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Abstract

Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media

to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the

experimental situation is often incompatible with these assumptions, especially when field data

(from hydrological or oil/gas reservoirs) are involved. The present work considers several different

experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants

has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or

drained constants are normally unknown. Drained constants for such a poroelastic system can be

deduced for isotropic systems from available data if a complete set of undrained compliance data

for the principal stresses are available — together with a few other commonly measured quantities

such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed

here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e.,

composed of solid grains assembled into a solid matrix, either by a cementation process or by

applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is

also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type),

but still isotropic, grains — as well as for uniform collections of anisotropic grains as long as their

axes of symmetry are either perfectly aligned or perfectly random.

∗JGBerryman@LBL.GOV
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1. Introduction

Poroelastic analysis [1-8] usually progresses from assumed knowledge of dry or drained

porous media to the predicted behavior of fluid-saturated and undrained porous media.

Unfortunately, the experimental situation is often incompatible with these assumptions,

especially when field data (say from oil/gas or hydrological reservoirs) are involved.

The present work considers several different experimental scenarios typified by one in

which a set of undrained constants has been measured using either ultrasound (in the lab-

oratory) or seismic wave analysis (for field data), while some or all of the dry or drained

constants are usually unmeasured and therefore unknown. Drained constants for such a

poroelastic system can be deduced from available data. This goal can be achieved if a com-

plete set of undrained compliance data (as could be calculated by inverting the stiffness data,

which are almost directly obtained – within a factor of the density – from wave speed mea-

surements) are available, together with a few other commonly measured quantities such as

porosity, fluid bulk modulus, and grain bulk modulus for isotropic systems. Similar results

are developed here for anisotropic systems having up to orthotropic symmetry if the sys-

tem is granular (i.e., composed of solid grains assembled into solid either by a cementation

process or by applied stress) and the grains are known to be elastically homogeneous.

In the later sections, the analysis is also fully developed for anisotropic systems with

inhomogeneous (meaning more than one mineral type is present), but still isotropic, grains.

Also studied is the case for uniform collections of the same types of anisotropic grains, as

long as the grain symmetry axes are either perfectly aligned or perfectly random. We show

how many poroelastic data are needed in order to consider the data sets complete, and

which types of data are in some sense redundant. Some combinations can be used to replace

other data types that remain missing when lab experimental and/or field limitations prevent

direct measurements of all the poroelastic coefficients.
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2. Isotropic Poroelasticity

2.1 Homogeneous grains

Gassmann’s [1] famous equation is sometimes written in the form

Ku = Kd + α2/[(α − φ)/Kg + φ/Kf ] (1)

for isotropic systems, where α ≡ 1 − Kd/Kg is the effective stress coefficient or Biot-Willis

coefficient [2], Kg is the solid modulus of the grains (assumed homogeneous), Kf is the

pore fluid modulus, and φ is the porosity. The formula becomes more complicated if the

solids constituting the porous medium are heterogeneous. But we will delay discussion of

this point to the next subsection and for now assume that the solids are truly homogeneous.

For notational convenience, we next introduce a modulus for a fluid suspension having the

same solid and fluid components as well as the same porosity, but having drained modulus

Kd ≡ 0. Then we find that the effective modulus is given by

Ksusp =

[

1 − φ

Kg
+

φ

Kf

]

−1

. (2)

In fact this result follows directly from Gassmann’s formula (1) by setting Kd = 0 every-

where, since then Ku = Ksusp. But of course this result is also well-known in mechanics and

acoustics (Wood [8]) for these types of fluid-solid suspensions.

2.2 Deducing drained moduli from undrained: Isotropic system with homogeneous

grains

Rewriting Gassmann’s formula in these terms, we find first that

Ku = Kd +
(1 − Kd/Kg)2

1/Ksusp − Kd/(Kg)2
. (3)

Note first that all explicit porosity φ dependence is now imbedded in the modulus Ksusp. So

if we simply multiply through by the denominator on the right hand side, we find

Ku

(

1

Ksusp

−
Kd

(Kg)2

)

= 1 − 2
Kd

Kg
+

Kd

Ksusp

. (4)

Note next that two terms of the form (Kd/Kg)2 have cancelled from this expression. Once

these convenient cancellations have occurred, Kd appears only linearly in the resulting ex-

pression. The equation can therefore be solved immediately for drained modulus Kd in terms
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of the undrained modulus Ku and the other factors that are also assumed to be known (and

in fact these other factors are usually easier to measure than either Ku or Kd). Finally, we

obtain:

Kd =

(

Ku

Ksusp

− 1

)

[

1/Ksusp − 2/Kg + Ku/(Kg)2
]

−1
. (5)

This result shows that the drained modulus can be deduced from measurements of the

undrained modulus, together with knowledge of φ, Kf , and Kg. Note that this result was

first derived by Zhu and McMechan [10] (although not written in this form), but apparently

published only in a conference proceedings.

While this isotropic result may seem elementary to some readers, and although it has

also been known for some time in principle [10] (though not widely disseminated in the

poroelasticity community), it is important nevertheless to point out here that this isotropic

result can be generalized for anisotropic systems having at least up to orthotropic symmetry

— as will be shown explicitly later in this paper. This result for anisotropic systems is

one key to unraveling the drained response from the undrained response for these more

complicated systems.

Another important point about both equations (4) and (5) is that they provide special

insight into the relationship between drained and undrained moduli for granular systems.

In particular, if the pore fluid is a liquid and the grains in such a system are only lightly

pressed together, it can easily happen that Kg > Ku > Ksusp >> Kd. When this situation

holds, it is easy to show that (3), (4), and (5) all reduce approximately to

Ku ' Ksusp + Kd, (6)

where Kd has a very small contribution to the undrained modulus compared to that of the

suspension modulus. This result turns out to be quite important for analysis of the behavior

of liquid-saturated granular materials at lower confining stresses (< 5 MPa).

Also note that the approximate form (6) holds as well in the opposite extreme in which

Ksusp is very small – for example when the system is air or gas saturated – while the drained

value Kd is not small – as could occur in granular media under high confining stress.

In either of these situations, a good approximation to Kd is found by taking the difference

of Ku and Ksusp.
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2.3 Heterogeneous grains

When the grains in a granular packing are NOT composed of elastically homogeneous

and isotropic materials, or if they are homogeneous but anisotropic while nevertheless being

distributed in a randomly oriented way in space, then — as has been pointed out previously

by Brown and Korringa [3], Rice and Cleary [4], and others [6–8] — we need to introduce a

more general notation to deal with these circumstances.

Recall that the Reuss average [11] of the grain bulk moduli when a distribution of grain

types is present is then given by:

1

Kg
R

≡
∑

m=1,...,n

vm

Km

, (7)

where vm is the volume fraction (out of all the solid material present, so that
∑

m vm = 1) of

the m-th isotropic grain having bulk modulus Km. This average should to be distinguished

from that of the Voigt [12] average

Kg
V ≡

∑

m=1,...,n

vmKm, (8)

which is known [13] to satisfy Kg
V ≥ Kg

R, and furthermore these two measures are also

known [11–13] to satisfy Kg
V ≥ K∗

g ≥ Kg
R, where K∗

g is the effective bulk modulus of an

isotropic elastic composite consisting only of the minerals m = 1, . . . , n in the same volume

proportions given by the vm values. However, this fact actually is not pertinent here as the

only averages of this type that play a direct role in the poroelastic equations are always

those of the Reuss-type, as we shall see in further developments.

To clarify our later usage of the same notation Kg
R, we emphasize here that when (or if)

the grains in our assemblage are all anisotropic — but nevertheless of the same type and

oriented randomly in space — then the pertinent average is again the Reuss average. But

in this case the average is determined by the equation

1

Kg
R

=
∑

i,j=1,2,3

sg
ij, (9)

where the sg
ij for i, j = 1, 2, 3 are the principal components of the compliance matrix for the

anisotropic grain material itself. It is easy to see that this must be the case if we refer back

to the equations above, specifically those requiring the suspension result Ksusp. The formula
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as quoted in (2) was only written for the case of homogeneous grains. But if we generalize

this formula slightly as:

Ksusp ≡

[

1 − φ

Kg
R

+
φ

Kf

]

−1

, (10)

then we see that it holds equally true: (a) for homogeneous isotropic grains (when Kg
R ≡ Kg),

(b) for an heterogeneous volume of isotropic grains [when Kg
R is given by (7)], or (c) for

anisotropic grains when they are randomly oriented in the fluid [and then Kg
R is given by

(9)]. In all these cases, we do assume that this mixture of grains and fluid is close to being a

true suspension, by which we mean that individual grains are acted on similarly by changes

in fluid pressure. If the clumpings of granular materials are loose enough, then the fluid

can act equally on all the individual grains, and the result in (10) holds true regardless of

the heterogeneity. However, if this is not the case, then there must be elastically distinct

clumpings of grains forming solid composites locally – so the individual grains are no longer

uniformly surrounded by the pore fluid – then each grain’s fluid environment is different, due

to welded contacts with other contiguous grains. We are assuming for the present purposes

that such effects are negligible in the types of comparatively homogeneous granular porous

media (homogeneous on the meso- and macroscales, but not necessarily on the microscale)

being studied here. In fact, some types of more heterogeneous systems can be treated and

some of these have already been studied [14,15] when the porous system is composed of just

two distinct types of grain clumpings; however, we will not be studying such double-porosity

and/or multi-porosity effects in the present paper.

2.4 Heterogeneous pores

Another important type of heterogeneity that can occur in practice involves heterogeneity

of the pore space [3]. One obvious issue is whether the pores are all connected to each other,

or whether there may be two (or more) distinct, but intertwining, pore systems. One well-

known example of this situation is the double-porosity concept [14–17], in which one type

of pore has high volume but low permeability, while the other has low volume (imagine a

system of very flat cracks or fractures) and high permeability. We can also consider that

some pores might be interior to some grains and not connected to any other pores (and might

therefore also be empty of pore fluid), while other subsets of the grains have no inherent

porosity of this type, and so are truly solid grains.
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We will not try to deal with all these cases simultaneously, as even enumerating all the

possibilities quickly becomes burdensome. We will limit ourselves instead to one of the more

typical scenarios considered for example by Brown and Korringa [3] and by Rice and Cleary

[4] — and also see the recent related work of Gurevich et al. [18].

Heterogeneity of the pore space is most important when we consider flow of fluid into

and out of the boundaries of our study sample. Then, the concept of increment of fluid

content ζ comes into play, and special care is required. A straightforward definition of this

dimensionless parameter (just as the strains e11, e22, . . ., e13 are all dimensionless) is given

by:

ζ ≡
δ(φV ) − δVf

V
' φ

(

δVφ

Vφ

−
δVf

Vf

)

, (11)

where V is the overall volume of the initially fully fluid-saturated porous material at the

first instant of consideration, Vφ = φV is the pore volume, with φ being the fluid-saturated

porosity of the volume, Vf is the volume occupied by the pore-fluid, and so Vf = φV initially.

The δ’s indicate small changes in the quantities immediately following them. For “drained”

systems, there must be a reservoir of the same fluid just outside the volume V that can

either supply more fluid or absorb any excreted fluid as needed during the nonstationary

phase of the poroelastic process; the amount of pore fluid can therefore either increase or

decrease from the initial amount of pore fluid, and at the same time the pore volume can

also be changing, but not necessarily at exactly the same rate as the pore fluid itself. The

one exception to these statements is when the surface pores of the total volume V are sealed,

in which case the system is “undrained” and ζ ≡ 0, identically. In these circumstances, it is

still possible that Vf and Vφ = φV are both changing, but because of the imposed undrained

boundary conditions, they are necessarily changing at the same rate. The result is that, for

an isotropic system, we have:

ζ = φ

[

δσc

Kp

+ δpf

(

1

Kp

−
1

Kφ
R

+
1

Kf

)]

, (12)

where the various moduli in (12) are defined by the following relations (also see [3]):

−
δVf

Vf

=
δpf

Kf

, (13)

−
δV

V
=

δpd

Kd
R

+
δpf

Kg
R

, (14)
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and

−
δVφ

Vφ

=
δpd

Kp

+
δpf

Kφ
R

. (15)

The changes in fluid pressure and differential pressure are respectively δpf and δpd ≡ δpc −

δpf , where δpc = −δσc is the uniform confining pressure, if the external confining pressure

is uniform. If not, then this quantity is replaced in the definition of δpc by −δσm, which

is the change in the mean confining pressure and where σm ≡ (σ11 + σ22 + σ33)/3 is the

definition of the mean principal stress. Clearly, if the confining principal stress is uniform

(σ11 = σ22 = σ33), then the mean stress equals this uniform confining stress. If not, then

there can be additional shearing effects that need to be taken into account, but these do not

play any role in the changes of fluid content since this quantity is effectively a measure only

of the total number of fluid particles contained in the pertinent pore volume.

It can also be shown using poroelastic reciprocity (and we will see this later as it very

clearly develops in the following anisotropic analysis) that

φ

Kp

=
αR

Kd
R

=
1

Kd
R

−
1

Kg
R

. (16)

Then we can generalize Gassmann’s formula for undrained modulus so it takes the form:

1

Ku
R

=
1 − αRB

Kd
R

, (17)

where αR = 1 − Kd
R/Kg

R and

B =

(

1

Kd
R

−
1

Kg
R

)

[

(

1

Kd
R

−
1

Kg
R

)

+ φ

(

1

Kf

−
1

Kφ
R

)]

−1

(18)

is Skempton’s [19,20] second coefficient. Combining these terms, we find that the most

general form of the equation for the undrained bulk modulus in the isotropic case is:

1

Ku
R

=
1

Kd
R

−

(

1

Kd
R

−
1

Kg
R

)2
[

(

1

Kd
R

−
1

Kg
R

)

+ φ

(

1

Kf

−
1

Kφ
R

)]

−1

, (19)

or, alternatively,
1

Ku
R

=
1

Kd
R

−
(αR/Kd

R)2

αR/Kd
R + φ

(

1

Kf
− 1

K
φ
R

) , (20)

which is the isotropic result of Brown and Korringa [3], and should also be compared directly

to (1). We see that, if the pore modulus and grain modulus are equal, so Kφ
R = Kg

R, then

(20) reduces exactly to (1). Although this result is the same as that of Brown and Korringa

[3], we nevertheless write it differently to emphasize different features.
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2.5 Deducing drained constants from undrained: Heterogeneous grains and pores

We were able to deduce Kd
R from our knowledge of Ku

R, Kg
R, Kf , and φ in subsection 2.2.

But even though we are still assuming the system is isotropic, we have now introduced some

additional degrees of freedom by permitting the grains and pores to be heterogeneous. It is

clear that we cannot deduce Kd
R if we have only the same amount of information as before.

In particular, it does seem fairly straightforward to measure Kg
R, since we have already

described its meaning in the earlier discussion and even given formulas for it — while requir-

ing information about the constituents and their volume fractions, or alternatively about the

principal components of elastic compliance and/or stiffness matrices. But we have another

variable now, which is the pore modulus Kφ
R, and this bulk modulus is not so easy either

to model or to measure directly [21]. However, if we add one more piece of information —

a fact that should typically be known in poroelastic systems — namely the second Skemp-

ton coefficient B = pf/pc, then it turns out that we can solve for both Kd
R and Kφ

R. So

again we do assume that Kg
R and Ku

R are known. But now we assume that B is also known

experimentally. Working through the algebra, we find that

Kd
R =

1 − B

1/Ku
R − B/Kg

R

(21)

[which is a rearrangement of Ku
R = Kd

R/(1 − αRB)], and similarly that

1

Kφ
R

=
1

Kf

−

(

1 − B

φB

)(

1

Kd
R

−
1

Kg
R

)

=
1

Kf

−

(

1

φB

)(

1

Ku
R

−
1

Kg
R

)

. (22)

In (22), we used the previous result (21) for Kd
R to simplify the final formula.

These forms are very useful for our applications in poroelasticity, but so far they apply

only to the fully isotropic case. We next show that a very similar set of formulas applies

to the anisotropic cases under consideration. We also gain greater clarity at this point

by switching to the more general anisotropic problem, where we can see more easily how

poroelastic reciprocity comes directly into play.

3. Anisotropic Poroelasticity

If the overall porous medium is anisotropic either due to some preferential alignment of

the constituent particles or due to externally imposed stress (such as a gravity field and
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weight of overburden, for example), we consider the orthorhombic anisotropic version of the

poroelastic equations:















e11

e22

e33

−ζ















=















s11 s12 s13 −β1

s12 s22 s23 −β2

s13 s23 s33 −β3

−β1 −β2 −β3 γ





























σ11

σ22

σ33

−pf















. (23)

From here on throughout the paper, we drop the δ’s from the stresses and strains, as this

extra notation is truly redundant when they are all being treated as small (and therefore

resulting in linear effects) as we do here, for small deviations from an initial rest state.

The eii (no summation over repeated indices) are strains in the i = 1, 2, 3 directions. The

σii are the corresponding stresses. The fluid pressure is pf . The increment of fluid content

is ζ. The drained compliances are sij = sd
ij. Undrained compliances (not yet shown) are

symbolized by su
ij. Coefficients βi = si1 + si2 + si3 − 1/3Kg

R, where Kg
R is again the Reuss

average modulus of the grains. The drained Reuss average bulk modulus is defined by

1

Kd
R

=
∑

ij=1,2,3

sd
ij. (24)

For the Reuss average undrained bulk modulus Ku
R, we have drained compliances replaced

by undrained compliances. A similar definition (9) of Kg
R, with drained compliances replaced

by grain compliances has already been introduced earlier in our discussion. The alternative

Voigt [12] average (also see [13]) of the stiffnesses will play no role in the present work. And,

finally, γ =
∑

i=1−3
βi/BKd

R, where B is the second Skempton coefficient of [19], which will

be defined carefully again later in our discussion.

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23, σ31,

σ12) are excluded from this discussion since they typically do not couple to the modes

of interest for anisotropic systems having orthotropic symmetry, or any more symmetric

system such as those being either transversely isotropic or isotropic. We have also assumed

that we know the true axes of symmetry, and make use of them in our formulation of

the problem. Note that the sij’s are the elements of the compliance matrix S and are

all independent of the fluid, and therefore would be the same if the medium were treated

as elastic (i.e., by ignoring the fluid pressure, or assuming that the fluid saturant is air

– or vacuum). In keeping with the earlier discussions, we typically call these compliances
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the drained compliances and the corresponding matrix the drained compliance matrix Sd,

since the fluids do not contribute to the stored mechanical energy if they are free to drain

into a surrounding reservoir containing the same type of fluid. In contrast, the undrained

compliance matrix Su presupposes that the fluid is trapped (unable to drain from the system

into an adjacent reservoir) and therefore contributes in a significant and measurable way

to the compliance and stiffness (Cu = [Su]−1), and also therefore to the stored mechanical

energy of the undrained system.

Although the significance of the formula is somewhat different now, we find again that

β1 + β2 + β3 =
1

Kd
R

−
1

Kg
R

=
αR

Kd
R

(25)

if we also define (as we did for the isotropic case) a Reuss effective stress coefficient:

αR ≡ 1 − Kd
R/Kg

R. (26)

Furthermore, we have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(

1

Kf

−
1

Kφ
R

)

, (27)

since we have the rigorous result in this notation [22] that Skempton’s B coefficient is given

by

B ≡
1 − Kd

R/Ku
R

1 − Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kφ

R)
. (28)

Note that both (27) and (28) contain dependence on the pore bulk modulus Kφ
R that comes

into play when the pores are heterogeneous, regardless of whether the system is isotropic

or anisotropic. We emphasize that all these formulas are rigorous statements based on the

earlier anisotropic analysis. The appearance of Kd
R and αR is not an approximation, but

merely a useful choice of notation made here because it will enable us to see clearly the

similarity between the rigorous anisotropic formulas and the isotropic ones.

3.1 The βi coefficients

We will now provide several results for the βi coefficients, and then follow the results with

a general proof of their correctness.
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In many important and useful cases, the coefficients βi are determined by

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Kg
R

. (29)

Again, Kg
R is the Reuss average of the grain modulus, since the local grain modulus is

not necessarily assumed uniform here as discussed previously. Equation (29) holds true

for homogeneous grains, such that Kg
R = Kg. It also holds true for the case when Kg

R is

determined instead by (7). However, when the grains themselves are anisotropic, we need

to allow again for this possibility, and this can be accomplished by defining three directional

grain bulk moduli determined by:

1

3K
g

i

≡ sg
i1 + sg

i2 + sg
i3 = sg

1i + sg
2i + sg

3i, (30)

for i = 1, 2, 3. The second equality follows because the compliance matrix is always sym-

metric. We call these quantities in (30) the partial grain-compliance sums, and the K
g

i are

the directional grain bulk moduli. Then, the formula for (29) is replaced by

βi = sd
i1 + sd

i2 + sd
i3 −

1

3K
g

i

. (31)

Note that the factors of three have been correctly accounted for because

∑

i=1,2,3

1

3K
g

i

=
1

Kg
R

, (32)

in agreement with (9). If the three contributions represented by (30) for i = 1, 2, 3 happen

to be equal, then clearly each equals one-third of the sum (32).

The preceding results are for perfectly aligned grains. If the grains are instead perfectly

randomly oriented, then it is clear that the formulas in (29) hold as before, but now Kg
R is

determined instead by (9).

All of these statements about the βi are easily proven by considering the situation when

σ11 = σ22 = σ33 = −pc = −pf . Because then, from (23), we have:

−eii =
(

sd
i1 + sd

i2 + sd
i3

)

pc + βi(−pf ) = (sg
i1 + sg

i2 + sg
i3) pf ≡

pf

3K
g

i

, (33)

in the most general of the three cases discussed, and holding true for each value of i = 1, 2, 3.

This is a statement about the strain eii that would be observed in this situation, as it must

be the same if these anisotropic (or inhomogeneous) grains were immersed in the fluid, while
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measurements were taken of the strains observed in each of the three directions i = 1, 2, 3,

during variations of the fluid pressure pf . We may consider this proof to be a thought

experiment for determining the coefficients, in the same spirit as those proposed originally

by Biot and Willis [2,23] for the isotropic and homogeneous case.

3.2 Coefficient γ

The relationship of coefficient γ to the other coefficients is easily established because we

have already discussed the main issue, which involves determining the role of the various

other constants contained in Skempton’s coefficient B [19]. We have quoted this result in

(18).

Again, from (23), we find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (34)

for undrained boundary conditions. Thus, we find again that

pf

pc

≡ B =
β1 + β2 + β3

γ
, (35)

where pc = −σc is the confining pressure. Thus, the scalar coefficient γ is determined

immediately and given by

γ =
β1 + β2 + β3

B
=

αR/Kd
R

B
= αR/Kd

R + φ

(

1

Kf

−
1

Kφ
R

)

. (36)

Alternatively, we could say that

B =
αR

γKd
R

. (37)

We have now determined the physical/mechanical significance of all the coefficients in

the poroelastic matrix (23). These results are as general as possible without considering

poroelastic symmetries that have less than orthotropic symmetry, while also taking advan-

tage of our assumption that we do typically know the three directions of the principal axes

of symmetry.

3.3 Inverting poroelastic compliance

The matrix in (23) is in compliance form and has extremely simple poroelastic behavior

in the sense that all the fluid mechanical effects appear only in the single coefficient γ. We
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can simplify the notation a little more by lumping some coefficients together, combining the

3× 3 submatrix in the upper left corner of the matrix in (23) as S, and defining the column

vector b by

bT ≡ (β1, β2, β3). (38)

The resulting 4 × 4 matrix and its inverse are now related by:





S −b

−bT γ



 =





A q

qT z





−1

, (39)

where the elements of the inverse matrix can be shown to be written in terms of drained stiff-

ness matrix Cd = C = S−1 by introducing three components: (a) scalar z =
[

γ − bTCb
]

−1
,

(b) column vector q = zCb, and (c) undrained 3 × 3 stiffness matrix (i.e., the pertinent

one connecting the principal strains to principal stresses) is given by A = C + zCbbTC =

Cd+z−1qqT ≡ Cu, since Cd is drained stiffness and A = Cu is clearly undrained stiffness by

construction. This result is the same as that of Gassmann [1] for anisotropic porous media,

although his results were presented in a form somewhat harder to scan than the form shown

here.

Also, note the important fact that the observed decoupling of the fluid effects occurs only

in the compliance form (23) of the equations, and never in the stiffness (inverse) form for

the poroelasticity equations.

From these results, it is not hard to show that

Sd = Su + γ−1bbT . (40)

This result emphasizes the remarkably simple fact that the drained compliance matrix can be

found directly from knowledge of the inverse of undrained stiffness, and the still unknown,

but sometimes relatively easy to estimate, values of γ, together with the three distinct

orthotropic βi coefficients, for i = 1, 2, 3.
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3.4 Deducing coefficients from measurements: Anisotropic example with homoge-

neous grains

Now progress is made by considering the Reuss average again for both the orthotropic

drained and undrained compliances:

1

Kd
R

≡
∑

i,j=1,2,3

sd
ij, (41)

and
1

Ku
R

≡
∑

i,j=1,2,3

su
ij. (42)

These effective moduli are the Reuss averages of the nine compliances in the upper left 3×3

of the full (including the uncoupled shear components) 6× 6 compliance matrix for the two

cases, respectivley, when the pore fluid is allowed to drain from the porous system, and

when the pore fluid is trapped by a jacketing material and therefore undrained.

Although the significance of the formula in the anisotropic case is somewhat different

now, we find again that

β1 + β2 + β3 =
1

Kd
R

−
1

Kg
R

=
αR

Kd
R

(43)

if we also define a Reuss effective stress coefficient:

αR ≡ 1 − Kd
R/Kg

R, (44)

by analogy to the isotropic case. Furthermore, we have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(

1

Kf

−
1

Kg
R

)

, (45)

since we have the rigorous result [22] in this notation that Skempton’s B coefficient [19] is

given by

B ≡
1 − Kd

R/Ku
R

1 − Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kg

R)
. (46)

We should emphasize that all these formulas are rigorous statements based on the earlier

anisotropic analysis. Again, the appearance of Kd
R and αR is not an approximation. In fact

it is important now (it was not important in the isotropic cases considered earlier as long

as the grains were also homogeneous) to make this distinction between the Reuss and Voigt

averages. This choice of notation will help us to demonstrate conceptually useful analogies

between the rigorous anisotropic formulas and the isotropic ones. We have prepared the way
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for these analogies by using the Reuss averages earlier in our notation, even though they

were mostly redundant in those isotropic cases.

First note that, from (43) and (45), it follows that γ−1 =
BKd

R

αR
— also see (37). So now

we can rearrange (40) to give the formal relationship

sd
ij = su

ij +
BKd

R

αR

βiβj, for i, j = 1, 2, 3. (47)

At this point in the analysis, we know everything needed except for actually determining

the three coefficients βi, for i = 1, 2, 3. But, by taking appropriate sums of (47) and using

(43), we find that

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Kg
R

= su
i1 + su

i2 + su
i3 −

1

3Kg
R

+ Bβi, (48)

Rearranging, we find that

βi(1 − B) = su
i1 + su

i2 + su
i3 −

1

3Kg
R

. (49)

Formula (46) for Skempton’s [19] coefficient determines B exactly in terms of (presumed)

known quantities. In the present case, the Skempton coefficient B was not assumed to be

known, since for homogeneous grains we can compute Kd
R relatively easily, and then B follows

since we also know Kg
R. [For the case of heterogeneous or anisotropic grains, the necessary

introduction of the additional variable Kφ
R requires us to have still more measured data, and

it turns out that the next easiest quantity to measure is B itself — as we already saw in the

isotropic case.] So, all three βi’s (which are themselves drained constants) and γ are now

precisely determined. All the remaining drained compliances sd
ij can then be found directly

from (47). Note that all the steps in this inversion procedure are linear; there was no need

to solve any quadratic equation in this formulation of the undrained-to-drained inversion

problem. There is also no iteration, and no fitting steps are required in this procedure.

3.5 Deducing anisotropic drained constants from undrained: Homogeneous grains

and pores

We are now in position to develop the analogy between the isotropic and anisotropic

Gassmann [1] equations for the case of homogeneous grains. In particular, the equation

for the suspension modulus in (2) does not change at all. However, the equation for the
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effective undrained bulk modulus Ku, as shown in both (1) and (3), changes only in that

the relationship is now between the Reuss averages Ku
R and Kd

R of these quantities. This

result is completely analogous to (3), and so will not be shown here.

Since the remainder of the argument is virtually identical to the isotropic case, we there-

fore obtain:

Kd
R =

(

Ku
R

Ksusp

− 1

)

[

1/Ksusp − 2/Kg
R + Ku

R/(Kg
R)2
]

−1
. (50)

This formula shows how to invert for drained Reuss bulk modulus Kd
R from knowledge of

Ku
R, φ, Kf and Kg

R in an anisotropic (up to orthotropic) poroelastic system.

Clearly this formula does not yet give us the individual compliance matrix elements sd
ij

directly. Nevertheless, Equation (50) was the hardest step in the overall procedure. The

rest of the steps follow easily once we have this rigorous result available for our use.

To finish our analysis, we make use of the newly computed value of Kd
R, and substitute

this number into the formula for B, which in this case is:

B =
1 − Kd

R/Ku
R

1 − Kd
R/Kg

R

. (51)

Once we know Skempton coefficient B, this value can be substituted into (49) in order to

determine the βi coefficients for i = 1, 2, 3. The remaining coefficient is γ = αR/BKd
R. So

we see that the critical step in this process was determining the value of the drained Reuss

bulk modulus Kd
R, as was claimed earlier.

3.6 Deducing anisotropic drained constants from undrained: Heterogeneous grains

and pores

One difficulty for heterogeneous grains comes from the additional constant Kφ
R that we

do not know how to determine independently from the other poroelastic measurements. But

this fundamental problem is actually no different for the anisotropic case than it was for the

isotropic one, and the solution is also the same. In both cases, we need more information,

and in both cases the necessary information will most likely come from our knowledge of

Skempton’s coefficient B [19]. If we assume that B can be directly measured (which is

plausible, since B = pf/pc in the undrained case when a uniform confining pressure is

applied to the system), then our problem is completely solved, because B is the key to

solving for the coefficients βi in (49). The only new difficulty is that the terms of the form
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1/3Kg
R must also be replaced by the partial grain compliance sums 1

3K
g
i

, as shown in (31).

So we now have

βi = sd
i1 + sd

i2 + sd
i3 −

1

3K
g

i

= su
i1 + su

i2 + su
i3 −

1

3K
g

i

+ Bβi, (52)

Rearranging, the final result for heterogeneous grains is:

βi(1 − B) = su
i1 + su

i2 + su
i3 −

1

3K
g

i

. (53)

So, we are almost done now, but we still need either to determine the values of the anisotropic

grain correction terms 1

3K
g
i

, or to find some way of avoiding the necessity of doing so.

In principle, this can be done experimentally by actually performing a test on the porous

sample that applies the same pressure inside and outside. Then, measurements of the change

in strain in the three orthogonal directions i = 1, 2, 3 would provide direct measures of the

quantities K
g

i that we need. So this approach is one that is experimentally feasible.

An alternative that we have not considered so far could involve laboratory shear tests by

applying nonzero deviatoric stress changes [19,24]. The undrained fluid pressure is given by

pf = Bpc = B(−σm), where the mean stress is σm = (σ11 + σ22 + σ33)/3. But, if the σii’s

are not uniform, then there are also deviatoric stresses present, due to the nonuniformity of

the principal stresses.

3.6.1 Triaxial testing geometry

One common example of this type of measurement uses triaxial testing [24], where a two-

sided confining stress is defined as σ22 = σ33, and then the deviatoric stress is determined

by

σdev ≡ (σ11 − σ33) /2. (54)

In this situation, the general equation relating undrained pressure to the confining stresses

is given by:

−pf = Bσm + 2

(

A −
1

3

)

Bσdev , (55)

where the only new symbol is Skempton’s [19] first coefficient A. It is not difficult to show

that, in terms of our previous definitions for the triaxial testing geometry, the coefficient A

is given precisely by the ratio

A ≡
β1

β1 + β2 + β3

. (56)
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For an isotropic system, A = 1/3, and so this contribution always vanishes in (55). This fact

explains why we did not encounter this coefficient before in our analysis. Note that there

is no assumption here that the poroelastic system itself is necessarily transversely isotropic.

Only the prescribed equality of the two applied transverse stresses, σ22 and σ33, is assumed.

Then, the formula (55) follows directly from the equations already presented.

3.6.2 Non-triaxial testing geometries

Clearly, it would also be natural to introduce other measures of the βi coefficients as well,

especially if the measurements are not being constrained to the triaxial testing configuration.

So we could imagine that three such coefficients might be measured according to:

−pf = B

[

σm +
∑

i

Ai(σii − σm)

]

, (57)

where

Ai =
βi

β1 + β2 + β3

, (58)

for i = 1, 2, 3. In general, no more than two of these Ai coefficients can be independent

since
∑

i=1,2,3 Ai ≡ 1. But, for general testing configurations, there could be two useful and

distinct measurements to be gathered from deviatoric response testing, although only one

was available in the triaxial testing configuration.

To be able to deduce the values of the βi’s from the Ai’s, we need to know the value of

the sum β1 + β2 + β3 = γB. We also need to know the value of B to determine any of the

Ai’s, but the value of γ is harder to determine independently. The values of Ku
R and the

total Kg
R are both usually easier to determine, so it is likely we have enough information to

compute the βi sum this way:

β1 + β2 + β3 =

1

Ku
R

− 1

K
g
R

1 − B
= γB. (59)

If the βi sum has been computed using (58) and (59), then clearly we also have

βi = AiγB = Ai

(

1

Ku
R

− 1

K
g
R

1 − B

)

. (60)

Once we have computed the βi’s, then we can also find (if we want to, although it is not

usually critical information) the values of the partial sums of the grain Reuss modulus:

1

3K
g

i

≡ su
i1 + su

i2 + su
i3 − βi(1 − B). (61)
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This additional information may therefore be available if needed for some other reason such

as determining some useful descriptive information such as how well-stirred (i.e., how evenly

distributed in space) the particles composing a given granular medium might be.

3.7 Deducing anisotropic drained constants from undrained ones for very hetero-

geneous porous media

At this point we have determined a data processing scheme that would provide all the

drained constants for a poroelasticity system from measurements of the undrained constants.

In the example of the preceding subsection, we needed to broaden the meaning of the

undrained set of constants to include the Skempton Ai coefficients, which were not needed

in earlier parts of the paper. But they could nevertheless be computed from the information

found earlier too, since we did show how to compute all the βi’s directly, and these coefficients

provide just the information that we would need for determining these values from (58).

In realistic data collection situations, especially those involving field data, our previous

assumptions concerning the nature and orientations of the constituent grains of the granular

porous medium may sometimes – perhaps most times – be too idealized. Nevertheless, it

is the case that the equations of poroelasticity never become any more complex than those

shown here. What does change however is the interpretation of the directional grain moduli.

In the worst case scenario, equation (61) needs to be replaced by an equation of the same

form, namely:
1

3K∗

i

= su
i1 + su

i2 + su
i3 − βi(1 − B). (62)

Our measurements are exactly as before, but the interpretation of the resulting constant

estimator K∗

i becomes that of an effective medium bulk modulus, i.e., one that is (or at

least could be) dependent on the directions i = 1, 2, 3 of mesaurement. Effective medium

theories for random polycrystals generally assume (see [25]) that the anisotropic grains are

perfectly randomly oriented. Of course, this may not be true in practice. But to do a better

job of predicting the outcome of experiments in situations where grain orientations are not

perfectly random, we need information about these deviations from perfect randomness. In

the present context, the information would preferably come in the form of these measured

constants K∗

i . Some effort should then be expended in showing how such moduli might

arise if the constituents’ nature and volume fractions are known. But in our current state
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of knowledge, i.e, in the absence of various required measurements, some information about

these constants may be sufficient to permit analysis of other results for experiments of most

interest in poroelasicity.

Therefore, to provide some quantitative information about how important the anisotropy,

as well as the random orientation of the constituents, might be in a few cases, Tables 1 and

2 provide some quantitative examples based on results in references [25–27]. Tables 3 and

4, respectively, provide input data for the types of orthorhombic solids [28], and the results

for the Voigt, Reuss, and directional measures of bulk moduli for these particular materials.

Note the significant finding that the directional moduli do NOT have to stay within the

values set by the Voigt and Reuss estimators. Some additional examples are provided in

Tables 5–9.

4. Summary and Conclusions

There have been a great many experiments done on poroelastic systems through the years,

and many attempts to measure complete poroelastic data sets. The work summarized here

is designed to make this process easier by removing the need (whenever possible) for tedious

fitting routines that have often been used to find the pertinent drained constants for the

measured fluid-saturated and undrained systems. It is also of some real practical importance

to have methods like those discussed here, because of the well-known fact that the presence

of the pore-fluid can alter the nature of the points of contact between neighboring grains,

and therefore alter the values of the “drained” constants that were sought here — and

found via the methods developed for this purpose. Rather different values of the “drained”

constants might be found if instead all the fluid is physically drained out of the system, so

it is effectively “dry” rather than merely “drained” (i.e., in the sense of pore-fluid having

the capability of moving in and out of the boundaries as would happen in the absence of

jacketing material). In the case of a fully dry system, the grain-to-grain contacts are known

to act very differently than they do when saturated with certain fluids. At the very least, it

could be important to check experimentally whether these constants are different or not in

a variety of systems, and the present analysis will permit such studies to move forward.

One especially interesting aspect of the analysis is that in no case presented did the

solution of any of the problems discussed involve any analysis more complicated that solving
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a linear equation. There are no quadratic equations solved in this paper, and none that

needed to be solved. The hardest calculation in the paper is the implicit inversion of a

3 × 3 matrix when the real data are poroelastic stiffnesses, rather than compliances. This

situation does happen in practice whenever the data are obtained using wave propagation

methods. Then, the actual data have the form v =
√

c/ρ, where v is a wave speed, c is a

stiffness or combination of stiffnesses, and ρ is the inertial density. A complete set of the

stiffnesses for the principal stresses and strains is needed for our analysis because we require

the compliance data, and to obtain a complete set of compliance data from stiffness data,

we also require a complete set of the corresponding stiffness data. We need all the elements

of the undrained 3 × 3 compliance matrix for the principal stresses and strains in order to

proceed.

The analysis has been restricted to systems having orthotropic poroelastic symmetry or

higher. Lower symmetry systems might also be studied, but we purposely avoided them here

because for such systems it is harder to know for sure from experimental data when you have

found the true axes of symmetry. Also, in these cases of orthotropic symmetry, the system of

equations is reduced because there is no coupling of the fluid effects to the shear components

associated with the twisting strains e23, e31, e11, or the stresses σ23, σ31, σ12. Shear effects are

not ignored altogether however, as there are well-known shearing mechanisms in poroelastic

media associated with Skempton’s coefficient A [19,24]. These effects were studied here,

and were found to be very useful in accomplishing our main goals, since they provided a

necessary mechanism for measuring some otherwise difficult to measure off-diagonal terms

in the poroelastic equations.

We conclude that this analysis has been successful in solving the problem of obtaining

drained constants from undrained constants in all the cases considered so far. The chosen

set of cases (orthotropic or higher symmetry) is not very restrictive from a practical point of

view, as the great majority of poroelastic systems studied in practice actually have hexagonal

(transversely isotropic) symmetry or higher, and therefore are all explicitly included within

the range of the present analyses.
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Table 1. Reuss (R), Voigt (V), and self-consistent effective (∗) bulk moduli of various

common anisotropic materials [25]: Water ice, cadmium, zinc, graphite, α-quartz,

corundum, barium titanate, rutile, aluminum, copper, magnesia, spinel. Full references for

the data used in both Tables 1 and 2 are provided in reference [25]. Units of bulk

modulus K are GPa.

Material Symmetry KR K∗ KV KV /KR

H2O Hexagonal 8.89 8.89 8.89 1.00

Cd Hexagonal 48.8 54.7 58.1 1.19

Zn Hexagonal 61.6 70.9 75.1 1.22

Graphite Hexagonal 35.8 88.0 286.3 8.00

Al2O3 Trigonal 253.5 253.7 253.9 1.002

α-SiO2 Trigonal 37.6 37.8 38.1 1.01

TiO2 Tetragonal 209 213 218 1.04

BaTiO2 Tetragonal 163.1 179.3 186.8 1.15

Al Cubic 76.3 76.3 76.3 1.00

MgO Cubic 162.4 162.4 162.4 1.00

MgAl2O4 Cubic 196.7 196.7 196.7 1.00

Cu Cubic 138.0 138.0 138.0 1.00
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Table 2. Reuss (R), Voigt (V), and self-consistent effective (∗) shear moduli of various

common materials [25]: Water ice, cadmium, zinc, graphite, α-quartz, corundum, barium

titanate, rutile, aluminum, copper, magnesia, and spinel. Units of shear modulus G are

GPa. The anisotropy parameter A ≡ 5GV

GR
+ KV

KR
− 6 (from [26,27]).

Material Symmetry GR G∗ GV GV /GR A

H2O Hexagonal 3.48 3.52 3.55 1.02 0.10

Cd Hexagonal 22.1 24.3 26.4 1.19 1.14

Zn Hexagonal 34.1 40.6 44.8 1.31 1.77

Graphite Hexagonal 9.2 52.6 219.4 23.8 121.0

Al2O3 Trigonal 160.7 163.1 165.5 1.03 0.15

α-SiO2 Trigonal 41.0 44.0 47.6 1.16 0.81

TiO2 Tetragonal 99.5 114.5 124.9 1.26 1.34

BaTiO2 Tetragonal 47.4 53.6 59.8 1.26 1.46

Al Cubic 26.0 26.2 26.3 1.01 0.05

MgO Cubic 123.9 126.3 128.6 1.04 0.20

MgAl2O4 Cubic 98.6 109.0 118.0 1.20 1.00

Cu Cubic 40.0 46.3 51.3 1.28 1.41
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Table 3. Data for the principal stiffness coefficients cij of orthorhombic sulfur (S),

Rochelle salt, Benzophenone, and α-Uranium (α-U). All data from Musgrave [28], but

re-expressed in units of GPa.

Stiffness Sulfur (S) Rochelle Salt Benzophenone α-Uranium

c11 24.0 25.5 107.0 215.0

c22 20.5 38.1 100.0 199.0

c33 48.3 37.1 71.0 267.0

c12 13.3 14.1 55.0 46.0

c13 17.1 11.6 16.9 22.0

c23 15.9 14.6 32.1 107.0
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Table 4. Data for various measures of bulk modulus K (Voigt, Reuss, and three partial

sum moduli) for orthorhombic sulfur (S), Rochelle salt, Benzophenone, and α-Uranium

(α-U). All data from Musgrave [28] (see Table 3 here), while the expressions in the main

text were used for the computations. All moduli in units of GPa.

Bulk Modulus Sulfur (S) Rochelle Salt Benzophenone α-Uranium

KV 20.6 20.1 54.0 114.6

KR 17.6 19.3 49.2 111.3

K1 15.2 12.5 55.8 87.9

K2 10.1 30.6 107.5 113.6

K3 15.8 23.3 29.6 147.7
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Table 5. Data for the principal stiffness coefficients cij for i, j = 1, 2, 3, as well as c44, of

hexagonal minerals: cadmium (Cd), H2O ice, β-quartz (SiO2), titanium (Ti), and

zirconium (Zr). All data from Simmons and Wang [29] (entry numbers: 52473, 52563,

52643, 52726, and 52798, respectively), but re-expressed in units of GPa.

Stiffness Cadmium (Cd) H2O Ice β-Quartz Titanium (Ti) Zirconium (Zr)

c11 115.30 13.85 116.6 163.9 137.0

c33 51.20 14.99 110.4 181.6 160.7

c12 39.24 7.07 16.7 91.3 75.6

c13 40.22 5.81 32.8 68.9 65.4

c44 20.40 3.19 36.1 47.2 30.1
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Table 6. Data for various measures of bulk modulus K (Voigt, Reuss, and three

partial-sum moduli) for hexagonal minerals: cadmium (Cd), H2O ice, β-quartz (SiO2),

titanium (Ti), and zirconium (Zr). All data from Simmons and Wang [29] (see Table 5),

while the expressions in the main text were used for all the computations. All moduli in

units of GPa.

Bulk Modulus Cadmium (Cd) H2O Ice β-Quartz Titanium (Ti) Zirconium (Zr)

KV 57.89 8.90 56.47 107.51 94.17

KR 48.61 8.90 56.37 107.50 94.02

K1 = K2 143.07 8.94 53.97 109.00 89.58

K3 20.95 8.82 61.86 104.63 104.36

31



Table 7. Data for the principal stiffness coefficients cij for i, j = 1, 2, 3 and c44 of cubic

symmetry minerals: aluminum (Al), copper (Cu), magnesia (MgO), and spinel (MgAl2O4).

All data from Simmons and Wang [29] (entry numbers: 10089, 10385, 10902, and 11877,

respectively), but re-expressed in units of GPa.

Stiffness Aluminum (Al) Copper (Cu) Magnesia (MgO) Spinel (MgAl2O4)

c11 107.30 170.98 297.08 298.57

c12 60.80 123.99 95.36 153.72

c44 28.30 75.45 156.13 157.58

32



Table 8. Data for various measures of bulk modulus K (Voigt, Reuss, and three

partial-sum moduli) for cubic symmetry minerals: aluminum (Al), copper (Cu), magnesia

(MgO), and spinel (MgAl2O4). All data from Simmons and Wang [29] (see Table 7),

while the expressions in the main text were used for all the computations. All moduli in

units of GPa. Clearly, all the pertinent bulk moduli for each material are the same (i.e.,

KV = KR = K1 = K2 = K3, even though these cubic symmetry minerals are not isotropic.

Bulk Modulus Aluminum (Al) Copper (Cu) Magnesia (MgO) Spinel (MgAl2O4)

KV = KR = . . . 76.3 139.65 162.6 202.00
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Table 9. Reuss (R) and Voigt (V) shear moduli of various common hexagonal and cubic

materials [29]: cadmium, β-quartz, titanium, zirconium, aluminum, copper, magnesia, and

spinel. Units of shear modulus G are GPa. All the formulas needed to compute the various

effective moduli from the stiffness coefficients are given in reference [25]. The anisotropy

parameter A ≡ 5GV

GR
+ KV

KR
− 6 (from [26,27]).

Material Symmetry GR GV GV /GR A

Cd Hexagonal 22.1 26.4 1.197 1.174

SiO2 Hexagonal 3.48 3.55 1.025 0.125

Ti Hexagonal 34.1 44.8 1.31 0.154

Zr Hexagonal 32.54 33.40 1.03 0.132

Al Cubic 26.04 26.28 1.009 0.045

Cu Cubic 40.04 54.67 1.365 1.825

MgO Cubic 128.06 134.02 1.047 0.235

MgAl2O4 Cubic 107.17 123.52 1.152 0.76
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