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ANNALS OF PHYSICS: 31, 506-524 (1965)

Threshold and Asymptotic Behavior of the N/D Equations
MyroN BANDER*

Stanford Linear Accelerator Cender, Stanford University, Stanford, California

AND

GorpoN L. Saawt

Institute of Theoretical Physics, Department of Physics, Stanford University,
Stanford, California

Two important problems involved in obtaining solutions of partial wave
dispersion relations (by the N/D method) are having (i) the correct threshold
behavior, and (il) an acceptable high energy behavior. Various physical and
numerical approximations have been made to insure (i) and (ii). We numeri-
cally investigate the sensitivity of the solutions of the N/D equations to these
approximations. For this purpose, we consider J = 1 = scattering, em-
ploying elastic unitarity and assuming that the left hand cut is dominated by
the exchange of the p resonance. Two significant features we find are: (a) The
values of the cutoffs needed to product a resonance are quite sensitive to the
input “strength” of the left hand cut, e.g., a change of the input width of the
e by a factor of two changed the value for a “straight cutoff’’ to produce a
resonance at a given energy by a factor of ten. Due to the results of (a) we wish
to emphasize the possible danger in employing a single cutoff in the calculations
of SU; multiplets. (b) If one introduces a pole on the left hand cut in order to
insure the threshold behavior (i), then the ranges in values for the cutoffs
(to insure (ii)) for which any resonance occurs are extremely narrow. On the
other hand, a solution in which the phase shift does not become large is insensi-
tive to the position of this pole.

I. INTRODUCTION

Obtaining solutions of partial wave dispersions relations using the N/D
formalism is of current interest. Given a partial wave “generalized potential
term’’ B; or in other words specifying the discontinuities of the partial wave
amplitude A, in the unphysical region, the N/D formalism (/-3) permits one to
include the unitarity cut in the physical region and calculate the amplitude A; by

* Supported by the U. 8. Atomic Energy Commission.
1 Supported in part by the U. 8. Air Force through Air Force Office of Scientific Research
Contract AF 49(638)-1389. Computer time was supported by NSF Grant No. NSF-GP948.
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BEHAVIOR OF THE N/D EQUATIONS 507

solving a linear integral equation. Two important difficulties enter into the
caleulations: (1) Insuring that 4; have the correct threshold behavior. (ii) Ob-
taining an acceptable high energy or asymptotic hehavior,

IFrom general (quantum mechanical considerations we know that near threshold,
a phase shift §, with orbital angular momentun { should behave hike

5 o 12
k=0

where & is the momentum in the center of mass system. Henee we want to
(1) force .1, to have the correct threshold behavior. For certain physical prob-
lems, the “‘obvious” choice for B; behaves badly at high energy so that the re
sulting integral equation in the N /D formalism is not of the Fredholm type. Now
we want the solution 4, for a given B, to be unique'; and thus we want 10 (i) foree
the integral equation to be of the Fredholm type.

The purpose of this paper is to numerically investigate the sensitivity of the
solutions to various approximations which have heen made 10 ingure the desirable
features (11 and (ii).*

We consider numerically two types of cutoffs to msure (ii): a straight cutoff
on all the integrals, and a “Regge” type cutoff on B, . To toree (i) we consider /
subtractions for the integral equation, or we introduce an {th order pole in the
unphysical region. In order to concentrate on a problem with relatively few purely
kinematieal complications, we discuss the elastic scattering of = mesons. T par-
ticular we investigate the/ = 1 partial wave and assime that the generalized
potential B is dominated by the exchange of the I = 1,J = 1 p resonance.

Section I is devoted to a review of the relevant formalisn.” The caleulations
and results are presented in Section [I1. The 1two most significant features we
find from our caleulations are: (a) The values of the cutofix needed to produce o
resonanee are guite seusitive to the input “strength” of the left hand cut, e.g..
a change of the input width of the p by a factor of two changed the value tor a
“straight cutoff” to produce a resonance at a given energy by a factor of 1en.
Due to the results of (a) we wish 1o emiphasize the possible danger in eniploving
a single cutoff in the caleulations of an SU; multiplet. (h) If one introduces a
pole on the left hand cut in order to insure the threshold behavior (1), then the
ranges in values for the cutoffs (to insure (31)) for which any resonance occeurs
are extremely narrow, On the other hand, a solution in which the phase shift does
not hecome large is insensitive to the position of this pole.

! For one exceptional case there exists a unique solution of the N /D equations with o
non-Fredholm kernel. For details see ref. 4.

2 For a formal discussion of existence and uniqueness see ref. 5.

* For a more extensive treatment and references the reader should cousult ref. 3.
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1I. REVIEW OF PARTIAL WAVE DISPERSION RELATIONS
A. ANALYTIC PROPERTIES OF THE PARTIAL WavE EQUATIONS

Consider the system shown in Fig. 1. The usual scalar variables s, ¢, u:
s = (p+ p),
(pr = ps)’, (1)

U = (pl - p4>27

¢

i

with?
2 2 2 2
s+t+u=m, +m +m -+ mg,

are used to denote the 3 processes or “channels”
sta+b—c+d,
tra+c—b+d, (2)
ua+d-—ob+ec

which are related by “crossing” or the substitution rule.” As we are interested in
a study of the sensitivity of the solutions of the N/ D equations to various physical
assumptions and numerical approximations we shall concentrate on a problem
with relatively few purely kinematical complications. We analyze the problem of
two spinless bosons of equal mass scattering elastically. As isotopic spin presents
no major complications, we specifically discuss the scattering of = mesons on
7 mesons (so that the processes (2) are all # — 7 scattering).

The B/IGandelstam representation for this scattering in a given isotopic spin
state I is

o m@t) 1for . onds,u)
./d i & =9 — 1) t) ;Zfds du (8" — s)(w — w)

1 ptu(t U )
fMd T =0 =)

The functions appearing in the integrands in (3) are the (real) double spectral
discontinuities which, in principle, determine the complete dynamics of the
system.

(3)

4 Qur units are such that # = ¢ = m, = L

5 The *“TCP” processes are also linearly related to the same analytic functions. For de-
tails consult ref. 3, p. 11.

8 A superscript is used to denote isospin. In the amplitude, the first variable is also used
to denote the channel whereas in the absorptive parts the channel is denoted by subseripts.
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a b

Fia. 1. Two particle scattering process

If we choose a particular channel, say s (where s is the center of mass energy
squared and ¢ the invariant momentum transfer), then the relation (3) can be
written as

1(,t)—-fA (s, 1) dl It+1f4 Ldu’ (4

v —t uw — u

where A7, is the absorptive part of the amplitude in the ¢{(u) channel. In (3)
and (4) we have neglected to write possible subtraction and single integral terms
as it is the purpose of the ¥/D method to determine these from just the knowl-
edge of the double spectral functions alone. Introducing the momentumn & and
the cosine of the scattering angle z for the s channel in the cenfer of mass system,
we have

s = 4K + 1),
t = —2(1 — 2), (H)
u = =21 + 2).
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Using (5) we may project out the partial waves from (4):

Al (s) = %f_iA’(s, DPi(z) dz
= [al0) (s B 4>; Q (1 + 2 4> df (6)
+ %r fAu}(S} u) (8 ; 4)— G (—1 — 32?:,4> du’

From (6) we read off the analytic properties of A,'(s). Both 4,'(s, {') and
A.'(s, w') have a cut along the positive real s axis for s > 4, i.e.,

(s, ¢) fpst(s t) (7)

The funetions @; introduce a cut along the negative s axis running from 0 to — «.

Had we considered more complicated kinematics of unequal mass particles,
the analytic structure of the partial wave amplitudes would have acquired some
complications. We would still have the right hand cut discontinuities discussed
above. However, the cut due to the @, functions would inelude detached segments
along the real axis and circular cuts in the complex s plane (6). If none of the
masses is too large compared to the others as well as to masses of possible inter-
mediate particles (which we shall consider later), the right hand cut is disjoint
from the cuts due to the @; functions (which we shall from now on call the left
hand cut). Then there exists a region of the real axis in which 4,7(s) is analytic
which permits analytic continuation between the upper and lower regions of the
complex s plane.

B. DETERMINATION OF THE DISCONTINUITIES

For s not in the interval (4, « ), 4,/(s, ¢') is an analytic function in s. The
function @; has a discontinuity (7) such that

1 2t 2t
Q—i[Ql<1+s—4+ie>~Ql<l+s—-4~ie>]

Tp 2t (8)
=§ ( 4)0(——8—25'—4).
Then the left hand discontinuity depending on A,I(s, ') is
o f° 2t
(s — 4)™ [(9—4) Al (s, )Py (1 + P 4> dt’
(9)

W

1
= %[ Al (s, 2 )Pi(2") d’ = A}, (s),
1
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i.c., the Ith partial wave in the s channel of the absorptive part of the ¢ channel
amplitude. Utilizing erossing symmetry we have, ¢.g.,

Als, 1) = XAVt 8),

A0 (s, w) = Xlul,s:li’( w, &),

(10

where X 13 a numerical isotopic spin crossing matrix (3).

To obtain the right hand discontinuities we employ unitarity. In the physically
accessible region for scattering in the s channel, i.e., s > 4, 4,'(s) has the form
_ 7111(8) exp (208, (s)) — 1

2p(s) ’

S

where the factor 5,( =¢ ** with 4 the imaginary part of the phase shift) deter-
mines the total inelastic cross section for the ith partial wave g5

ari(8) = 7k (2L + 1)1 — (9,/(s))). i12)

The discontinuity of 4,"(s) is equal to its imaginary part:

A (s)
11y

!

p

5}«, (A (s + 1) — 4,/ (s — le)]
7

=

[ ” l e
R 1 - m S
=4p(s) | A I(S) t 4 Bls — 1),
P 14| o6
Hence with “proper’ asymptotic behavior” we have
A (s) = B/'(s) + ! In}?‘é“‘;) ds’ BES
¥ o~ 5
where
I, N 17" ds P ro B
Bl (8) = — 7 ’t[«"ll,l(S ) —‘—;{ull(s )] 1)
TS — 3

Thus in principle if we knew 7;'(s) we would have an infinite system of integral
cquations to determine the amplitude since, c.g., A%,(s) as given by (9) is re-
lated to the s channel amplitude by the ('1ossmg relations {(10).

Tu practice some approximations are made about the ““potential” term B, (x ).
We shall discuss these approximations in Section 11, D; for now, we assume that
B)'(s) is known. The inelastic factor 77 (s) must also he approximated. This
function may be taken from experiment, or one may approximate iuclastic
unitarity by considering many channel two-body scatterings, or (as is often done
when one is interested in relatively low encrgies) assume that elastic unitarity
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holds out to infinity. It is this last approximation that we will make, i.e., we take
7(s) = 1 so that dropping the isotopic spin index we have for (14),

p(s") | Au(s") P ds’ -

s —s

Ai(s) = Bi(s) + -11; f:o (16)

C. N/D EquaTions
It is possible to linearize (16) by the N/D method. Define
Ai(s) = Nu(s)/Du(s) (17)
where N(s) has cuts along the discontinuities of B;(s), and D;(s) has the

(elastic) unitarity cut:

5 [Dis + i) = Duls = i0)] = Nu(s) Im (1/A4u(s))6(s — 4)

l

—p(8)N.(5)6(s — 4) (18)

L IN(s + de) — N(s — ie)] = Im (Bi(s))Duls).

27

r4

These discontinuities do not specify N and D completely as we do not know their
asymptotic behavior. This ambiguity is related to the possible existence of
elementary particles which communicate with the 7 — « system (&8). The simplest
assumption to make is that N and D are sufficiently well behaved that no sub-
tractions are necessary and that a knowledge of B,(s) determines the amplitude
uniquely. We have however a freedom of multiplying both & and D by the same
nonzero constant and thus we may normalize D at any convenient point, sy, to
unity (the ratio N/D being independent of sp). Thus using (18), we can write
the coupled dispersion relations

1 Im Bl(S’)Dl(S,) dSI

T s —s

Di(s) = 1 — B %) fw POV gy, (20)
T ¢ (8 — 8)(s — )
where the integral in Eq. (19) for N runs over the discontinuities in B; (s).
Pole terms which may appear in (3), (4), or (16) are now automatically taken
care of, as they appear as zeroes of D;(s). Thus the N/D method permits one, in
principle, to calculate the positions of bound states from the knowledge of the
discontinuities of the amplitudes in the physical regions alone.
From general quantum mechanical principles, it is expected that the threshold
behavior of 4.(s), see Eq. (11), will be

Ai(s) = (s — 4)". (21)

Ni(s) = (19)
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Had we put in the exact discontinuities and inelasticity, this behavior should
come out automatically. However, we still want to force the correct behavior (21)
even with approximate input information. We do this by writing the dispersion
relation for N; with [ subtractions:

(s =B [ Im Bi(sHDu(sH
le(S) = - f(S, — ’-}_)l(s/ — .5)

qas’. (22

Note that the approximate forms of B;(s) that we will be dealing with have the
correct threshold behavior by themselves.

Substituting Eq. (20) for D; into (22) we have a lincar integral equation
for ¥V; :

ANE p o T ’
Nits) = Bils) + &8 W4> ﬁ o(sINL(s)

s —s

. I: Bl(Slj) - BZ(S) <8 - 31))] (ZS/
(s = (s =D\ — /]

It is the major purpose of this article 1o discuss the solution of this integral
equation, The only singularities (23) may have (for B,(s) having the behavior
{21)) come from the infinite ranges of integration. It is this singular behavior that
causes most of the difficulties and it is the purpose of this article (o discuss
various methods which have been employed to overcome it; we require (23) to
have a unique solution and thus demand that it be an integral equation of the
IFredholn type.

(231

D. APPROXIMATIONS FOR Bi(s)

Several types of approximations have been utilized thus far in approximating
Bi(s). In the case of complete ignorance about the singularities on the left, this
cut may be replaced by a sequence of poles whose position and residues are ad-
justed to fit empirical data in the scattering region. With this approximatation,
L. (23) may be reduced to a system of linear algebraic equations. The resuliing
amplitudes are of the effective range type (3).

Another approximation has been to keep only a few partial waves in the dircet
channel and even though the partial wave diverges outside a small neighbor-
hood of the physical region it is assumed that a small number of these amplitudes
still dominate the crossed channels. One is thus faced with a finite set of coupled
integral equations; crossing symmetry is made full use of (9).

The approximation we shall consider has been called the single particle ex-
chauge or resonance approximation (10). It consists of assuming that the
“crossed” { and u channels are dominated by a resonance or resonances in par-
ticular partial waves. In the language of Feymnan diagrams we consider the ex-
change of elementary particles in the crossed channels. We then use erossing,
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Eq. (10), to give the absorptive amplitudes in the direct channel and project
out the partial waves to give us Bi(s). The N/D equations simply enforce
unitarity in the physical region of the direct channel while leavine the left hand
singularities unchanged.

In the 7 — 7 problem-—the example we will study in the remainder of this
paper—the scattering amplitude is assumed to be dominated by the p resonance
inthe I = 1,J = 1 partial wave so that, e.g.,

3t — YTPL + 25/(t — 4)]

44 <t7 S) ~ { — anZ — Z[(t — 4)3/15]1/21‘ (24>
Hence, using (10),
AtI(S, ) =3 ﬁ Pyl + 28/(l — 4)]((t — 4)5/t)1/2 (95)

(6 = m*P + [t — /41

Further, making the narrow width approximation, i.e., T' — 0 we have from (6),

2 2
B (s) = xSt Z 2429 ¢, (1 + fﬁ’f’é) L+ (=D™)  (26)
where
1
Xt =1 1%. (27)

As will be discussed below this generalized potential term is of just such a nature
that the resulting integral equation (23) taken as it stands is not of the Fred-
holm type. We shall discuss in detail how various modifications of this discon-
tinuity reflect themselves in the solutions.

IIT. CALCULATIONS
A. Hicu ENERGY BEHAVIOR

Let us now consider (26) for I = I = 1 and use it to generate the kernel of
(23). It is an easy exercise {o show that the resulting kernel is not L* and the
integral equation is not of the I'redholm type. One means of modifying (26) to
obtain a kernel which yields an integral equation of the I'redholm type is to, in
some manner, damp the high energy behavior of (26). The “physical justifica-
tion’’ consists of admitting ignorance of the very short range forces, and hoping
that the mechanics of an exact theory are such as to actually produce damping.
We wish to emphasize that this is at most an intuitive argument since it is quite
possible that the exact B;(s) has a strong oscillatory behavior for large s and (23)
may have a unique solution with such a kernel. Any approximate damping is at
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best an average of what happens in the exact theory. Qur calculations will show
that the solutions of (23) are not in gencral insensitive to the cutoff.

A most naive cutoff procedure consists of replacing the upper infinite limit, of
integration in (23) by a finite one, A. The integral cquation (23) may now be

so[ T T T ‘!

20
o
w 1
10—
0
300 400 500 600 700 A

0.145
5.0

0 | |

2000 4000 8000 8000 10,000 A
(b)

Fic. 2. Plots of sy (position of the zero of Re D, (s) versus the straight cutoff A for
given input position and width of the exchanged p resonance. The correet, threshold behavior

(21) for A4, has been forced by making one subtraction at & = 4 in the integral equation
for V; .
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solved by standard numerical means. We solved (23) by matrix inversion on the
Stanford 7090 IBM computer. To show the sensitivity of the solutions as A is
varied, we plot in Figs 2 and 3 sz , the position of the zero of the real part of Di(s),
Eq. (20), i.e.

Re Dl(SR) = 0, (28)

as a function of A for various positions and strengths of the input p force (26).
We observe the disturbing feature that the cutoffs needed to produce a resonance
at a given position are sensitive to the input “strength” of the left hand cut. For
example, from Fig. 3, we see that for an input T' = 0.29(m,” = 29.0) we need a

80

60

20

0 { | i 1
600 700 800 900 1000 1oo A

(a)

100

80

60

40

20

0 ! l !
4000 6000 BOOO 10,000 12000 14,000 A

(b)
Fia. 3. Same as Fig. 2
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I' = 730 to get a resonance at s = 29.0, whereas for an input T = 0.145 the re-
quired A(=7400) is 10 times larger.

Although the straight cutoff is simplest to apply, it has several bad features.
The analytic properties of the resulting amplitudes are mutilated for large s,
with at least one possible consequence at small energics. 1t is found that for
certain input parameters, a sought for zero of Re D oecurs near the value A.
As D(s) has a logarithmic branch point at A, this function undergoes unreason-
able variation over small intervals and this makes the entive procedure somewhat
suspect.

0.991 0.992 0.993 2,(0)
(a)
100 T
1
' =015
mf, : 50
& 50 —
0 | i
0.9955 0.996 09965 a,(0)
(b)

F1G. 4. Plots of sz versus the Regge cutoff parameter «, (0). Other features are the same
as Fig. 2.
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A way of avoiding the above difficulties is to introduce a smooth damping
function. There exists such a scheme which has considerable physical appeal. One
uses an analogy that may exist between potential and relativistic scattering
theories, and postulates that resonances lie on Regge trajectories (11, 12). For
our case this amounts to replacing (24) by

1 o ob(t) 1 4 28 ) 2s
A (ty S) - m§[Paa(t) < 1 P = 4> Pap(t) (1 + = 4>J (29)

where b, and «, are the residue and position of the p meson Regge pole. We
further approximate (29) in such a way as to make it correspond as closely as

100 ]

0.9945 0995 099585 a,{0)
(a)
T T I
100 — T =0145 —
m3 = 29.0
& 50 |— —
0 1 L 1
0.9980 0.998 09982 0.9983 09984
(b) a,(0)})

Fic. 5. Same as Fig. 4
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Sg

320 325

30

330 A

20

Sr

550

0 1

I

1

|

800 900

1000

(c)

oo

1200 A

F16. 6. Plots of sz versus A with input parameters T' = 0.2 and m,? = 29.0 for various
positions s; of the extra pole, Eq. (31), which was introduced (instead of the subtraetion iu

N3) in order to insure the correct threshold behavior.
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' =045
2 .
mj = 29.0

3000 —

NO EXTRA POLE

5, =100

1000 [ l I | | |

0 10 20 30 40 50 60 70 80 90
S

F1q. 7. Plots of [(s — 4)3/s]/2 cot & versus s with input parameters I' = 0.145, m, = 29.0
and A = 100.0 for ‘“‘extra’ pole positions s; = 0 and 100, and the case of no extra pole but a
subtraction in NV at s = 4. This graph demonstrates the insensitivity of the solution of s,
for a weak solution, i.e., one for which the phase shift never becomes large.

possible to (26) (13-15). ('The details of this approximation are given in ref. 15.)
The resulting B;*(s) for odd integer [,

2 ap(O)—-l
Bﬁ@)=-J§¥(mf-—4-+szl(1+-QM”)Cg , (30
s —4 s —4/\4

differs from (26) by the factor (s/4)*®~". As long as ,(0) < 1, the resulting
equations for I = 1 are of the Fredholm type. An investigation of the sensitivity
of the position of the zero of Re D(s), sz, to a,(0) is shown in Figs. 4 and 5.

B. THrREsSHOLD BEHAVIOR

As lincreases, it may easily be seen that the kernel of (23) becomes more and
more singular, and the Regge type cutoff (or any smooth cutoff for (26)) is in-
effective for I = 2. This behavior is due to the fact that we have insisted on
making I subtractions of N;in order to insure the proper threshold behavior (21).
A scheme to bypass this difficulty has been suggested which consists of intro-
ducing extra poles in the amplitude in the unphysical region. One introduces a
function’

L®=C+ﬂlm> (31)
s — 4

7 A. Scotti and D. Y. Wong (14) introduce a pole of order ! — 1, and make one subtraction
in N at threshold.
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and writes d,(s) as Ni/D; . The equations (19) and (23) for D, and N, are modi-
fied simply by replacing p by p;,

s — 1Y .
= (32)
Pt (S + 81) Py 2

and not performing the threshold subtractions in N;. We present, in I'ig. 6, the
results for various values of s; . It should be noted that the region of cutoffs for
which a resonance oceurs is highly reduced and is very sensitive to the value s, .

It is worthwhile to look at the situation in a case of weak coupling, i.e., in a
case of no resonances or bound states (for any value of s,). One might expect. the
sensitivity 1o g to be small. Indeed, as may be seen from Fig. 7 where we show
the variation of the phase shift with s, keeping other parameters fixed, the de-
pendence is small,

Although the calculations of resonances are sensitive to almost all parameters
that may enter, we wish to stress that the solutions are not unstable, i.e., small
variations of the parameters lead to small variations of the solutions. Specitically,
the parameter one usually knows best is the mass of the exchanged particle.
Slight variations in this mass produce correspondingly small variations in the
outpul, as illustrated in Fig. 8.

(. NUMERICAL APPROXIMATIONS

As a fully numerical solution of the integral equation (23) is often time con-
suniing, certain mathematical approximations are frequently employed. The
nost common 1s the so-called determinental (16) method which consists of ap-
proximating N, by B, and solving for D, by quadrature. One striking disadvantage
i that for the multichannel case, the resulting amplitude is not symnietric (and

20 T T
(28]
- 10~ —
hel
o
Lhe]
— 1
Lo i
' 0 e |
2z
-10 |— -
-20 | | !
0] 10 20 30

Fic. 8. Plots of [(s — 4)%/s]'" cot & versus s with input parameters I' = 0.145 and A =
9000 for mass values m,* = 28.0 and 29.0. This graph demonstrates the stability of the solu-
tion to small variations in m,2.
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thus violates time reversal invariance). Even in the one channel case, there is a
strong dependence on the choice of the subtraction point s, for normalizing D to
unity. This dependence is illustrated in Fig. 9. A different approximation has
been proposed (17) which does not have this subtraction point dependence and
is symmetric in the multichannel case. (See ref. 17 for an investigation of this

200

"Exact "

-100 B |
[¢] 50 100
S

Fic. 9. Plots of [(s — 4)3/s]1/2 cot & versus s for the approximate “determinental method”
solutions (N; = B:) for various values of sy , the subtraction point in D. The “exact’’ solu-
tion is also shown for comparison. The input parameters are A = 7000, m,? = 29.0, and I’ =
0.145.
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approximation.) We would like to emphasize that although the various approxi-
mate solutions to (23) are much faster to use than numerically solving the
integral equation none is a reasonable substitute when the actual solution yields
a resonance or bound state; this statement becomes stronger and stronger as one
deals with more complicated B; than (26). On the other hand, the determinental
method has the decided advantage that in situations (e.g., a sum of single particle
exchanges) in which B has the correct threshold behavior (21), the partial wave
amplitude 4; automatically obeys (21).

D. Discussiox

In summary we make the following observations on the sensitivity of the
solutions to the N /D equations to the approximations described above in Sections
111, A, B, and C. The values of cutoffs needed to produce a resonance are quite
scusitive to the input strength of the left hand cut. We saw, c.g., from Fig. 3 that
for an input I' = 0.29 (and m,” = 29.0) we needed a straight cutoff A = 730 to
get a resonance at s = 29.0 whereas for an input I' = 0.145 the required cutoff
was A = 7400. This result has bearing on a number of different types of prob-
lems, e.g., multichannel channel calculations, calculations of SU; multiplets, and
the N, N* reciprocal bootstrap calculations. In each of these problems there are
a number of cutoffs required ; we conclude from the above sensitivity, that it may
be dangerous to employ a single cutoff. On the positive side, we observe from
Fig. 3 that there is a fairly large region of A values for which a resonance can
occur. The more physically motivated Regge type cutoff (or any smooth cutoff)
has the disadvantage that the threshold behavior (21) for the partial wave ampli-
tude cannot be forced for I = 2 except by introducing extra parameters. We sce
from Fig. 6 that the procedure of introducing an extra pole in the unphysical
region to force the behavior (21) greatly increased the sensitivity of the solution
to the cutoff parameter. However for a weak solution, i.e., one for which the phase
shift never becomes large the extra pole procedure is a reasonable way to insure
(21):asscenin Iig. 7, the solution is insensitive to the pole position s; . Although
the caleulations of strong or resonant solutions are sensitive to almost all the
input parameters, we find that the solutions are not unstable, i.e., small vari-
ations of the parameters lead to small variations of the solutions (see, c.g.
Fig. 8).

We emphasize that approximate solutions of the integral equation (23) while
quite tine saving are not very good substitutes for numerically solving the Fred-
holm equation (see, e.g., the sensitivity of the determinental method to the sub-
traction point syin [2 ) in the case of strong solutions: the more complicated B, one
uses, the stronger the statement becomes.

Finally, it seems worthwhile to make a few qualitative remarks concerning
how resonances and bound states occur and how they vary as a function of the

1
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coupling constant. We have in mind the situation of a simple “attractive’ left
hand cut and a partial wave [ = 1 (no resonance can occur without some sort of
longer range repulsion). If we plot the real part of the D function as s varies,
we observe that (for the single channel case) it starts positive for large negative
s, possibly crosses the zero axis producing a bound state or resonance, reaches a
minimum and turns back up, crossing the real axis with a wrong slope to produce
a resonance. As the coupling constant is decreased, the first crossing of the axis
occurs further and further to the right, and its minimum value gets less and less
negative. At a critical coupling constant the minimum occurs on the real axis,
and for values of the coupling constant smaller than the critical one, no resonance
will appear. We have found it as an empirical fact that the position of the mini-
mum of real part of D is a constant over very large variations of the coupling
constant., This fact may be useful as a guide to proper choices of coupling con-
stants to produce desired resonances once a bracketing has been obtained.

Recrrven: July 7, 1964
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