
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
FERN: A Unifying Framework for Name Resolution Across Heterogeneous Architectures

Permalink
https://escholarship.org/uc/item/6x21x81j

Authors
Garcia-Luna-Aceves, J.J.
Sevilla, S.
Mahadevan, P.

Publication Date
2013-05-22
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x21x81j
https://escholarship.org
http://www.cdlib.org/


FERN: A Unifying Framework For Name
Resolution Across Heterogeneous Architectures

Spencer Sevilla˚

spencer@soe.ucsc.edu
˚ UC Santa Cruz
Santa Cruz, CA

Priya Mahadevan:

priya.mahadevan@parc.com
: Palo Alto Research Center

Palo Alto, CA

J.J. Garcia-Luna-Aceves˚:

jj@soe.ucsc.edu

Abstract—A key problem in all name resolution protocols

today is that no one protocol performs well across all network

architectures. In addition, DNS, the most widespread solution

today, depends on a static and connected network layer and

cannot support dynamic wireless networks. We introduce FERN

(Federated Extensible Resolution of Names), the first framework

designed to enable efficient name resolution across heterogeneous

name resolution systems operating in dynamic or static networks.

FERN organizes nodes into name resolution groups and allows

these groups to perform name resolution independently in dif-

ferent ways. FERN arranges these name resolution groups into

a hierarchy and allows these groups to communicate efficiently,

discover each other’s presence, and resolve each other’s names.

We demonstrate the flexibility and interoperability of FERN by

deploying and evaluating it across heterogeneous environments,

including a MANET, an infrastructure-based wireless network,

and the Internet. We show that FERN performs at least as well

as DNS, and yet extends name resolution to networks in which

DNS is inadequate.

I. INTRODUCTION

Service discovery and name resolution are vital operations
in any network. Users and applications use text-strings (e.g.,
URLs), rather than network addresses, to indicate the content
or services they require, and these names must then be mapped
to network addresses before communication is possible. This
name resolution requirement applies to today’s and future
networks and the Internet at large.

Unfortunately, current approaches to name resolution are
unable to support this future networking environment because
of two constraints. First, no one protocol has been devised that
works well across all types of networks. Second, these proto-
cols have not been designed to interoperate with one another.
For example, consider the case in which a user accidentally
leaves her laptop at home and wishes to access it from the
office. The laptop most likely uses multicast DNS (mDNS) [1]
to name itself on the home network, but the user has no way
of resolving this name outside of that environment, and cannot
discover the laptop. As another example, nodes in a MANET
may use a distributed protocol to resolve each other’s names,
but there is no protocol for them to extend this resolution to
the Internet through the domain name system (DNS), despite

This work was sponsored in part by the Palo Alto Research Center, the
Baskin Chair of Computer Engineering at UC Santa Cruz, and the NASA
Ames Research Center under Grant No. NAS2-03144.TO.030.10.MD.D.

the presence of a network-layer gateway bridging the MANET
to the Internet.

To address the above limitations of existing name resolution
approaches, we introduce the Federated Extensible Resolution
of Names (FERN). To the best of our knowledge, FERN is the
first system that provides a low-overhead unifying framework
for different name-discovery protocols to interoperate. FERN
accomplishes this by organizing nodes into name resolution
groups and allowing each group to perform internal name
resolution in a manner that works best for that group. FERN
also defines a technique for requests to propagate across
different groups, and organizes these groups into a hierar-
chy to support deterministic request-forwarding and ensure
reachability across these different name resolution groups.
Furthermore, FERN performs these tasks while preserving
high scalability and backwards compatibility, and can be
deployed incrementally alongside existing protocols such as
DNS and mDNS.

Section II provides an overview of prior work in name res-
olution and service discovery for different types of networks.
Section III specifies the operation of FERN within a group and
across groups. Section IV discusses how to interface FERN
with existing name resolution protocols. Section V describes
our testbed implementation and provides preliminary results
collected with this system. Section VI concludes the paper.

II. RELATED WORK

Prior work in name resolution and service discovery can
be loosely divided into client-server systems, peer-to-peer
systems, or systems based on overlay networks. Additionally,
there exists work on hybrid systems employing more than one
of these architectures and on interoperability between these
systems.

A. Client-Server Systems
The most prominent approach to name resolution today is

the DNS [2]. DNS relies on a hierarchy of servers that must
be configured to forward a name-request to the appropriate
server, which then resolves that name-request to an IP address.
Through the use of this hierarchy, load-balancing “secondary”
servers, and caching, the DNS provides name resolution for
the entire Internet today. However, this scalability comes at a
price. First, the DNS relies completely on these servers: if the



2

authoritative DNS server for the subdomain example.com

is down, overloaded, or configured incorrectly, then all DNS
lookups for

*

.example.com fail and www.example.com
is not reachable, regardless of the state of the web server itself.
Refer to [3], [4] for recent examples of DNS outages that
affected millions of users. Second, given that the DNS relies
on hosts to configure their IP address with their DNS server
using out-of-bound communication, it is a static system that
cannot support dynamic networks. Dynamic DNS [5] seeks to
alleviate these limitations by specifying an UPDATE record
type; however, it still requires that (1) the host knows the IP
address of its authoritative DNS server a priori, and (2) the
host successfully sends an update to the authoritative server
every single time its IP address changes.

B. Peer-to-Peer Systems

Peer-to-peer systems such as mDNS [1], SSDP [6], and SLP
[7] do not require a central server to operate. As a result,
these systems require minimal configuration (hence the name
“Zeroconf”) and are well suited to dynamic environments
where hosts come up, go down, and change IP addresses
frequently, such as home networks configured with DHCP [8]
or AutoIP [9]. Unfortunately, all peer-to-peer systems currently
share a heavy reliance on IP multicast to propagate both
name-requests and service announcements through the entire
network. As a result they suffer from relatively high latency
and cannot scale, which restricts these protocols to LANs,
where internal names are denoted by the top level domain
(TLD) .local.

C. Overlay Networks

Several publications [10]–[14] have discussed deploying
DNS over an overlay network that uses a distributed hash
table (DHT) to reduce the load on individual servers and thus
provide higher scalability and better fault tolerance. These
papers target the traditional DNS system in the Internet, and
thus focus on planet-level scalability. They present mixed
results on latency, but note that DHTs serve to decouple
the physical location of an entry from its logical location.
This architecture helps with load-balancing, removes hot spots
and bottlenecks in the hierarchy, and creates a system that
is orders of magnitude harder to attack. These benefits are
typically achieved by enforcing a flat namespace, where all
records in the system are stored as equal objects in one
giant DHT. Unfortunately, these approaches rely on a network
environment in which the nodes of the overlay are static
and available with high uptime, the topology is connected,
and links have plenty of bandwidth. The performance of
DHTs degrades significantly in dynamic networks as a result
of excessive overhead resulting from topology-independent
overlay addresses, link failures, and node mobility.

D. Hybrid Systems

There are a number of hybrid approaches to name resolution
that attempt to combine the architectures described above. SLP,
for example, introduced the concept of an optional “Directory

Agent” (DA) that nodes in a network must contact first if it is
present. Kozat et. al. [15], [16] bring this concept to the case of
MANETs by proposing a virtual backbone of “Service Broker
Nodes” (SBNs) that form a dominating set in a MANET
and proactively maintain routes through the MANET to each
other. These proposals attempt to increase scalability by only
allowing a select subset of nodes to query the entire network,
and requiring that other nodes communicate with their closest
directory node. However, these approaches all share the same
drawback, which is that communication between directory
nodes is unstructured and accomplished by flooding a name
request to all other directory nodes, which scales as poorly as
Section II-B. MDHT [17] addresses this issue by proposing
a hierarchy of DHTs, but cannot scale to large numbers of
records because it requires the top-level DHT to contain every
record in the system.

E. Interoperability
A unifying problem of every approach described above is

that every node must be a member of the protocol for name
resolution to occur. This lack of interoperability means that
the two protocols cannot talk to each other, even though
mDNS might be best for home networks and DNS might be
best for the Internet. Currently, support for multiple protocols
is accomplished by designating some top level domains or
TLDs (such as .local) for certain protocols and having
the node generating a request use the TLD to decide which
protocol should be used. A few approaches [18]–[20] have
been published on interoperability between multiple resource-
discovery protocols, but these works have been limited to
developing higher-layer application programming interfaces
(APIs) that mask implementation differences between proto-
cols that already share the same basic architecture, such as
SSDP and SLP.

Plutarch [21] proposes an architecture for interoperability
across different network architectures, both for routing and
name resolution. Instead of requiring all networks to use the
same protocol, Plutarch divides networks into contexts and
proposes the use of interstitial functions to translate between
contexts, similar to the way network address translation (NAT)
is implemented today. Though Plutarch provides a model for
interfacing radically different network architectures, it effec-
tively leaves the implementation of these interstitial functions
“to the reader.” Plutarch also raises an important question
about how the different contexts become aware of each other:
it proposes using a gossip protocol to disseminate this infor-
mation, yet this protocol might cause issues of scalability and
coherency if the number of separate contexts becomes too high
or if entire contexts exhibit a high degree of mobility.

III. FERN: A UNIFIED FRAMEWORK FOR NAME
RESOLUTION

FERN builds on previous name resolution approaches by
providing a framework for interoperability among different
name resolution protocols, such as the ones described in the
previous section. FERN organizes nodes using a common



3

TABLE I
FERN NAME RESOLUTION GROUP API

Function Prototype Comments
int (0 = success) joinGroup(args) args varies as a group-specific

parameter
int (0 = success) leaveGroup() Groups must also support un-

graceful departures
int (0 = success) registerName(name) name is not fully-qualified (i.e.

just “printer”)
network address resolveName(name) name is not fully-qualified (i.e.

just “printer”)
network address getParent() assumes the parent group can be

reached at this address:udp53
network address getChild(name) same as above, but returns (null)

if it has no child with this name
int (0 = success) registerChild(name) name is not fully-qualified (i.e.

just “lab 3”)
int (0 = success) deregisterChild(name) name is not fully-qualified (i.e.

just “lab 3”)

name resolution scheme into separate Name Resolution Groups
(NRGs), and specifies a protocol for NRG intercommunica-
tion. FERN then organizes the NRGs into a hierarchy. The
primary motivation for organizing nodes into NRGs is to: (a)
separate nodes that use different name resolution schemes; and
(b) reflect the natural groupings that appear in the underlay
network (i.e., subnets), logical hierarchy (i.e., org charts),
and users themselves (i.e., social groups). FERN defines a
set of operations that a group must support, but explicitly
does not define the implementation of these operations. FERN
also assumes that all nodes in an NRG are able to exchange
messages at the application-layer, and does not assume that
all the nodes run a specific network-level protocol.

Given that FERN does not specify the internal mechanics
of an NRG, it can be compared to Plutarch, in that FERN’s
NRGs are equivalent to Plutarch’s contexts and intergroup
communication is equivalent to Plutarch’s interstitial function.
However, FERN differs from Plutarch in that it organizes
groups into a naming hierarchy instead of a gossip protocol.
This hierarchy is to ensure that: (1) the system resolves names
deterministically, (2) name requests do not traverse NRGs
unnecessarily, and (3) scalability is preserved by enforcing
an upper-bound on the number of other NRGs any one group
must know.

A. NRG Responsibilities
The first responsibility of a FERN NRG is that every node in

a group must be able to resolve names for which the group is
responsible. Similar to DNS, NRGs are responsible for names
that end in the NRG’s fully-qualified name. For example,
an NRG named lab_3 is responsible for queries such as
printer.lab_3 or johns_pc.lab_3. To facilitate these
responsibilities, NRGs must provide a way for its members to:
(1) register names, (2) resolve names, (3) join the NRG, and
(4) leave the NRG.

The second responsibility of a FERN NRG is that it
must forward queries for which it is not responsible. This
requirement is accomplished by organizing the NRGs into
a naming hierarchy and allowing NRGs themselves to be

members of another NRG. In this situation, the children of
an NRG are its members, and the parent of an NRG is the
NRG of which it is a member. This relationship is denoted
using the same dot-notation as in DNS. For example, an
NRG with the name lab_3.parc.usa is a member of
the NRG parc.usa, which is itself a member of usa. For
clarification and brevity, in the remainder of this paper, the
shortname of this NRG is lab_3, whereas its fullname is
lab_3.parc.usa. This child-parent relationship between
NRGs creates a name resolution tree (NRT) as in the DNS,
with the root NRG “/” at the top, and this tree powers the
forwarding of requests among NRGs. Though the NRG
lab_3.parc.usa in our example is not responsible for
the query x.ccrg.ucsc.usa, it can forward the request
up the NRT to usa, and then down to ccrg. Furthermore,
lab_3 can perform this task without knowing the network
address of ccrg itself; all NRG lab_3 needs to know
is how to contact its children NRGs and parent NRG. We
express FERN programmatically as a pseudocode API in
Table I, and formally define the set of rules in List 1.

List 1: FERN NRG Rules
1) NRG X has at most one parent NRG Y in the FERN

NRT, and fullnameX “ shortnameX .fullnameY .
2) NRG X can have several child NRGs in the FERN

NRT, and each of these children has the full name
childname.fullnameX .

3) NRG X must be able to communicate with its parent
and children NRGs in the FERN NRT.

4) NRG X must know the addresses of all its ancestor
NRGs in the FERN NRT.

5) NRG X is responsible for directly answering all queries
that end in fullnameX .

6) NRG X must forward queries to the best match of NRG
possible, adhering to the caching rules in List 2.

7) NRG X must return an error for a query that it cannot
answer or forward.

B. NRG Communication

For the sake of interoperability with DNS, we have chosen
to use the traditional DNS record format (A, CNAME, . . . )
and port (UDP 53). This choice means that to support request-
forwarding along a branch in the NRT, all an NRG has to store
is the network address of the other NRG. This results in an
exceedingly simple interstitial function, and means that inter-
group resolution through the entire hierarchy can be supported
by simple recursion.

Figure 1 shows an example of request forwarding in FERN.
Here, the NRG example uses a server, subgroup1 uses
request-flooding, subgroup2 uses a DHT, and a smart-
phone in subgroup1 wants the address of the printer
in subgroup2. First, the request is flooded through
subgroup1 until it reaches a node that can communicate
with example. Next, the interstitial function of FERN is used
to forward the request up to example, and then again to for-
ward the request down to subgroup2. Lastly, subgroup2



4

Fig. 1. Request-Forwarding Across Groups

uses its DHT to resolve the address of the printer. This
behavior is contrasted with Figure 2, which shows the same
name resolved iteratively in DNS. As Figure 2 illustrates,
DNS requires that (1) each name group be supported by
an authoritative name server, (2) resolution starts at the root
server and descends the NRT, and (3) servers support iterative
resolution, where the resolver communicates with each name-
server in turn.

C. Internal Group Policies

FERN places no constraints on the number of services or
names an individual node may register, the nature of these
services, or the number of NRGs of which a node may
be a member simultaneously. It is left to individual NRGs
to implement and enforce rules such as restricting group
membership to certain nodes or restricting the names that
a particular node may register. NRGs may choose to adopt
and enforce certain naming conventions (similar to the mDNS
service registry), and these conventions may even standardize
across different NRGs; however, this standardization is outside
the scope of FERN.

FERN treats group security the same way. NRGs may
choose to use encryption, MAC addresses, or other out-
of-bound information to authenticate, authorize, and verify
their members and names. They may also decide to use
name resolution to enforce other security policies, such as
only allowing certain nodes to resolve the address of certain
services. However, the administration and implementation of
these policies are left to the individual NRG, not the entire
framework.

D. Bootstrapping Group Membership

For a node to join an NRG with the joinGroup(args)
operation in Table I, it must already know (1) the group
architecture, (2) any args the group requires, and (3) to whom
to send this information. Though the mechanics and specifics
of joining an NRG should be handled by the NRG itself, the
process of group discovery and acquiring the information listed
above must be standardized, because it is a process that exists
outside of any individual NRG and may interact with other

Fig. 2. Request-Forwarding In DNS

protocols and systems. There are several protocols (e.g. DHCP
[8] and AutoIP [9]) used to help nodes join a network by
supporting discovery, authentication, and address acquisition.
They also bootstrap DNS resolution by providing hosts with
the address of a local DNS server to be used. Thus, FERN
can extend these existing protocols by defining an extra FERN
record to be passed to a node when it joins the network. This
record should contain: (1) the fullname of the NRG, (2) the
structure of the NRG, (3) any group-specific arguments, and
(4) a fallback network address to be used as a local DNS
server if the node does not recognize the value in (2) or is
FERN-unaware.

E. Caching

Caching name responses and intermediate name referrals
significantly reduces latency and overall network load. It
changes the system performance and may even result in differ-
ent behavior. In the DNS, caching benefits stem primarily from
reducing the number of round-trips a query takes. In FERN,
benefits come from “short-circuiting” the group hierarchy. For
instance, in the same example of Figure 1, if subgroup1
has a cached network address for subgroup2, it may skip
the group example entirely. Caching in FERN is enabled by
allowing groups to append an A record for their group itself
when they answer a query or recursively return the answer to
a query. Thus, if a request originates at group A and traverses
groups B, C, and D before finishing at E, the requesting node
could end up caching the network address of groups B through
E if these groups elect to append their network address to
the response. Additionally, intermediate groups may also read
these records, so in this example group C could also learn the
network address of groups D and E.

1) Hybrid Behavior: Caching leads to behavior that closely
resembles a hybrid system. In our example above, the bottom
groups use architectures better-suited for dynamic networks.
The first time a node in one of these groups attempts to resolve
a name outside of the group, it must first call getParent and
use the group to resolve the address of its parent. However,
the resolving node may then cache this address and send all
future requests directly to its parent group without needing



5

to re-resolve its address. This behavior is remarkably similar
to the hybrid approaches described in Section II, where local
requests stay local and system-wide requests get forwarded to
the appropriate SBN or DA, yet FERN enables this behavior
without the added protocol complexity of specifying how it
should be done, figuring out what constitutes a local request,
or forcing that system on all network scenarios. This behavior
can also be compared to current systems, where requests are
either multicasted over mDNS or sent to a local DNS server
based on the TLD of the name-request. FERN exhibits very
similar behavior, yet accomplishes this without fragmenting
the namespace.

2) Caching Up The Name Resolution Tree: In DNS,
caching can only occur down the tree, and this improves
performance by reducing the load on top-level name-servers
and the number of referrals. However, in FERN, caching
can also occur up the tree. While this is a feature aimed at
improving performance, it could make FERN perform much
like DNS if nodes were to use the address of the NRT root to
resolve names. Fo example, consider the case where a node
node1.subgroup1.example.usa needs to resolve the
name node2.subgroup2.example2.uk, and caching is
enabled for any NRG in the FERN NRT. Since the root of the
NRT is the closest common ancestor between the node and
the name that must be resolved, the node caches the network
address of the NRT root once resolution is complete. After
that, anytime the same node needs to resolve a name outside
of usa, the closest-matching group will always be the NRT
root, and the node will contact it directly. The FERN caching
rules stated in List 2 eliminate this problem.

List 2: FERN Caching Rules
1) A node in NRG X may cache the address of nodes of

NRGs for which NRG X has a branch in the FERN
NRT.

2) A node in NRG X may not cache addresses of nodes
in NRGs that are closer to the root of the FERN NRT.

3) A node in NRG X may cache the addresses of nodes in
NRGs that are at the same level of NRG X in the NRT,
or further down the NRT.

The FERN caching rules significantly reduce the load on
nodes in NRGs that are higher in the hierarchy and serve to
create a much more distributed system. To revisit the previ-
ous example, once node1.subgroup1.example.usa re-
solves node2.subgroup2.example2.uk, the group uk

is cached only by two groups: the root and usa. Not only does
this help reduce traffic on the top name-servers, it also helps
provide cached information to other nodes. Now, if the same
node wishes to resolve a name in the TLD china, rather than
query the root directly (and get a direct response) it must go
up the tree through the group usa. This behavior ensures that
now usa is on the return-path and has the opportunity to cache
the network address for china, which further reduces traffic
on the root group, since all subsequent requests from nodes
in usa for nodes in china would be able to take advantage

of the cache-hit in usa.
Together, the FERN rules in Lists 1 and 2 provide interoper-

ability across different architectures while limiting the amount
of information that any one NRG must maintain.

F. Fault Tolerance and Resilience
The FERN process of forwarding requests up and then down

the NRT also affects the fault tolerance and resilience of the
system. In DNS, if a node is unable to contact the root server
it is unable to perform any resolution, as shown in Figure 2.
This behavior makes the root server an attractive target for
attackers, and also restricts the usefulness of DNS to nodes
that can access a root name server, as opposed to nodes in a
private network or MANET. Conversely, FERN requests only
travel up the NRT as far as necessary. Thus, in Figure 3, the
only queries that would reach the root NRG are requests from
NRG ucsc to NRG parc or vice-versa. All other traffic
stays within either NRG, and thus would function normally
independently of their ability to access the root NRG.

1) Internal Resolution: By forwarding queries in the man-
ner described above, FERN reduces the reliance on the top-
level NRGs of the NRT and improves resilience among lower-
level NRGs. If a root or TLD server fails, or if a NRG is cut
off from these servers due to a network partition, internal res-
olution is unaffected. Thus, name resolution in FERN is much
more distributed. Ideally, if there exists an active route between
two hosts, they should be able to resolve each other’s names
and communicate. Conversely, if no route exists between the
hosts, then name resolution is unimportant because even in the
event of successful resolution, no communication can occur.

2) Intermediate Failure Points: Consider the case where the
NRG parc fails. In DNS, all nodes (including nodes within
the domain parc) would be unable to resolve any names
below domain parc in the tree, but are able to resolve all
other names. Conversely, in FERN, requests that stay inside
NRGs csl or isl would still succeed, but none of the nodes
in these NRGs would be able to resolve any names outside of
parc, unless the NRT is modified to reflect the failure that
took place.

FERN addresses this problem by allowing nodes to cache
the network address of other nodes in their ancestor NRGs all
the way up to the root of the NRT. Note that, in accordance
with List 2, these network addresses cannot be used for
the forwarding of requests. The addresses are used solely
for fault tolerance. An NRG may use these addresses to
forward requests to its grandparent if and only if its parent
is unresponsive. With this rule in place, FERN may often
do better than DNS (by preserving internal resolution when
possible) but it never does worse, since it effectively reduces
to DNS when intermediate NRGs fail.

To reduce the risk of node failure, NRGs may also choose
to replicate records across K ° 1 separate nodes. Choosing
a proper value for K depends heavily on the underlying
network. In the Internet case, the DNS itself shows that small
values of K are sufficient. For example, over 80% of DNS
entries were supported by just one or two name servers in



6

2004 [11]. In other network scenarios as MANETs, K “ 1
might be completely acceptable if the only node bridging
name-requests is also the only node able to perform network
address translation (in which case its failure also partitions the
network). Ideally, K should be sufficiently large so that name
resolution reflects network connectivity.

G. FERN Correctness

The FERN rules in Lists 1 and 2 allow us to formally prove
that requests processed in FERN deterministically terminate,
do not loop, and are resolved correctly. The following proof
focuses solely on loops resulting from the misconfiguration
of FERN groups, and does not consider underlay network
errors or malicious behavior.

Theorem 1: FERN request forwarding is loop-free.
Proof: Assume that there exists a request-forwarding loop

among nodes using FERN. Given that NRGs are organized as
a tree, which is acyclic, the existence of a request-forwarding
loop necessarily implies that an NRG i must forward the
request to another NRG k that is not its parent or child in
the FERN naming tree. However, according to Rule 6 in List
1 and List 2, an NRG that forwards a request must do so to
either (a) its parent or (b) one of its children. Given that the
NRT is acyclic, the request-forwarding loop must occur as a
result of misconfiguring either the parent NRG or one of its
children.

According to Rules 1 and 3, an NRG cannot mistake its
parent and hence NRG i cannot consider NRG k to be its parent
NRG mistakenly. This means that the request-forwarding loop
must result from the misconfiguration of a child NRG, i.e.,
assuming that NRG k is a child NRG when in fact it is not.
For this to be the case, NRG i must know how to contact NRG
k, and NRG i can acquire this knowledge only through the
registration process. Since the registration process is always
initiated by the child NRG, it is impossible for NRG i to
mistakenly assume that NRG k is its child when it is in fact
not the case. This completes the proof.

Though Theorem 1 may appear trivial, referral loops are
possible in the DNS, and these loops significantly impact
network performance. Jung et. al. [22] observe that a very
small portion (3%) of requests to misconfigured name-servers
result in referral loops, and these requests generate over 12%
of all DNS packets, on average retrying each query over ten
times before giving up. Theorem 2 below serves as a general
proof of correctness for FERN requests.

Proposition 1: Any two NRGs have a common ancestor.
Proof: The proof is immediate from the fact that the root

group “/” is the parent of all TLD groups, hence it is a common
ancestor of every group.

Theorem 2: FERN name resolution is provably correct
Proof: Without loss of generality, assume that some node

in group X wishes to resolve the name of a node in group

Y . From Proposition 1, it follows that groups X and Y must
have a common ancestor; call that ancestor group Z. By Rule
3 and Theorem 1, the request originating in group X can
be forwarded up the tree until it reaches group Z. Again by
Rule 3 and Theorem 1, once the request reaches group Z, it
is forwarded down the tree until it reaches group Y , which
resolves the request. Hence, any node in any group is always
able to resolve the name of any node in any other group.

IV. DEPLOYMENT

The previous sections define the FERN framework and
explain why FERN explicitly does not specify internal group
considerations. However, these considerations still have a large
impact on the overall system performance, and thus merit
discussion.

A. Interfacing with Existing Protocols

Since internal group resolution can take many forms, FERN
can be used to bridge all existing name resolution protocols
today without modifying them. Supporting mDNS is trivial,
and can be accomplished by simply appending .local to
the end of a name-request before sending it to a mDNS
daemon. DNS integration is equally straightforward, though
it comes with one caveat: given that the resolution of DNS
queries start at the root, if the DNS is used to power a FERN
NRG, the NRG must be the highest group in the FERN
NRT; otherwise, unnecessary request-forwarding and group
traversal can occur. However, because the DNS is already
well-established, we believe that FERN NRGs could exist
“underneath” the current DNS hierarchy, using the DNS for
Internet resolution, while still supporting other networks where
the DNS is not appropriate.

B. Internal Group Communication

The best choice for internal group communication depends
on both the underlying network topology and the number of
nodes in the NRG. Though an NRG may specify that only
a certain number of nodes may join, the number of nodes in
an NRG is determined primarily by external factors, which in
turn determine group communication. These external factors
could be logical (the number of people in an organization),
hierarchical (an org chart), or based on the underlying network
topology (e.g., nodes in a MANET).

In the case of the Internet, a connected underlay network
with static addresses, the client-server architecture has been
shown by the DNS to be efficient, scalable, and provides
an attractive first choice. For fully-connected networks with
dynamic network addresses (such as an internal subnet or
home network), a DHT may be a better choice for both
robustness and dynamic updating.

C. NRT Height

The current DNS hierarchy is relatively shallow, with a
typical height of three or four levels, but is almost exclusively
limited to naming Internet servers. We believe that a full FERN
NRT would be allowed to have more levels, because part of



7

Fig. 3. Testbed FERN Name Resolution Tree

the intent of FERN is to expand name resolution to devices
in different network environments. As described above, the
addition of NRGs in the NRT could be the result of several
logical or organizational factors, as well as underlay network
concerns (such as bridging resolution across two MANETs).
In Section V below, we investigate the performance overhead
of adding extra groups to the NRT.

V. TESTBED DEVELOPMENT AND EVALUATION

The main contribution of FERN is a low-overhead modular
framework that enables different systems to interconnect. This
modularity makes it hard to compare its performance to
existing systems, because any results collected are heavily
dependent on the individual groups and their structure. Ad-
ditionally, all existing approaches today, such as the DNS
or UPnP, can function as a FERN group, so they can be
considered a subset of FERN functionality.

To confirm the arguments we made in the above sections,
and to collect more information about FERN performance, we
built a FERN daemon in Java and used it to support three
different internal NRG protocols. These protocols, Chord,
Server, and Flood, are detailed below, though it is important
to note that FERN can support many other forms of commu-
nication. We then deployed this daemon on eleven separate
nodes located at UCSC, PARC, and UCSB. At each campus
we deployed one server connected to the Internet to handle
inter-campus queries, at PARC we also used three laptops
connected to the campus wireless network, and at UCSC we
set up a MANET of four smartphones (and one laptop) running
OLSR, with the laptop also connected to the LAN via ethernet.

Figure 4 shows how we configured the nodes into the NRT
shown in Figure 3. The NRT, network topology, and choice
of name resolution protocols was designed to emulate what
we envision a wide scale FERN system might look like, with
significantly more mobility and dynamic behavior in the lower
layers of the NRT than in the upper layers. We ran several
name resolution tests using this testbed to evaluate our system
and summarize our results below.

Chord: The Chord NRG requires that every node in the
group be a member of the Chord DHT [23]. Once a member
of Chord, nodes use key-value pairings to map their IP address
to any names (nodes or groups) they are responsible for. We
use Chord at two levels, shown in Figures 3 and 4, to illustrate
its use in different contexts: in the group ccrg, we use Chord
on top of OLSR to simulate a MANET environment where
routing and discovery are done through a DHT [24], [25].
We also use Chord at the highest level, global, to emulate

Fig. 4. Testbed Implementation

an Internet-wide DHT of static name-servers, as discussed in
Section II-C.

Server: The Server NRG very closely resembles the current
DNS. The group consists of one node acting as a name server,
and all other nodes in the group are clients of that server.
Names and services are registered with this server and resolved
by querying the server.

Flood: The Flood NRG is completely decentralized and
emulates mDNS. When nodes join a Flood NRG, they sub-
scribe to a multicast address and port combination. Rather than
publishing or announcing any names or services, they listen to
the multicast address and respond in unicast to any requests
for a name or service that they can provide. Conversely, nodes
resolve a name or service by simply sending a request to that
multicast address. This approach is used at the lowest levels
of the hierarchy for two reasons: first, to emulate a MANET
running a reactive routing protocol, such as AODV. Second,
to illustrate the current role of mDNS and UPnP in today’s
home networking environment, where discovery is limited to
the reach of the multicast tree.

A. Latency

We evaluate latency in our testbed by disabling caching and
using tcpdump to time 50 requests internal to each NRG,
and 50 requests (each way) between every pair of NRGs.
In analyzing these results, we find that the latency of an
inter-group request can be expressed as the sum of two
main components: the latency of internal group resolution to
determine the address of the next hop, and the latency of
sending a request or response from one group to another.

1) Internal Group Latency: Internal group latency varies
tremendously by group, and can dominate the end-to-end
latency. As Table II shows, in server architectures (including
DNS) where the address of the next hop is already known
and exists in a table, this time is typically under 5ms, whereas
other groups based on DHTs or multicast take significantly
longer. Additionally, the groups csl and global merit
additional discussion. In csl, requests are supported by IP
multicast, which results in both a high mean and a significant
variance (µ “ 451 � “ 173), which are problems also
seen with mDNS. The performance of IP multicast varies



8

significantly with the network topology, traffic load, and even
the implementation of the multicast tree. Thus, the results
we present in Table II do not necessarily reflect performance
in other LANs, though they do highlight the performance
problems with using multicast for name resolution.

In our topology, the Chord used for global contains
three nodes, located at UCSC, UCSB, and PARC. When
querying this Chord, we observed latencies ranging from 80
to several hundred milliseconds, depending on the physical
location of the data. Though this serves as a proof-of-concept,
the low number of nodes and their geographical proximity
does not accurately reflect the topology of a large-scale Chord.
To better reflect a large-scale geographically diverse Chord
deployment, we choose to present and compare numbers from
the original Chord paper [23] instead, where the authors
measure a large 190-node Chord deployed across the entire
USA. This topology is closer to what we would expect to see,
and therefore their results are a better indicator of latency in
this scenario.

2) Inter-Group Latency: Inter-group latency is determined
by two relatively static factors: the physical distance a message
must travel (from one node in one group to another node in
another group), and the number of times it travels between
groups. We compare inter-group latency in FERN to DNS
values to get a more accurate understanding of how group
hierarchy and structure affects latency. We compare this par-
ticular metric to DNS latency because DNS does not have an
equivalent internal group component.

Jung et. al. [22] conclude that the number of DNS referrals
has a strong effect on the latency of a DNS request. Unfortu-
nately, a DNS request with N referrals could potentially result
in 2N FERN referrals, since it must both climb and descend
the tree. However, DNS requests (especially to root and TLD
servers) are generally performed iteratively. This distinction is
important because the latency of an iterative request with two
referrals corresponds to the latency of two complete round-
trips from a local DNS server to an authoritative name-server
that may or may not be close. This problem is highlighted by
their KAIST dataset analysis, where they identify a latency
“bump” that they correlate with round-trips traversing the
Pacific Ocean. Iterative resolution makes this problem worse,
since it results in potentially N transpacific round-trips.

In contrast, FERN minimizes inter-group latency by (1)
requiring groups to resolve name-requests recursively and (2)
organizing nodes in a hierarchy that reflects physical proximity
(i.e. assigning countries or physical regions to TLDs). These
two concepts combine to forward these requests to their
destination and ensure that requests only traverse a particular
long-haul link (i.e. the Pacific Ocean) once. With this feature
in place, we find that the latency overhead of adding another
logical group to the hierarchy is minimal: although it is
unlikely that the network address of the group is directly on the
route to the target group, with these rules it should be relatively
close, and in our tests we find this overhead to typically be
under 10ms.

TABLE II
MEAN LATENCY OF INTERNAL GROUP RESOLUTION

name ucsc parc global ccrg csl
NRG Server Server Chord Chord Flood

network LAN LAN WAN OLSR IP Multicast
mean 2ms 3.5ms 180ms 106ms 451ms
stdev 0.7ms 0.8ms 60ms 21.8ms 173ms

TABLE III
SUCCESSFUL NAME-REQUESTS WITH A FAILURE IN THE TOPOLOGY

Group: global ucsc ccrg Link: parc-global csl-parc
DNS 0/110 66/110 77/110 DNS 30/110 42/110

FERN 40/110 92/110 77/110 FERN 50/110 54/110

B. Fault Tolerance

Given that the topology in Figure 4 consists of 11 nodes,
there is a total of 110 different source-destination pairs for
a name-request, and in a fully-connected topology they all
succeed. However, it is the case that sometimes individual
nodes or network links in the system will fail and partition
the network into smaller sub-trees, shown in Figure 5 by
the dotted lines. We measure fault tolerance in FERN by
introducing failures into the system and observing how many
name-requests succeed; we present these numbers in Table III.
For both DNS and FERN, we assume that a link-failure occurs
in the underlay network (meaning that the entire network is
partitioned) and a group-failure occurs in the NRT (meaning
that network-layer connectivity still exists).

As discussed in Section III-F2, since FERN groups can
contact higher-up groups if necessary, FERN always performs
at least as well as DNS with regards to fault tolerance.
However, Table III shows that FERN usually outperforms DNS
when failures occur, especially when the failures occur in
higher levels of the hierarchy. This benefit is mainly due to
preserving internal connectivity when higher-level groups and
links fail, whereas in DNS no-one can resolve names below a
failure in the hierarchy.

C. Caching

Because FERN allows for nodes to be a part of multiple
NRGs simultaneously, we augmented the NRT in Figure 3 by
registering eight “fake” TLDs of the form {fake1, fake2, . . .}
and adding one entry, test, under each fake TLD. We then
ran an experiment where five nodes in ccrg each resolved
one name under each TLD (for a total of 11 names and
55 requests) in our hierarchy three separate times: once with
caching disabled, once with all caching enabled, and once with
the caching rules in Section III-E. Table IV shows our results,
represented by three metrics: the number of requests sent to
the root group, the number of cache-hits that occurred, and
the number of cached entries in the system. In addition to the
total values of these metrics, we breakdown the total by node,
numbering the nodes 1-5 to show the order they issued their
requests in.

The results with no caching serve primarily as a baseline for
comparison. Turning on all caching reduces the number of root



9

Fig. 5. Hierarchy Partitioning Due to Link-Failure

TABLE IV
COMPARISON OF AGGREGATED CACHING RULES

Metric Rules 1 2 3 4 5 Total
Root Requests No Caching 10 10 10 10 10 50

All Caching 10 9 8 7 6 40
Our Rules 10 0 0 0 0 10

Cache Hits No Caching 0 0 0 0 0 0
All Caching 0 1 2 3 4 10
Our Rules 0 10 10 10 10 40

Cache Entries No Caching 0 0 0 0 0 0
All Caching 14 13 13 13 13 66
Our Rules 12 1 1 1 1 16

requests, but only slightly: this is because once a node issues a
request that results in a root group query, that node caches the
address of the root and then sends all subsequent queries to the
root group directly. When an individual node queries the root
group directly, it is able to cache the responses, but it cannot
share this information with the other nodes. Correspondingly,
when we turn on our caching rules we see a tremendous
decrease in the number of root queries: the group ucsc is
the only one that can query the root, and once ucsc has a
cache entry for every other TLD in the system, there is no
need for any further root queries. This benefit is also reflected
in the total number of cache entries for the system, which
is substantially lower because the TLD entries only exist in
ucsc instead of being duplicated at each node.

VI. CONCLUSIONS

FERN is novel in its ability to interface radically differ-
ent name resolution architectures. By providing a unifying
framework for these protocols, we have laid a foundation for
interoperability between future name resolution protocols that
are highly specialized for a particular network environment.
Furthermore, we show how to seamlessly extend the current
DNS to support FERN-style name resolution.

We have examined and highlighted the differences between
FERN and DNS. Our results show that the extra group
traversals in FERN do not significantly impact latency, and
FERN’s forcing recursive queries significantly improves per-
formance. We have discussed the effect of caching and con-
firmed FERN’s fault tolerance and ability to handle network
partitions. We have also illustrated FERN’s scalability and
proved that FERN is deterministic and loop-free.

FERN provides a robust framework for name resolution
and service discovery. It provides one global namespace and
supports both global and local name resolution, yet does

so without the previous constraints on both namespaces.
By supporting different name resolution architectures, FERN
paves the way for optimization of name resolution protocols
for their corresponding networks and serves as an important
stepping-stone for interoperability between heterogeneous net-
works, such as wireless sensor networks and MANETs, home
“Internet-of-Things” networks, and the general Internet.

REFERENCES

[1] S. Cheshire and D. Steinberg, Zero configuration networking: The
definitive guide. O’Reilly Media, Inc., 2005.

[2] P. Mockapetris, “RFC 1035: Domain Names - Implementation and
Specification,” IETF Standard, 1987.

[3] “Godaddy outage takes down millions of sites,”
http://techcrunch.com/2012/09/11/godaddy-says-it-wasnt-anonymous-it-
wasnt-a-hack-it-wasnt-a-ddos-it-was-internal-network-issues/.

[4] “Facebook outage blamed on dns issue,”
http://www.itproportal.com/2012/12/12/facebook-outage-blamed-
dns-issue/.

[5] P. Vixie et. al., “RFC 2136: Dynamic Updates in the Domain Name
System,” pp. 1–26, Mar. 2002.

[6] Y. Goland et. al., “IETF Draft: Simple Service Discovery Protocol,” pp.
1–19, Jul. 2009.

[7] E. Guttman and J. Veizades, “RFC 2608 - Service Location Protocol,
Version 2,” IETF standard, 1999.

[8] R. Droms, “RFC 2131: Dynamic Host Configuration Protocol,” IETF
Standard, 1997.

[9] S. Cheshire, B. Aboba, and E. Guttman, “RFC 3927: Dynamic Config-
uration of IPv4 Link-Local Addresses,” IETF Standard, 2005.

[10] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS using a peer-
to-peer lookup service,” Peer-to-Peer Systems, pp. 155–165, 2002.

[11] V. Ramasubramanian and E. Sirer, “The design and implementation
of a next generation name service for the Internet,” in Proc. ACM
SIGCOMM, 2004.

[12] V. Pappas et. al., “A comparative study of the DNS design with DHT-
based alternatives,” Proc. IEEE INFOCOM, 2006.

[13] Y. Song and K. Koyanagi, “Study on a hybrid P2P based DNS,” Proc.
IEEE CSAE, vol. 4, pp. 152–155, 2011.

[14] T. Vu et. al., “Dmap: A shared hosting scheme for dynamic identifier
to locator mappings in the global internet,” pp. 698–707, 2012.

[15] U. Kozat and L. Tassiulas, “Network layer support for service discovery
in mobile ad hoc networks,” in Proc. IEEE INFOCOM, 2003.

[16] ——, “Service discovery in mobile ad hoc networks: an overall per-
spective on architectural choices and network layer support issues,” Ad
Hoc Networks, vol. 2, no. 1, pp. 23–44, Jan. 2004.

[17] M. D’Ambrosio et. al., “MDHT: a hierarchical name resolution service
for information-centric networks,” pp. 7–12, 2011.

[18] P. Grace, G. Blair, and S. Samuel, “ReMMoC: A reflective middleware
to support mobile client interoperability,” in Proc. DOA, 2003.

[19] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink, “Supporting
service discovery, querying and interaction in ubiquitous computing
environments,” Wireless Networks, vol. 10, no. 6, pp. 631–641, 2004.

[20] J. Allard, V. Chinta, S. Gundala, and G. Richard III, “Jini meets UPnP:
an architecture for Jini/UPnP interoperability,” in Proc. Symposium on
Applications and the Internet. IEEE, 2003, pp. 268–275.

[21] J. Crowcroft et. al., “Plutarch: an argument for network pluralism,” in
Proc. ACM FDNA, 2003.

[22] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance and
the Effectiveness of Caching,” IEEE/ACM Trans. Networking, vol. 10,
no. 5, pp. 589–603, 2002.

[23] I. Stoica et. al., “Chord: a scalable peer-to-peer lookup protocol for
Internet applications,” IEEE/ACM Trans. Networking, vol. 11, no. 1, pp.
17–32, 2003.

[24] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual ring routing: network routing inspired by DHTs,” Proc. ACM
SIGCOMM, vol. 36, no. 4, pp. 351–362, 2006.

[25] D. Sampath and J. Garcia-Luna-Aceves, “Scalable integrated routing
using prefix labels and distributed hash tables for MANETs,” Proc. IEEE
MASS, 2009.




