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Abstract— Depression is the most common mental disorder
and is negatively impactful to individuals and their social
networks. Passive sensing of behavior via smartphones may
help detect changes in depressive symptoms, which could be
useful for tracking and understanding disorders. Here we look
at a passive way to detect changes in depressive symptoms
from data collected by users’ smartphones. In particular, we
take two modeling approaches to understand what features
of physical activity, sleep, and user emotional wellbeing best
predict changes in depressive symptoms. We find overlap in
the features selected by our two modeling approaches, which
implies the importance of certain features. Characteristics
around sleep, such as change and irregularity of sleep duration,
appear as meaningful predictors, as does personality. Our work
corroborates prior results that sleep is strongly related to
changes in depressive symptoms, but we show that even a very
coarse measure has some predictive capability.

I. INTRODUCTION

With the advancement in the sophistication and ubiquity
of computing, the notion of real-time monitoring of behavior
and emotional states has become plausible [1], [2]. Mon-
itoring behavioral and emotional states via user input has
already become relatively convenient with a proliferation
of smartphone applications that can automatically remind
users to log information about their state throughout the day.
Logging and sharing data, particularly with health providers,
can be beneficial because it can detect mood states that can
benefit from intervention, either via mobile interventions or
interventions from health providers.

To mitigate dropout, researchers have considered the pos-
sibility of smart apps that sense a user’s behavior and auto-
matically log their inferred state from data that is collected
by a smart device without any user input [1]. The goal of
automatic journaling has been attempted, in particular, for
monitoring mood disorders, such as bipolar and depression
[3], [4], [5], [6], [7], [8], [9], [10]. Such prediction capability
would enable automatic long-term monitoring of emotional
states, which is particularly applicable to mood disorders.

Research in automatic mood or emotion prediction has
used simple single or double scales of wellbeing, such as
“happiness” or the Circumplex model of affect and valence
(wellbeing and energy) [11] as ground truth. These scales are
implemented in basic user interfaces that automatically and
randomly query the user throughout the day as ecological

momentary assessments (EMA) of their wellbeing. Because
the scales are simple, users comply more frequently, e.g.,
multiple times a day, for longer studies. While these scales
are easy to measure, a disconnect arises with their relation
to longer-term more thorough scales of mood and depressive
symptoms.

In this study, we explore the ability to predict long-term
changes in depressive symptoms, as measured by Beck’s
Depression Inventory (BDI) [12], from simple daily user
input scales of affect and valence (the Circumplex model)
and passively sensed data on user activity. We also compare
the utility of daily Circumplex surveys with the utility of pas-
sively sensed user activity behavior. In particular we consider
overall increase of Beck’s Depression Inventory (BDI) [12]
in an undergraduate cohort over the course of an academic
semester. We ask two questions: whether daily self-reports of
affect and valence during the semester can be indicative of
overall changes in self-reported BDI scores from baseline to
followup and whether passively sensed behavioral patterns
are correlated with long-term mood changes, as quantified
by changes in BDI scores. In addition to daily self-reports
and activity behavior, we consider Big 5 [13] personality
features: openness, extraversion, neuroticism, agreeableness,
concienciousness.

This approach of predicting long-term changes in wellbe-
ing is useful for developing targeted interventions. Detecting
long-term changes would also be beneficial for monitoring
wellbeing, especially of a population, such as in a random-
ized control trial of a treatment. Predicting absolute levels of
depression from smartphones has proven difficult [3], [10],
so we narrow to an equally useful goal of predicting changes.

We find that the relationship between daily reported affect
and valence measures with changes in long-term measures
of mood is complex. Other features, such as passively sensed
user activity level and sleep duration are far more predictive
of increases in depressive symptoms than features on daily
surveys. We also find that the openness of a user’s personality
is very strongly correlated with whether they experience an
increase in depressive symptoms. The strength of correlations
between features and changes in BDI is established by
considering small p-values on coefficients in linear regression
models and being selected with a large coefficient in a Lasso



Fig. 1. Example behavior of an individual. Note apparent decrease in
average daily wellbeing and energy. This decrease corresponds with a
reported increase (in two points) to depressive symptoms (BDI score). The
sensed activity and sleep behavior is relatively consistent during the study.
Sleep is scaled by the maximum duration sample to make units comparable
to daily percents.

penalized linear model.
Our work supports prior studies that used more precise

predictions of sleep duration (via collecting data on more
sensors than we consider). We show that the correlation
of sleep duration is so powerful that perhaps more coarse
measures, i.e., loose predictions from a single sensor rather
than an ensemble, are sufficient. We also find a significant
impact from one outlying user, which highlights the need
for larger populations with more variance to protect from
overfitting artisanal datasets.

We will begin by placing the contribution of this study in
the context of previous related work. We continue by briefly
describing the dataset that we collected during our user study
and then discuss the data processing, features extracted, and
how the features could be related to the objective. We then
explicitly state the two modeling approaches that we take
and their merits. Our observed results on these two modeling
approaches are described then followed by a discussion of
the results and final conclusions.

II. CONTRIBUTIONS

We make two significant contributions. First, we build on
prior work that looked at utility of simple daily measures
of wellbeing [14]. Rather than attempting to reproduce daily
measures of wellbeing as ground truth, we look for relations
of the daily measures with long-term changes in depressive
symptoms. We would like to understand if features derived
from daily measures of wellbeing are correlated with long-
term changes in more thorough scales.

Our second contribution is an exploration of whether
passively sensed behavioral features, particularly physical
activity and sleep, are more predictive of long-term changes
than the simple daily surveys of affect and valence (wellbeing
and energy). We identify which behavioral features are
most strongly correlated with long-term changes and could
be used eventually as potential indicators of increase in
depressive symptom expression. These data could improve

Fig. 2. A user’s behavior. Note apparent increase in daily wellbeing
and energy measurements, but a reported increase in long-term depressive
symptoms (BDI score), which contrasts with the previous user in Figure 1.
This user also has considerable fluctuation in their daily activity level and
sensed sleep duration.

the identification of depressive symptoms that could lead to
targeted mobile or live intervention.

III. RELATED WORK

There is a growing body of research that looks at using
smartphones as sensors, particularly for mood. Various au-
thors have shown correlations of daily emotion with call and
SMS logs [4], [8], [9], [15], phone processes [9], Bluetooth
[4], GPS location traces [3], [6], [7], [8], [9], [10], [15],
sound data [4], physiology sensors (from wristbands) [8],
[16], and macro-activity data [15], [16]. The majority of
these authors have looked at predicting simple daily measures
of mood over long periods. However, some authors have
looked at more clinical measures of mood such as the PHQ-
9 [3], [6], [7], [10]. Few authors have tried to predict values
of long-term mood measures [10] or changes in outcome
measures [3] from passively sensed data.

Here we focus on the long-term outcome measure (change
in depressive symptoms, as measured by the BDI,) as the
most important signal to predict. These longer term measures
are more widely accepted as impactful from a medical
community and the utility of simplistic daily emotional
measures has yet to be confirmed.

In this work, we utilize physical activity as the behavioral
input due to the large body of research that supports that there
is a strong relation of mental wellbeing with activity levels
and sleep [17], [18], [19], [20], [21], [22], [23], [24], [25].
Further there has been a large body of work that has shown
that smartphone accelerometer data can be used to sense both
physical activity through activity recognition [26], [27], [28],
as well as sleep [29], [30]. Other pilot projects implied that
mental states can be recovered from accelerometer data on
small populations in artificial settings [2], [31].

IV. MOTIVATIONAL EXAMPLE

In a variety of studies, simple scales of user emotional
wellbeing have been used as ground truth and, more im-
portantly, as a surrogate for more meaningful measures of



Fig. 3. Distribution of BDI scores that participants reported in the entry
survey in March and in the exit survey in May. Note the slight drift of the
distribution to higher BDI scores (more expressed depressive symptoms)
over the course of the semester. The study ended the week before finals.

mood [4], [8], [9]. However, it’s not clear whether, and if
so how, these daily emotion measures are related to long-
term mood. For example, two users’ behavior and input is
displayed in Figures 1 and 2. In Figure 1 the user’s average
daily wellbeing inputs appear to generally decrease during
the course of the eight week study. (Mean daily reports
are smoothed across the preceding week based on previous
results which found this weekly average to be correlated with
weekly PHQ-9 scores [14].) The user in Figure 1 reported
a two point increase in BDI score (depressive symptoms)
between the entry and exit surveys. The behavior of another
user is displayed in Figure 2. This user’s average emotional
wellbeing displays significant fluctuation during the study
period, but does not clearly decrease. However, the entry and
exit surveys indicated that the user’s depressives symptoms
(BDI score) increased four points during the study, which
was a greater increase than the user in Figure 1 reported.

These two figures give an example of how relations of
daily emotion input has a complex relation to overall changes
in mood. These two users’ behavior imply that mappings
from daily input to long-term change may be difficult to
construct.

V. FIELD STUDY

To answer our research question of how daily self-reports
of emotion and daily measurements of activity and sleep are
related to overall changes in mood, we conducted a field
study. We recruited 107 students at the University of Cali-
fornia, Berkeley. These students were required to be native
english speakers, have their own Android smartphone, and
install our custom built app. The application would prompt
the users to enter their wellbeing and energy level (Circum-
plex affect and valence) four times a day during the eight
week study period from mid March through the beginning
of May. We elected to use the Circumplex model of emotion
[11] to align with previous work that has adopted this model
[1], [9], [16], [32]. The application also collected a variety of

Fig. 4. The distribution of individuals’ change in BDI score from the entry
to the exit survey. A positive increase indicates an increase in BDI score
(expression of depressive symptoms). During the course of the semester
more students experienced an increase in depressive feelings than a decrease.

data from sensors on the participants’ smartphones, including
from the accelerometer motion sensor. Data was collected
from the accelerometers for three seconds every 5 minutes.
The study period was chosen to conclude shortly before finals
so that students would be more likely to participate through
the full study. Students received compensation and the study
was approved by the Internal Review Board.

VI. DATASET

Due to high attrition and missing data from the entry
and exit surveys, we consider a dataset comprised of 44
participants, 27 of whom were female. The distributions
of BDI scores reported by the participants for the entry
(March) and exit (May) surveys are shown in Figure 3.
While most participants reported a score less than 10, a
few participants reported higher scores and the average score
increased from 11.5 reported in March to 12.4 reported in
May. A larger BDI score corresponds to increased depressive
symptoms reported, so the majority of our study population
reported minimal depressive symptoms. The distribution of
changes in BDI scores between the entry and exit survey is
shown in Figure 4. This figure shows that there was a broad
experience among participants during the semester and some
experienced a significant change in their response during the
academic semester.

Three entry surveys and one exit survey were missing the
response to one BDI question due to user error or a user
electing not to answer. In these four cases, the difference in
BDI score was calculated between answered questions. The
entry and exit BDI scores were computed by scaling the
weight of all other questions to be slightly more significant,
so that the total possible sum of the 20 answered BDI
questions was the same as the full 21 question survey.

Our study composed of three phases of user input: an entry
survey, daily prompts, and an exit survey. During the entry
and exit survey users were asked to self-report their responses
to 20 questions from the Beck Depression Inventory. The



question regarding suicidal thoughts was omitted due to
concerns from the Internal Review Board. The entry and
exit survey also collected Big 5 personality scores [13] and
demographic information. All questions were optional.

In addition to the user input data, we collected data from
sensors on the participants’ smartphones, including from
the accelerometer sensor. We collected accelerometer data
using funf [33] at intervals of three seconds every five
minutes. The accelerometer data was collected continuously
from install time. Quality and volume of data varied greatly
between participants and phone models. Some of the diffi-
culties encountered included entirely missing observations,
nonuniform readings during an observation interval, and in-
sufficient duration of sampling, i.e., too few readings during
an observation interval.

VII. DATA PROCESSING - ACTIVITY EXTRACTION

A smartphone’s accelerometer collects acceleration of the
phone along three axes at every reading. These readings
constructed time series that we featurized similar to the
approaches found in previous work [28]. These time series
features were passed to classifiers which made predictions
of whether the phone was “still” or set down during an
observation or whether the user was was physically active,
such as walking, running, or cycling. These momentary
observations of activity and stillness were collected for each
day of the study and the percent of the day and previous night
(1am - 7am) during which a user was physically active or the
phone was still were calculated. Additionally we approximate
sleep time as the longest duration that the phone was set
down during the evening hours. We will refer to this duration
of stillness as “sleep”. This measure of sleep seems noisy,
but a similar approach was found to approximate sleep to
within roughly 45 minutes of true sleep time [29]. Through
this process we end up with measures of the percent of
time during a day and night a user spends active or still
and the duration during the evening that the phone is set
down and the user presumably sleeping. These measures
were then averaged over seven day periods to give smoothed
average activity and sleep measures. This averaging adds
some robustness.

VIII. FEATURES

The features that we use to describe participants and their
behavior during the study are summarized in Table I. The
behavior and self-report features were calculated on user
input daily wellbeing and energy. They were also calculated
on the signals we gleaned from the sensor data: percent of
time the participant was active during the day and night,
percent of time the phone was still during the day and night,
and the “sleep” duration. The observation entropy feature
was calculated on the distribution of each signal. Similar to
standard deviation, it quantifies the irregularity of the signal.
The difference features try to quantify changes from baseline
to end of study, irrespective of intermediate fluctuations. We
consider timescales of a week to stabilize daily fluctuations

Feature type Name Description

Personality

Neurotic Big 5 personality test
Extraversion Big 5 personality test
Openness Big 5 personality test
Agreeable Big 5 personality test
Conciencious Big 5 personality test

Behavior
and
self-reports

Avg. Obs. Mean of observations
Obs. Stdev. Standard deviation of

observations
Obs. Slope Regression coefficient

of observations on time
Obs. Entropy Entropy of observation

distribution
Diff. last week Difference of average

measurement during
last week with baseline

Diff. last 2 weeks Difference of average
measurements during
last two weeks with
baseline

TABLE I
FEATURES COLLECTED AND COMPUTED ON EACH PARTICIPANT. THE

BASELINE OF A MEASUREMENT WAS CALCULATED AS THE AVERAGE

OVER THE FIRST FOUR WEEKS OF THE STUDY.

and to follow prior work which showed that a weekly mood
average was related to weekly PHQ-9 scores [14].

IX. METHODOLOGY

In this work our goal is to understand behavioral factors
that are correlated with long-term changes in participants’
depressive symptoms (BDI scores) during the course of
the academic semester from March to May. Our secondary
goal is to use that information to successfully predict a
change in depressive symptom expression. For these tasks we
are interested in which features are strongly correlated and
predictive of the outcome change in BDI score. To identify
correlated and predictive features, we choose to use linear
models because they have clear interpretations and are thus
ideal for feature selection and model insight.

A. Feature Selection

To explore the relevancy of features, we use linear re-
gression models, as these models are highly interpretable.
However, we choose two methods of feature selection with
these models: forward selection with the Bayesian Informa-
tion Criterion (BIC [34]) to choose which of the features
should be added at each subsequent step and when forward
selection should terminate, and linear regression with the L1
(Lasso) penalty [35]. Both of these methods yield models
with a limited number of terms and a coefficient on each
terms that indicates how much that term contributes to the
model.

B. Feature Comparison

To make the weights of features comparable (despite
different scales), we scale all features to unit variance. While
this is artificial, it yields models where features are on
comparable scales and thus comparisons between feature
coefficients are more insightful.



Forward Selection Lasso
All Obs. No Outlier All Obs. No Outlier

Feature Name Coefficient Value
Openness 3.6640 (*) 3.1895 (*) 1.99 2.361
Sleep duration [Obs. Stdev.] 7.2069 (*) x 5.599 x
Sleep duration [Slope] -6.9844 (0.001) x -2.204 x
Sleep duration [Diff. last 2 weeks] 4.7048 (0.017) x x x
Daytime activity [Avg. Obs.] x x 0.342 x
Daytime activity [Diff. last 2 weeks] x x -0.067 x
Daytime stillness [Obs. Stdev.] -3.3079 (0.001) x -1.019 x
Daytime stillness [ Diff. last week] 1.5866 (0.053) x x x
Daily energy [Entropy] x x 0.150 x
Daily energy [Diff. last 2 weeks] x x -0.101 -0.209
Model R2 0.785 0.404 0.704 0.392
Model MSE 61.996 [23.859] 15.849 96.149 [29.156] 16.939

TABLE II
COMPARISON BETWEEN VARIOUS MODELING APPROACHES OF FEATURES SELECTED, MODEL FIT (R2), AND MEAN SQUARED ERROR (MSE) OF

PREDICTION. APPROACHES ATTEMPTED TO MODEL THE CHANGE IN PARTICIPANTS’ BDI SCORES FROM THE BEGINNING OF THE STUDY TO THE END.
P-VALUES FOR LINEAR REGRESSION COEFFICIENTS ARE IN PARENTHESIS, WHERE APPROPRIATE, AND * DENOTES VALUES LESS THAN 0.001. THE

BASELINE MSE WITH THE OUTLIER WAS 83.212 AND WITH THE OUTLIER REMOVED WAS 25.184. THE NUMBERS IN SQUARE BRACKETS ARE THE

MSE CALCULATED ON THE SET OF NOT OUTLIERS.

C. Outliers

There is a single outlier in our dataset of one participant
who experienced a particularly difficult semester. This outlier
had a dramatic effect on the models due to our small
population size. Rather than controlling for the observation,
we present models with and without the outlier.

X. RESULTS

The feature selection, model fit, and prediction accuracy
using both of the regression approaches outlined above are
presented in Table II. There are four models presented in
Table II. Two of the models presented used forward selection
with the BIC and two of the models used L1-penalized linear
regression. The difference between the models using the
same modeling approach is that one of the models has a
single outlier removed. The models were fit with intercept
terms, but those terms are omitted for brevity.

A. Linear Regression with Forward Selection and BIC

The first (left most) column of coefficients in Table II
presents a linear model that was fit to the entire dataset.
The features were selected by using forward selection and
choosing models that minimized the BIC. This modeling pro-
cedure resulted in six features being selected, five of which
were statistically significant (p-values < 0.05). The features
selected were the participant’s openness (as measured by the
Big 5 personality survey,) and features quantifying variability
and change in both the duration of “sleep” (stillness during
the evening) and fraction of time still during the day.
Aside from the feature quantifying one dimension of the
participants’ personality, all the other features result from
accelerometer measurements, and particularly measurements
of when the phone is not in motion, but presumably set down.
The model has reasonably high R2 of 0.785 indicating that
a large fraction of the variability of the data is explained by
these five features.

B. L1 (Lasso) Penalized Linear Model

The third column of coefficients (second from the right)
in Table II presents the model that is selected for an
L1-penalized linear regression model. With this modeling
approach, features are selected by adding a penalty to the
model accuracy term everytime a coefficient is included. This
process drives the coefficients of unnecessary terms to zero
and thus removes them from the model.

The Lasso approach selects the largest model that we
observe with eight features. Again, the openness of a par-
ticipant’s personality is selected as highly predictive of
the increase in BDI score during the semester. Features
describing the change in and variability of the participant’s
daytime stillness and “sleep” are also selected. In contrast to
the model chosen with forward selection, the Lasso penalized
linear model selects two features describing the variability
and change in the participants’ self-reported energy levels.
Two features describing the average activity level and change
in average activity level during the day are also selected. It
is interesting that two features on the participants’ energy
levels are selected, but no features on the participants’ self-
reported wellbeing are selected. It is also interesting that out
of the eight features selected, five of them are describing
the activity of the participant, as measured by the users’
smartphones.

C. Removing the Outlier

In the collected dataset, there was a single outlier. The
outlier resulted from a single participant experiencing a
particularly difficult semester and unfortunately reporting a
increase in BDI score of 50. The second largest change
in score was 14, so one participant was an outlier and
had significant impact on the model selection. To explore
the robustness of the previous models, we used the same
methodology to fit two models, one with forward selection
and the second with a Lasso penalty, to the dataset with the



Fig. 5. The distribution of predictions from leave-one-out cross-validation.
Features were preselected with forward selection and models were fit on
population with the outlier included. Most predictions are within the dotted
lines indicated predictions within five points of the true increase.

single outlying participant removed. These two models are
presented in the second and fourth (right most) columns of
coefficients in Table II.

The resulting models are considerably different from the
models selected with the outlier included. This result reveals
that the models were very sensitive to the one participant’s
experience. However, the openness of participants is still
selected as a feature with both forward selection and Lasso
penalized regression, which implies that this personality
feature is resolutely correlated with the change in the BDI
score. Of note is also the selection of the change in self-
reported energy from the beginning to the end of the study
with Lasso penalized regression. We are trying to model the
change in depressive symptoms (change in BDI), but the
self-reported energy and not self-reported wellbeing is being
selected as an important feature.

D. Leave-One-Out Prediction Accuracy

As a final test of our models, we tried using them for
prediction and measuring the accuracy of trained models’
predictions on a holdout set. Due to the constrained size of
the dataset (44 participants,) we used leave-one-out cross-
validation. In this approach, one user is held out, a model
is trained on all the other users, and the error of the trained
models is then measured by the error in prediction on the
held out user. This process is repeated for all users. The error
measured is mean squared error (MSE) and it is averaged
across all participants to yield the MSE reported in the
bottom row of Table II. A lower MSE is better with zero
indicating a perfect model. When considering these numbers,
one should consider the baseline. We consider the baseline
MSE to be the MSE returned when the null “model” is used.
We consider the null model to be when the mean of the
dataset is always returned as the prediction, i.e., when no
features are considered, only the population baseline. This
null model results in a baseline MSE of 83.212 when the
outlier is included and 25.184 when the outlier is excluded
from the dataset.

Fig. 6. The distribution of predictions with leave-one-out cross-validation.
Models were fit on a population with the outlier removed and features were
pre-selected by forward selection with the BIC.

We see that the models constructed with forward selection
and the BIC yield MSE’s lower than the baselines, which
implies those models have better prediction accuracy that
predicting the mean of the dataset uniformly. The model
fit with the Lasso penalty does not yield a MSE (96.149)
lower than the baseline (83.212). However, when the outlier
is excluded, the Lasso penalized model does yield a better
model (MSE = 16.939) than the baseline (MSE = 25.184)
with just two features. This result highlights the strength
of the correlation of the openness of a participant with the
increase in BDI score they experienced during the semester.

Figure 5 displays the distribution of predicted BDI in-
creases relative to the true increases in BDI scores observed
when the outlying participant is included in the dataset.
Figure 6 is similar, but displays the distribution of predictions
on a dataset with the outlier excluded. Predictions in both
figures were generated by fitting linear models on the features
that were selected with forward selection and the BIC in
leave-one-out cross-validation schemes. Both figures show
little structure in the error of predictions, i.e., BDI increase
is not consistently under or over predicted. Further, these
figures show that the majority of predictions are within five
points (the dotted lines) of the true reported increase in BDI.

XI. DISCUSSION

In the above sections, we have explored which features,
from a set of 47, were most predictive of participants’
increase (or decrease) in BDI scores between the beginning
and end of our eight week study. To gain insight from
modeling the data, we have chosen to use linear models for
their interpretability. Due to our small population, we have
pursued two feature selection approaches: forward selection
with the BIC and Lasso regression. By comparing these two
different approaches, we hope to reduce over-extrapolation
from our small population.

When modeling the full population, sleep features were
not only selected, but found to be most impactful for
prediction, i.e., large coefficients in both approaches and
small p-values with forward selection. This result is in



line with prior results which looked at more sophisticated
predictions of sleep duration from multiple sensors [3]. Our
result highlights how important these features are: even our
coarse approximation to sleep with one sensor is significantly
predictive. To a lesser extent, activity levels and irregularity
of stillness during the day (7am - 1am the next day) are
predictive and selected in both models.

Of notable absence is any feature derived from daily
reported emotional wellbeing or affect. Only two features
derived from each set of reports were loosely related (small
coefficient values) to increase in BDI score when the Lasso
penalized model was used. As these measurements are meant
to be a brief estimate for more thorough measures, one
would think they could be correlated with the increase in
BDI. However, none of the features we constructed around
daily wellbeing, or the change in it, were ever found to be
correlated, regardless of modeling approach. The irregularity
and change from baseline of daily energy was chosen to be
predictive in the Lasso regression, but not daily wellbeing.
This result implies that daily mood scores may be an
insufficient measure, or that at least it is not straight forward
to correlate such a noisy measure of emotion with longer
term changes in depressive symptoms. Daily self-reports are
tedious to comply with for an ongoing basis, so if their
application is unclear, it is possible that alternative metrics
should be considered for measurement. Another factor that
could account for the lack of affect and valence features is
missing data.

A major hindrance to our approach is missing data. As the
study progressed, participation waned. This waning resulted
in a poorly sampled or observed period before the exit
survey was offered, and thus final May BDI was recorded. It
is possible that with better observation immediately before
recording the May BDI score, more features constructed on
the daily self-reports would have been selected or found to
be statistically significantly correlated.

Similar to missing data, data quality was a problem. Our
population had a variety of phone models that yielded a
range in the quality and regularity of data recorded on each
participant. It was not possible with our limited population
size to explore to what extent the quality of data recorded
by individual devices affected our results.

Unfortunately very few features are left significant when
the outlier was removed from the population. The only fea-
ture that is found to be significant in every model regardless
of if the outlier is removed, is the Big 5 openness dimension.
This result speaks to the importance of personality, or the
strength of the correlation between a person’s predisposition
to having an increase in depressive symptoms and the ob-
servation of a change in BDI score. This strong correlation
could also have impact for academic administrators who are
concerned with how students fare during semesters and the
stresses imposed by undergraduate life.

The result of lost significance when the outlier is removed
speaks to the importance of every participant and observation
in these small population, artisanal datasets. Overfitting must
be carefully avoided and explored and outliers must be

addressed to avoid presenting misleading results. The impact
of our results is hindered by the small sample size. While our
study population size is commensurate with previous studies,
the population size is still small, which results in a strong
tendency to overfit the dataset. We have tried to minimize
overfitting by use of the BIC and forward selection and
Lasso-penalized regression. Further, we have tried to limit
our conclusions to insights about which features appear to
have some correlation with the desired metrics (or rather
which sets of features have little predictive capability). We
do not focus on the overall predictiveness of the model, but
which features are capable of explaining some of the variance
in the observed dataset. The relatively large observed R2

values of our two models are encouraging, but a larger
sample population is needed for more definitive results. A
population skewed to more clinical depression, rather than
the general population that we observed, may also present
different conclusions.

The loss of significance could also not speak to the lack
of importance of the other features or the need for a larger
population, but to the need for a population specifically with
larger variation in baseline BDI scores and variability in
mood, or change in BDI scores. Our student participants
were selected from a general, non-targeted population. It
is possible that a population more inclined to experience
significant changes in mood, e.g., a clinically depressed
population, would benefit from modeling with more features.
However, the fact that our population did not experience a
very large distribution in increase in BDI scores, means that
there may have been little to predict. A single point increase
or decrease in score could be little more than noise and thus
very difficult to predict.

For future work, we would like to use these methods on a
larger population with more depressive symptoms and where
fluctuations are more demonstrative. Another approach we
would like to consider is separating populations by gender,
but for that a larger population is needed.

XII. CONCLUSIONS

We have explored the utility of different features for
predicting increases in reported depressive symptoms (Beck’s
Depression Inventory). In particular, we sought to understand
the utility of daily affect and valence self-reports for predict-
ing increases in the BDI, as compared with passively col-
lected activity and sleep features. We found relatively large
R2 values for both modeling approaches used, indicating the
ability to model the data, and a variety of interesting insights
into predictive features. We found that passively sensed data
was actually more predictive of increases in BDI than the
active user input.

While this work provides encouraging results corroborat-
ing that behavioral patterns can be measured by smartphones
and used to predict meaningful metrics, more work is needed,
specifically with a larger population. Comparing results on
a clinically depressed population that has a different dis-
tribution of BDI scores is also an area deserving further
investigation.
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