detailed representation of the overall postprocessing pipeline.
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MRI Protocol

All images were acquired using a 3T MRI scanner (GE, Milwaukee, WI) with an eight-

channel knee coil (Invivo, Gainesville, FL). Our cartilage-sensitive protocol included three 

main sequences. 3D high-resolution fast spin-echo (FSE CUBE) used for semiautomatic soft 

tissues segmentation (cartilage and meniscus) and to evaluate morphological abnormalities 

using modified WORMS5 performed by a single reader (L.N., 5 years of musculoskeletal 

imaging experience). One previous study reported intra- and interobserver agreement of 0.87 

(0.804–0.932) and 0.84 (0.771–0.911) for meniscus WORMS and 0.84 (0.771–0.911) and 

0.79 (0.72–0.868) for cartilage WORMS.20

The 3D-FSE sequence parameters were: repetition time (TR) / echo time (TE) 1500/26.69 

msec, field of view 16 cm, matrix 384 × 384, slice thickness 0.5 mm, echo train length 32, 

bandwidth = 37.5 kHz, number of excitations (NEX) 0.5, acquisition time 10.5 minutes. T1ρ 
and T2 relaxation time sequences were acquired using 3D acquisition scheme-

magnetization-prepared angle-modulated partitioned-k-space SPGR snapshots (3D 

MAPSS).21 Both T1ρ and T2 sequences were designed containing an interchangeable 

preparation, in which either the T1ρ or the T2 preparation could be run for any echo.21 The 

following parameters were used: T1ρ TR/TE 9/2.6 msec, time of recovery 1500 msec, field 

of view 14 cm, matrix 256 × 128, slice thickness 4 mm, bandwidth 62.5 kHz, time of spin-

lock (TSL) 0/2/4/8/12/20/40/80 msec, frequency of spin-lock 500 Hz, acquisition time 11 

minutes. T2 was acquired with the same parameters as T1ρ except for magnetization 

preparation TE 1.8/3.67.3/14.5/29.1/43.6/58.2, acquisition time 11 minutes. Different from 

how presented previously,21 T1ρ and T2 sequences were run separately. The protocol was 

performed twice: after 45 minutes of knee unloading and with a 50% body weight load 

applied to the foot using MRI-compatible weights aimed to simulate static standing.

All the image postprocessing was performed using in-house developed software written in 

MatLab (MathWorks, Natick, MA), previously described and evaluated.22,23 Briefly, six 

cartilage global compartments (LF: lateral femur, MF: medial femur, LT: lateral tibia, MT: 

medial tibia, TrF: femoral trochlea and P: patella) were segmented semiautomatically on the 

CUBE image after rigid registration on the TSL = 0 image of the T1ρ. The reproducibility of 

the adopted relaxation time quantification technique was reported previously.24 The global 

compartments were subsequently divided into subcompartments and superficial and deep 

layers using anatomical landmarks automatically extracted from meniscus segmentation and 

articular and bone layers as previously described25 and shown in the postprocessing pipeline 

included as Supplementary Figure 1. T1ρ and T2 maps were computed using three-

parameters exponential fitting after all the echoes were nonrigidly registered to correct for 

any subjects movement during the scan.26 T1ρ and T2 averages within global compartment 

subcompartments and layers were considered as quantification. R2 (1/T2) − R1ρ (1/T1ρ) were 

also computed on a voxel base after registration between T1ρ and T2 sequences.22

Kinematic and Kinetic Gait Analysis

Three-dimensional lower extremity kinematics were recorded using a 10-camera motion 

capture system (VICON, Oxford Metrics, Oxford, UK) at a sampling rate of 250 Hz. 

Ground reaction force data were obtained using two embedded force platforms (AMTI, 
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Watertown, MA) at a sampling rate of 1000 Hz. Marker and ground reaction force data were 

collected and synchronized using motion capture software (Nexus, Oxford Metrics) while 

subjects walked at a self-selected speed. Kinematic and kinetic data were computed using 

Visual3D (C-Motion, Germantown, MD) and MatLab. Joint kinematics included: hip and 

knee flexion/extension, abduction/adduction and internal/external rotation angles and were 

not normalized to the standing calibration position. Joint kinetic data included moment and 

moment impulses; Joint moments were reported as external moments and normalized to 

each subject’s body mass (kg) and height (m). Knee moment impulses were calculated as the 

integral of knee moment (Nm/kg × m) with respect to time (msec).

Multidimensional Data Integration and Data Analysis

As a preliminary analysis, and for descriptive proposes only, we analyzed clinical and 

quantitative (MRI and biomechanics) variables comparing OA and controls subjects’ based 

on KL grading using an independent t-test. The distribution of morphological defects in the 

subjects group was assessed and reported, and the overall dataset correlation matrix was 

computed.

The multidimensional data integration and analysis pipeline and hypothesis testing is shown 

in Fig. 2. Multidimensional data integration and visualization was performed using 

Topological Data Analysis (TDA) on all 178 subjects at the baseline timepoint using Ayasdi 

cloud-based platform (Ayasdi, v. 3.0). TDA involves projecting individual patients into the 

“OA syndromic space” defined by all outcome variables simultaneously.27 The TDA 

workflow is illustrated in Fig. 3. The workflow automatically renders cross-correlations 

across all selected variables and places individuals into a multidimensional point cloud space 

viewed through a mathematical “lens” of principal component analysis. TDA clusters 

subjects based on their similarity where similar individuals were grouped into nodes. If 

individuals appear in two different nodes, a line connects the nodes. The extracted topology 

can then be colored by variables of interest to explore the network. The mapping of subjects 

based on the selected variables into this OA network is referred to as the OA syndromic 

space. Subjects were clustered into the OA syndromic space using a norm correlation as a 

metric defining the distance between data points (X, Y) in space given by:

NormCorr(X, Y) = 1 − r(X′, Y′)

where X and Y are describing the data points and X′, Y′ are the column-wise, mean 

centered, and variance normalized version of X and Y, and:

r(X, Y) =
N∑i = 1

N XiYi − ∑i = 1
N Xi∑i = 1

N Yi

N∑i Xi
2 − (∑i Xi)

2 N∑iYi
2 − (∑iYi)

2

In addition, we used as a mathematical lens called metric PCA 1 (resolution: 30, gain: 3.5) 

and metric PCA 2 (resolution: 30, gain: 3.5) to partition data into bins for clustering. Further 

details about TDA pipeline and theory are reported in Ref. 28.
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First, morphological MRI, biomechanics, and compositional MRI were used to define the 

OA network. The goal was to identify distinct patient subpopulations (subnetworks) within 

the full multidimensional space and to analyze the distribution of outcomes variables. 

Outcome variables such as KL grading, KOOS, etc., were used to color the network, with 

the aim to evaluate the obtained OA syndromic space (Fig. 2A).

Second, we performed TDA on the quantitative measures alone, in the absence of clinical 

morphological MR grading information, to assess the feasibility of using TDA on 

quantitative measures as an automated clinical decision-support tool.

Third, we assessed the ability of the TDA to reveal insights and generate hypothesis on 

relaxation or biomechanical parameters able to predict disease progression. Any change in 

WORMS cartilage lesion score from baseline to the 2-year follow-up were considered as OA 

progression, and the binary outcome obtained was used to render the data topological 

network to explore the presence of subnetworks of progressors.

The splitting of the generated network into the subnetworks was visually guided by the 

structure of the topology. These subnetworks of interest were formally evaluated by the 

Kolmogorov–Smirnov (KS) test to generate hypothesis on the numerical predictors of the 

subnetworks membership (Fig. 2B). The results of the KS test were ranked by their P-value 

using the Benjamini–Hochberg method to correct for multiple comparisons. A separate 

analysis was performed for categorical predictors. For each categorical variable and for each 

value it can assume, we computed the percent of occurrences of that value in the first 

selected subnetwork as well as the percent of that value in the comparison subnetwork. From 

those numbers we computed hypergeometric P-values. This value reported in our analysis 

expresses the enrichment of that particular value in the selection vs. the comparison set.

Logistic regression was then used to confirm the hypothesis generated by the TDA (Fig. 2C). 

The classification performances were assessed using area under the curve (AUC) in receiver 

operating characteristic (ROC) analysis (Fig. 2D). Logistic regression, t-test, and ROC 

statistical analysis were conducted using MatLab Statistics Toolbox Release 2015b. The 

significance level was set as P < 0.05.

Results

Of the 178 analyzed subjects, 57 (32.02%) showed radiographic signs of osteoarthritis (KL 

> 1). OA subjects were significantly older compared to non-OA cases (age: KL > 1 57.30 

± 8.9, KL 0–1 49.19 ± 8.33, P < 0.001); demographic distribution is reported in Table 1.

OA subjects showed significantly worse outcome in all the KOOS and WOMAC categories 

(P < 0.001). Significantly less self-reported Marx physical activity scale running and 

decelerating was also observed in the KL > 1 group. Analyzing compositional MRI, we 

observed, consistent with a previous report, a prolongation in T1ρ and T2 relaxation time in 

OA subjects compared with control, with the biggest differences shown in the central 

posterior subcompartment of lateral femur (T1ρ: KL > 1 34.6 ± 4.6 msec, KL 0–1 32.2 

± 0.03 msec, P = 0.007; T2: KL > 1 27.00 ± 2.88 msec, KL 0–1 24.71 ± 3.10 msec, P < 

0.001). Comparisons of OA to control subjects on composite metrics R2-R1ρ revealed patella 
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articular layer as the only compartment showing significant differences, with lower R2-R1ρ 
observed in OA subjects compared with controls (R2-R1ρ: KL > 1 0.0079 ± 0.002 msec−1, 

KL 0–1 0.0095 ± 0.003 msec−1, P = 0.028). A trend toward significance was also observed 

in the central posterior lateral femur (R2-R1ρ: KL > 1 0.01 ± 0.005 msec−1, KL 0–1 0.0013 

± 0.006 msec−1, P = 0.088) and medial femur (R2-R1ρ: KL > 1 0.0098 ± 0.005 msec−1, KL 

0–1 0.0114 ± 0.004 msec−1, P = 0.097). In kinematics and kinetics data analysis the more 

marked differences between OA and control subjects were observed in the peak knee 

abduction angle (KL > 1 3.34° ± 4.59°, KL 0–1 5.29° ± 3.31°, P = 0.012) and peak hip 

adduction moment (KL > 1 0.62 ± 0.14 Nm/kg*m, KL 0–1 0.69 ± 0.11 Nm/kg*m, P = 

0.012).

WORMS morphological assessment in the overall dataset showed that 155 (87.07%) out of 

the 178 subjects showed signal abnormality in at least one cartilage compartment (WORMS 

> 0), while 119 (66.8%) showed definite cartilage lesion (WORMS > 1). Among those 119 

showing cartilage lesion, 36 (30.25%) presented lesions in both the tibia-femoral and 

patella-femoral joint; 65 (54.62%) showed isolated patella-femoral lesions and only 18 

(30.25%) showed isolated tibia-femoral lesions. In all, 115 (64.6%) subjects had meniscal 

lesions and 40 (22.47%) showed ligament abnormalities. Altogether, 94 (52.80%) subjects 

presented bone marrow edema lesion-like pattern and 19 (10.64%) showed the presence of 

subchondral cysts. Figure 4 shows the correlation matrix obtained analyzing the simple 

association between all the 366 different variables. Strong (R > 0.6) intradomain correlations 

are observed and moderate (0.4<|R|<0.6) correlations were observed between morphological 

MRI, compositional MRI, and biomechanics data.

The data topology extracted on the combined outcome domains of morphological MRI 

grading, biomechanics, and compositional MRI produced a polarized network, with severe 

OA subjects (red nodes) appearing in the lower right and less severe OA (blue nodes) in the 

upper left (Fig. 5), demonstrating that the selected variable domains are appropriate for the 

analysis of OA (OA syndromic space). Considering biomechanics and compositional MRI 

variables alone (ie, quantitative measures only) a clear network composed of three distinct 

subnetworks emerged, as shown in Fig. 6A. Forty-eight (26.97%) of the subjects were 

observed to be part of subnetwork 1 (left) and 109 (61.24%) of subnetwork 2 (right); six 

(3.37%) are included in both subnetworks; and 15 (8.43%) subjects form the disconnected 

subnetwork 3 and the single-tons (unconnected nodes). To explore the obtained topology, the 

network was then colored by gender (Fig. 6B), KOOS pain patient-reported outcome (Fig. 

6C), age (Fig. 6D), and KL grading (Fig. 6E). We chose to show variables known as possible 

risk factors of OA: as gender and age, or measures typically used as a symptomatic or 

radiographic definition of OA: as KOOS pain and KL grading. In addition to the topology 

renderings reported here, a more comprehensive visual inspection on the other outcome 

variable in demographics, X-ray, and PROMs categories (listed in Supplementary Material 

1, variable dictionary) was performed.

Based on the visual assessment of the network, subjects with radiographic signs of OA and 

worse self-reported pain were mostly concentrated in subnetwork 2, while KL 0–1 and 

KOOS > 90 (no pain) subjects were mostly located in subnetwork 1. This suggests a 

relationship between the subnetwork membership and OA presence. Ad hoc analysis 
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confirmed the visual observation KL grade. Significant KL differences were observed 

between the two main subnetworks (KL subnetwork 1: 0.79 ± 0.95, KL subnetwork 2 1.29 

± 1.17 P = 0.010). However, no significant differences were observed in KOOS pain. The 

KS test was then used for a formal hypothesis generation considering all the variables as 

possible predictors of subnetworks membership. In all, 149 variables were significant 

predictors of subnetworks membership after correction for multiple comparisons (Table 2A 

shows the first 30 variables, the whole table is reported in Supplementary Table 2). The top-

ranked variables showed a KS P range between 1.45*10−8 and 1.14*10−5; and they were 

mostly unloaded T2 MRI variables. It is worth noticing that most of the subcompartmental 

and layers values are strongly correlated with global averages, showing similar trends, as 

expected. Unloaded T2 lateral femur was observed as the strongest predictor of subnetwork 

membership (T2 LF subnetwork 1: 21.22 ± 2.52 msec; T2 LF subnetwork 2: 25.98 ± 2.6 

msec KS P = 1.45*10−8). To independently confirm the predictive validity of LF T2 for OA 

patient clustering we performed a logistic regression model. Considering T2 LF alone we 

were able to accurately predict the cluster membership: ROC AUC: 91.06% (95% 

confidence interval [CI] 85.65%–96.46%); best balancing between sensitivity and specificity 

obtained using a threshold of 23.97 msec (sensitivity 86.76% specificity 86.84%) (Fig. 7A). 

The regression confirmed T2 LF as a predictor of OA subpopoulations. Within the 

categorical variables the strongest significant differences were observed in race distribution 

and the presence of cartilage and meniscus lesions. Patients in subnetwork 1 had 6.78% 

more intact medial femoral and 5.24% more lateral femoral cartilage, 6.03% more intact 

medial meniscus body. 8.68% more Asian subjects were observed in subnetwork 1 

compared to subnetwork 2 (Table 2B). Even though we observed a KL difference in the two 

main subnetworks, the data-driven classification proposed by TDA does not show KL as the 

strongest predictor, suggesting the presence of subjects’ subpopulations that could be well 

characterized by T2 relaxation times but not necessarily have strong differences in OA 

radiographic signs. The results obtained suggest a potential new biomechanical and 

compositional MRI-based grouping, as TDA clearly showed the presence of distinct 

subjects’ subpopulations characterized by strong biochemical signatures.

To accomplish the second aim of this study, the MRI and biomechanics network was then 

colored by the progression variable (Fig. 8). Subjects who showed cartilage lesion 

progression (n = 29) were distributed in both the main subnetworks; however, we observed a 

group of subjects belonging to the progression subcohort within subnetwork 1 concentrated 

in a specific location of the topological subnetwork 1 (subnetwork 1a, dashed circle in Fig. 

8). While no demographics or KL differences were observed between the subjects in 

subnetwork 1a and the rest of the subnetwork 1 at the time of the first visit, composite metric 

R2-R1ρ in the lateral tibia, T2 relaxation time in articular layer of the lateral tibia, and T2 

relaxation time in the posterior lateral tibia subcompartments were observed to be different 

(KS P = 0.02, 0.035, 0.044, respectively), generating the hypothesis of R2-R1ρ as a possible 

early predictor of cartilage lesions progression. The analysis of the categorical variable 

shows that the progressors in subnetwork 1 were reported significantly lower (worse) 

baseline KOOS sport subscores (hypergeometric P = 0.012) and a higher score for effusion 

category measured by WORMS (hypergeometric P = 0.027).
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To confirm the hypothesis that R2-R1ρ variables are a possible predictor of cartilage lesion 

progression, we then performed a logistic regression considering just the subjects belonging 

to subnetwork 1 and assigning the progression and nonprogression group membership 

computed using WORMS.

R2-R1ρ in the tibia was confirmed to be different between progression and nonprogression 

cohorts in subnetwork 1. In particular, the strongest predictors were observed in the medial 

compartment. (R2-R1ρ MT progression cohort in subnetwork 1: 0.0172 ± 0.005 msec−1; R2-

R1ρ MT nonprogression cohort in subnetwork 1: 0.025 ± 0.008 msec−1 P = 0.0069.) Using 

this feature alone to perform progression vs. nonprogression binary classification we 

obtained an AUC: 83.8% (Fig. 7B).

This analysis suggests R2-R1ρ as one of the possible predictors of cartilage lesion 

progression in just one of the two subpopulations identified by the multidimensional analysis 

approach, highlighting the value of using data-driven TDA-based grouping.

Discussion

This work, utilizing state of the art imaging, gait analysis, and machine-learning tools, 

attempts to set up a multidimensional platform for improving OA outcome prediction and 

patient substratification.

OA, being a polygenic, multifactorial, and complex disease, characterized by several 

phenotypes, seems the perfect candidate for multidimensional approaches and precision 

medicine.29 However, in order to accomplish this ambitious task multifactorial data-

integration from diverse assessments spanning morphological, biochemical, and 

biomechanical features are required. This work attempts to meet the existing gap in 

multidimensional data analysis for precision medicine in OA, which has been considered an 

unsolved challenge.30

Machine-learning approaches, as the one applied in the present study, coupled with the 

power of compositional MRI and gait analysis techniques, open new possibilities for large-

scale data integration, and multidimensional visualization to compare individual patients in a 

multidimensional manner. This approach overcomes the inherent limitations of single-

variable analysis and represents a step towards OA precision medicine. By extracting 

fundamental shapes (patterns) in high-dimensional data, TDA provides visualization that 

have the potential of suggesting novel insights about the data, identifying meaningful 

subpopulations.28

While TDA has shown promising results in several fields, exploring low-density states in 

biomolecular folding pathways,31 phenotyping breast cancer28 and fragile X syndrome, 32 

and neurotrauma,27 as a feasible strategy for feature discovery in multimodal data streams, 

there are no previous reports using this technique to study OA. The present study is the first 

example of TDA applied in the context of OA, providing large-scale integration of 

compositional imaging and skeletal biomechanics.
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Extracting patterns in the OA syndromic space via shape-based data analysis was possible 

due to the three key ideas on which TDA is based: 1) coordinate-free description, 2) 

invariance to small deformation, and 3) compactness.28 Coordinate-free description permits 

the generalizability of the insights extracted from the shape of complex data. Topological 

constructions do not depend on the coordinate system chosen, but only on the distance 

function chosen to describe the similarity of two data points (patients) in the syndromic 

feature space. The second principle of invariance to small deformation guarantees robustness 

to noise while the third, compactness, allows complex data to be represented in a simple 

way. Topology uses finite representations of shapes, which means identifying a shape using 

a finite combinatorial object.

The compactness of the TDA description allowed us to visualize the OA syndromic space 

including biomechanical and compositional MRI data simultaneously. The analysis revealed 

a novel partition of OA patient subpopulations, never explored before, and that clearly 

showed the complex interaction between joint biomechanical and biochemical composition 

of the articular cartilage. A clear presence of two distinct patient subpopulations was 

observed in our dataset, mainly characterized by prolongation in relaxation times. Despite 

significant differences in KL grading observed between the two main subpopulations, the 

data-driven clustering obtained with TDA proposes a new phenotyping of these subjects that 

only partially overlaps with the radiographic-based or symptom-based classic disease status 

classification, but it is instead characterized by a strong cartilage compositional signature. T2 

relaxation times were observed as strong predictors of the subpopulation division.

But most important, this subgrouping was essential in the identification of predictors of 

cartilage lesion progression. R2-R1ρ and T2 in the articular layer lateral tibia were observed 

as predictors of the cartilage lesion progression in subjects within subnetwork 1. This 

suggests separate progression pathways of the identified subnetworks and proposes the 

composite R2-R1ρ as a possible early biomarker of cartilage degeneration. Specifically, the 

differences between progression and nonprogression cohorts were observed in the 

superficial layer of the cartilage. These results confirm previous observations that showed 

early cartilage compositional changed just in the superficial layer before radiographic OA 

onset.33

While both T1ρ and T2 are recognized as valuable non-invasive methods for detecting 

cartilage compositional changes in OA subjects, the sensitivity of these parameters for 

detecting early-stage biochemical changes have been criticized due to experimental 

parameter-dependency and effects of different field strengths on relaxation times.34–36 

Measuring relaxation times at different locking fields negates this frequency dependency, a 

phenomenon known as dispersion.34,36–38 Dispersion studies point to proton-to-proton 

exchange as the predominating factor mediating T1ρ dispersion, while temperature and pH 

influence proton exchange rate.37,39

Further analysis, on larger longitudinal datasets, are needed to confirm the results of this 

pilot study. Cross-validations and evaluation of the prediction performance on a separate test 

set are also needed to confirm our observations. In the current study, all the quantitate data 

was collected for all three timepoints, but a complete analysis was performed just for the 

Pedoia et al. Page 10

J Magn Reson Imaging. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



baseline timepoint, the analysis of the longitudinal variation of the topology, and observing 

the migration of specific subnetworks could be of interest, and it is definitely in our future 

plan. While this study had the goal of generating new hypotheses on possible OA imaging 

biomarkers, designs more specifically focused on the evaluation of the combined metric R2-

R1ρ as a possible predictor of cartilage lesion progression need to be performed to confirm 

the observations from this study, which at this stage are just preliminary. Nevertheless, this 

analysis provides proof-of-concept of the potential derived by the allied use of 

compositional MRI and multidimensional data analysis to understand pathogenesis, natural 

history, and predicting disease onset and progression in OA. However, it needs to be 

acknowledged that the unsupervised nature of the technique allows it to be applied just as a 

multidimensional visualization tool for hypothesis generation and not to build prediction 

models. By scaling on a larger sample size and longer follow ups, it would be feasible to 

apply supervised learning approaches to improve prediction ability and select relevant 

features. On the other hand, attacking a problem as complex as OA with an unsupervised 

technique has the potential to reveal completely unexpected patterns and latent information, 

finding answers to questions we have not thought to ask.

In conclusion, we have set up a pipeline and performed an initial multidimensional data 

integration and analysis needed to characterize OA as a multicompartment joint degenerative 

disease. The discovered multidimensional patterns may lead to a better understanding of the 

pathogenesis and natural history, may help in developing progression and prediction models, 

identifying modifiable risk factors, and may potentially help in prevention and early 

interventional studies in the future.

Through the multidimensional integration of biomechanical and compositional MRI 

variables, we were able to identify imaging biomarkers able to predict disease progression. 

Specifically, we demonstrated a possible usage of the combined compositional metric R2-

R1ρ as an early predictor of cartilage lesion progression in subjects with and without 

radiographic signs of OA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Diagram describing the data categories used to build the 366D feature vector for the 

description of each subject. KL grading, Kellgren-Lawrence grading.
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FIGURE 2. 
Multidimensional data integration and analysis pipeline. A: Stage 1: Data integration and 

visualization. The observed compositional MRI, MRI morphological grading, and 

biomechanics variables were fed into a topological data analysis workflow. The extracted 

networks were colored by variables of interest and subpopulations were defined. B: Stage 2: 

Hypothesis generation. KS tests were applied and results were P-ranked to identify variables 

that distinguish the subpopulations of interest. C: Stage 3: Hypothesis testing. A logistic 

regression was used to confirm the predictive validity of the extracted variables. D: Stage 4: 

Classification performance testing. ROC curves were used to define the classification 

performance of the predictors. KL grading, Kellgren–Lawrence grading; KS-test, 

Kolmogorov–Smirnov test; ROC curves, receiver operating characteristic curves.
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FIGURE 3. 
Topological data analysis workflow. First, a cross-correlations is rendered across all selected 

variables. Individuals are placed into a multidimensional point cloud space viewed through a 

mathematical “lens” of principal component analysis. Topological data analysis clusters 

patients based on their similarity, where similar individuals are grouped into nodes. Here, a 

red circle represents one group of subjects and a blue circle represents another group of 

subjects. A line connects nodes (groups of subjects) that share an individual. The extracted 

network can then be colored by variables of interest.
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FIGURE 4. 
Heat map of the correlation matrix of all 366 collected endpoints. Positive correlations are 

shown in red and negative correlations in blue.
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FIGURE 5. 
Combined network of morphological MRI, biomechanics, and compositional MRI. The 

network shows a gradient with severe patients appearing in the lower right (marked with 

dashed black circles) and less severe in the upper left based on KL grading.
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FIGURE 6. 
Combined biomechanics and compositional MRI topological data analysis network. A: 
Extracted network based on biomechanics and compositional MRI variables. The three 

distinct subnetworks are marked with dashed circles. B–E: The same network is colored by 

gender, KOOS pain, age, and KL grade. The combined network of biomechanics and 

compositional MRI showed differences in osteoarthritis severity defined by KL grade 

between the subnetwork 1 and subnetwork 2.
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FIGURE 7. 
Receiver operating characteristic (ROC) curves showing the performances of: (A) 
subnetworks classification considering T2 relaxation time in lateral femur as a discriminative 

variable; (B) cartilage lesion progression prediction in subnetwork 1, considering R2-R1ρ in 

the medial tibia as a discriminative variable.
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FIGURE 8. 
Progression cohort identified within the combined biomechanics and compositional MRI 

network. Combined network of biomechanics and compositional MRI colored by 

osteoarthritis progression defined by change in cartilage lesion WORMS subscore. Even 

though the progression variable is binary, each node describes a cluster of subjects and 

therefore intermediate shades represent the proportion of “progressors” within the subcohort. 

Within the less sever osteoarthritis subpopulation (subnetwork 1) the progressors are marked 

(dashed circle, subnetwork 1a) and statistically compared to the remaining subjects within 

subnetwork 1.
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TABLE 1

Demographics and Clinical Characteristics of the Two Osteoarthritis Severities Groups Defined as KL>1 and 

KL 0–1

Demographic characteristics (N = 178)

Characteristics

KL > 1 (N = 57) KL 0–1 (N = 121) P-value

Sexa

 Male 22 (38.5%) 49 (40.5%) 0.66

 Female 35 (61.5%) 72 (61.5%)

Age (years)b 57.30 ± 8.9 49.19 ± 8.33 6.20E-08

BMI (kg/m2)b 25.08 ± 3.37 24.35 ± 3.54 0.244

Racea

 Caucasian 32 (56.1%) 60 (49.6%) 0.55

 Asian 14 (24.6%) 42 (33.9%)

 African American 7 (12.3%) 5 (4.1%)

 Latino 4 (7.1%) 15 (12.7%)

a
Data expressed as count (percentage %).

b
Data expressed as mean ± standard deviation.
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TABLE 2. (A)

Results of the Kolmogorov-Smirnov Test Used to Generate Hypothesis on Possible Numerical Predictors of 

the Subnetworks Membership

ID Variable KS statistics
Mean subnetwork2 - mean 
subnetwork1 KS BH adjusted P-value

239 compMRI_unloadedT2_cartilage.LF 0.65 4.592 1.45683E-08

240 compMRI_unloadedT2_cartilage.cLFa 0.69 4.359 1.45683E-08

242 compMRI_unloadedT2_cartilage.cLFp 0.67 5.384 1.45683E-08

245 compMRI_unloadedT2_cartilage.cMFa 0.66 3.246 2.50019E-08

244 compMRI_unloadedT2_cartilage.MF 0.64 3.728 2.50019E-08

146 compMRI_loadedT2_cartilage.cLFp 0.58 3.592 1.556E-07

259 compMRI_unloadedT2_cartilage.boneLF 0.59 5.315 2.51674E-07

241 compMRI_unloadedT2_cartilage.cLFc 0.61 5.492 2.51674E-07

268 compMRI_unloadedT2_cartilage.articularMT 0.56 4.355 2.51674E-07

247 compMRI_unloadedT2_cartilage.cMFp 0.61 4.577 3.29133E-07

243 compMRI_unloadedT2_cartilage.pLF 0.60 3.851 3.83121E-07

155 compMRI_loadedT2_cartilage.cLTc 0.55 3.980 7.30216E-07

249 compMRI_unloadedT2_cartilage.LT 0.53 4.221 1.08931E-06

267 compMRI_unloadedT2_cartilage.articularLT 0.53 4.869 1.44374E-06

253 compMRI_unloadedT2_cartilage.MT 0.53 3.680 1.44374E-06

258 compMRI_unloadedT2_cartilage.P 0.55 3.115 1.44374E-06

257 compMRI_unloadedT2_cartilage.FrT 0.53 3.857 2.68929E-06

246 compMRI_unloadedT2_cartilage.cMFc 0.56 5.076 3.19542E-06

271 compMRI_unloadedR2- R1ρ_cartilage.LF 0.55 −0.005 3.19542E-06

265 compMRI_unloadedT2_cartilage.articularLF 0.53 3.883 3.22379E-06

171 compMRI_loadedT2_cartilage.articularLT 0.52 3.554 3.44033E-06

264 compMRI_unloadedT2_cartilage.boneP 0.51 3.862 4.60917E-06

207 compMRI_unloadedT1ρ_cartilage.LF 0.53 3.179 4.93226E-06

263 compMRI_unloadedT2_cartilage.boneFrT 0.52 2.936 5.28587E-06

251 compMRI_unloadedT2_cartilage.cLTc 0.54 4.067 8.82171E-06

150 compMRI_loadedT2_cartilage.cMFc 0.50 3.292 8.82171E-06

143 compMRI_loadedT2_cartilage.LF 0.50 2.593 9.11256E-06

248 compMRI_unloadedT2_cartilage.pMF 0.53 2.597 9.11256E-06

221 compMRI_unloadedT1ρ _cartilage.MT 0.49 3.202 1.05465E-05

272 compMRI_unloadedR2- R1ρ_cartilage.cLFa 0.54 −0.004 1.13599E-05
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TABLE 2. (B)

Results of the Hypergeometric P-Value Calculation Used to Generate Hypothesis on Possible Categorical 

Predictors of the Subnetworks Membership

ID Variable Value Fraction in subnet1-fraction in subnet2 Hypergeometric P-value

6 demographic_race.asian 1 8.68% 2.44E-04

6 demographic_race.asian 0 −8.18% 5.81E-04

60 morphMRI_WORMS_cartilage.MF 0 6.79% 0.001337

28 PROMs_IPAQ.categorical 1 6.96% 0.002840

36 morphMRI_WORMS_meniscusLes.bodyMED 0 6.03% 0.003500

7 demographic_race.white/caucasian 0 7.15% 0.003585

61 morphMRI_WORMS_cartilage.LF 0 5.24% 0.004725

7 demographic_race.white/caucasian 1 −6.64% 0.006429

37 morphMRI_WORMS_meniscusLes.PHMED 0 6.54% 0.007321

23 PROMs_Womac.stifness 100 6.37% 0.008294

47 morphMRI_WORMS_meniscusTot.MED 0 5.72% 0.017170

21 PROMs_Koos.QOL 100 4.92% 0.021869

10 Xray_KL 3 −3.57% 0.024024

16 PROMs_Marx.sum 9 2.19% 0.026122

20 PROMs_Koos.sport 85 −2.52% 0.027823

37 morphMRI_WORMS_meniscusLes.PHMED 3 −2.52% 0.027823

28 PROMs_IPAQ.categorical 2 −5.11% 0.030478

69 morphMRI_WORMS_BMEL.LT 0 3.32% 0.032345

18 PROMs_Koos.symtoms 89.29 −2.92% 0.033614

40 morphMRI_WORMS_meniscusLes.PHLAT 0 4.79% 0.034102

62 morphMRI_WORMS_cartilage.MT 0 3.47% 0.037707

18 PROMs_Koos.symtoms 100 3.99% 0.039162

10 Xray_KL 0 4.69% 0.040054

21 PROMs_Koos.QOL 93.75 −2.27% 0.040304

47 morphMRI_WORMS_meniscusTot.MED 4 −2.27% 0.040304

23 PROMs_Womac.stifness 75 −3.76% 0.042801

57 morphMRI_WORMS_cartilagetype.tfjOA 3 −3.76% 0.042801

49 morphMRI_WORMS_ligament.ACL 0 3.91% 0.043402

5 demographic_gender 2:male 4.65% 0.044364

68 morphMRI_WORMS_BMEL.MT 0 2.67% 0.046153

Overall variables dictionary is included as Supplementary Material.
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