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Abstract 

We propose a su pergravity derivation of the Randall-Sundrum action as an effective 
description of the dynamics of a brane coupled to the bulk through gravity only. The 
cosmological constants in the bulk and on the brane, which appear at the classical level 
when solving the supergravity equations of motion, are related to physical quantities 
like the brane electric charge and thus inherit some of their physical properties. The 
most appealing property is their quantization: in d1. extra dimensions, Abrane goes like 
1/N and Abulk like N 2f(d.J.. - 2 ). This supergravity origin also explains the apparent fine
tuning required in the Randall-Sundrum scenario. In our approach, the cosmological 
constants are derived parameters and cannot be chosen arbitrarily; instead they are 
determined by the underlying supersymmetric Lagrangian. D3-branes of type JIB 
superstring theory provide an explicit realization of our construction. 



1 Introduction 

The coexistence of two hierarchical scales in particle physics is probably the most chal
lenging puzzle to solve before hoping to construct a quantum theory of gravity. When the 
Schwarzchild radius ( Rsch = 2g Nffi / c2) of a system of mass m becomes of the same order as its 
Compton length (Ac =!if me), a quantum mechanical extension of general relativity is surely 
needed. Therefore the natural scale of quantum gravity is the Planck mass, J!ic5 jgN rv 1019 

GeV. Understanding how, in such a theory, the tiny electroweak scale observed in experi
mental particle physics can arise and be stabilized against radiative corrections constitutes 
the so-called 'gauge hierarchy problem'. In low energy supersymmetry [1), this vast disparity 
in scales can be protected from quantum destabilization. However a more fundamental ex
planation is certainly to be found in string theory and its latest developments. String theory 
relates the string scale to two other fundamental scales, namely the GUT scale connected 
to gauge interactions, and the Planck scale connected to the gravitational interaction. The 
link between these two is the geometry of extra dimensions, which can lower both scales [2] 
down to the Te V range [3) and thus partially answer the gauge hierarchy problem, or at least 
translate it into geometrical terms. 

Subsequent to studies of thin shells in general relativity [4) and their revival in aM-theory 
context [5-7], Randall and Sundrum (RS) have recently proposed [8] a new phenomenological 
mechanism for solving the gauge hierarchy problem, without requiring the extra dimension 
to be particularly large or small-in fact it could be noncompact. An exponential hierarchy 
is generated by the localization of gravity near a self-gravitating brane with positive tension, 
obtained by solving Einstein equations. The solution is a nonfactorizable metric, i.e., a 
metric with an exponentially decaying warp factor [9] along the single extra dimension. 
Restricting the Standard Model to a second parallel brane with negative tension at some 
distance in this transverse dimension, the electroweak scale in our world then follows from 
a redshifting of the Planck scale on the second brane. Since the exponential suppression by 
the redshift factor does not require an unnaturally large interbrane separation, the hierarchy 
problem can be explained without fine tuning, and without requiring any special size for the 
extra dimensions. 

The cosmological implications of this scenario have been studied [10, l1), with emphasis 
on the danger of placing the Standard Model on a brane with negative tension since, for 
instance, the Friedmann equation governing the expansion of the universe appears with a 
wrong sign. A similar difficulty is also faced [12] when trying to reproduce the unification 
of gauge couplings. The original scenario can be modified [8, 12, 13) by maximizing the warp 
factor on the Standard Model brane, which can be achieved if its tension is taken positive. 
The two former problems are overcome but the electroweak scale seems now difficult to 
accommodate. More recently it has been shown that the correct cosmological expansion can 
be obtained if the second brane tension is negative, but not too much so [14). Thus the 
RS scenario remains attractive, especially with regard to the possibility of an infinite extra 
dimension probed only by gravity. It is appealing that, despite a continuous Kaluza-Klein 
spectrum without any mass gap, Newton's law of gravity is still reproduced [8, 13, 15) within 
the current experimental precision. Ref. [16] also proposed explicit models where a mass gap 
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separates the 'massless graviton' from its KK excitations while the Yukawa type deviations 
from the 4D Newton law remain compatible with experimental bounds. 

Although the gravity localization mechanism seems to be specific to codimension one 
branes, several works [15, 17] have managed to extend it by considering many intersecting 
codimension one branes.1 Oda and Hatanaka et al. [19] also obtain solutions with a more in
volved content of branes with a single one extra-dimension. In this context also, cosmological 
expansion can be reconciled with the solution to the weak scale hierarchy problem [14]. 

Undoubtedly, the localization of gravity by the RS mechanism has rich phenomenological 
and cosmological consequences [10-15, 19-22]; but at the present stage it seems lacking in 
generality, and it suffers from apparently ad hoc fine-tunings required between the cosmo
logical constants in the bulk and on the branes, in order to obtain a solution to Einstein 
equations. Verlinde [23] has reexamined the RS scenario in superstring language and shown 
that the warp factor can be interpreted as a renormalization group scaling. In the context 
of the AdS/ CFT correspondence, the extra dimension plays the role of the energy scale. 

In this paper, we offer a derivation of the effective action used by RS, starting from a 
more fundamental, string-inspired origin. Recent works [5, 7,24,25] have studied the dynam
ics of a supersymmetric brane-universe; here we propose an explicit embedding of the RS 
model in supergravity theories and examine its physical implications, following refs. (16,26], 
which have previously addressed this question at a more formal level. Our starting point 
will be the bosonic action of supergravity theories in ten or eleven dimensions. We empha
size that, instead of neglecting various fields specific to these actions like the dilaton and 
some n-differential forms, taking them into account can lead to an effective description in 
terms of cosmological constants. Using p-brane solutions, we construct such a description 
for codimension one branes, which allows us to identify ·the effective cosmological constants 
with physical quantities like the electric charge carried by the brane and its mass density on 
the worldvolume. Since the electric charge of a p-brane obeys a generalized Dirac quantiza
tion rule, we are led to the interesting conclusion that the cosmological constants are also 
quantized. 

The advantage of this approach is that we derive the stress-energy tensor T[!.v, which is 
needed to solve the Einstein equations, starting from an action for fundamental fields, rather 
than putting it in by hand. Thus our T[!.v is on the same footing as the Einstein tensor itself, 
from the point of view of fundamentality, since it follows from a symmetry principle: namely, 
supersymmetry fixes the form or T[l.v and constrains the values of the couplings appearing 
therein. Moreover we are able to generalize the procedure to higher codimension brane
universes (e.g., 3-branes embedded in more than one extra dimension), providing some of 
the first such solutions. In this case the bulk energy is no longer a cosmological "constant," 
but depends on the distance from the brane. 

1 See also ref. [18] for a recent construction of warped compacti:fication in two transverse dimensions. 
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2 Brane cosmological constant as a warp in an anti-de 
Sitter bulk 

We begin with a review of the model studied by Randall and Sundrum [8]. This model is a 
particular case of the ones proposed by Chamblin and Reali [6], in which a scalar field was 
coupling a dynamical brane to an embedding bulk. Here we consider the restricted scenario 
of a static brane embedded in a spacetime curved by a bulk cosmological constant Ab. The 
physics of this model is governed by the following action: 

(1) 

where y1 = 0 is the location of the brane in the transverse (extra dimensional) subspace 
and 9J.. is the determinant of the metric, assumed to be factorizable, in this subspace. The 
Einstein equations derived from (1) when the transverse space is fiat are (Greek indices 
denote longitudinal coordinates, p = 0 ... p - 1 and Latin indices are coordinates transverse 
to the brane, I= 1 ... d.1.): 

-K-2 (Ab + Ac5d.L( v19J y)) 9~'-v ; 

GIJ -k? Ab 9IJ . 

(2) 

(3) 

Randall and Sundrum solved these equations in the case of a codimension one brane. With 
the ansatz 

ds2 = a2 (y) dx~'- 0 dxv7J~J-v + b2 (y) dy 0 dy , 

the Einstein equations reduce to 

p a"+ p(p- 1) (a') 2- p a' b' = -~ (Ab +A c5(lbly)) b2 ; a 2 a a b 

p(p + 1) (a')2 2 2 
2 

-;;: = -K, Ab b , 

(4) 

(5) 

(6) 

where primes denote derivatives with respect to the transverse coordinate y. For this system 
of equations to admit a solution that matches the singular terms, a fine-tuning between Ab 
and A is necessary: 

A general solution then takes the form: 

a(y) = f(lyl) and 
f'(lyl) 

b(y) = )\( J(lyl) ' 

(7) 

(8) 

where f is a regular function and the constant )\( is related to the brane cosmological constant 
by: IJ\!1 = -2pEj(K-2A), f_ being the sign of !'(0)/f(O). A particular class of solution that 
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will play an important role in our analysis corresponds to: 

a(y) = (l + IYI/ Rta and (9) 

where R and l are two positive constants. An appropriate change of coordinates brings 
this solution to the form proposed by Randall and Sundrum [8]: defining XP. = znaxP. and 
Y = sgn(y)naNln(l + IYI/(Rl)), the metric reads: 

(10) 

If the brane located at the origin is identified as the "Planck brane" of Lykken-Randall 
[13], an electroweak scale will be generated on the "TeV brane" if and only if the power 
na is negative, which corresponds to a positive cosmological constant on the Planck brane. 2 

Another motivation for requiring na < 0 comes from computing the four-dimensional effective 
Planck mass, M'fo1 = M 3 J dy a2 lbl, which is finite for na < 0 but diverges for na > 0. 

Figure 1. The boundary of an anti-de Sitter of dimension p + 2 spaCe is topologically S1 x SP. In 
the system of coordinates xP. and r, this boundary is located at r = 0 and r = oo: the piece at 
infinity is a p + 1-dimensional Minkowskian space, while the horizon at r = 0 corresponds to the 
union of a point and R x SP. A codimension one brane embedded in this AdS space acts as a warp 
in the sense that it cuts a part of the bulk: a brane with a positive cosmological constant cuts the 
vicinity of the boundary located at the infinity, while a brane with a negative cosmological constant 
removes the horizon at the origin. 

We can make another diffeomorphism that clarifies the geometry ofthe solution. Defining 

2This connection between the signs of na and A is specific to one transverse dimension. In section 4, we 
will see that we can have na > 0 whereas A > 0. In any case, the discussion about the hierarchy problem 
deals with the sign of na only. 
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r = Ro(l + IYI/R)na, with Ro =INRI, we now obtain: 

ds2 ~ ( ;.)' dx' + ( ~ )' dr
2 

, (11) 

where we see that the geometry of the bulk corresponds to an anti-de Sitter space of radius 
Ro, or at least a slice of an anti-de Sitter space, since the variable r ranges only over a part 
of JR. Indeed, for na > 0, the range of variation of r is restricted to [zna ,+oo ), while for 
na < 0 this range becomes [0, zna ]. Although in both cases the whole AdS space is covered 
in the limit l -+ 0, it is interesting to note which part is cut when l # 0. As we will 
argue in the appendix, the boundary of an anti-de Sitter space of dimension p + 2 space is 
topologically S1 x SP, and in the system of coordinates xiL and r, this boundary is located 
at r = 0 and r = oo: the piece at infinity is a p +!-dimensional Minkowskian space, while 
the horizon at r = 0 corresponds to the union of a point and IR x SP. So the na < 0 case, 
which corresponds to a positive cosmological constant A on the brane, removes the part at 
infinity, while the na > 0 case, i.e. A < 0, cuts the horizon at the origin. Note that in the 
AdS/CFT correspondence [27], a superconformal theory describes the dynamics of a brane 
near the horizon of an AdS space while this dynamics should become free near infinity [28). 

As presented, the model studied by Randall and Sundrum leaves one wondering whether 
it can be derived from some more fundamental starting point. In particular, the ad hoc 
fine-tuning between the cosmological constants is rather mysterious and begs for a better 
understanding. One suggestion is that this relation might arise from the requirement that 
tadpole amplitudes are zero in the underlying string theory [11). (See also ref. [29] for recent 
progress in this direction). Here we will see the cosmological constants as effective parameters 
which cannot be chosen arbitrarily, so the fine-tuning problem is ameliorated. The aim of 
this work is to motivate the RS model from a supersymmetry/superstring framework. 

.. 3 Effective cosmological constants from dynamics of · 
codimension one branes 

In this section, we would like to show that the theory derived from the action (1) can be 
seen as an effective description of a brane of codimension one, i.e., of an extended object 
with p spatial dimensions embedded in a (p + 2) dimensional spacetime. 

The dynamics of an object extended in p spatial directions is governed by the general
ization of the Nambu-Goto action3 [30]: 

SNG = -Mbp+l J dP+lt ld t (8XP. axv ) I 
1, e aea aeb 9P.v ' (12) 

where XP.(ea) are the coordinates in the embedding spacetime of a point on the brane 
characterized by its worldvolume coordinates ea; Mb is the scale mass in so-called "p-brane 

3 Concerning the indices, our conventions will be the following: hatted Greek indices are spacetime indices 
(j.t. = 0 ... D- 1) while Latin indices are world volume indices( a = 0 ... p). 
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units" which is simply related to the Planck scale, M, in the embedding spacetime; see below 
eq. (I6). This action is known [3I] to be equivalent to: 

Sp = Mf+I j dP+~e (-~M,abaax11abx11 + .P; I M) , (I3) 

where lab is an auxiliary field that gives the metric on the worldvolume. 
Superbranes have been constructed [32] as classical solutions of supergravity theories in 

ten or eleven dimensions: they are BPS objects, since they preserve half of the supersymme
tries; they have a Poincare invariance on their worldvolume universe and also a rotational 
invariance in the transverse space. A p-brane is therefore coupled to the low-energy effective 
theory of superstrings. Below the fundamental energy scale, identified as the energy of the 
first massive excitations of the string, the theory can be described by supergravity theories 
whose bosonic spectrum contains the metric, a scalar field (the dilaton) and numerous dif
ferential forms. The bosonic effective action, in supergravity units, takes the general form 
(K2 = M2-D): 

Self= J dDx Ji9T (2~2 R- ~ aj}iP811iP- (p ~ 2)! eap4> Ful···Up+2Ff1
1 
... Up+

2
) ' (I4) 

where FJ11 ... ftp+ 2 = (p + 2) 8[p,1 Ap,2 .•. ft
9
+2J is the field strength of the (p +I)-differential form 

A, whose coupling to the dilaton is' measured by the coefficient ap. The coefficient ap is 
explicitly determined by a string computation: the coupling of the dilaton to differential 
forms from the Ramond-Ramond sector appears at one loop and thus a:R = (3- p)/2 in 
supergravity units, while the Neveu-Schwarz-Neveu-Schwarz two-form couples at tree level, 
so af8 = -1. In some cases, we can also add a Chern-Simons term (A 1\ F 1\ F) to the 
action, but it does not have any effect on the classical solutions. 

The p-brane couples to a (p + I)-differential form, which results in the addition of a 
Wess-Zumino term to the free action (I3): 

Sp = MP+l J dP+le ( -~-v'GIIabaax11 abxv 9ftv(X) e{3p4> + p 2 I -v'GT 

+ Awz at···ap+t a XiLt a Xi1p+t A ) (15) (p + I)! f a1 · • • ap+l ftt···i1p+l · 

The functions 9!1v and ef3p4> implicitly depend on worldvolurrie coordinates e through their 
dependence in the embedding coordinates X. The coefficient {3p defines the "p-brane units;" 
it is fixed [33] by requiring the same scaling behavior for Sef 1 and Sp, which leads to 

f3 
Ci.p 

p=-p+I. (I6) 

The relation between Mb and M then follows from the value of this coupling to the dilaton: 
Mb = ef3<Poo/(p+l) M, </>oo being the vacuum expectation value of the dilaton. 

To proceed, we must now relax some of the constraints imposed by supersymmetry, 
while still maintaining the form of the action. For example in string theories, the values of 
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p and D are related to one another in order to have supersymmetry on the worldvolume 
universe [34]. Also, as just mentioned, the coupling to the dilaton is fixed. By relaxing these 
constraints, we give up any claim that the following construction is a direct consequence of 
string theory. On the other hand it might be hoped that our results will persist in a realistic 
low energy limit of string theory, which includes the effects of supersymmetry breaking. 
In what follows, we will elucidate how the various fields, which play a crucial role for the 
existence of branes in supergravity, can give rise to an effective stress-energy tensor which 
resembles the cosmological constant terms needed for the Randall-Sundrum scenario. 

The equations of motion derived from Seff +Spare 

2 2~2 "' • • 
G a .m.a .;r,. + Dip"' F F. O"J ... O"p+l P,v = ~ {t.':J! v':J! (p + 1)! e P.B-t···a-p+l v 

+ a .m.au .m. ea'"' F. Ful···up+2 + T . 1 ( 2 2~2 "' • • ) 2 -~ u':J! ':J!- (p + 2)! a-l···a-p+2 9itv P,v , 

D:. DP-~ = av e01P41 F: · Fa-1 ••• a-P+2 + T. · ,.. (p + 2)! O"l···O"p+2 <11 ' 

ait-o ( .Ji9f eap<l> Fp,o ... p,p+l) = JP-t···p,p+l ; 

lab = aaxP-abxv 9P,v ef3p!f! ; 

8a ( .JFYi,ababxv gp,vef3p!f! )' = ~ .JFYi,abaaXa-1 abxa-2ap, (g&1a-2 ef3p<fl) 

Awz · · at···ap+t a xu~ a xup+t F -(p+1)!( a1 ••· ap+l P,ul··;B-p+l 

The stress-energy tensor Tp,v of the brane is given by 

(17) 

(18) 

(19) 

(20) 

(21) 

Tp,v = ~ MP+l I .JP+'~ VFYI -r"'&.x"' a,x•· Y"'"Y"'' d'•• .SD( x ~<m {22) 
~2 

. 191 
The electric current created by the brane is 

JiLl···it-p+l = _ A;z MP+l I dP+le fal···ap+l 

aa
1
Xp, 1 ••• aap+lxit-p+l JD(x- X( e)) . 

And the source current for the dilaton equation is 

T. = f3v MP+l I dP+It ?'VI "'ab a xP-a xv g·· e{3p!f! JD(x- x(e)) 
q, 2 ':. v n I I a b f-tV v19l 

(23) 

(24) 

We will solve these equations in the case of a codimension one brane and we will see in 
the next section how the analysis can be extended to higher codimension. First we choose a 
system of spacetime coordinates related to the brane: 

world volume coordinates: xf-L p, = 0 ... p ; 

tr~nsverse coordinate: y ' 
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in the physical gauge where X~L(e) =e. 
We are looking for a solution with a Poincare in variance in (p + 1) dimensions, so that 

we can make the following ansatz for the metric: 

(25) 

The non vanishing components of the (p + 1 )-differential form that couples to the p-brane are 

A - -€ _1_ eO(y) 
J.'loo•J.'p+l - J.'loo•J.'p+l A ) 

wz 
(26) 

where €J.t1 ... J.tp+l is the antisymmetric tensor normalized to ±1. 
It is well known that (see for instance (33] for a review), corresponding to the ansatz 

(25-26), the solutions of eqs (17-21) can be expressed in terms of a harmonic function H(y): 

ds2 = H2
n., dx~L ® dx" 'TJJ.tv + H2

ny dy ® dy ; 

e<P = Hnif! e<Poo ( ¢~ is the value of <P at infinity) ; 
1 dH-1 

F: - € -- e-Otp</>oo/2 
YJ.tl .. ·ILp+l - J.tl .. ·ILp+l Awz dy 

where the powers are given by 

a 2(p + 1)~2 

ny = pA~z n<P = A~z . 

(27) 

(28) 

(29) 

(30) 

Provided that the coefficient of the Wess-Zumino term is related to the coupling to the 
dilaton by 

A
2 2p + 1 a2 
wz = -2~ -p- + 2 ' (31) 

the whole set of equations of motion is now equivalent to Poisson's equation, 

(32) 

the solution of which reads 

(33) 

We have normalized H (y) so as to obtain a flat Minkowski space in the vicinity of the bran e. 
At this stage, it is worth noticing that the derivation follows directly from the bosonic 
equations (17-21) and no supersymmetric argument has been used. The full supergravity 
equations also include a Killing spinor equation that can be consistently solved, provided 
that the coupling of the differential form to the dilaton takes its stringy value. This promotes 
the bosonic solution to a BPS one. 
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It is interesting to substitute this solution back into the Einstein equations (17) to obtain: 

Qi-LV = -~ (1- a: ) H-2(ny+l) (H'?g~Lv 
Awz 2Awz 

·_ M H-(Hn,.(p+l))e-o"/>oo/2 8(y) gtLV j 

..;g;;; (34) 

QYY = -~ (1 + a~ ) H-2(ny+l) (H')2 gYY • 

Awz 2Awz 
(35) 

In the limit of decoupling between the brane and the dilaton, i.e., a = 0, which also corre
sponds tony= (p + 1)nx = -1 using the constraint (31), the Einstein tensor involves two 
constants Ab and A0

: 

QYY 

(36) 

(37) 

If we keep the factors m/>00 fixed (since </>oo could go to infinity as a --7 0), these constants 
are given by 

(38) 

They can be interpreted as effective cosmological constants since the metric (27) is a solution 
to the Einstein equations derived from the RS action (1 ). 

The expression of the cosmological constants in terms of supergravity quantities may give 
some insight into the origin of the apparently ad hoc fine-tuning (7) of the RS mechanism: 
here the cosmological constants are no longer fundamental parameters and the fine-tuning 
problem appears in a different way; in the present language it is a consequence of taking the 
limit where the dilaton decouples from the brane. Of course this represents just one point 
in the full parameter space. The more general solution, when the dilaton does not decouple, 
is a bulk energy density which depends on y, rather than a cosmological constant term. 
Regardless of this difference, one can still obtain an exponentially decaying warp factor, 
as long as nx remains negative .. The new insight, then, is that the original RS solution is 
only the simplest possibility within a whole class of solutions which can solve the hierarchy 
problem. 

Furthermore, our approach links the energy densities of the brane and bulk to physical 
quantities like the charge associated to the electric current (23). Not only is such a charge 
conserved, but it also obeys Dirac;s quantization rule [35]: solutions exist where the fiducial 
value of the electric charge is multiplied by an integer and these can be interpreted as a 
superposition of N parallel branes. Since in such a configuration the electric field strength 
is multiplied by a factor N, the RS effective cosmological constants depend on N: A goes 
like A 0 / N and Ab like Abf N 2

• Therefore the effective cosmological constants are quantized. 
A serious shortcoming with the above solution is that the dilaton decoupling regime 

requires a purely imaginary Wess-Zuinino term (see eq. (31)), which implies an imaginary 

9 



hence unphysical value for the electric charge. Therefore this solution is still just a tantalizing 
hint at a stringy origin for the RS proposal. To be more convincing, it is. essential to 
overcome this problem. In the next section, ·we will address this issue by going to a higher 
number of extra dimensions, in the space transverse to the brane. It may happen that the 
compactification of some of these extra dimensions can be crucial, requiring a more complete 
analysis involving some interacting moduli fields in gauged supergravity theories4 • The 
problem should also be reconsidered in a more complicated version [36] of ten dimensional I! A 
supergravity including mass terms since a codimension one supersymmetric object, the D-8 
brane, has been constructed by Beigshoeff et al. [37]. This subject was partially addressed 
in the recent references [38]. 

When the dilaton coupling is turned on, the cosmological 'constant' in the bulk will now 
have a dependence on the transverse distance r. Apart from the shortcoming of not quite 
reproducing the RS picture, this solution does have an interesting feature regarding the 
cosmological constant on the brane in the physical regime where the Wess-Zumino coupling 
Awz is real: it provides an example of a negative tension brane. For nx > 0, as is the 
case when Atvz > 0, the discontinuity in the derivative of the warp factor is positive, which 
through the Einstein equation (5) implies that A< 0. This is noteworthy because negative 
tension branes play a prominent role in the RS solution. In the original proposal, which 
resembles the Hotava-Witten compactification of d = 11 supergravity, the Te V brane was 
required to have negative tension. To get correct cosmological expansion on the Te V brane 
in the case where the extra dimension is noncompact, it was shown [14] that negative tension 
branes must exist. Since this situation seems rather exotic, it is reassuring to find a model 
in which it arises. 

In summary, our study of codimension one branes suggests that the cosmological con
stants introduced by Randall and Sundrum are an effective description of the dynamics of 
a more complicated set of fields governing the physics of a brane that couples to the bulk 
through gravitational interactions only. Thus those effective cosmological constants inherit 
some physical properties of the brane, an intriguing one being their quantization. We point 
out that the solution (27) belongs to the general class of solutions (9) for codimension one 
branes. Since the exponent nx is negative, it follows from the general discussion of section 
2 that this field configuration can solve the gauge hierarchy problem in the manner pro
posed by Lykken and Randall [13]. Namely, physical particle masses will be exponentially 
suppressed on any test-brane ( "TeV brane") placed sufficiently far from the "Planck brane" 
featured in our solution. 

4 Generalization to higher codimension brane-universe 

We would now like to generalize the previous results to the case of a brane-universe of 
codimension greater than one. Requiring rotational invariance in the transverse space, the 
ansatz for the metric and for the (p + 1 )-differential form will be a function only of the 

4This question has been recently addressed by Behrndt and Cvetic [25]. See also ref. [5] for an earlier 
discussion. · 
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distance r in the transverse space: 

The solutions (17-21) take the· same form, but the powers are now given by: 

ny = 2 
(p + d.L - 1) Awz 

a 
n4> = -A2 ' 

wz 

(39) 

(40) 

and the relation between the Wess-Zumino coupling and the dilaton coupling becomes: 

A2 - 2K2(P + 1)(d.L- 2) a2 
wz - (p + dl. - 1) + 2 . (41) 

The function H is harmonic in the transverse space: 

(42) 

A particular solution is 

. (43) 

where nd.L _1 is the volume of Sd.L - 1, and l is an arbitrary constant which we will set to zero in 
order to obtain cosmological constants in our results. (When d1. = 1 the sphere degenerates 
into two points, giving !10 = 2.) The case of a brane of codimension two involves logarithmic 
behavior, and we will not specify it in the following. As before, when the dilaton decouples 
from the brane, the geometry can be derived from effective cosmological constants, as we 
will now demonstrate. The components ofthe Einstein tensor associated with the solution 
( 43) are 

-+- (1- a: ) n-2(ny+l) (H')2gJLv 
Awz 2Awz · 

. 5d.L(y) - M2-d.L n-(1+nx(P+l))e-0/(/Joo/2 gJLV . 
y'gl. ' 

(44) 

- ~2 (1 + a: ). (2YI;J e-2B -lJ) n-2(ny+l) (H'? . 
Awz 2Awz r 

(45) 

When the dilaton decouples, a = 0, implying nx = -1/(p + 1) and ny = 1/(d.L - 2). The 
metric can then be written as: 

(46) 

with 

(47) 
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This is the geometry of AdSp+2 x SdJ. - 1 ; Ro is the radius of the sphere and it is related to 
the radius of the AdS space by Ro = RAds(dl..- 2)/(p + 1). The expression oCthe Einstein 
tensor simplifies to: 

G~-'"' -r;,2 ( Ab + Ao&~)) g~-'"'; 

GIJ _; -r;,
2Ab (2y~J -lJ) 

where the constants A/: andA0 are given by: 

MP+le-ouf>oo/2. 
' 

l.. - p l.. - n2/(dJ. -2) MP+dJ. +I eac/>oo/(dJ. -2) . d 2 ( + d 1) dJ./(h - 2
) 

2 P+ 1 dJ.-1 

(48) 

(49) 

(50) 

What allows us to interpret them as effective cosmological constants is the fact that the 
metric ( 46) is actually a solution to the Einstein equations derived from a generalized RS 
action: 

where R is defined by R2 = y1yJ 9IJ· It is noteworthy that when the metric in the transverse 
space is integrated out, this action reduces to the one introduced by RS. 

In the expression (50), we notice that even if the power na = (dl..- 2)/(p+ 1) is positive, 
the cosmological constant on the brane is positive. This would not be the case with only one 
extra dimension, but when dl.. > 1 the extra transverse dimensions that live on the sphere 
also contribute to the singularity in the Einstein tensor and modify the singularity coming 
from the AdS part of the space. Nevertheless, our discussion of the hierarchy problem is 
unaffected by the spherical extra dimensions and thus a positive power na is undesirable as 
regards the gauge hierarchy problem, since it implies that the integral for the 4D effective 
Planck mass diverges. However a positive power na naturally generates a gauge coupling 
unification along the lines of the scenario proposed in [12]. 

Just as in the case of codimension one, the expression for the effective cosmological 
constants in terms of supergravity quantities leads to their quantization in multibrane con
figurations: the electric field-strength increases by a factor N, A goes to A 0 / N and Ab goes 
to AI: N2f(dJ. -2). 

Not only does going to higher codimension brane-universes cure the problem of the imagi
nary Wess-Zumino term, but they can also be more easily embedded in a superstring frame
work. Indeed, a D-3 brane in type liB theory does not couple to the dilaton and thus 
provides an explicit realization of our construction. In this context it would be interesting 
to incorporate in the field theoretical analysis of RS some stringy corrections to the super
gravity action, like quadratic terms in curvarture, for instance, since they can modify the 
spectrum of the Kaluza-Klein gravitori's excitations. 
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5 Discussion 

In this work we have presented solutions to the coupled equations for branes in d1. extra 
dimensions and the low energy bosonic states of supergravity or superstring theories. The 
goal was to reproduce the effective stress-energy tensor needed for the Randall-Sundrum 
solution which uses gravitational trapping to solve the weak scale hierarchy problem. Let us 
summarize the results. 

Decoupled dilaton regime 

Regardless of the dimensionality of the tranvserse space, we find that the stress-energy tensor 
takes a simple form only in the limit that the dilaton field decouples from the brane. Then 
there are three cases: 

d1. = 1. It is necessary to go to an unphysical value of the Wess-Zumino coupling, 
A~z < 0, to obtain a solution, which does however then yield exactly the bulk and brane 
cosmological constants needed for the RS proposal. 

d1. = 2. This appears to be an uninteresting case, because Awi is forced to vanish, 
leading to trivial solutions. 

d1. > 2. We now find solutions with positive Ab and physically acceptable values A~z > 0 
for the Wess-Zumino coupling. The bulk energy term looks conventional (constant) in the 
brane components of TJ.Lv, but it has·~ mild dependence on the bulk coordinates in the tran
vserse components, TIJ. The warp factor a(Y) goes like exp( +const!YI) in coordinates where 
Y represents the physical distance from the brane in the bulk (const > 0). Therefore the 
solution cannot be adv:ocated to explain the hierarchy between the Planck and electroweak 
scales. This is in qualitative agreement with the d1. = 2 solution recently found in ref. [18]. 
It would therefore appear that the RS solution to the hierarchy problem works only in the 
case of a single extra dimension5, or in the case of several intersecting branes of codimension 
one. On the other hand, as shown in ref. (12], despite infinitely large extra dimensions, 
gauge coupling unification can naturally arise as a result of the anomaly associated with 
the rescaling of the wave functions on the brane. Moreover the presence of the spherical 
extra dimensions can help to cure some phenomenological puzzles which occur when there is 
only one transverse dimension, such as electroweak symmetry breaking and obtaining small 
enough neutrino masses (12]. 

Coupled dilaton regime 

It is interesting to also consider the solutions where the dilaton does not decouple from the 
brane. The bulk energy is no longer constant in these solutions, so the resulting stress
energy tensor does not have the simple form proposed by RS. Nevertheless, these solutions 
are equally acceptable and may have interesting physical consequences. 

d1. = 1. It is now possible to have a real-valued Wess-Zumino coupling, in which case 
nx > 0. As explained in section 3, this implies that the brane has a negative energy density, 

5 Numerical solutions which we have fou~d in the case of d1. = 2 also support this conclusion. 
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which is somewhat surprising, since pure scalar field domain wall configurations always have 
positive tension. Since the TeV brane in the RS proposal tends to have negative tension, it 
may be relevant to explore the properties of such configurations. 

d.J.. = 2. The solutions are no longer trivial, but have a logarithmic dependence on the 
bulk coordinate. We have not studied this special case in detail. 

d.J.. > 2. The term in Tp,v which looked like a bulk cosmological constant when the 
dilaton coupling vanished now has nontrivial spatial dependence in the bulk. Such behavior 
has recently been proposed as a condition for avoiding the generic problem of the incorrect 
Friedmann equation for the expansion of the brane [39]. In the latter, complicated and 
a priori unmotivated expressions for the dependence of T55 on y were derived using the 
requirement of correct cosmological expansion. Although we have not yet found inflationary 
solutions in the present supergravity context, it would be interesting to do so in order to 
check whether the y dependence of T55 advocated in ref. [39] can be justified by the presence 
of nontrivial dilaton fields. 

Appendix: the boundary of an anti-de Sitter space 

An anti-de Sitter space of dimension p + 2 can be seen as a hypersurface embedded in a 
flat space of signature (2,p + 1 ). Let ,xP., [1, = 0 ... p + 2, be some coordinate system in this 
embedding space. The anti-de Sitter space of radius R is defined by the equation: 

(52) 

and the metric on AdS is the embedding metric. In a convenient system of coordinates 
defined by 

X J.t R ~-' -0 and = +1 +2 X ' Jt - . ' 'p, xP + xP 
(53) 

the embedding metric factorizes: 

(54) 

The boundary of AdS is the set of points that satisfies equation (52) at the infinity of the 
flat space. More precisely, we can rescale the coordinates xP. -7 x' ~-' = A.xit and consider the 
limit A. -+ oo. The boundary is thus defined by the projective equations 

-x'ox'o + x'lx'l + ... + x'P+lx'P+l - x'P+2x'P+2 = 0 

x'P rv px'P with p E IR \ {0} , 

(55) 

(56) 

which clearly describe S1 x SP. In the system of coordinates (53), the set of solutions to the 
boundary equations has two disconnected pieces: the first one is associated with r' =/= 0, which 
is sent tor= oo by the rescaling, and it corresponds to a Minkowski space of dimension p+ 1 
spanned by x0 ... xP; the second piece _is associated with r' = 0, i.e. r = 0, and corresponds 
to the union of a point and R x SP. , 
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