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ANNALS OF PHYSICS: 31, 506-524 (1965) 

Threshold and Asymptotic Behavior of the N/D Equations 

MYRON BANDER* 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 

AND 

GORDON L. SHAW? 

Institute of Theoretical Physics, Department of Physics, Stanford University, 

Stanford, California 

Two important problems involved in obtaining solutions of partial wave 

dispersion relations (by the N/D method) are having (i) the correct threshold 
behavior, and (ii) an acceptable high energy behavior. Various physical and 

numerical approximations have been made to insure (i) and (ii). We numeri- 
cally investigate the sensitivity of the solutions of the N/D equations to these 

approximations. For this purpose, we consider J = 1 a-?r scattering, em- 
ploying elastic unitarity and assuming that the left hand cut is dominated by 

the exchange of the p resonance. Two significant features we find are: (a) The 
values of the cutoffs needed to product a resonance are quite sensitive to the 

input “strength” of the left hand cut, e.g., a change of the input width of the 
p by a factor of two changed the value for a “straight cutoff” to produce a 

resonance at a given energy by a factor of ten. Due to the results of (a) we wish 
to emphasize the possible danger in employing a single cutoff in the calculations 

of SU3 multiplets. (b) If one introduces a pole on the left hand cut in order to 
insure the threshold hehavior (i), then the ranges in values for the cutoffs 

(to insure (ii)) for which any resonance occurs are extremely narrow. On the 
other hand, a solution in which the phase shift does not become large is insensi- 

tive to the position of this pole. 

I. INTROI~UCTION 

Obt,aining solutions of partial wave dispersions relations using the N/D 
formalism is of curreut, interest. Given a partial wave “generalized potential 
term” BI or in ot)her words specifying the discontinuities of the partial wave 
amplitude A 1 in the unphysical region, the N/D formalism (l-3) permits one to 
include the unitarity cut in the physical region and calculatje the amplitude Al by 

* Supported by the U. S. Atomic Energy Commission. 
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508 BANDER AND SHAW 

II. REVIEW OF PARTIAL WAVE DISPERSION RELATIONS 

A. ANALYTIC PROPERTIES OF THE PARTIAL WAVE EQUATIONS 

Consider the system shown in Fig. 1. The usual scalar variables s, t, ‘14: 

s = (PI + p2y, 

t = (PI - p$, (1) 

with4 

s -I- t + u = m,” + mb2 -I- mC2 + md2, 

are used to denote the 3 processes or “channels” 

s:a+b+c+d, 

t:a+F+h+d, 

u:a+d46+c. 

(2) 

which are related by “crossing” or the substitution rule.5 As we are interested in 
a study of the sensitivity of the solutions of the N/D equations to various physical 
assumptions and numerical approximations we shall concentrate on a problem 
with relat,ively few purely kinematical complications. We analyze the problem of 
two spinless bosons of equal mass scattering elastically. As isotopic spin presents 
no major complications, we specifically discuss the scattering of T mesons on 
T mesons (so that the processes (2) are all ?r - a scattering). 

The Mandelstam representation for this scattering in a given isotopic spin 
state I is6 

(3) 

The functions appearing in the integrands in (3) are the (real) double spectral 
discontinuities which, in principle, determine the complet’e dynamics of the 
system. 

4 Our units are such that h = c = m, = 1. 
6 The “TCP” processes are also linearly related to the same analytic functions. For de- 

tails consult ref. 3, p. 11. 
6 A superscript is used to denote isospin. In the amplitude, the first variable is also used 

to denote the channel whereas in the absorptive parts the channel is denoted by subscripts. 
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FIG. 1. Two particle scat.t.ering process 

If we choose a particular channel, say s (where s is the center of mass energy 
squared and t the invariaut nlotneutum transfer), thru the relatiou CS ) c&an be 
n-ri t t en as 

where .4:(., is the absorptive part, of the amplitude in the ~(14) channel. In (3) 
and (4 ) we have neglected to write possible subtractiou and single integral t mns 
as it is the purpose of t’he NiL) met’hod to determine these from just the knowl- 
edge of the double spectral functions alone. Iutrodwing the nlolnentunl k and 
the caosine of the srattering angle z for the s chanuel in the wuter of mass sysiw1. 
n-c have 

s = 4(k2 + I), 

f = --2P(l - xj, c 5 1 

1( = --2k”(l + z). 
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Using (li) we may project out the partial waves from (4): 

AIZ(S) = x I: A’b, t)Pl(Z) d2 

1 =- 
n- s 

A&, t’) (qQ,(l +A)“” 

+;JA.‘(s,d)(qlQ~(-l -&)dd 

(6) 

From (6) we read off the analytic properties of At(s). Both Atl(s, t’) and 
&‘(s, u’) have a cut along the positive real s axis for s > 4, i.e., 

The functions QZ introduce a cut along the negative s axis running from 0 to - 00. 
Had we considered more complicated kinematics of unequal mass particles, 

the analytic structure of the partial wave amplitudes would have acquired some 
complications. We would still have the right hand cut discontinuities discussed 
above. However, the cut due to the &I functions would include detached segments 
along the real axis and circular cuts in t,he complex s plane (6). If none of the 
masses is too large compared to the others as well as to masses of possible inter- 
mediate particles (which we shall consider later), the right hand cut is disjoint 
from the cuts due to the Ql functions (which we shall from now on call the left 
hand cut). Then there exists a region of the real axis in which A:(s) is analytic 
which permits analytic continuat,ion between the upper and lower regions of the 
complex s plane. 

B. DETERMINATION OF THE DISCONTINUITIES 

For s not in the interval (4, CQ ), Atz(s, t’) is an analytic function in S. The 
function QE has a discontinuity (7) such that 

;[Qt (1 + 2t’ s-44& 

(8) 
Then the left hand discontinuity depending on Atz(s, t’ ) is 

A;(s,I’)Pi(l+&)df’ 

1 1 
(9) 

= jj 
s 

At%, X’)Pl(Z’) dz’ = A:,&), _ 
1 



i.e., the Ith partial wave iu the s charmel of the absorptive part, of the f c~haiiuel 
auiplitudc. Utilizing tossing synuuetry we have, e.g., 

~vhcrc S is a tuuncrical isotopic spiu crossiug matrix (3). 
To ohtaiu the right baud discoutiuuities we employ unitarity. III the physic*ally 

acc~essible wgiou for scattering iu the s channel, i.e., s > 4, ;Il’(s) has t,he foriu 

where the factor rjl( =c?--“~’ with 6 the imaginary part, of the phase shift j d(:t eia- 
uiiues the total inelastic cross section for the It,h partial wave cR 

&J(S) = nP(31 + l)(l - i&Y))‘). 

The diswutinuity of --l!‘(s) is equal to its inlagiuary part : 

1 [Al’(s + iEj - iilz(~ - k)] 
ii 

i 12) 

Hence with “prope? asymptotic behavior” we liavc, 

Thus in priuciple if we knew q~‘(s ) WC would have au intinife syst.eui of iut egral 
equations to detcmiue the amplitude since’, e.g., A:,(( S) as giveu by ( !) ) is IX- 
lated to the s ehaunel amplit.ude by t hc wossiug relat.ious ( IO ). 

Iu pra.cticc some approximations are made ahoitt the “pot cut ial” tmu I,‘,’ ( .q 1. 
We shall discuss these approxinlatious iu Swtiou II, 11; for I~OW, WC’ assu1nc tllal 
R,‘(S) is ImowrI. The inelastic factor ql’( s) must also he approximated. This 
fuuctiou may he taken from experimenl, or oue may approxiulat e irielast i(* 
unit’arity by considering niauy channel two-body scatteriugs, or t as is oftell d~~i,~~ 
when me is iuterrsted in relatively low energies) assuuic’ that elastic, tiuitaiitv 
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holds out to infinity. It is this last approximation that we will make, i.e., we t,ake 
q(s) = 1 so that dropping the isotopic spin index we have for (14), 

C. N/D EQUATIONS 

It is possible to linearize (16) by the N/D method. Define 

AZ(S) = Nz(s)lDz(s) (17) 

where Nl(s) has cuts along the discontinuit’ies of Bl(s), and Dl(s) has the 
(elastic) unitarity cut : 

k[D,(s + ic> - DL(S - it)] = NL(s) Im (l/A~(s))B(s - 4) 

= --P(~)Nz(~)e(~ - 4) (18) 

; [N(s + ie) - N(s - ie)] = Im (Bi(.s))Dl(s). 

These discontinuities do not specify N and D completely as we do not know their 
asymptotic behavior. This ambiguity is related to the possible existence of 
elementary particles which communicate with the 7~ - ?r system (8). The simplest 
assumption to make is that N and D are sufficiently well behaved that no sub- 
tractions are necessary and that a knowledge of Bl(s) determines the amplitude 
uniquely. We have however a freedom of multiplying both N and D by the same 
nonzero constant and thus we may normalize D at any convenient point,, so, to 
unity (the ratio N/D being independent of so). Thus using (IS), we can writ’e 
the coupled dispersion relat.ions 

Nz(s) = 5 / 
Im &,is’)Dds’) ds~, 

h(s) = 1 - l.-,iw (s, _ s>(s, _ so> ds’, 
ds’)Ws’) 

7r 

(19) 

(20) 

where the integral in Eq. (19) for N runs over the discontinuities in Br (s). 
Pole terms which may appear in (3 ), (4), or (16) are now automatically taken 
care of, as they appear as zeroes of Dl(s). Thus the N/D method permits one, in 
principle, t#o calculate the positions of bound states from the knowledge of the 
discontinuities of the amplitudes in the physical regions alone. 

From general quantum mechanical principles, it is expected that the threshold 
behavior of AL(S), see Eq. (II), will be 

Az(~P=~ (s - 4)‘. (21) 
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Had wc put in the exact discominuities and inelastdcity, this behavior should 
come out automatically. However, we still want to force the correct behavior ( L’l ) 
even with approximate input information. We do this hy writing the dispersion 
rtlation for N, with I subtractions: 

Kotr that, the approximate forms of Bi( s) that we will be dealing wit’h have t II(~ 
correct threshold behavior by themselves. 

Substituting Eq. (20) for DI into ( 22) we have a linear integral cctuatioti 
for N, : 

y (E) = R (s) + (s - ,Y O” dS’)NAS’) 1 3 1 x s 4 St - s 

.[ 
Rl( s”) ( “?I 1 Rl(d s - S,) __- (8' - A)1 - (s - 4)L ,$' _ &.,, ( )I &'. 

It is the major purpose of this article to discuss t,he solution of this integral 
equation. The only singularities (23) may have (for Bl( s j having the brhavioi 
( 21) ) come from t#he infinite ranges of integration. It is this singular behavior that 
causes most of t’he difficulties and it is the purpose of this article to discuss 
various methods which have been employed to overcome it; we require (~2:i) to 
have a unique solution and thus demand that it, hc an iutegral equation of t hc 
Fredholm type. 

D. ~~PPROXIMATIOK3 FOR &(S) 

Several types of approximat’ions have been utilized t,hus far in approximating 
BI( s). In the case of complete ignorance about t,he singularities on the left, this 

cut niay be replaced by a sequence of poles whose position aud residues arc ad- 
justed to fit empirical data in the scattering region. Wit,h this approxiniat at ion, 
Et. (23) may be reduced to a system of linear algebraic equations. The IWI~]I ing 

amplitudes are of the effective range type (J). 
,kothcr approximation has been to keep only a few part.ial waves in the dirvc.1 

channel and even t’hough the part’ial wave diverges outside a small neighbor- 
hood of the physical region it is assumed that a small number of thrsc amplitudes 
still doniinate the crossed channels. One is thus faced with a tiuitc set of coupled 
integral equat.ions; crossing symmetry is made full tlsc of (9 ). 

The approximation we shall consider has been called t hc single partic*lc es- 
change or resonance approximat’ion (10). It consists of assmning that the 
“crossed” I and IL channels are dominated by a rcsonancc or rcsonauccs in par- 
ticular partial waves. In the language of I’eymnan diagrams we consider 111~ cx- 
cLhange of elementary particles in the crossed channels. WC then 11s~ cros~iilg, 
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Eq. (lo), to give the absorptive amplitudes in the direct channel and project 
out the partial waves to give us Bl(s). The N/D equations simply enforce 
unitarity in the physical region of the direct channel while leaving the left hand 
singularities unchanged. 

In the 7r - 7r problem-the example we will study in the remainder of this 
paper-t’he scattering amplitude is assumed to be dominated by the p resonance 
in the I = 1, J = 1 partial wave so that, e.g., 

A%, s) 5% 
3(t - 4)rP1[1 + 2s/(t - 4)] 
t - 7Ylp2 * - i[(t - 4)3/pr 

(24) 

Hence, using (lo), 

A qs t) = 3&-p rm + 2s/(t - 4)l((t - 4y/ty 
t 2 ts 

(t - 712,2)2 + [(t - 4)“/@? * (25) 

Further, making the narrow widt’h approximation, i.e., I’ -+ 0 we have from (6), 

Bl’(s) = P 6l? ( nap2 
- 4 + “) &l (1 + z) [l + (-l)‘+‘] 

s-4 
(26) 

where 

(27) 

As will be discussed below this generalized potential t,erm is of just such a nature 
that’ the resulting integral equabion (23) taken as it stands is not of the Fred- 
helm type. We shall discuss in detail how various modificat,ions of t,his discon- 
tinuity reflect themselves in the solutions. 

III. CALCULATIONS 

A. HIGH ENERGY BEHAVIOR 

Let us now consider (26) for 2 = I = 1 and use it to generate t,he kernel of 
(23). It is an easy exercise to show that the resulting kernel is not L” and the 
integral equat#ion is not of the Fredholm t,ype. One means of modifying (26) to 
obtain a kernel which yields an integral equation of the I’redholm type is to, in 
some manner, damp the high energy behavior of (26). The “physical justifica- 
t,ion” consists of admitting ignorance of the very short range forces, and hoping 
t,hat8 the mechanics of an exact theory are such as to actually produce damping. 
We wish to emphasize that t,his is at, most an intuitive argument since it is quite 
possible t’hat the exact Bt( s) has a strong oscillatory behavior for large s and (23 ) 
may have a unique solution with such a kernel. Any approximate damping is at 



host at1 avwagt of what happens in the exact theory. Our c~alrulationa will shon 
that the solut’ions of (23) are not in general insensitive to the cutoff. 

A most naive cutoff procedure c.onsists of replacsing the upper infinite limit of 
iutcgratioll in (23) by a finite one, A. Thtl intc~gral cquatioll (23 ) nlay now hc 

30 

r = 0.29 

rng = 15.0 

20 1 

If.. 

IO 

0 I I 

300 400 500 600 700 h 

(a) 

(b) 

FIG. 2. Plots of sfi (position of the zero of Re L)iZl (s) versus the straight. cutofi I for 

given input’ position and width of the exchanged p resonance. The correct threshold behavior 
(21) for 21, has heen forced by making one subtraction at s = 4 in the integral equation 
for X1 



516 BANDER AND SHAW 

solved by standard numerical means. We solved (23 ) by matrix inversion on the 
Stanford 7090 IBM computer. To show the sensitivity of t,he solut’ions as A is 
varied, we plot in Figs 2 and 3 & , the position of the zero of the real part of III(s), 
Eq. (20), i.e. 

ReDI = 0, (28) 

as a function of A for various positions and strengths of the input p force (26). 
We observe the disturbing feature that the cutoffs needed to produce a resonance 
at a given position are sensitive to the input “strength” of the left hand cut. For 
example, from Fig. 3, we see t’hat for an input r = 0.29(mP2 = 29.0) we need a 

60 

60 

UT= 40 

0 
6 

I I I I 

I 
110 Oh 

(a) 

4000 6000 6000 10,000 12,000 14,000 n 

(b) 

FIG. 3. Same as Fig. 2 
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1’ = 730 to get a resonance at s = 39.0, whereas for an input r = 0.145 lhlh IV- 
quired A(~7400) is 10 t,imes larger. 

Although the straight cutoff is simplest to apply, it has several bad fealurw. 
The analytic properties of the resulting amplitudes are mutilated for large s. 
with at least one possible consequence at small energies. It is found &at i’o~ 
wrt ain input, paramet.ers, a sought for zero of Ke D ocwrs war thr value A. 
As B(s) has a logarithmic branch point, at A, this func~tion undergoes um~wo~~- 
able variation over small int#ervals and this makes the entire prowdnrr sonwwhat 
RllRpwl . 

40 

100 

ma 50 

a 1 
0:9955 0.996 09965 a,(o) 

(b) 

0.992 

(a) 

FIG. 4. Plots of SE versus the Regge cutoff parameter q, (0). Other features are the sanle 
as Fig. 2. 
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A way of avoiding the above difficulties is to introduce a smoot’h damping 
function. There exists such a scheme which has considerable physical appeal. One 
uses an analogy that may exist between potent.ial and relat,ivist.ic scat.t.ering 
theories, and postulates that resonances lie on Regge trajectories (II, IS). For 
our case this amount)s to replacing (24 ) by 

k(t, s) = bp(t) 1: p, (t) 
sin acu,(t) 2 [ ( ’ 

-1 - g-J - Pa&) (1 + &J] (29) 

where b, and q, are the residue and position of the p meson Regge pole. We 
further approximat,e (29) in such a way as to make it, correspond as closely as 

100 

80 

60 

up 

40 

0.995 

(a) 
a,(a) 

0 9981 0 9962 0.9983 0 9984 

(b) 
a,(O) 

FIG. 5. Same as Fig. 4 
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0 I I I 1 
320 325 330 335 340 A 

(a) 

(b) 

800 900 1000 !I00 1200 A 

(cl 

FIG. 6. Plots of SR versus A with input parameters JT = 0.2 and ??zp:! = 29.0 for various 
positions SI of the extra pole, Eq. (31), which was introduced (instead of t,he subtraction in 
IV,) in order to insure the correct threshold behavior. 



520 BANDER AND SHAW 

0 IO 20 30 40 50 60 70 00 so IO 
s 

FIG. 7. Plots of [(s - 4)3/s]1’2 cot 6 versus s with input parameters p = 0.145, m,,2 = 29.0 
and A = 100.0 for “extra” pole positions s1 = 0 and 100, and the case of no extra pole but a 

subtraction in N at s = 4. This graph demonstrates the insensitivity of the solution of s1 
for a weak solution, i.e., one for which the phase shift never becomes large. 

possible to (26) (15-15). (The details of this approximation are given in ref. 15.) 
The resulting B:(s) for odd integer I, 

BlYS) = s4 (w&J - 4 + 2s)Qz (1 + ~)(;)+-l, (30) 

differs from (26) by the factor (~/4)~~‘~‘-‘. As long as (~~(0) < 1, the resulting 
equations for 2 = 1 are of the Fredholm type. An investigation of the sensitivity 
of the position of the zero of Re D(s), SR , to a,(O) is shown in Figs. 4 and 5. 

B. THRESHOLD BEHAVIOR 

As 1 increases, it may easily be seen that the kernel of (23) becomes more and 
more singular, and the Regge type cutoff (or any smoot’h cutoff for (26)) is in- 
effective for I 2 2. This behavior is due to the fact that we have insisted on 
making 1 subtractions of Nl in order to insure the proper threshold behavior (21). 
A scheme to bypass this difficulty has been suggested which consists of intro- 
ducing extra poles in the amplitude in the unphysical region. One introduces a 
function’ 1 

Al(s) (31) 

7 A. Scotti and D. Y. Wong (14) introduce a pole of order 2 - 1, and make one subtraction 
in N at threshold. 
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aud writes iii(s) as NL,/DI . The equations (19) and (33) for DI and Nl are nwdi- 
fied simply by replacing p by pl , 

s-4 l 
PI = ( > s + Sl 

P, 

and not pcrfo~nliug the threshold subtractions in Nl We present, it1 E’ig. 6, the 
results for various values of s1 . It should be noted that the region of cutoffs fol 
which a resonance OCTUI’S is highly reduced and is very sensitive to the value S, 

It is worthwhile to look at, the situation in a case of weak cloupling, i.e., ill a 
cast of no rcsonanccs or bound states (,for any value of sl). One might expect the 
sensitivity to s1 to be small. Indeed, as may be seen from Fig. 7 where me shw 
the variation of the phase shift, with .yl , keeping other paranleters fixed, I hcl d(b- 
pcwderwc is snlall. 

Although the c*alculations of resonances are sensitive to almost all paranwt ws 
that may cuter, we wish to stress that the solutions are not unstable, i.e., small 
variations of the parameters lead to small variations of the solut-ions. Specitically, 
the parameter one usually knoms best is the mass of the exc~hanged part ic*lcb. 
Slight variations in this mass produce correspondingly slnall variations ilk I 1~ 

output, as illust rat rd in Fig. 8. 

(‘. ~UWWl~~.\I, ,iPPROXIMATIOh% 

As a fully uunlerical solution of the integral equation ( 23) is often tinw COIL- 
suniing, cwt ain mathematical approximations are frequently employed. ‘lJl(l 
most (*onu~wu is the so-called determinental (16) nlet’hod which consists of ap- 
proximating N, by BL and solving for D2 by quadrature. One stziking disadvantage 
is that for lhc multichannel case, the resultiug alnplik~de is not symn~etric ( ant1 

20 
I I I 1 

-20 I I I 

0 IO 20 30 

FIG. 8. Plots of [is - 4)3/s]1’z cot 6 versus s with irlput parameters r = 0.145 and .I = 
9000 for mass vnlues wpp = 28.0 and 29.0. This #mph dcmonstrntes the stability of the sc,itk. 
Con to small variations in 7~~~. 
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Ohus violates time reversal invariance). Even in the one channel case, there is a 
strong dependence on the choice of the subtraction point so for normalizing D to 
unity. This dependence is illustrated in Fig. 9. A different approximation has 
been proposed (17’) which does not have this subtraction point dependence and 
is symmetric in the multichanne1 case. (See ref. 17 for an investigation of this 

300 

-IOC 

,- 

\ 

\ 

,- 

I- 

I I I , 
A =?OOO 
m$ = 29.0 

r = 0.145 

0 50 100 
P 

FIG. 9. Plots of [(s - 4)3/~]~‘~ cot 6 versus s for the approximate “determinental method” 

solutions (Nr = Bz) for various values of so , the subtraction point in D. The “exact” solu- 

tion is also shown for comparison. The input parameters are A = 7000, mp2 = 29.0, and r = 
0.145. 
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approximation.) We would like to emphasize that alt’hough the various approxi- 
mate solutions to (23) are much faster t’o use than numerically solving thr 
int,egral equation none is a reasonable substitute when the actual solution yields 
a resonance or bound state; t’his statement becomes st’ronger and stronger as 011~’ 
deals with more complicated Bl than (26). On the ot.her hand, the determirmlt al 
method has the decided advant,age t,hat in sit,uat8ions (e.g., a sum of single parti& 
exchanges) in which B, has t’he correct threshold behavior ( 21 ), the partial wav(t 
arnplit udc -41 aulomatically obeys (21). 

In summary we make the following observations on the sensit’ivity of t 1~’ 
solutions to the N/D equations to t,he approximations described above in Secbtiom 
III, A, R, and C. The values of cutoffs needed t.o produce a resonance are quite 
serlsitivr to the input st.rengtb of the left hand cut. We saw, e.g., from Fig. 3 that 
for an input I’ = 0.29 (and m,,* = 29.0) we needed a straight cutoff A = 7:30 to 
get a resonance at s = 29.0 whereas for an input I’ = 0.145 the required cutoff 
was d = T100. This result has bearing on a number of different types of prob 
lenls, e.g., multichannel channel calculations, calculations of Sli, nlultiplet,s, and 
tbr N, N* reciprocal bootstrap calculations. In each of these problems thercl arc 
a number of cutoffs required; we conclude from t’he above sensitivity, that it tuaJ 
be dangerous t,o employ a single cutoff. On t,he posit.ive side, we observe frorl, 
Fig. 3 that thtlre is a fairly large region of A values for which a resonan(*e ~a11 
oc(*ur. The 111ore physically nlotivatmed Regge type cutoff ( or any snloot,h cut off ) 
has the disadvantage that, the threshold behavior ( 21 j for the partial wave ampli- 
t ude caannot bc forced for 1 2 2 except by introducing extra parameters. We S(Y’ 
front Fig. (i t’hat’ the procedure of introducing an ext,ra pole in 1 he unphysicaal 
rrgion to force the behavior (21) great,ly increased the sensitivit,y of the solut iorl 
to t h(> cautoff paranlcl er. However for a weak solution, i.e., one for which I hc phastl 
shift. never hcc~omes large the chxtra pole proccdmc is a reasonable way to insut.(h 
(21 ) : as seen ill lcig. 7, the solution is insensitive to the pole position .sl . ,~lthough 
the calculations of strong or resonant solutions are sensitjivca to almost all the 
input parameters, we find t#hat the solut’ions are not unstable, i.e., small vari 
ations of the paranleters lead to mall variations of’ the sol&ons (sf’t’, (‘.R., 
I~‘ig. 8 1. 

We clnphanizr that approximate solutions of the integral equat,ion (,PY ) whiI(> 
(Iuite tinle saving are not very good substitutes for numerically solving t.hc I;rt& 
holrn equation (see, e.g., the sensitivity of t,he deterrnirmltal m&hod t,o the sut)-- 
t rac*t iou poirll so in I1 ) irk the case of strong soiufims: the more oonlplicsated 13, 011~’ 
uses, the stronger the statement becomes. 

IYnally, it seems worthwhile to make a few qualitative> remarks corlcc~rtlir\g 
how rcsonaIl(-es and bound states occur and how they vary as a func%ion of thc~ 
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coupling constant. We have in mind the situation of a simple “attractive” left 
hand cut and a partial wave 1 2 1 (no resonance can occur without sonle sort of 

longer range repulsion). If we plot the real part of the D function as 8 varies, 
we observe that (for the single channel case) it start.s positive for large negative 
s, possibly crosses the zero axis producing a bound state or resonance, reaches a 
minimum and turns back up, crossing the real axis with a wrong slope to produce 
a resonance. As the coupling constant is decreased, t,he first crossing of the axis 
occurs further and further to the right, and its minimum value gets less and less 
negative. At a critical coupling constant the minimum occurs on the real axis, 
and for values of the coupling constant smaller than t,he critical one, no resonance 
will appear. We have found it as an empirical fact that the position of the mini- 
mum of real part of D is a constant over very large variations of the coupling 
constant. This fact may be useful as a guide to proper choices of coupling con- 
st,ants to produce desired resonances once a bracketing has been obt,ained. 
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