
UC San Diego
Technical Reports

Title
Critical-Path Aware Processor Architectures

Permalink
https://escholarship.org/uc/item/6x3149f2

Author
Tune, Eric

Publication Date
2004-12-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x3149f2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Critical-Path Aware Processor Architectures

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Eric Tune

Committee in charge:

Professor Brad Calder, Co-Chair
Professor Dean Tullsen, Co-Chair
Professor J. Lawrence Carter
Professor Sadik Esener
Professor Bill Lin

2004

Copyright

Eric Tune, 2004

All rights reserved.

The dissertation of Eric Tune is approved, and it is ac-

ceptable in quality and form for publication on microfilm:

University of California, San Diego

2004

iii

Dedications

I thank my advisors, Dean Tullsen and Brad Calder, for their support,

guidance, and inspiration. I thank all my labmates for listening and laughing

when I pontificated. I thank Joyce Murphy, whose voice always relaxed me when

my studies became stressful. Most significantly, I thank my mother, father and

brother for their patience and support through this process.

iv

It is easier to be critical than correct. – Benjamin Disraeli

v

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgments . xii

Vita and Publications . xiii

Abstract . xiv

I Introduction . 1
A. The Critical Path . 2

1. Why now? . 6
B. Overview of Dissertation . 7

II Background . 10
A. Value Prediction . 10
B. Power . 12
C. Multithreading . 15

III Critical Path Analysis . 18
A. General Critical-Path Analysis . 18
B. Static Critical Path Analysis of Programs 19
C. Offline Critical-Path Analysis of Programs 24
D. Dynamic Critical-Path Analysis of Programs 26
E. The Critical Path Model of Fields et al. 26

IV Dynamic Critical Path Prediction . 30
A. Common Aspects of Critical Path Predictors 32
B. Heuristic Critical Path Predictors 34

1. Identifying Critical Instructions 34
2. Methodology . 37
3. Heuristics . 39

vi

4. Results . 42
5. Analysis . 48

C. Iterative Critical Path Predictors 49
1. Approach . 49

D. Other Critical Path Predictors . 53
1. Token Passing Predictor . 54

E. Comparison of Critical Path Predictors 55
1. Methodology . 55
2. Results . 57
3. Analysis . 59
4. CPB Size and Counter Format 61

V Critical Path Aware Optimizations . 65
A. Critical Path Aware Value Prediction 68
B. Critical Path Aware Clustered Architecture 72
C. Critical Path Aware Power Reduction 76

1. Approach . 78
2. Evaluation . 80

D. Other Critical Path Aware Optimizations 83

VI Quantifying the Critical Path . 86
A. Methodology . 87
B. Measuring Critical and Slackful Instructions 89

1. Slack and Tautness . 90
2. The Rescheduler . 92
3. Using Rescheduler to Measure Slack and Tautness 93
4. Validation of the Rescheduler 95
5. Unclassifiable Instructions . 100

C. Comparing Critical Path Predictors 101
1. Training Accuracy . 102
2. Criticality Bias of Static Instructions 104
3. Prediction . 107

D. Distribution of Critical Instructions 112
E. Applying Criticality Information 115

VII Balanced Multithreading . 120
A. Simple Multithreading . 123
B. A Balanced Multithreading Architecture 125

1. Terminology . 127
2. Firmware Context Switching 127
3. Time Required to Swap Threads 132

vii

4. Common Architecture . 134
C. Methodology . 135
D. Analysis and Results . 137

1. Increasing Throughput Simply 138
2. Scalability of Balanced Multithreading 140
3. Hardware Support for Thread Swapping 143
4. Sensitivity to Memory Hierarchy 144
5. Store Retirement Policies . 148
6. Delayed Detection of Load Misses 149
7. Quantifying the Cost of Additional Registers 152

VIIISummary and Future Work . 155
A. In This Dissertation . 155

1. Critical Path Prediction . 156
2. Critical Path Aware Optimizations 157
3. Quantifying the Critical Path 158
4. Multithreading . 159

B. Future Work. 160

Bibliography . 163

viii

LIST OF FIGURES

I.1 Example of a critical path . 3

II.1 A Stride Value Prediction Table. 11
II.2 Types of multithreading. 16

III.1 Variation in critical path due to variable instruction latency . . 22
III.2 Variation in critical path due to variable control flow. 22
III.3 Example of Fields Graph . 28

IV.1 A pipeline with Critical Path Buffer. 32
IV.2 Performance after breaking critical dependencies. 44
IV.3 Speedup of shortening critical instructions 58
IV.4 Speedup and fraction critical with different CPB parameters . . 62

V.1 The performance of critical-path value prediction. 68
V.2 The performance of critical path value prediction vs. bandwidth 71
V.3 Illustration of simple and clustered processor pipelines. 73
V.4 The performance of a critical path-aware clustered architecture. 75
V.5 A pipeline with critical-path aware power optimizations. 77
V.6 Histogram of the number of ready, critical instructions. 79
V.7 Power vs. instruction queue and functional unit design 81

VI.1 An example illustrating tautness. 91
VI.2 Comparison of slack and tautness for gcc. 96
VI.3 Comparison of slack and tautness for twolf. 97
VI.4 Example illustrating the effect of cache line sharing. 99
VI.5 Criticality identification accuracy 102
VI.6 Criticality prediction accuracy. 108
VI.7 Distribution of tautness. 113
VI.8 Distribution of slack. 114
VI.9 Performance of idealized speculative precomputation 116

VII.1 Performance of SMT and BMT vs. physical register file size. . . 138
VII.2 Performance of SMT and BMT vs. workload size 142
VII.3 Performance of BMT with different levels of hardware support. 144
VII.4 Performance of SMT and BMT vs. memory hierarchy 146
VII.5 Performance of SMT and BMT processors with strict stores . . 148
VII.6 Performance of BMT vs. swap delay. 149
VII.7 Probability of additional misses during a miss 150
VII.8 Speedup vs. instruction window size. 153

ix

LIST OF TABLES

IV.1 Assembly code for a simplified version of Livermore Loop 23. . 35
IV.2 Benchmarks used in Sections IV.B, V.A, and V.B. 37
IV.3 Processor parameters used in Sections IV.B, V.A, and V.B. . . 38
IV.4 Heuristic critical-path identification criteria. 40
IV.5 Percent of executed instructions marked by predictors. 43
IV.6 Number of seed instructions identified 52
IV.7 Benchmarks used in Section IV.E 56
IV.8 Processor parameters for Section IV.E. 57
IV.9 CPB counter policies . 63

V.1 List of some critical-path aware optimizations 66

VI.1 Processor parameters used in Chapter VI 88
VI.2 Benchmarks used in Chapter VI 89
VI.3 The criticality bias of static instructions. 105
VI.4 The fraction of static instructions which change criticality. . . . 106
VI.5 Policies used for selecting static loads for optimization. 115

VII.1 Processor parameters for Chapter VII. 134
VII.2 Benchmarks used in Chapter VII 135
VII.3 Workloads used in Chapter VII 136
VII.4 Performance and register file access times for BMT/SMT . . . 152

xi

ACKNOWLEDGMENTS

Portions of Chapters IV and V reproduce material which appears in

the proceedings of the Seventh International Symposium on High-Performance

Computer Architecture. The dissertation author was the primary researcher and

author and the co-authors involved in the publication directed, supervised, and

assisted in the research which forms the basis for that material.

The text of Chapter VI is in part a reprint of the material as it appears

in the proceedings of the 11th International Conference on Parallel Architectures

and Compilation Techniques. The dissertation author was the primary researcher

and author and the co-authors involved in the submission directed the research

which forms the basis for Chapter VI.

The text of Chapter VII is in part a reprint of the material as it appears

in the proceedings of the 37th International Symposium on Microarchitecture.

The dissertation author was the primary researcher and author and the co-authors

involved in the submission directed or assisted the research which forms the basis

for Chapter VII.

xii

VITA

1974 Born, Orange, California

1992 High School Diploma
Sacramento, California

1996 B.S. in Computer Engineering
University of California, San Diego

2000 Internship,
Compaq Computer Corporation, VSSAD Group,
Shrewsbury, Massachusetts

2001 M.S. in Computer Engineering
University of California, San Diego

2004 Doctor of Philosophy
University of California, San Diego

PUBLICATIONS

Eric Tune, Rakesh Kumar, Dean Tullsen, and Brad Calder “Balanced Multi-
threading: Increasing Throughput via a Low Cost Multithreading Hierarchy”,
To appear in the proceedings of the 37th International Symposium on Microar-
chitecture (MICRO 2004), December 2004, Portland, OR.

Eric Tune, Dean Tullsen, and Brad Calder. Quantifying Instruction Criticality,
In the proceedings of the 11th International Conference on Parallel Architectures
and Compilation Techniques (PACT 2002), September 2002. Charlottesville, VA

Eric Borch, Eric Tune, Bobbie Manne, and Joel Emer. Loose Loops Sink Chips
In the proceedings of the Eighth Int’l Symposium on High-Performance Computer
Architecture, (HPCA 2002), February 2002, Cambridge, MA

John Seng, Eric Tune, Dean Tullsen, and George Cai. Reducing Processor Power
with Critical Path Prediction In the proceedings of the 34th International Sympo-
sium on Microarchitecture (MICRO 2001) December 2001, Austin, TX

Eric Tune, Dongning Liang, Dean Tullsen, and Brad Calder. Dynamic Prediction
of the Critical Performance Path, In the proceedings of the Seventh International
Symposium on High-Performance Computer Architecture (HPCA 2001) January
2001, Monterrey, Mexico

xiii

ABSTRACT OF THE DISSERTATION

Critical-Path Aware Processor Architectures

by

Eric Tune

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2004

Professors Dean Tullsen and Brad Calder, Co-Chairs

Modern processors remove many artificial constraints on instruction or-

dering, permitting multiple instructions to be executed in parallel. As a result,

only a fraction of all the instructions in a program trace determine the execution

time of the program. Any effort to improve program performance is wasted when

not applied to these critical instructions. Likewise, the remaining non-critical

instructions may be delayed, to a point, without affecting performance. Depend-

ing on the program and microarchitecture, typically between a few percent and

half of all dynamic instructions are critical. We propose and evaluate several

hardware techniques to classify whether an instruction is critical or non-critical,

and discuss related efforts at the same. We show that the criticality of dynamic

instructions is correlated to the corresponding static instruction. We exploit this

correlation to predict an instruction’s criticality, in hardware, before it executes.

We call this critical-path prediction. These predictions can be used anywhere

that the processor must arbitrate between instructions for a limited resource. We

demonstrate the utility of these predictions in several such applications, which

we call critical-path aware optimizations: a processor with a limited-rate value-

predictor, a clustered microarchitecture with inter-cluster communication delays,

and a reduced-power microarchitecture with heterogeneous functional units and

xiv

queues. We perform an offline analysis of the critical paths of programs to vali-

date our findings and to quantify the degree of criticality of different instructions.

Our findings lead us to propose a new multithreading architecture. Under our

proposal, threads execute in parallel in a manner sensitive to the hardware im-

plications of supporting multiple contexts, and also sensitive to the critical path

issues. We use execution-driven simulation to evaluate the performance of all the

processor designs which we propose.

xv

I

Introduction

Improvements in microprocessor performance have far-reaching benefits.

High-performance microprocessors are the central component in the computer

systems that process financial transactions, predict the weather, aid the devel-

opment of new medicines, and sit on 600 million desktops worldwide[1]. And, as

semiconductor manufacturing technologies have improved, architectures which

were once reserved for high-performance processors are applied to embedded pro-

cessors, of which there are billions[94]. Therefore, performance improvement for

microprocessors is an important area of inquiry.

The tremendous improvements in microprocessor performance are largely

due to improvements to semiconductor fabrication technology, which result in

larger transistor counts and faster switching. The increasing transistor counts

have permitted the design of complex processors which allow many instructions

to be active in the pipeline concurrently.

Although miniaturization has carried microprocessor performance a great

way, new factors threaten to limit gains from further miniaturization. The num-

ber of fast circuit blocks is limited by power constraints. The growing delay

of wires, relative to transistors, limits the complexity of structures that can be

accessed in a clock cycle. This constrains the size of and number of ports on

1

2

caches, prediction tables, and register files. Further innovation is needed at the

architectural level to work around these resource constraints.

Together, high concurrency and multiple resource constraints mean that

a microprocessor has to make decisions about how resources are allocated among

individual instructions on a cycle by cycle basis. However, a comprehensive

mechanism for making these decisions has been largely lacking. In this thesis,

we develop mechanisms for determining which instructions should get access to

limited resources, in order to maximize performance, based on the criticality of

instructions. We propose mechanisms for identifying which instructions lie on the

critical path of executing a program, and show that considerable improvements in

performance result when critical instructions are given priority to use constrained

resources. We relate our findings to another microarchitectural technique which

increases concurrency: multithreading. We propose a new multithreading tech-

nique which exploits portions of a programs critical path which are dominated

by a single instruction.

In the broadest terms, the goal of this research is to find ways to improve

the performance of a microprocessor by intelligently managing its resources.

I.A The Critical Path

The idea of a critical path has been used in planning and operations

research for many years. Most projects can be thought of as consisting of a set

of tasks, each with some duration, and a set of constraints on the order in which

tasks can be performed. The longest ordered sequence of tasks determines the

minimum time to complete the project. This set of tasks, linked by constraints,

constitutes the critical path.

Consider as an example, building a house. Several tasks comprise this

project: framing the walls, plumbing, wiring, roofing, and plastering the walls

3

Framing

1 day

Plumbing

3 days

Wiring

2 days

Plaster

1 day

Roofing

2 days

Completion

Figure I.1: Example of a critical path in a house construction project.

Figure I.1 illustrates the constraints on the ordering of those tasks. For example,

the walls cannot be plastered until the wiring and plumbing has been completed,

as indicated by edges between the boxes in the figure. The longest sequence of

events consists of framing, then plumbing, then plastering. This is the critical

path, and is highlighted.

A general contractor planning the construction of the house may wish

to know how he can finish the house sooner, or how he can finish the house in the

same amount of time, at a lower cost. If he is building several houses in several

locations, he may wish to know how to allocate his workers to different projects.

Knowledge of the critical path provides a starting point from which to answer

these questions. Consider two important properties of the critical path. First, the

duration of the project can only be reduced by shortening a task on the critical

path. Second, a task not on the critical path can be made to take longer, up to

a point, without increasing the duration of the project. These two observations

4

address the contractors two questions. In the context of this example, he might

wish to hire a faster, perhaps more expensive plumber, or he may choose to hire

slower, but less expensive electricians and roofers. In short, knowing what tasks

lie on the critical path provides a starting point for making decisions which trade

off the duration of a project with other costs.

An instruction trace of a program running on a microprocessor can

be thought of as a project as well. Dynamic instructions correspond to tasks.

Data dependencies are one type of constraint on the ordering of instructions.

The processor hardware also puts additional constraints on the scheduling of

instructions. The critical path of a graph of these constraints represents the

runtime of the program. Like the contractor in the example, a processor architect

wants to minimize program duration, and minimize other costs. Those other costs

may include power consumption, or may relate to wire delay, which, as mentioned

earlier, are growing concerns. We refer to those instructions which lie on this

critical path as critical instructions, and the rest as non-critical instructions.

However, a general-purpose processor must be designed to run many

different kinds of programs, thus a processor architect cannot, or should not,

design a general purpose processor with regard to the critical path of a single

program. Instead, this thesis proposes incorporating additional hardware into

microprocessors which would:

• Identify which instructions are limiting performance based on their behav-

ior as they pass through the pipeline, and their dependencies with other

instructions.

• Predict which instructions will be critical as they enter the pipeline, based

on which instructions were previously identified as critical.

• Control the behavior of the processor at the microarchitectural1 level using
1The microarchitectural level is defined, for this thesis, as high-level aspects of a processor design apart from

5

those predictions.

We refer to processor designs which implement these three features as Critical-

Path Aware Processor Architectures.

Each of these steps is performed continuously in the processor, and

each presents challenges. Although it is possible to analyze the critical path of

a program after it is run, (and we do so), it is much more useful to be able to

identify the critical path as the program runs. In order to control the behavior of

the processor, it is necessary to know whether a dynamic instruction2 is critical

as soon as it enters the pipeline. But, its criticality depends on what happens

when and after it executes, making it infeasible to say with certainty whether an

instruction is critical or non-critical when it first enters the processor. However,

we observe if a recent instance of a static instruction was critical, then subsequent

instances will also likely be critical. This allows us to observe whether instructions

were critical after they execute, to record this behavior, and then to predict that

future instances of the instruction will have the same status. We refer to the

process of identifying and predicting potentially critical instructions as Critical-

Path Prediction.

Despite the fact that there is some uncertainty in both the identifi-

cation and prediction steps, we find, in our evaluations, that the information

produced by critical-path prediction can both improve performance over previ-

ously proposed policies which do not use critical-path predictions, and enables

new microarchitectures which would not have been sensible without critical-path

information. We refer to the act of using predictions to control the microarchi-

tecture as Critical-Path Aware Optimization.

the instruction set architecture.
2A dynamic instruction is a single instance in the instruction trace of a program, as distinct from a static

instruction, which is a sequence of bytes in the executable file of a program.

6

I.A.1 Why now?

Critical-path analysis has been used formally for at least 35 years. Why

has it not been applied to microprocessors before, in the way we propose? To be

sure, critical-path analysis is used extensively in circuit design. A circuit designer

needs to know which paths through a circuit have the greatest delay, in order to

make the entire circuit block faster, and to set a clock period. Critical path

analysis has also been performed in compilers to schedule instructions. This,

and other, software-based approaches to critical path analysis of programs, are

discussed in section III. Here we distinguish between a circuit critical path and

a program critical path. This distinction may be less clear in the domain of

application-specific processors [43] and reconfigurable processors [46], where the

program and the hardware are designed at the same time. In that domain, a

critical path analysis might include both software and hardware. However, in this

thesis, we are concerned with programs running on general-purpose processors,

where the processor designer cannot make program-specific design choices.

Why, then, had the critical path concept not been applied to analyzing

the performance of individual instruction in a processor, prior to the work which

forms the basis for this thesis? We suggest some contributing factors. First, an

increases in the number of transistors on a typical processor die mean a reduction

in the cost of the additional hardware needed to implement critical-path predic-

tion. These additional transistors can also be used to implement circuit blocks

that offer multiple levels of service. Knowing which instructions are critical or

non-critical is not useful without having a way to offer them different levels of

service. In several cases, these multiple levels of service stem from the constraints

of wire delay and power consumption. As mentioned previously, these constraints

are recently matters of particular concern in processor design.

Second, contemporary processor designs have removed many of the con-

7

straints on the order in which instructions are executed which would otherwise

largely serialize the execution of programs, leaving all instructions on the criti-

cal path. Knowing that all instructions are critical is hardly useful. This point

deserves particular attention. In a scalar, in-order processor, all instructions are

on the critical path. Speeding up any instruction would make the program run

faster, albeit perhaps by only one clock cycle. It is only when many instructions

are not critical, that it is useful to know which ones are. As transistor budgets

have increased, each generation of processor has removed more constraints on

the order in which instructions can execute. Register renaming and out-of-order

execution, [6, 81, 104], remove artificial dependences imposed by instruction or-

dering. Branch prediction [101] can remove many control dependencies. When

these constraints are removed, the critical path may consist of only a fraction of

the instructions in the program.

In our work, we find that, typically, between 5% and 40% percent of

instructions are critical. This number varies considerably depending on the pro-

cessor design and the program. And, with each generation of processors removing

more artificial constraints on the ordering of instructions, the number of critical

instructions will decrease further, and the relative importance of each critical

instruction will increase. The implication is significant: It does not make sense

to treat all instructions the same.

I.B Overview of Dissertation

Chapter II provides background information on several topics which

relate to this thesis.

Chapter IV describes Critical Path Prediction for dynamically identify-

ing instructions likely to be on the critical path. We propose several critical-path

predictors We also describe critical-path predictors and related schemes proposed

8

by other researchers

Critical path prediction does not, by itself, make programs run faster.

Instead, it is a meta-optimization. It provides information that can be used

to control other hardware optimizations, making them more effective than they

would be without critical path predictions. Chapter V describes our evaluation

of three critical-path aware optimizations, Sections V.A and V.B evaluate how

critical path predictions can be used to control value prediction and clustered

architecture instruction steering. We show that critical path prediction has the

potential to increase the effectiveness of these hardware optimizations by as much

as 70%, without adding greatly to their cost. Section V.C evaluates how critical

path information can be used to reduce power consumption, while minimizing

performance losses from power constraints. We also describe related work on,

and suggest new kinds of critical-path aware optimizations.

Chapters IV and V firmly establish the feasibility of analyzing the criti-

cal path of a program at runtime, and using that analysis to direct hardware-level

performance improvements. Chapter VI seeks to deepen our understanding of the

critical paths of programs. In that chapter, we describe an offline analysis of pro-

grams traces which we performed to better understand certain properties of crit-

ical paths. This analysis allows us to (i) study how the criticality of instructions

changes (ii) measure the accuracy of proposed critical path predictors, (iii) quan-

tify the amount of slack present in non-critical instructions, and (iv) provide a

new metric, called tautness, which ranks critical instructions by their dominance

on the critical path, and in time.

Our studies lead us to investigate multithreading, and to propose a

new multithreading architecture. Chapter VII describes this new multithreading

architecture, which does not use critical path prediction, but which builds on

understanding gained from our work on the critical path, and which is improved

9

when we apply a critical-path-related control policy.

II

Background

This chapter provides background information on topics which relate to

this thesis. Section II.A explains value prediction, a microarchitectural optimiza-

tion which we study in conjunction with critical path prediction in Section V.A.

Section II.B provides some background on the importance of power consumption

as a design constraint for microprocessors. We consider critical-path aware power

reductions in Section V.C Section II.C provides some background on multithread-

ing. Many readers may find this material familiar.

II.A Value Prediction

In Section V.A, we study how critical path prediction can be used to

control value prediction, [69, 71, 39]. Value prediction exploits value locality in

programs: the same static instructions often produce the same value, one of a

small set of values, or a value which differs only by a fixed increment between

subsequent dynamic instances. Thus, the result of an instruction may be pre-

dicted before it actually executes. In modern processors with large instruction

queues, they may be many instructions which have been dispatched, but which

are waiting for their operands to become ready. By predicting the outcome of

10

11

Tag State Last Stride

PC

Prediction+

= Valid

Figure II.1: A Stride Value Prediction Table.

an instruction, dependent instructions can execute before their operands would

otherwise be ready. The predicted outcome is eventually confirmed. In event

of a misprediction, at least the instructions affected by the incorrect prediction

must be re-executed. Value prediction is of particular interest as a critical-path

aware optimization. Unlike optimizations which merely reduce the latency of an

instruction, value prediction removes data-dependencies altogether. Thus, there

is the potential to drastically reduce the critical path if value prediction is applied

to a select few instructions.

To implement value prediction, a conventional architecture is extended

to include a value prediction table, and facilities for using, verifying, and recover-

ing from the misuse of speculative values. The value prediction table tracks the

results of completed instructions, identifies patterns, and predicts the outcome

of future instructions. An example of one type of value prediction table, a stride

value prediction table, is shown in Figure II.1. The value prediction table is a

small RAM, like a cache. The table is indexed by the program counter (PC) of

the instruction to be predicted. Each line of the table is a predictor for one static

instruction. Each line of the table contains i) a partial tag, to aid in detecting

aliasing, ii) predictor state, which specifies whether the predictions contained in

this line are valid, and optionally, a confidence value, which is simply a count

12

of the number of recent correct predictions, iii) the last value produced by an

instance of the instruction predicted by this line, iv) a stride, which is the dif-

ference between the last value and the value before that. To make a prediction,

the program counter is used as an index into the table. If the tag matches, and

if the predictor is valid and confident, then the prediction is deemed valid. The

sum of the stride and the last value is the prediction for the new value.

Completed instructions are used to update the prediction table. (The

update path is not shown in the figure.) The predicted value is used in speculative

computations, which are eventually committed once the predicted instruction is

actually executed and the prediction is confirmed.

More complex value prediction schemes can predict other patterns of

value locality. In our experiments in Section V.A, we use a hybrid value predic-

tor [123], which, in addition to making stride-based value predictions as described

above, can also make context-value predictions. The context value predictor pre-

dicts that the next result of an instruction will be one of the 4 most recently

produced results, based on the history of the previous results. We do not evalu-

ate instruction reuse [103], which is similar to value prediction.

II.B Power

Power consumption is an important design consideration for micropro-

cessors. Design goals for a high-performance microprocessor systems include

maximizing performance within limits for whole-chip average and peak power

consumption, and avoiding areas of high power-density. Two components of

power consumption are dynamic and static power consumption. The dynamic

power of a block of logic is the power which is dissipated as a result of logic gates

switching. Static power is power which is dissipated independent of any switching

activity. Both are increasing in high-performance microprocessors [55], but static

13

power consumption is increasing more rapidly [61], both in absolute terms, and

in proportion to dynamic power consumption.

A block of logic in a processor may be implemented in several ways, each

with different power and performance characteristics. A designer can vary device

parameters, such as width, supply voltage and threshold voltage; the style of logic

used, such as static CMOS or domino logic; or the high-level circuit design of a

block, such as a carry-lookahead or carry-select adder. For purposes of discussion,

we say that a logic block admits to a fast/hot or slow/cool implementation.

The simplest approach to meeting power constraints is for a designer

to select one of several possible implementations for each block, such that the

performance of the processor is maximized, and power constraints are not ex-

ceeded under any circumstances. Rather than designing for the worst case, the

designer can opt to design for the average case, and provide a mechanism to re-

duce the speed of the entire processor, or of sections of the processor, when power

consumption or chip temperature exceeds a threshold [83, 82, 14, 52].

Scaling the speed of the whole processor affects all instructions. How-

ever, not all instructions have the same performance needs. A better combined

power/performance characteristic can be achieved if power decisions are made on

a per-instruction basis. To achieve this, some blocks of a processor are imple-

mented in both fast/hot and slow/cool styles. In Section V.C, we discuss how

critical-path prediction can be used to steer instructions to either a slow/cool or

fast/hot execution path, according to each instruction’s criticality. One obvious

place to apply this technique is a functional unit: a block which performs the

arithmetic or logical operations specified by an instruction. We use the term

multi-speed or heterogeneous functional units to refer to designs where the same

arithmetic or logical function is implemented in both fast/hot and slow/cool

styles.

14

The Intel Pentium 4 microprocessor has fast and slow integer functional

units [49]. The slow functional unit runs at the core processor clock rate and

the fast functional unit runs at twice that speed. Although this design highlights

the feasibility of multi-speed functional units, the designers may have chosen it

for reasons other than power savings. The fast functional unit only performs

simple operations, such as addition and subtraction, while the slow functional

unit performs all types of integer operations. The mechanism used to schedule

instructions on this processor is not published.

Typically in a high performance processor, a functional unit is imple-

mented to complete basic operations like addition and subtraction in a single

cycle. When this constraint is relaxed, both the number and size of transistors

may be reduced[11]. Both static and dynamic power is reduced when fewer and

narrower (thus slower) transistors are used. An especially effective way to reduce

static power, when the underlying technology permits it, is to raise the threshold

voltage, which reduces the switching speed somewhat, but exponentially reduces

sub-threshold leakage current [17], a major component of static power dissipation.

Functional unit power may also be reduced in other ways, such as reducing power

used to compute on operands with fewer significant bits[13]. Speculation control

is another important microarchitectural technique for power reduction [74, 44].

In addition to the work of Seng et al. which we discuss in Section V.C,

several other researchers have also evaluated multi-speed functional units. Cas-

mira and Grunwald [20] measured how much slack was present in instruction

sequences, in order to determine how often slow functional units could be put

to use. Pyreddy et al. [86], also studied a design with multi-speed functional

units, using a static critical path prediction, based on the heuristics presented

in Chapter IV. Semeraro et al. [95], performed an offline analysis of slack to

independently control clock speeds in different blocks of a processor, but their

15

technique did not control on a per-instruction basis. Fields, et al. also used their

critical path predictor to control a pipeline with multi-speed functional units.

That work is discussed in Section V.D.

Sato, et al. [91], reevaluated the results of Seng, et al., [97]. They found

multi-speed functional units to be useful in decreasing the energy-delay product,

but questioned the benefit of the split instruction queue design. They suggest that

energy savings would be greater with a more accurate critical path predictor.

In Section V.C, we also discuss power-reduction for the instruction

queue. Out-of-order execution allows ready instructions to be executed sooner

than then they appear in program order. Because of control dependencies, and

variable instruction latencies, the schedule produced by the compiler is often

worse than that which can be produced by a hardware scheduling mechanism.

In recent processors, that scheduling mechanism is provided by an instruction

queue. Reduction of power consumption for the instruction queue has been the

focus of some research [38, 18]. The instruction queue serves two purposes: to

serve as a buffer between the fetching and execution portions of the pipeline, and

as a mechanism for scheduling instructions. If the number of instructions that

are considered for scheduling each cycle is reduced, then the power consumed by

the instruction queue will likewise be reduced.

II.C Multithreading

Multithreading can refer to a class of hardware techniques which make

better use of a processor by executing instructions from different threads with-

out software intervention. Figure II.2 illustrates the time-density of instruction

execution for a conventional processor and for two types of multithreading pro-

cessors. The vertical dimension represents the passage of time over the span of

19 clock cycles. Each row of 4 boxes represents a capability to issue up to 4

16

(a) Single thread processor (b) Coarse-grain multi-
threading processor

(c) Simultaneous multi-
threading processor

Figure II.2: Illustration of instruction throughput in single thread, coarse-grained
multithreading, and simultaneous multithreading processors.

instructions per cycle. The shaded boxes represent an instruction from one of

two threads executing on that cycle. The shaded boxes represent an instruction

executing on that cycle. The white boxes represent an opportunity to make bet-

ter use of the processor. Figure II.2(a) shows that a single-threaded processor

may often be idle for short or long periods. These stalls are caused by events

such as cache misses and branch mispredictions. Accesses to main memory can’t

even be shown to scale. Figure II.2(b) illustrates Coarse-grained multithreading

(CGMT) [3, 90, 108, 78, 12]. When a cache miss occurs in one thread, execution

is switched to a second thread after a delay. In this figure, instructions from two

different threads are shown, and two thread swaps occur, with two cycles between

each. In practice, the delays could be greater.

A Simultaneous multithreading (SMT) [115, 112, 50, 126] processor is

capable of issuing instructions from 2 or more threads on the same cycle. This

17

additional flexibility allows for a higher utilization of the processors execution

units, as illustrated in Figure II.2(c). Another multithreading mode, not illus-

trated here, is Fine-grained multithreading [100, 5, 45, 67], whereby the processor

executes instructions from a different thread each cycle, typically in a round-robin

fashion.

Both forms of multithreading are attractive, compared to simply having

multiple independent processors. Compare a multi-threaded processor and two

separate single-thread processors. If both configurations are capable of the same

throughput, the multithreaded processor will likely require much less die area,

since only some logic is duplicated to support multiple thread. Further, in those

cases when there is only a single thread to run, that single thread has the potential

to have a higher instruction throughput on the multithreaded processor, than on

one of the less capable single processors.

In these illustrations, only two threads are shown. However, it may often

be desirable to build processors which support more than 2 threads. Trends in

the characteristics of main memory (DRAM) make additional threads even more

attractive. While DRAM memory latencies have grown relative to processor clock

speeds [125], memory bandwidths have increased steadily. Multithreading offers

a good way to exploit additional memory bandwidth with a single processing

core.

However, support for additional threads has a cost. The state for the ad-

ditional threads increases the size of the register file, and possibly other structures.

This in turn can affect processor clock speed or pipeline length. In Chapter VII,

we consider ways to support additional threads while avoiding these undesirable

consequences.

III

Critical Path Analysis

In this chapter, we give some background on general critical path anal-

ysis, and we describe several ways in which critical path analysis can be applied

to programs. We classify critical path analyses of programs into three categories:

Static analysis is performed on machine code before run-time, but may make use

of execution profiles. Offline analysis is performed on an instruction trace, after

runtime. Dynamic analysis is performed as the program is run.

III.A General Critical-Path Analysis

The concept of a critical path was formalized by operations researchers,

in the context of planning engineering and construction projects [58, 76, 57, 9].

A project may be represented by a directed acyclic graph. All project graphs

have source and sink nodes which represent the initiation and completion of the

project, respectively. There are two common ways of representing a project with

a graph: activity-on-arc (AOA), and activity-on-node (AON). In the AOA format,

each edge (or arc) represents an activity, and a weight on an edge indicates the

time to complete the activity. Nodes represent discrete events. Under this format,

it is typically necessary to either use zero-weight edges or for the same activity to

18

19

be represented on several nodes. This is the format used in the graphical model

proposed by Fields et al. and described in Section III.E. In the AON format,

nodes represent activities, with the weight on each node representing the duration

of the activity. Unweighted edges constrain the ordering of events. This is the

format used in several diagrams in this thesis.

Regardless of the format used, the earliest finish time of a project is the

length of a longest path through the project’s graph. This is the critical path.

In some cases, there can be multiple parallel sub-paths of equal length. The

difference between the earliest time at which an activity could be started and

the latest time at which it could be started without delaying the finish time, is

termed the slack of that activity. More precisely it is termed the “total float”[76]

(which Fields et al. [32] refer to as “global slack”). Critical edges have no slack.

Delaying the initiation of any critical activity will delay the completion of the

entire project.

Critical-path analysis has been used in several other areas of computer

engineering. Critical path analysis has been used to analyze the performance of

parallel programs, [127, 4, 68], and is of great importance in the design and layout

of digital circuits, [107].

III.B Static Critical Path Analysis of Programs

A compiler may reorder instructions within a basic block. For an in-

order processor, also called a statically scheduled processor, instructions within a

basic block are executed in the order they appear in the program text, although a

superscalar processor may issue and execute multiple consecutive instructions in

a single cycle. The ordering of instructions emitted by the compiler may have a

considerable effect on the resulting program’s performance. If a directed graph is

created to represent the instructions in a basic block and their data dependencies,

20

then any topological sort of that graph is a valid ordering of the program text.

Gibbons and Muchnick [41] describe an efficient algorithm to schedule (select

an order for) the instructions of a basic block. Their algorithm tries to avoid

pipeline interlocks, which are cycles in which the next instruction cannot execute

because its dependencies are not satisfied. At each step, their algorithm uses

one of several heuristics to select the next instruction to emit. One of those

heuristics is to prefer instructions which lie on the longest path through the

graph of unscheduled instructions. In this manner, their algorithm takes into

account the critical path within a single basic block.

An instruction scheduler is limited in its ability to reorder instructions

by the small size of many basic blocks. Fisher describes how to combine multiple

basic blocks into larger traces [36]. Likely control flow paths can be determined

by compile time heuristics, as in [73] or profiling [124]. Fisher’s scheduler gives

priority to instructions which lie on the longest path through the graph of un-

scheduled instructions. Lowney et al. [73] discuss the importance of considering

the critical path in a trace scheduling compiler. Schlansker and Kathail [93]

describe compiler transformations which reduce the height of the critical path

through a superblock. A superblock, [53], is a set of basic blocks combined using

predication.

The compiler analyses described above are associated with statically

scheduled processors. For an out-of-order processor, also called a dynamically

scheduled processor, the ordering of instructions within a program trace instruc-

tions will have much less of an effect on performance. This is the type of processor

we concerned with in this thesis. Two alternative instruction orderings, which dif-

fer in performance when run on an in-order processor, may be be scheduled in

the same order by a dynamically scheduled processor, and thus give the same

performance there. When coupled with control speculation, dynamic scheduling

21

can have a similar effect to trace scheduling, in that instructions are reordered

across basic block boundaries.

Instruction scheduling is only one area where awareness of the critical

path can be put to use. In this thesis, we consider how with how instructions can

be classified as critical or non-critical, and how that classification can be used to

guide many processor policies, and to enable new microarchitectures. A static

approach, similar to instruction scheduling, could be used to classify instructions

as critical and non-critical. However, any static analysis will have several short-

comings: i) it either assumes a particular control path or cannot properly account

for data dependencies between basic blocks, ii) it assumes to fixed latencies for

variable-latency instructions, such as loads, iii) it requires recompiling or at least

reprocessing object code, iv) it assumes features of a particular processor model,

or ignores microarchitectural effects on execution, and v) the ISA would likely

have to change to convey critical/non-critical classifications1.

The first two points each deserve an illustration. Figure III.1 illustrates

the effect of variable instruction latency on the critical path. Figures III.1(a) and

III.1(b) illustrate a data-flow graph of a fragment of code with 5 instructions.

The height of each box is a metaphor for the latency of the instruction. The

shaded boxes show instructions on the critical path for this fragment. Suppose,

for the sake of the example, that the div instruction is definitely on the critical

path. When both loads hit in cache, the first load and the multiply instruction

are on the critical path, and the second load instruction is not critical. When the

second load instruction misses in cache, the opposite is true. A static analysis

which incorrectly estimated the latencies of the loads would incorrectly classify

1To a limited extent, the compiler can convey some hints about criticality without ISA changes, via its choice
of instruction ordering. At least some dynamically scheduled processors, including the Alpha 21264, select an
older instruction, i.e. one which appears earlier in the program text, over a younger instruction, when choosing
between two ready instructions to schedule on a certain cycle. The QOld heuristic critical-path predictor, which
uses instruction order in identifying critical instructions, could benefit from the instruction ordering produced
by a compiler which tries to emit instructions on the dataflow critical path as soon as possible.

22

LD A

MUL

DIV

LD B

SUB

(a) Critical path
when load hits

DIV

LD A

MUL
LD B

(MISS)

SUB

(b) Critical path
when load misses

Figure III.1: Illustration of variation in critical path due to variable instruction
latency.

load A

load B

if else

use Buse A

(a) Control flow graph

load A

load B

use A

if

branch

(b) Critical
path when else

branch taken.

load A

load B

use B

else

branch

(c) Critical
path when if

branch taken.

Figure III.2: Illustration of variation in critical path due to variable control flow.

23

the loads. There are a number of reasons why the static analysis might incorrectly

estimate a load’s latency. Microarchitectural differences within a processor family,

such as different cache sizes, can make a profile collected on one system inaccurate

on another.

Figure III.2 illustrates the effects of variable control flow on the critical

path. Figure III.2(a) shows a section of a control flow graph. Two loads are

performed in the block prior to the branch, but only one load’s result is used in

each subsequent block. Figures III.2(c) and III.2(b) show dynamic instruction

traces. Suppose that the use of A or B is critical in both cases, as indicated by the

darkened boxes. Depending on which direction of the branch is taken, either load

A is critical, and load B is unused, or vice versa. A static analysis which was

limited to a single basic block, or which was based on inaccurate profiles, would

incorrectly classify the loads. Together, these examples illustrate how the set of

static instructions which are on the critical path can change during the course of

a program. Program profiles can be used to identify frequently taken branches,

and frequently missing loads. But, the standard list of complaints about profiles

applies: variation between training and actual inputs, variation across the course

of the program, and reluctance of programmers to create profiles. A dynamic,

hardware-based analysis is capable of adapting to changes in load miss behavior

and in control flow behavior which a profile cannot capture. A dynamic critical

path predictor may implicitly make branch predictions and load hit predictions

as a part of making an explicit critical path prediction, thus allowing it to adapt

to changes in branch and load behavior, regardless of the reason for the change.

A static analysis has one more drawback. As critical path predictions

are applied, the critical path changes, which reveals secondary critical paths. We

would like to detect and optimize these too. Exactly which paths are exposed

may depend on the details of how the processor uses the predictions. A dynamic

24

predictor has a better opportunity than a static predictor to adapt to the changes

caused by its own predictions.

III.C Offline Critical-Path Analysis of Programs

An offline analysis operates on lengthy dynamic instruction traces, ei-

ther from a simulator, or from program traces collected via special hardware

support[33]. We distinguish between an offline analysis, which uses detailed pro-

gram traces, and a static analysis, which may use branch direction and mispre-

diction statistics, but which does not use detailed program traces.

Studies of instruction level parallelism, [16, 66, 121], consider the exe-

cution time of programs constrained only by data dependencies, as well as under

various hardware constraints. These studies find that many programs could po-

tentially execute more than 2 instructions each cycle, and in some cases, much

more. Typically, a program with a higher level of parallelism, measured in in-

structions per cycle (IPC), will have a smaller fraction of instructions on the

critical path. However, these studies do not indicate which instructions are on

the critical path.

Perhaps the first study to explore this in detail was one by Tullsen and

Calder, [114]. They performed an offline analysis of the critical path by instru-

menting executables with a runtime profiler. The runtime profiler maintains a

graph of dependencies between instructions. It tracks two sets of instructions:

I, the instructions which are dispatched but unexecuted, and T , those recently

executed instructions which are reachable from I. At each cycle, their profiler

attempts to identify an instruction t in T which completed execution before any

other instruction in T began execution. The profiler then records instruction t as

part of the critical path, and remove t from T . In addition to data dependence

edges, they include dependence edges for branch mispredictions and full instruc-

25

tion window events in the simulator. Their work predates Fields et al., [34],

who also models those two dependences as part of a more sophisticated graphical

model. Tullsen and Calder summarized this per-dynamic instruction information

to yield a single criticality prediction for each static instruction. They then used

this prediction to control value prediction, and to guide instruction scheduling.

We compare our dynamic techniques to their static predictions in Section V.A.

Srinivasan et al. studied the latency-tolerance of loads in [106]. In

their work, latency tolerance refers to the longest latency that a load instruction

could have before impacting performance. They find, for many loads, that the

latency tolerance of a load does not match the level of the memory hierarchy

where its data resides. They analyzed load-latency tolerance using a special

simulator which measures the change in behavior when the latency of a dynamic

load instruction is increased.

Fields et al. proposed a graph-based model of the critical-path of a

program trace which takes into account some processor constraints. This model

is described in Section III.E. They used this model to perform an offline analysis

of programs to determine which instructions were critical. They also developed

a dynamic predictor based on this model, which is described in Section IV.D.1.

In [32], they use their graph to study the distribution of slack present in programs.

We built upon their initial offline analysis to measure how much po-

tential for performance improvement lies behind each critical instruction, which

we call tautness. We refined their model so that the graph remained robust: it

can be used to determine not only what instructions were critical on a certain

microexecution, but also what the program’s runtime would be if some latencies

are changed. This analysis is described in Chapter VI. In [33], Fields et al ex-

tend our extension. They apply our robust analysis to evaluating microprocessor

design alternatives.

26

However, because an offline analysis is, by definition, performed after a

program is run, it cannot be practically used to guide optimizations on that pro-

gram. The offline analyses are also slow. It could be used to guide optimization

of future runs of that program, but then it would simply be a static analysis,

with all the shortcomings just described in the previous section. Instead, offline

analysis is useful as a research tool, for program and processor understanding.

III.D Dynamic Critical-Path Analysis of Programs

In summary, static and offline analyses have several shortcomings. Static

analyses may suffer from inacurate profiles, and may be incovenient to perform

A dynamic predictor can change its predictions over time, and requires no ISA

change, and is applicable to existing software. Therefore, we propose an online,

hardware approach to identifying critical instructions. The challenge is to classify

instructions with reasonable accuracy, with a modest amount of hardware. The

next chapter discusses our approach, and the approaches of others, to dynamic

critical-path prediction.

III.E The Critical Path Model of Fields et al.

Fields et al. propose a model for the critical-path of instruction traces

which includes not just the data dependencies of instructions, but also depen-

dencies corresponding to control and some resource constraints, such as a finite

instruction window. They represent each instruction by several nodes, corre-

sponding to different events as the instruction moves through the pipeline.

In their original model, each instruction is represented by three nodes.

Each of these nodes represents that instruction reaching a particular pipeline

stage in the machine. These three nodes represent the time when the corre-

27

sponding instruction is dispatched (d-nodes), executed (e-nodes), and committed

(c-nodes). Edges connect events which must occur in order, and the weights on

those edges represent latencies between those nodes.

Figure III.3 provides an example of an instruction trace, shown in Fig-

ure III.3(a), and its corresponding graphical model, in Figure III.3(b). Each

node is labeled with a letter representing its type and number indicating which

instruction in the trace it represents.

Edges of type Di → Di+1 represent in-order fetching of instructions.

In this example, the processor fetches 1 instruction per cycle, so each edge has

weight 1. The weight would be 0 between instructions fetched on the same cycle.

If an instruction cache miss occurs as a result of fetching a right-path instruction,

then the weight is the instruction cache miss penalty.

Edges of type Di → Ei edges represent the delay between dispatching

an instruction and executing it. Edges of the type Ei → Di+1 exist between a

mispredicted branch and the next instruction. (Only right-path instructions are

included in the graph.) For this example, there are 4 cycles between detecting a

branch misprediction and dispatching the next correct path instruction.

Edges of type Ei → Ej connect data dependent instructions. The weight

is the execution latency of the producing instruction. Edges also exist between a

store and a subsequent load to the same address.

Edges of type Ei → Ci are always present, with a weight equal to the

execution latency of the instruction plus the number of cycles for a instruction

to go from the execution stage to being eligible to commit.

Edges of the type Ci → Ci+1 represent in-order commit. For the pro-

cessor in this example, only one instruction can be committed per cycle.

Edges of the type Ci → Di+R connect an instruction the oldest instruc-

tion in the processor at the time of a full instruction window stall, i, and the next

28

1 immed� R1

2: LD 8[R1] � R1 (hit)

3: ADD R1, 8 � R1

4: BNE R1 (mispredicted)

5: LD 8[R1] � R1 (miss)

6: ADD R1, 8 � R1

7: BNE R1 (predicted)

8: immed� R2

9: STO 0[R2], R1

(a) Instruction trace.

D1 E1 C1
1 2

D2 E2 C2
1 4

D3 E3 C3
1 2

D4 E4 C4
1 2

D5 E5 C5
1 101

D6 E6 C6
1 2

D7 E7 C7
1 2

D8 E8 C8
1 2

1 1

1 1

1 1

1 1

1 1

1 1

1 1

3

1

1

1

100

4

D8 E8 C8
1 2

1
1

1 11 1

(b) Nodes with names and
edges with latencies.

0 1 3

1 2 6

2 5 7

3 6 8

10 11 112

11 111 113

12 112 114

13 14 16

113 114 116

(c) Nodes with scheduled
time, last-arriving edges,
and critical edges high-
lighted.

Figure III.3: Graph of the dependencies of a section of code, following the graph-
ical model of Fields et al. in [34].

29

instruction to be fetched after the stall, i + R. For this example, R = 4.

Figure III.3(c) shows a modified graph. Each node is labeled with the

longest path length to it from node D1. If this model accounted for all the

limitations of a microprocessor, then the value in each node would also be the

cycle at which that instruction would be dispatched, executed, or committed,

correspondingly. This time is relative to the cycle when D1 is dispatched. Only

edges which are on the longest path to a node are shown. These are called last-

arriving edges. The path from D1 to C9 using last-arriving edges is the critical

path, and the instructions on this path are critical, according to this model. This

path is shown with heavier lines.

The model is described in greater detail in [34].

IV

Dynamic Critical Path Prediction

In this chapter we show that it is possible to predict, in hardware, which

dynamic instructions are critical. These predictions can be used in many ways. In

Chapter V, we demonstrate several ways to use these predictions. For a number

of reasons, however, we must necessarily make a prediction, rather than a precise

determination of whether an instruction is critical.

Ideally, we would like to be able to model a computer program and

the processor it executes on as a graph, and then find the longest path through

that graph, and declare that the instructions on that path are critical. For

a variety of reasons, this is not possible. First, a graph may not be able to

model all the constraints in a microprocessor precisely, although it may serve as

a usable approximation. (We address this issue in more detail in Chapter VI.)

Nevertheless, there are still some instructions which, when hastened or delayed,

affect the runtime of the program; and there are those which do not. We call

these critical and non-critical instructions, respectively.

Second, even if we had a precise graphical model of microprocessor be-

havior, we would need to see the entire program graph, or at least large parts of it,

in order to compute the longest path through it. This requirement hardly seems

amenable to a low-cost hardware solution. Therefore, when determining whether

30

31

an instruction is critical, we may have to settle for an approximation which looks

at localized effects, or only at small portions of the dependence graph.

Third, even a method which identifies critical instructions by looking at

portion of the program trace will still need to wait until the instruction executes to

determine its criticality. But, we need criticality predictions early in the pipeline,

because they control the instructions passage through it. Fortunately, static

instruction tend to be biased: if a recent instance of a static instruction was

critical, then the next instance is more likely to be critical than if it was not

recently critical. We exploit this to predict whether instructions will be critical,

even as they are being fetched.

Thus, the steps in a practical system for dynamic critical path prediction

are i) identifying which instructions were on the critical path, after they passed

through the pipeline, ii) recording this information in a table, and iii) predict-

ing whether whether instructions are critical or non-critical, based on recorded

behavior, as they enter the pipeline. These activities occur continuosly in the pro-

cessor. All critical path prediction schemes have these 3 aspects, and all schemes

record and predict in the same way. They differ in how they identify critical

instructions.

Section IV.A describes the common aspects of critical path prediction.

Section IV.B describes our initial approach, which was part of the first pro-

posal for critical path prediction. Section IV.D describes critical path prediction

schemes, and related techniques, which were proposed by other research groups.

Section IV.C describes a pair of improved critical path predictors. Section IV.E

compares our designs, and a design by another group of researchers. In this

chapter, we are concerned with designing and evaluating critical path predictors.

However, a critical path predictor is not useful by itself. It is used to guide some

other hardware policy or optimization. Practical applications of critical path

32

PC

Inst

Cache

Fetch Decode Queue ExecuteIssue

Data

Cache

…

CPB

Register

File

Commit

Instructions

Data

Update

Predict

Figure IV.1: A pipeline with Critical Path Buffer.

predictions are discussed in Chapter V.

IV.A Common Aspects of Critical Path Predictors

Our critical path predictor designs and those of other researchers use the

same mechanism to record and identify critical instructions: a table of counters,

which we call a Critical Path Prediction Buffer (CPB). Figure IV.1 shows a

processor pipeline with a CPB.

Critical path prediction, like branch prediction and value prediction

techniques, is based primarily on the previous history of an instruction. A PC-

indexed table of saturating counters is updated according to an instruction’s prior

trips through the processor, and is queried when the instruction is next fetched.

All the critical path prediction schemes follow the same process. Some

mechanism is used to identify critical instructions. For our prediction schemes,

an instruction meets a criterion as it passes through the pipeline, and that in-

struction is marked to indicating that it may have been critical. When and if

an instruction commits, the CPB is updated based on whether the instruction is

33

marked. A saturating counter corresponding to that instruction is incremented if

the instruction was marked, or decremented if it was not marked. In the token-

passing scheme of Fields et al., a profile is performed using special hardware. The

result of a profile, which spans several hundred instructions, is used to update

the CPB entry for a single instruction. These mechanisms differ in the rate at

which the buffer is updated.

When the instruction is fetched, it is predicted to be critical if the counter

in the CPB is above a threshold value. Otherwise it is predicted to be non-critical.

An additional bit in the decoded instruction would indicate its criticality.

Except where noted otherwise the counters in the CPB have the follow-

ing format. Each counter is 6 bits. The counters are incremented by 8 during

commit when an instruction is identified as critical, and decremented by 1 when it

is not. Instructions are predicted as critical when they have a counter value above

8. The counters are saturating: they cannot be decremented past 0 or incremented

past 63. This asymetrical increment/decrement scheme provides several benefits,

which are discussed more later. It causes the predictor to continue to predict an

instruction as critical, even when optimizing makes it seem non-critical, and is

biases the predictions toward predicting as critical those instructions which vary

in their criticality.

Our preliminary investigation of settings for increment, decrement and

threshold, found the above values to perform well over the critical path prediction

heuristics we examined. We consider the effect of other increment and decrement

sizes in Section IV.E.4. The counters are indexed by instruction PC, and are not

tagged, to save space.

We use the term critical path predictor to refer to the combination of a

mechanism to identify critical instructions, and the CPB mechanism. To clarify:

the term predicted as critical and the term marked/identified as critical mean

34

different things.

Again, our critical path predictor includes a table of saturating counters.

A table of counters has long been used to predict branch outcomes [101]. Like-

wise, a load hit-miss predictor [129] predicts whether individual load instructions

will hit or miss in cache. While load misses are often critical, they need not be.

Lipasti and Shen, [70], proposed predicting the dependences between instructions

for the purpose of pipelining dispatch, but the relationship of the predictions to

the critical path was not considered.

IV.B Heuristic Critical Path Predictors

This section describes heuristic critical path predictors. We consider

several heuristics for identifying critical instructions as they pass through the

pipeline. A heuristic critical path predictor relies on the behavior of individual

instructions as they pass through the pipeline to identify which instructions are

critical. We term them heuristics because they are certainly subject to error.

However, most of the heuristics we consider have simple hardware implementa-

tions, and provide a useful classification of instructions.

This section is organized as follows. We introduce the heuristic approach

in IV.B.1 with a case study. Our experimental methodology for this Section is

described in IV.B.2. We describe the heuristics in detail in IV.B.3, and evaluate

their effectiveness in IV.B.4.

IV.B.1 Identifying Critical Instructions

We use a simple code example to demonstrate the importance of finding

the critical path, and to give insight into how simple heuristics might be used

to recognize those critical path instructions. Figure IV.1 shows the compiler-

generated code for a simplified (for clarity) version of Livermore Loop 23, which

35

SC IQ Cycles Oldest
Code IPC latency in IQ

ldt f1, 8000(t3) 1.02 1 0
ldt f10, 0(t1) 1.02 1 0
ldt f11, 8(t3) 1.02 1 0
ldt f12, 0(t4) 1.02 1 0
addq t2,0x1, t2 1.02 1 0
cmplt t2,a1, t7 1.02 2 0
lda t1, 8(t1) 1.02 1 0
lda t4, 8(t4) 1.02 1 0
lda t5, 8(t5) 1.02 1 0
lda t3, 8(t3) 1.02 1 0
mult f1,f10, f1 1.02 3 0

B ldt f10, -16(t3) 5.51 286 1
mult f11,f12, f11 1.02 4 0
ldt f12, -8(t5) 1.02 1 0
addt f1,f11, f1 1.02 8 0
mult f10,f12, f10 5.27 288 2
ldt f12, -8(t3) 1.02 1 0
addt f1,f10, f1 6.74 290 4
subt f1,f12, f1 6.06 294 4
mult f1,f0, f1 5.66 298 4
addt f12,f1, f1 4.80 298 4

A stt f1, -8(t3) - 302 4
bne t7, ... - 1 0

Table IV.1: Assembly code for a simplified version of Livermore Loop 23. SC IPC
is the throughput achieved by the loop if the associated instruction is removed
from the dependence chain (by not making its dependents wait for its result).
The following columns are the average number of dependent instructions in the
processor when the instruction is issued, the average stay in the instruction queue,
and the average stay at the bottom of the IQ.

has one loop carried dependence (besides the induction variables). This depen-

dence is through memory, from instruction A to instruction B in the next itera-

tion. The instructions along the data-flow path from the load to the store form

the critical path for this code, and are shown in bold.

For each instruction, we found the short-circuit IPC (labeled SC IPC

in the table). Short-circuit IPC with respect to a static instruction s is the

throughput that this code achieves if all instructions that depend on s do not have

to wait for s. The short-circuit treatment is meant to represent the most drastic

performance-improving action, or optimization, that might be applied to a single

instruction, by an unspecified hardware performance enhancing mechanism. The

SC IPC is shown for each of the 20 instructions which produces a value. The IPC

with no changes is 1.02. So, for 15 of those 20 instructions, applying an idealized

36

optimization has no effect. For the remaining 5, the optimization results in a large

increase in throughput. This set of instructions constitutes the critical path, and

just as importantly, the remaining instructions are non-critical. An optimization

applied to a non-critical instruction is wasted.

This code segment, highlight several important points. The longest data

flow path through the static instructions is different from the critical path. A

compiler analysis of the critical path, as discussed in Section III.B, which does

not consider dependencies through memory and across iterations, would not find

the critical path. Also, note that instruction type (load vs. arithmetic) provides

no clues as to the critical path in this example.

In studying heuristic predictors, choose not to attempt to explicitly

track all dependence chains and identify the ones that matter. Instead, as this

example shows, the behavior of an instruction as it moves through the pipeline

can indicate where the critical path is. For example, critical-path instructions,

and their dependents, tend to get stalled in the instruction queue, and often

become the oldest instruction in the queue at some point. The columns labeled

“IQ latency” and “Oldest in IQ” in Figure IV.1 show for each instruction, the

average number of cycles spent in the instruction queue, and at the bottom of

the instruction queue, respectively. These numbers correlate well with the critical

path.

It is easier to track a heuristic like this in hardware than a detailed chain

of dependencies. And, the criticality of instructions is determined not only by

data dependencies, but also on specifics of the processor. For example, if the in-

struction window of the processor is too small to hold an iteration of this example

loop, the critical path through the loop may change. The data-dependencies do

not change to reflect this, but the behavior of individual instructions can.

Several things make finding the critical path more difficult in the general

37

Benchmark Input Fast Forward

lisp ref 1000000000
compress bigtest.in 1000000000
go 5stone21 1000000000
perl scrabbl 1000000000
ijpeg ref 100000000
gcc 1stmt.i 0
burg rrh-mot 0
delta-blue long 0
mpegplay sukhoi.mpg 100000000

Table IV.2: Benchmarks used in Sections IV.B, V.A, and V.B.

case than in this example: irregular control flow, large instruction working sets,

branch misprediction, and variable instruction latencies. Despite that, we find

that heuristic critical-path predictors still provide useful predictions for a range

of programs.

IV.B.2 Methodology

Table IV.2 summarizes the benchmarks used in this section and in Sec-

tions V.A and V.B. The first 6 benchmarks come from the SPEC 95 integer

suite, and their inputs come from the reference set. These benchmarks are com-

piled with the DEC CC compiler at –O4. Mpegplay is an IBS benchmark [119].

Burg is a C++ parser generator. Delta-blue is a C++ constraint solution sys-

tem. Both Burg and Delta-blue have significantly higher data cache miss rates

than the other benchmarks. The benchmarks were fast-forwarded the number

of instructions indicated in Table IV.2 before being simulated for 300 million

instructions.

Execution is simulated on an out-of-order superscalar processor model

which runs unaltered Alpha executables. The simulator is based on the smtsim

simulator [113], but enhanced to include a critical path predictor, and to take

advantage of various critical path-aware optimizations. The simulator models

all reasonable sources of latency, including caches, branch mispredictions, TLB

misses, and various resource conflicts, including renaming registers, queue entries,

38

Parameter Value

Fetch width 16 instructions per cycle
Branch predictor Same as Alpha 21264
Branch Target Buffer 256 entry, 4-way associative
Active List Entries 1024
Functional Units 12 Integer (8 also load/store), 6 FP
Instruction Queues 128-entry Int, 128-entry FP
Registers 200 Int, 200 FP
Inst Cache 64KB, 2-way, 64-byte lines
Data Cache 64KB, 2-way, 64-byte lines
L2 Cache 4 MB, 2-way, 64-byte lines
Latency (to CPU) L2 18 cycles,

Memory 98 cycles (if no contention)
Instruction Latencies Based on Alpha 21164

Table IV.3: Processor parameters used in Sections IV.B, V.A, and V.B.

etc.

The simulated processor configuration shown in Table IV.3 was used for

the studies in Sections IV.B.4, V.A and V.B. The configuration models a future

wide superscalar out-of-order machine, with an aggressive fetch unit, a large

instruction window, and a large unified renaming unit. The L1 caches modeled

are more modest, to compensate for the relatively small memory footprint of most

of our benchmarks. The fetch unit can fetch up to 16 instructions per cycle from

up to three basic blocks per cycle. This simulates the behavior of an effective

trace cache [89].

The processor model used in our simulator has 9 stages. During the

fetch stage, instructions and predictions which were requested in the previous

cycle arrive. After decoding and register renaming, integer and floating-point

instructions enter separate instruction queues. The instructions reside in the

queues in-order. Every cycle, the oldest instructions which have their depen-

dences satisfied are issued (out-of-order), until no more instructions are ready or

no more functional units are available. They require one stage to read register

values before they can begin execution. After execution, they go through one

stage to write back registers. The instructions remain in the commit stage until

they can be committed in order. This pipeline is similar in basic structure to the

39

Alpha 21264, described in [24].

IV.B.3 Heuristics

In understanding this new architectural technique, we want to separate

the effectiveness of the technique from any aliasing effects that might occur in

a small prediction table. Therefore, we initially evaluate the predictors in this

section with a relatively large 64k-entry direct-mapped of counters. We consider

the effect of a smaller table in Section IV.E.4.

Critical Path Marking Techniques

In this chapter, we propose five different criteria that might be used to

mark each instruction as either on the critical path or not on the critical path. We

evaluate each criterion individually; only a single CP criterion is applied during

a particular simulation. Some are trivial to implement, others might be more

complex. Initially, we are more interested in what works than the complexity

of the implementation. Our approach was to evaluate many criteria which we

thought might indicate the criticality of instructions. The criteria are summarized

in Table IV.4. What follows is a more detailed description of each criterion and

the rationale behind it. This is actually a subset of the predictors we investigated,

but includes those that were interesting either because of their performance or

the intuitiveness of the approach.

The QOld criterion is based on the observation that instructions on the

critical dependence path will typically reach the bottom of the instruction queue

before they issue. Likewise instructions which are ready to execute as soon as they

enter an occupied instruction queue are likely to be non-critical. Any instruction

which reaches the bottom of the queue becomes the oldest instruction. This

instruction has dependences that exceed (in time) the dependences of all prior

40

Criterion Description

QOld “OLDest instruction in Queue”
Each cycle, the oldest instruction in an instruction
queue is marked, if it is not ready to issue.

QOldDep “DEPendence with OLDest instruction in Queue”
Every cycle, each instruction which produces a
value consumed by the oldest instruction in the
queue is marked if it is still active.

ALOld “OLDest in Active List”
Each cycle, the oldest instruction in the active list
(re-order buffer) is marked.

QCons “Most CONSumers in Queue”
Each cycle, the instruction is marked whose result is
used by the most instructions in the instruction queue.

Freed3 “FREED up at least 3 instructions in queue”
If the completion of execution of an instruction makes
at least three instructions in the instruction queue ready
to execute, then the completing instruction is marked.

Table IV.4: The criteria used in this study to mark instructions as critical path,
and a brief description of each.

instructions in the instruction stream (for that queue, integer or floating point) 1

Whereas QOld marks the oldest instruction in an instruction queue,

the QOldDep criterion marks the one or two instructions upon which it is de-

pendent. In other words, if the instruction at the head of an instruction queue

has source registers x and y, then we will try to mark the instructions which

produce x and y. However, if x has already left the pipeline we do not mark it,

since x’s entry in the CPB would have already been updated when x committed.

Therefore, QOldDep marks zero, one, or two instructions per cycle. This cri-

terion attempts to mark the instructions that are currently causing instructions

to back up in the instruction queues. This is one step earlier in the critical path

dependence chain than the oldest instruction in the queue (QOLD).

The ALOld criterion is based on the observation that the oldest active

instruction in the machine is likely to be one that was stalled for some reason,

either because of dependences or because it took a long time to execute. The
1The instruction queue is same as the instruction scheduling window mechanism in the MIPS R10000 or

Alpha 21264. There are actually two separate instruction queues in the simulated architecture: one for integer
operations (including loads and stores) and one for floating-point operations. For simplicity, we will speak as
if there were only one instruction queue, but in fact, the criteria which involve instruction queues are applied
independently to each queue.

41

active list has an entry for every instruction in the pipeline, waiting to commit

in order. The oldest instruction in the active list is usually one that completed

execution later than all prior instructions.

The QCons criterion marks the one instruction, among those complet-

ing execution, which has the most direct consumers in the instruction queue.

We define a consumer as an instruction that will read the value written by this

instruction. In the case of a tie, the earliest instruction in the instruction stream

is marked. The QCons criterion is based on the observation that instructions

that have a large dependence fan out are more likely to be on the critical path.

Bahar, et. al. [37] tried measuring processor performance over very short time

scales to allow the identification of non-critical loads, but found that counting

the number of consumers of a load was a better metric. This corresponds to the

QCons criterion.

The Freed3 criterion is similar to the QCons criterion, but it only

counts consumers which become ready to execute immediately (they are freed by

the executing instruction). This criterion is implemented as a threshold mecha-

nism. It marks all instructions which wake up, or “free up”, 3 or more instructions

in the instruction queue. The idea of scheduling instructions earlier which have

a high fan-out has been applied to static instruction scheduling in compilers [41].

An instruction that stalls in the instruction queue or has a large execu-

tion latency is likely to accumulate more instructions in the queue waiting for its

completion. Therefore, QCons and Freed3 indirectly account for the time that

an instruction spends in the IQ. Freed3 and QCons will obviously miss some

instructions on the critical path that have only a single output dependence.

42

IV.B.4 Results

Evaluating critical path prediction is more difficult than evaluating other

prediction techniques. This difficulty stems from two significant differences be-

tween CP prediction and other predictors. First, in CP prediction it is more

difficult to verify the accuracy of a prediction. Second, when CP predictions are

used to direct optimizations, these optimizations will affect future CP predictions.

There are two steps in a branch predictor: prediction and verification.

The true outcome of the branch is used to verify the prediction and to train

the predictor. In critical path prediction, however, we can only verify whether

the instruction again satisfied the criterion; we cannot verify whether or not the

instruction was actually on the critical path. The predictor is only predicting

that the criterion will be met again in the future. Therefore, for critical path

prediction to work, we must meet two conditions. First, the predictor must ac-

curately predict which instructions will meet the marking criterion. Second, the

marking criterion must be a good heuristic method for identifying critical path

instructions. In evaluating our techniques, we measure two different aspects of

CP prediction. In section IV.B.4, we asses the predictor accuracy; how accurately

does the predictor predict whether instructions will meet the marking criterion.

In section IV.B.4 we measure the criterion effectiveness; how well do the predic-

tions indicate which instructions are in fact critical.

The second difficulty may be referred to as the feedback problem. Namely,

prior predictions affect future predictions. In bimodal branch prediction, the pre-

diction used for the branch will not affect the update of the counter. In critical

path prediction, an instruction that is predicted as critical will be optimized (e.g.,

value predicted, sent to a different cluster, etc.). After being optimized, it may

no longer be on the critical path, and it may not be marked as critical. However,

if it is subsequently not optimized, it may again appear on the critical path. This

43

Criterion Percent of Percent of Percent Percent
Instructions Instructions Non-CP Positive

Marked Predicted Prediction Prediction
Accuracy Accuracy

QOld 14 26 99 49
QOldDep 17 33 99 50
ALOld 15 35 99 36
QCons 6 16 99 36
Freed3 5 7 99 64

Table IV.5: The percent of executed instructions that each technique marks and
causes to be predicted, as well as the accuracy with which each predictor predicted
the same behavior used to mark instructions.

effect is discussed more in section IV.B.4.

Measuring Prediction Accuracy

This section examines the degree of self-correlation (or repeatability) of

the prediction criteria — that is, if event A is used to mark critical instructions

and update the predictor, is the corresponding predictor actually a good predictor

of event A? If not, it is unlikely to be a useful criterion.

To measure this self-predictability, the simulator was set only to mark

and predict instructions; no actions were taken based on the predictions. What

was measured is how often an instruction, which was predicted to be on the

critical path, was again marked as a critical path instruction.

Table IV.5 shows the results for each CP algorithm, averaged over all

benchmarks. The first column lists the names of the criteria tested, as described

in section IV.B.3. The column labeled “Percent Instr. Marked” shows the per-

centage of dynamic instructions that had their CP marked bit set. The column

labeled “Percent Instr. Predicted” shows how often any dynamic instruction had

its CP predicted bit set. Remember that an instruction has its predicted bit

set if its counter, in the PC-indexed Critical Path Buffer, is above 8. The col-

umn marked “Percent Non-CP Prediction Accuracy” measures what fraction of

dynamic instructions that are predicted as “not on critical path” do not trigger

44

 lisp compress go perl gcc ijpeg delta−blue burg mpegplay mean
1

1.2

1.4

1.6

1.8

2

2.2

S
p

e
e

d
u

p

FIRST
RANDOM
STATIC
LONGEST
ALOLD
QOLD
QOLD DEP
QCONS
FREED 3 FREED3

QCONS

QOLD DEP

QOLD

ALOLD 1.42

Effectiveness Ratio

1.45

1.15

1.40

1.21

Criterion

(vs. LONGEST)

Figure IV.2: The performance resulting from breaking the dependences of critical
path instructions.

the marking criterion again. The column marked “Percent Positive Prediction

Accuracy” measures what fraction of dynamic instructions that are predicted as

being on the critical path have their CP marked flag set again the next time they

are executed.

The results demonstrate that our predictors are intentionally liberal.

One reason for this is to identify instructions only occasionally on the critical

path. For example, on a load with a 20% miss rate that is only on the critical

path when it misses, we might do best to always predict it on the critical path.

This assumes that the cost of a wrong positive prediction is typically less than

the cost of not predicting the instruction as being critical. Note that for the

65-93% of instructions predicted as not being on the critical path, the predictors

are virtually always right.

Measuring Prediction Effectiveness

This section evaluates the effectiveness2 of our marking criteria in in-

dicating which instructions are on the critical path. One approach would be to

compute the critical path of a program by finding the longest chain of dependent
2The effectiveness ratio shown in the figure is defined in V.A.

45

instructions in a trace of the program, and to compare these instructions with

those that are predicted by the CP predictor. There are several down-falls to this

approach:

• The statically-determined critical path depends not just on dependences,

but also on the idiosyncrasies of the processor, including queue sizes, active

list size, number of renaming registers, and even on the input used when

running the program.

• When the critical path information is used to optimize certain instructions,

the optimizations can change the critical path, and the critical path predictor

needs to adapt to the changes in the critical path caused by its previous

predictions. The statically-determined critical path does not account for

these changes.

To evaluate performance we will again use the approach from section IV.B.1,

which focuses on the actual performance when the critical path prediction is used

to change execution. In this section, we apply an ideal, generic optimization to

compare several proposed predictors outside of the context of a specific optimiza-

tion; the next section applies more realistic optimizations.

In this experiment, each cycle in which instructions are fetched, one

instruction from the fetched block is chosen to execute with no output dependence

stalls. That is, subsequent instructions that depend on this instruction will not

have to wait for this instruction to execute. This emulates optimizations that

break data dependence chains, such as value prediction and instruction reuse,

but without presupposing exactly what optimization it is or which instructions it

would work on. The choice of which instruction to select is based on the critical

path prediction.

Figure IV.2 shows the speedup achieved on this test for the various

dynamic predictors. The speedup is relative to the execution time with no opti-

46

mization. We also provide the following measurements for comparison:

• First: Always select the first instruction fetched this cycle.

• Random: Pick an instruction randomly each cycle from the instructions

fetched.

• Static: We pre-compute the critical path of the program by identifying

the instructions which are on the longest chain of dependences in the pro-

gram using profiling [114]. The profiler computes a dynamic critical path,

accounting for cache and branch effects as well as a limited instruction win-

dow size. While a single, complete dynamic path is identified, the tool

creates a static summary of each instruction’s contribution to the dynamic

critical path. The most critical static instructions, accounting for 98% of the

dynamic path, are then statically identified as critical for the purposes of the

Static predictor in these simulations. Each cycle, then, a statically marked

instruction is chosen from the fetch block to be optimized, if possible.

• Longest: The instruction with the longest estimated execution latency

is chosen. The latency is “estimated” because the latency of loads varies.

The hierarchy of latencies we assume is based on Alpha 21264 latencies.

We use a static estimate for load latency which places it lower than integer

multiply and most floating point arithmetic operations, but above all other

integer operations. For the integer-intensive applications shown here, then,

Longest often amounts to “choose the first load.” Exceptions are mpegplay

and ijpeg which have a fair number of integer multiply and floating-point

instructions. We also tested a different version of Longest which prioritized

loads over integer multiply and floating point instructions, but it did not

perform as well.

47

We see that in almost all cases, the use of critical path prediction con-

sistently results in greater speedup than the non-dynamic First and Random

mechanisms. We found that on every benchmark, ALOld, QOld, QOldDep,

and QCons performed better than Longest. Freed3 was slightly worse on lisp

and compress, but better then Longest on the other seven benchmarks. Addi-

tionally, on each benchmark, at least one of our dynamic predictors performed

better than Static. This confirms that our dynamic predictors are adapting

to changes in the critical path (chiefly caused by the optimizations themselves)

in ways that the Static predictor cannot. Note that the benchmark and input

files used to generate the static profile are identical to those used in the simula-

tions. In a practical use of static profiling, differences between the inputs used

for generating the static profile, and for actual execution would likely reduce the

performance of the Static method. In cases where the dynamic predictor, or

the Static predictor, don’t select a single critical instruction with a fetch block,

the Longest mechanism is used as a tie-breaker 3.

Counter Format and Prediction Persistence

In some cases, predicting an instruction as critical path (and applying

some optimization) causes that instruction to no longer be on the critical path.

However, this does not mean that we should no longer consider the instruction

as critical. We’ll refer to the predictor’s natural inclination to start decrementing

an instruction’s CPB counter as forgetting a prediction. We can minimize the

CPB’s tendency to forget by incrementing the CPB counters by a large amount

when an instruction is on the CP and decrementing by a small amount when

3The dynamic predictors and the Static predictor may predict multiple critical instructions within one fetch
block. In this case, a tie-breaker is needed to select one instruction from within the block. We use estimated
latency, as described for the Longest mechanism, to break ties in these cases. Similarly, the Static or the
various dynamic mechanisms may predict that no instruction is critical. For this evaluation, where there is no
penalty for misprediction, it makes sense to always make some value prediction, since the critical path predictor
could be wrong. Again, in this situation, a tie-breaker is used.

48

not. In the previous experiments, we increment by eight and decrement by one,

partially to avoid forgetting. Any instruction with a counter greater then eight

has its predicted bit set. In the worst case, a CP instruction gets retried every

eighth execution to confirm its criticality.

Not all of the marking criteria are affected in the same way. In par-

ticular, QCons and Freed3 always forget because a successful optimization

eliminates the dependences. On the other hand, when an instruction’s result

is, for example, value-predicted, that instruction must still execute to verify the

prediction. Consequently, we would expect that ALOld and QOld would be

less prone to forgetting. To verify this, we reran the dependence-breaking exper-

iment of the previous section but with a a more forgetful counter, incrementing

by two and decrementing by one. In these experiments, QOld and ALOld both

performed better with the more forgetful counter, but the others (QOldDep,

QCons, and Freed3) all performed better with the original increment-by-eight,

confirming that they need the help of the confidence counters to force prediction

persistence.

IV.B.5 Analysis

Of the heuristic predictors, we have found the QOld and ALOld most

effective. The heuristic predictors are simple to implement, and work well enough

to demonstrate the potential of critical path aware optimization, in Chapter V.

However, there is room for improvement.

In [32], Fields et al. found that their token-passing predictor critical

path consistently performed better than the ALOld predictor, but that both

performed better than policies which do not take criticality into account, when

evaluating critical-path aware power reduction.

None of the heuristic critical path predictors specifically detect instruc-

49

tions which lead up to a mispredicted branch as being critical. However, branch

mispredictions most likely affect processor performance, and thus any instruc-

tions which delay resolution of a mispredicted branch are likely to be critical too.

The QOld and ALOld predictors will tend to identify chains of dependent in-

structions. However, they will favor chains which link an instruction to its oldest

dependent. For example, say a load instruction i reaches the head of the queue.

The QOld predictor will mark it. Often, the instruction which reaches the head

of the queue on the cycle after i is issues is dependent on i. If so, then it will

be the oldest dependent of i, since the instructions are assumed to be sorted in

program order within the queue. Younger dependents of i can also be marked in

some circumstances, but the oldest dependent may be marked disproportionately.

The following sections consider alternative approaches to predicting the critical

path.

IV.C Iterative Critical Path Predictors

A heuristic predictor’s simplicity permits a low-cost, unintrusive, hard-

ware implementation. It is simple because it does not explicitly track dependence

chains. However, this simplicity may limit its accuracy, as discussed in the previ-

ous section. With this in mind, and with the benefit of experience, we developed

a new type of critical path predictor: the iterative critical path predictor.

IV.C.1 Approach

The design of the iterative predictor is based on several observations:

1. If only one instruction is active in the pipeline on a certain cycle, then that

instruction is critical.

2. An instruction which wakes up a critical instruction is also critical.

50

Observation 1 is not sufficient to identify all critical instructions, since

an instruction can be critical, even though other instructions are being processed

concurrently. However, as soon as one instruction is identified as critical, many

more instructions can be identified on the critical path leading up to the first

instruction, using observation 2. This process is analogous to an inductive proof.

Observation 2 is like an inductive hypothesis, and observation 1 allows us to

identify base cases for induction.

We considered two types of events that occur in the processor which

satisfy observation 1.

A. If on any cycle, the instruction queue is full, and instruction i is the only

instruction executing, then i is critical.

B. If, after a branch misprediction, all pre-branch correct-path instructions

older than the branch complete execution before any post-branch instruc-

tions begin execution, then the branch instruction is on the critical path.

These conditions are specifically designed to be strict: they may ignore many

critical instructions. We require that the instruction queue be full in case A. If it

were not, then the processor could be in the process of fetching other instructions.

Those other instructions may be critical, and the ones currently executing may

not be. In condition B, the processor is only doing one thing: fetching

instructions. The only way to get it to fetch those instructions sooner is to

detect the mispredicted branch sooner. Condition B is also too strict. Some

branch mispredictions may be spanned by a concurrent operation, but the branch

misprediction can still delay fetching critical instructions.

Once an instruction is identified as being critical, by condition A or

B, its counter in the CPB is incremented, just as described for the heuristic

prediction scheme. When a subsequent instance of that instruction is fetched, it

will be predicted to be critical, and flagged as such in the processor. Whichever

51

instruction produces the last operand for this predicted-critical instruction will

in turn be identified as critical, and its counter incremented in the CPB. The

first instruction which is identified by observation 1 is like a seed from which

a longer critical path can be grown. Each time this instruction passes through

the processor, the path may grow longer by one instruction. In fact, because of

the hysteresis present in the counters in the CPB, combined with variability in

control-flow, and in which operand is last-arriving for a given instruction, this

path need not be simple chain, but can fork as well. Instructions which meet

neither the last-arriving or seed criteria have their CPB entry decremented.

The implementation of observation 2 deserves some discussion. A simple

two-operand instruction, such as an addition instruction, waits in the instruction

queue until both of its operands are ready. Whichever of those operands is

ready second is the last-arriving operand. The instruction which produced that

last-arriving operand is also identified as critical. If both operands were ready

before the instruction came into the instruction queue, then neither producer is

critical. For load instructions, the last-arriving operand is either the register

operand, or the memory operand. If the memory operand is forwarded from a

store instruction in the load-store queue, then it may be last arriving. Including

load-store bypassing is important to the accuracy of the critical path predictor.

Since processors already need to detect this condition, it should not be too hard

to implement.

Table IV.6 shows how many instructions meet either condition A or con-

dition B. We call these instructions seed instructions, since they provide a seed

from which to grow a critical path. The numbers are shown for any instruction

which meets condition A, by executing alone, and for branch instructions which

met condition B. The numbers represent seed instructions identified per one mil-

lion instructions executed. Although the solo-executers, instructions which meet

52

Benchmark Abbrev. Solo-executers Branch seeds Total seeds

(per 106 inst) (per 106 inst) (per 106 inst)

ammp amm 56699 281 56980
applu app 148 4 152

art-110 art 95 161 257
crafty cra 211 4322 4534
eon-rushmeier eon 701 1947 2649

equake equ 908 0.03 908
galgel gal 122 0.44 122

gap gap 472 3796 4269
gcc-166 gc1 148 2394 2543
gzip-graphic gzg 559 3482 4041

mcf mcf 2113 4577 6690
mesa mes 97 227 324

mgrid mgr 1728 0.01 1728
parser par 7008 3162 10171

perlbmk-makerand pem 1576 8892 10469
swim swi 869 0.06 869
twolf two 3080 4989 8069

vortex-2 vo2 704 793 1497
vpr-route vpr 1820 6181 8002

mean avg 4161 2379 6541

Table IV.6: The number of seed instructions identified by the iterative predictor
for executing alone, or being a branch misprediction, and meeting other criteria.

condition A, are more common overall, the instructions meeting condition B

are more frequent in some benchmarks. Again, these conditions are specifically

designed to be strict. They are sufficient but not necessary conditions for an

instruction to be critical. When combined with observation 2, however, many

more critical instructions can be identified.

Some benchmarks have very few total seeds. In many cases, these are

scientific applications have highly predictable branches, and thus few branch mis-

predictions; and they have high-levels of instruction level parallelism and thus

there are almost always multiple instructions executing at once. Thus, neither of

the seed criteria are met.

For the cases when the iterative predictor cannot find a seed or grow a

path, it makes sense to fall-back on a different method of identifying the critical

path. Therefore, we also propose a hybrid predictor. The hybrid predictor com-

bines the iterative predictor, and a heuristic predictor. We use QOld. When

the iterative predictor is working, only the iterative predictor is used. When

the iterative predictor does not identify any critical instruction by either method

53

(seed or last-arriving) for 100 committed instructions, then the hybrid predictor

falls back into heuristic mode. While in heuristic mode, it does not use the last-

arriving rule to mark instructions. It only uses the QOld criterion. Anytime a

seed is found, the hybrid predictor reverts back to iterative predictor mode.

We evaluate the performance of the iterative predictor and the heuristic

predictor in Section IV.E.

IV.D Other Critical Path Predictors

We first proposed critical path prediction of instructions and suggested

its broader applications in [117]. There are several bodies of work which predate

our work, and which relate to identifying the critical path of programs. First,

some compilers use critical-path based instruction scheduling algorithms. This

is discussed in Section III. Second, Bahar and her colleagues classified data and

instruction cache lines as critical or non-critical [7, 37]. Following our initial

publication, Fields et al [34] proposed a different critical path predictor, and two

groups, Racvik et al. [87] and Srinivasan et al. [105], proposed load-instruction-

only criticality predictors.

Bahar et al. [7], classified instruction cache misses as being critical or

non-critical, based on the occupancy of the instruction queue at the time of the

miss. They observed that instruction cache misses are often not critical when the

instruction queue is well occupied. Fisk and Bahar [37] classified data cache lines

as critical or non-critical based on the IPC (number of instructions executed per

cycle) around the time that the data was accessed. Their work differs from ours

in that they classify data or instruction cache lines as being critical, while we

classify individual instructions as being critical.

Srinivasan et al. proposed a method for identifying critical loads. They

consider a load instruction which misses in cache to be critical if its value feeds

54

into a mispredicted branch, if it feeds into another load which misses in L1 cache,

or if the instruction issue rate falls below a certain threshold immediately after

the load miss. Racvik et al. call a load instruction “non-vital” when its result

is not used immediately by any instruction. In this way, they identify some non-

critical load instructions. Both of these techniques are limited because they only

predict the criticality of load instructions.

IV.D.1 Token Passing Predictor

Fields et al. presented a graphical model which incorporates both data

dependencies and some hardware constraints. Their model represents each dy-

namic instruction with 3 nodes in a directed graph. We describe their model in

Section III.E. They also present a hardware scheme which approximates, which

high accuracy, whether a recently executed dynamic instruction was on the crit-

ical path of this graph. Their hardware scheme approach relies on several ideas.

First, the critical path consists of a path through the graph which only traverses

last-arriving edges. In the context of applying the longest-path algorithm to a

graph [25], the last-arriving edge to a node is the one which last updates the

distance to that node. In the context of a processor, a last-arriving edge is the

dependency which is satisfied last. Figure III.3(c) shows the last-arriving edges

of a graph, and the critical path. Fields uses a token-passing technique to

determine whether a recently executed instruction is on the critical path. Con-

ceptually, a token is placed in the e-node of the instruction whose criticality is to

be measured. Any node t accepts a token from node s if (s, t) is the last-arriving

edge to t. A node with a token offers a copy of the token to all its dependents.

The token will reach the sink of the graph if and only if there is a path to the sink

of the graph which traverses only last-arriving edges. In practice, an instruction

is declared critical if it reaches some instruction which is at least several hun-

55

dred instructions past the starting instruction. In practice, the passing of the

token can be simulated with a small memory, controlled by information about

last-arriving edges for each instruction. Because their graph includes 3 nodes for

each instruction, it is possible to say that fetching an instruction is critical, as

opposed to executing the instruction. However, all applications of critical path

prediction apply to execute-critical instructions, rather than fetch-critical instruc-

tions. Therefore, we simple use the term “critical” to mean what Fields, et al.

call execute-critical. We compare their predictor to ours later in this chapter.

IV.E Comparison of Critical Path Predictors

In this section, we compare the performance of four critical path predic-

tors. We evaluate our iterative predictor, our two best heuristic predictors, and

token-passing predictor from Fields, et al., [34].

IV.E.1 Methodology

As mentioned before, precisely defining which dynamic instructions are

critical is difficult. However, we find that there are clearly some instructions

which benefit from being optimized, or made to execute more quickly; and there

are clearly those that do not benefit, where benefit is defined as the whole pro-

gram executing faster. In this section, we take the approach that a critical path

predictor is doing well if it picks a small set of instructions, which, when opti-

mized, result in a large reduction in program execution time.

To evaluate the predictors, we modified our simulator to add one cycle

of execution latency to all instructions. The performance of each benchmark

in this configuration serves as a baseline4. Also, we ran simulations using each

4We increased the latency of all instruction before decreasing so that single cycle instructions would not
become zero cycle instructions.

56

Fast Forward
Name Input Instructions (×106)

ammp 2000
applu 1600
art -startx 110 7500
crafty 700
eon rushmeier 100
equake 21270
galgel 5000
gap 185330
gcc 166 2100
gzip graphic 39300
mcf 12600
mesa 1300
mgrid 2100
parser 400
perl makerand 10000
swim 1500
twolf 900
vortex 2 6000
vpr route 36100

Table IV.7: Benchmarks used in Section IV.E

critical path predictor. In these runs, the latency of any instruction which was

predicted to be critical was shortened by one cycle.

This type of evaluation produces two useful metrics, which we focus

on: the fraction of all instructions predicted critical, and the fraction of possible

speedup acheived from speeding up those predicted-critical instructions. (This

type of evaluation cannot determine whether individual predictions are correct;

we consider this issue in Chapter VI). The fraction of possible speedup is defined

as tcrit/tall, where tall is the runtime when all instructions are shortened by one

cycle and tcrit is the runtime when only predicted-critical instructions are short-

ened by one cycle. The possible speedup is defined as tall/tnone, where tnone is

the speedup when no instructions are shortened.

Table IV.7 shows the benchmarks used: 19 from Spec2000 Integer and

FP. We perform all simulations using a detailed, execution-driven simulator,

based on SMTSIM [113]. The simulator executes Alpha binaries, which are com-

piled with the DEC C (-O4) or Fortran (-O5) compiler. In all simulations, after

advancing each thread to the simulation starting point indicated in Table VII.2

using a checkpoint, we performed a detailed simulation for 5 × 108 instructions.

57

Fetch up to 8 instructions per cycle
Branch prediction 64Kbit 2bcGskew, 4096 entry BTB
Pipeline 8 stage misp. penalty
Out-of-order execution with 96/96/96 entry integer/fp/memory instruction queues, which
may issue 6 integer/mem instructions (≤ 4 mem) and 3 fp instructions each cycle
Instruction Window supports 256 in-flight instructions
Memory system

16k 2-way 3 cycle L1 Instruction and Data caches
64 byte linesize
64 entry DTLB / 48 entry ITLB, fully associative
256 entry second level Data and Instruction TLBs
256k 4-way 14 cycle L2 cache
1MB 4-way 20 cycle L3 cache
100 cycle memory access time

Table IV.8: Processor parameters for Section IV.E.

The parameters for the simulated processor are shown in Table IV.8.

IV.E.2 Results

Figure IV.3(a) shows the fraction of possible speedup achieved by short-

ening all instructions which were predicted to be critical by a critical path pre-

dictor by one cycle. The legend shows the four types of critical path predictors

evaluated. Of the critical-path predictors, the iterative predictor gets the greatest

fraction of possible speedup, over all benchmarks. For reference, Figure IV.3(b)

shows the maximum speedup from shortening instructions. It should be empha-

sized that a greater speedup is not, by itself, indicative of a good critical path

predictor, in this evaluation. A predictor which predicts all instructions to be

critical would get the maximum speedup, but would be of no use. An ideal pre-

dictor maximizes the speedup it gets from optimizing critical instructions, and

minimizes the number of instructions which is predicts as critical. We can use

the speedup as an indirect measure of the coverage of critical instructions: the

fraction of all “actually critical”

Figure IV.3(c) shows the percentage of instructions that were predicted

to be critical by each predictor, and therefore, the number of times the latency

of an instruction was shortened by 1 cycle. A lower number here is better. It

58

amm app art cra eon equ gal gap gcc gzi mcf mes mgr par per swi two vor vpr avg
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
p

o
ss

ib
le

 s
p

ee
d

u
p

ALOld−4k
QOld−4k
Token−8−4k
Iterative−4k
Hybrid−4k

(a) Fraction of possible speedup achieved from shortening critical instructions

amm app art cra eon equ gal gap gcc gzi mcf mes mgr par per swi two vor vpr avg
1

1.1

1.2

1.3

1.4

1.5

P
o

ss
ib

le
 s

p
ee

d
u

p

(b) Maximum possible speedup, measured by shortening all instructions

amm app art cra eon equ gal gap gcc gzi mcf mes mgr par per swi two vor vpr avg
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 p

re
d

ic
te

d
 c

ri
ti

ca
l

ALOld−4k
QOld−4k
Token−8−4k
Iterative−4k
Hybrid−4k

(c) Percent of instructions predicted critical

Figure IV.3: These three figures show the fraction of possible speedup achieved
by shortening all instructions which were predicted to be critical by one cycle; the
total possible speedup, measured by shortening all instructions by one cycle; and
the fraction of instructions which were predicted to be critical by each predictor.

59

is a relative indicator of the specificity of the predictor–the fraction of predicted-

critical instructions that are “actually critical”.

IV.E.3 Analysis

Considering Figures IV.3(a) and IV.3(c), it is evident that the itera-

tive predictor is Pareto optimal to the two heuristic predictors, because it gets

more speedup from fewer instructions. The iterative predictor, hybrid and token-

passing predictors are all Pareto optimal, according to this generic evaluation.

Making further comparisons between predictors is difficult. The relative impor-

tance of coverage and specificity will depend on the application.

The hybrid predictor identifies the largest number of instructions as

critical–about 40% on average. About twice as many as the token-passing pre-

dictor. But, it gets almost 90% of the possible speedup. The hybrid predictor

concept appears to work quite well. For most benchmarks, the hybrid predic-

tor operates largely in the iterative predictor mode. For the benchmarks applu,

galgel and swim, where the iterative predictor fails, the hybrid predictor falls

back onto a heuristic prediction. Consulting table IV.6, it can be seen that these

three benchmarks all have low numbers of seeds. However, this alone is not

enough to explain the failure of the iterative predictor, because mesa, for exam-

ple, also has very few total seeds, but the iterative predictor gets nearly the same

speedup as the heuristic or token-passing predictors. It is the combination of few

seeds and the inability to grow a longer path from these seeds. Paths back from

a seed may terminate early when, for example, they lead into a store whose value

is not immediately used.

Interestingly, mesa also has few seed instructions, but the iterative pre-

dictor is able to get more of the potential speedup, perhaps because it can grow

longer paths from each seed in that benchmark. As mentioned previously, both

60

conditions A and B of the iterative predictor are quite strict. It may be possible

to relax them slightly when very few seeds are being identified.

For some benchmarks, such as gap and perl, the token-passing predictor

misses many critical instructions, as is evident in Figure IV.3(b). There are at

least two reasons why the token passing predictor may perform poorly: the full-

window criteria, and slow training.

The token-passing predictor assumes that the instruction window (or

re-order buffer, or ROB) of the processor is the same size as the scheduling

window (instruction queue). This is not the case with most real processors.

Since the iterative predictor uses the criteria that the instruction window is full

to determine criticality, it is more responsive to real hardware. The token-passing

predictor might be modified to address this shortcoming, but we do not explore

that.

The token-passing predictor may adapt more slowly to changes in pro-

gram behavior, since it identifies critical instructions at a low rate. The token-

passing procedure use to profile a single instruction can last over the period of

up to 500 committed instructions, and only 8 instructions can be profiled at once

(using the settings from [34].) Thus the token-passing predictor updates the CPB

for as few as 1 in every 62 instructions, while the heuristic and iterative predictors

train the CPB for every instruction.

It appears that much work is wasted by the token-passing predictor as

each instruction is profiled. When the token passing predictor concludes that an

instruction i is critical, it has passed the token over a span of 500 instructions.

However, at that time the profiling reaches instruction i+500, when the profiling

ends, the predictor only needs to wait a few more instruction, namely, to i + n +

501, to see if a dependent of i, namely i + n, is also critical.

Finally, despite the fact that it cannot model all the nuances of processor

61

hardware, the graph-model upon which the token-passing predictor is based still

provides a good foundation for performing offline critical path analysis, which we

do in the Chapter VI.

IV.E.4 CPB Size and Counter Format

There are several parameters which specify the behavior of the CPB: the

number of entries in the CPB, the amount by which counters are incremented

or decremented, the maximum value at which the counter saturates, and the

threshhold value above which instructions are critical.

For the experiments in the previous section, we used a 4k-entry CPB.

Each counter: increments by 8, decrements by 1, saturates at 0 and 63, and

predicts critical at 9 or above.

The total size of the CPB in bits is the product of the number of entries

and the size of the counter in each entry. For the baseline predictor: 4k entries

times 6 bits (log2 64) is 24kbits.

Figure IV.4 shows to pareto plots of the performance of different crit-

ical path predictors, each with different CPB parameters. The x-axis of each

Pareto plot shows the fraction of possible speedup achieved. This is computed

as described previously. Values further to the right are better. The y-axis of

each Pareto plot shows the fraction of instructions predicted critical. This axis

is inverted, so values toward the top are better. Points are labled with a two

letter code, as indicted in each figure. The first letter of each code represent the

predictor type, and the second represents the CPB configuration. The values for

each label are an average over all benchmarks.

Figure IV.4(a) shows results for 3 different CPB sizes: 1k-entry, 4k-

entry, and 64k-entry. At 6 bits per entry, this works out to 6, 24, and 384 kbits

per predictor. Smaller tables will hold fewer recent predictions, and will have

62

0.6 0.7 0.8 0.9

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

As

Am

Al

Qs

Qm

Ql

Ts
Tm
Tl

Is

Im

Il

Hs

Hm

Hl

Q QOld
A AlOld
T Token
I Iterative
H Hybrid

s 1k−entry CPB
m 4k−entry CPB
l 64k−entry CPB

Fraction of possible speedup

F
ra

ct
io

n
 p

re
d
ic

te
d
 c

ri
ti

ca
l

(a) Fraction of possible speedup and fraction of instructions predicted critical, for different CPB sizes

0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

Am

A+

Ab

A<

A−

Qm

Q+

Qb

Q<
Q−

Tm

T+

Tb

T<

T−

Im

I+

Ib

I<

I−

Hm

H+

Hb

H<
H−

Q QOld
A AlOld
T Token
I Iterative
H Hybrid

m Increment Max
+ Increment More
b Baseline
< Fewer Bits
− Increment Less

Fraction of possible speedup

F
ra

ct
io

n
 p

re
d

ic
te

d
 c

ri
ti

ca
l

(b) Fraction of possible speedup and fraction of instructions predicted critical, for different CPB counter
policies

Figure IV.4: These two figures are show the fraction of possible speedup achieved
versus the fraction of instructions predicted critical, for different CPB parameters.
Speedup is due to shortening all instructions which were predicted to be critical
by one cycle, and is expressed as a fraction of the speedup from shortening all
instructions by one cycle. Points are labeled with a two letter code, as indicated
in each figure. The values are an average over all benchmarks.

63

Description Code Increment Decrement Threshold Maximum Bits

Baseline b 8 1 9 63 6
Increment More + 12 1 9 63 6

Increment Less - 4 1 9 63 6
Increment Max m 63 1 9 63 6

Lower Threshhold t 8 1 8 63 6
Fewer Bits < 8 1 9 15 4

Table IV.9: Several CPB counter policies used in this study.

higher levels of aliasing. The token predictor is least sensitive to table size. For

the other predictors, a smaller table increases the predict-critical rate, and the

speedup. Because the counters are incremented more than they are decremented,

any aliasing in the CPB tends to cause more instructions to be predicted critical.

Some of these are, by chance, critical instructions which otherwise would not

be predicted critical. For the hybrid predictor, it already gets nearly all critical

instructions, leaving little room for improvement, hence the vertical orientation

of its curve. The iterative predictor is most sensitive to table size. Because it

builds on predictions to make new predictions, the effects of aliasing will tend to

be magnified. (The iterative predictor might benefit especially from a few bits of

tag for each CPB entry.)

Figure IV.4(b) shows results for 5 different CPB counter policies. These

polices are shown in Table IV.9. As the figure shows, the predictors behave quite

differently as the counters policy is varied. The variation is quite interesting in

several ways. First, although each predictors behavior varys considerably over

a large range, a certain overall ranking between the predictors is maintained.

The results for the token and hybrid predictor together are pareto optimal to all

the other predictors. The iterative predictor is close. The heuristics predictors

are noticibly less optimal. (Recall that northeast is better, and southwest is

worse in these plots.) This suggests that the counter policy varys the predictors

behavior somewhat independently of the underlying accuracy of the identification

mechanism. Because static instructions vary in their criticality, even a perfect

64

identification mechanism cannot give perfect predictions. The counter policy can

be used to trade off whether or not occasionally-critical instructions are predicted

critical. Second, the relative ordering of the 5 policies along the dotted lines is

the same for each type of predictor. This shows that the counter policies interact

with all the predictors in the same fashion.

It should be pointed out again that these results are for a single, generic,

optimization, which reduces the latency of instructions by one cycle. The optimal

CPB configuration could be quite different for other applications. For example,

reducing an instructions latency by one is less likely to change the critical path

than reducing it by a large amount, or by value predicting it. For more aggressive

optimizations, larger counter values may be needed to help remember critical

instructions even when they are being optimized.

V

Critical Path Aware

Optimizations

We have shown that it is possible to identify, in hardware, with good ac-

curacy, which instructions are critical to the performance of a program. However,

critical path prediction does not, by itself, make programs run faster. Instead, it

is a meta-optimization. Predictions about which instructions are critical can be

used anyplace that the processor needs to arbitrate between instructions. When

critical instructions receive better treatment, performance increases. The previ-

ous chapter evaluated several critical path predictors in a generic manner. This

section applies the predictions to more realistic optimizations. Table V.1 lists

several critical path aware optimizations. Three are discussed in detail in this

chapter, some have been evaluated by other researchers, and some are promising

areas for additional work.

All these critical path aware optimizations share two important quali-

ties: they involve a resource which is optional and costly. A processor resource

is optional if it could be removed or ignored, and programs would still execute

correctly, albeit more slowly. Predictors and caches are both examples of optional

65

66

Name Description

Value Prediction Value prediction is a performance enhancing mechanism. A limited

rate at which instruction can be predicted presents an opportunity

cost when selecting an instruction for prediction. Additionally, mis-

predictions create a direct cost. Both costs are mitigated by only value

predicting critical instructions. See Section V.A, and in several papers:

[19, 117, 34].

Instruction Steering In a clustered processor architectures, instructions can, optionally, be

assigned to execute in one of several locations. An additional exe-

cution latency may be incurred when dependent instructions are sent

to different locations, but sending instructions to the same unit has an

opportunity cost. The costs are mitigated when all or most of the addi-

tional latency is incurred by non-critical instructions. See Section V.B,

and [117, 34].

Instruction Scheduling When more instructions are ready to execute than there are execution

units, critical instruction are given priority. Evaluated in [34, 32].

Multi-speed Functional

Units

Power is conserved when non-critical instructions are executed by

slower circuits. Discussed in Section V.C, and in [97].

Data Cache Tag-Check

Serialization

Simultaneous tag and data lookup in a set-associative level-1 data cache

consumes more power than a slower, serialized lookup. Non-critical

instructions may tolerate this slower lookup.

Selection of Loads for

Pre-Computation

Speculative threads can pre-compute loads which miss in cache, but

forking such a thread has several costs. Limiting pre-computation to

critical load misses mitigates these costs. Discussed in [22], and in

Section VI.E.

Victim Cache Several research groups, [37, 105], have proposed a victim cache with

small blocks for data used by critical loads.

Table V.1: List of some critical-path aware optimizations

67

resources. The use of an optional resource may have a direct cost, such as power

consumption, or it may have an opportunity cost—the use of that resource by

one instruction prevents other instructions from using the resource. For exam-

ple, a processor may have fast and slow integer execution units. Sending one

instruction to the fast unit denies that unit to other instructions for at least a

cycle.

Critical-path aware optimizations include selectively value-predicting

critical instructions; steering and scheduling instructions in a clustered microar-

chitecture, or in a reduced-power microarchitecture with multi-speed functional

units; and controlling how data is stored in a cache. And, while the cost of per-

forming critical-path prediction is already modest, the cost is amortized when

the predictions are used to control several optimizations.

The type of critical path predictor used and its application are largely

independent. All three critical-path aware optimizations described in this chapter

are evaluated using the heuristic critical path predictor. In each case, the per-

formance would be even better if a more accurate predictor, such as the iterative

predictor or token-passing predictor, were used.

This chapter is organized as follows: Section V.A describes Critical

Path Aware Value Prediction. The performance of rate-limited value prediction

can be improved if critical path prediction is used to select which instructions

to predict. Section V.B describes a Critical Path Aware Clustered Architecture.

Critical path predictions can be used to control the distribution of instructions

to distant execution units in a way that minimizes the delays imposed by dis-

tance. Section V.C describes Critical Path Aware Power Reduction. Critical path

predictions can be used to steer instructions to execution resources with speed

and performance characteristics appropriate to the criticality of that instruction.

Section V.D describes critical path aware optimizations which have been studied

68

 lisp compress go perl gcc ijpeg delta−blue burg mpegplay mean
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
p

e
e

d
u

p

FIRST
RANDOM
LONGEST
ALOLD
QOLD
QOLD DEP
QCONS
FREED 3

FREED3

QCONS

QOLD DEP

QOLD

ALOLD 1.37

Effectiveness Ratio

1.68

1.23

1.41

1.08

Criterion

(vs. LONGEST)

Figure V.1: The performance of value prediction incorporating critical path pre-
diction.

by other researchers.

V.A Critical Path Aware Value Prediction

Value prediction is a microarchitectural technique which exploits value

locality in programs by predicting the results of instructions before they execute.

Value prediction can reduce the critical path by breaking dependence chains.

Value prediction is described in Section II.A.

Calder et al. [19] studied ways to improve the performance of value pre-

diction by controlling which instructions were predicted and which update the

value history table. They allowed instructions which were on the longest path

through the instruction window to be predicted if their predictor has a medium

level of confidence, while other instructions were only predicted when the pre-

diction carried a high level of confidence. This resulted in a better risk/reward

tradeoff. The risk is a misspeculation recovery. The reward, increased perfor-

mance, is more likely to result with instructions meeting the longest path con-

dition. They also used the longest path condition to filter which instructions

were allowed to update the value prediction table. In practice, however, keeping

69

track of the lengths of paths in the instruction queue, and using that information

immediately to control value prediction could prove difficult. Their paper did not

suggest an implementation.

Critical-path prediction can assist value prediction in three ways. First,

it allows the processor to make good choices when there are more predictable

instructions in a fetch block than hardware resources to predict them. Second, it

can be used to prevent costly misprediction penalties on instructions for which

there is no benefit to prediction. Third, it can eliminate pollution in the value

file by restricting which instructions are stored into it. Only the first benefit is

examined in this chapter.

Any reasonable value predictor will have limited prediction bandwidth.

Gabbay and Mendelson [40] showed that prediction bandwidth is important for

the performance of value prediction. They developed architectures to provide

multiple value predictions per cycle, but at the cost of increasing the complex-

ity and access time of the value prediction architecture. We take the opposite

approach. We attempt to achieve the maximum performance out of a value pre-

diction architecture with a limited prediction rate (in this case, 1 per cycle) by

using critical path predictions.

An instruction’s predicted result needs to be written into a register so

that dependent instructions can use the result. Multiple value predictions per

cycle would require too many register file write ports. In some implementations

of value prediction, a checkpoint needs to be recorded to allow recovery from

an incorrect value prediction. Making multiple checkpoints per cycle may be

impractical. Finally, a value history table capable of multiple predictions per

cycle consumes more power, and occupies more chip area than a value history

table which only makes one value prediction per cycle.

The results in this section were obtained using the experimental method-

70

ology described in Section IV.B.2. We use the heuristic critical path predictor

scheme to evaluate this application, but the iterative or token predictors could

easily be used as well.

Each cycle, value predictability information and, where applicable, dy-

namic critical path predictions are supplied for each instruction fetched. If

multiple instructions are marked as value predictable, one of several heuristics is

used to select one for prediction. These are described in Section IV.B.3 heuris-

tics are similar to those already shown. First and Longest select the first

or longest-latency instruction, and Random selects a random instruction. The

remaining bars show the performance when using a CPB with the specified CP

prediction criterion.

The results (Figure V.1) show that QCons and QOldDep always pro-

vide more speedup than the selection schemes which do not use critical path

predictions. QOld delivers the best overall performance.

Because CP prediction is not an optimization, but an enabler for other

optimizations, it needs to be evaluated differently. The absolute gains shown in

this figure are strictly determined by the optimization we choose to model and the

constraints we place on it. It is only the change in the optimization’s effectiveness

that is interesting. For that reason, we define the Effectiveness Ratio (ER) as

follows:

ER =
Speedupwith CP prediction − 1

Speedupwithout CP prediction − 1

Therefore, if an optimization which provides a 20% speedup can achieve a 40%

speedup when critical path prediction is incorporated, it has an effectiveness ratio

of 2.0 – it has made the optimization twice as effective.

Viewed this way, QOld achieves an effectiveness ratio of 2.26 over the

Random selector (it has made value prediction 126% more effective) and an

effectiveness ratio of 1.68 over Longest. The speedup observed for compress is

71

1 2 3 4
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

m
e
a
n
 I
P

C

Value predictions per cycle

VP QOLD
VP LONGEST

Figure V.2: The performance resulting from value-prediction of critical-path in-
structions, for varying value-prediction bandwidth.

much higher than with the other benchmarks, but the technique is effective in all

cases.

Determination of value predictability for these experiments is idealized

to account for the continued improvement of those techniques and confidence esti-

mators. In particular, we assume perfect value prediction confidence. Therefore,

if the instruction would be correctly predicted by either conventional last-value

techniques [71], stride techniques [39, 42], or a context-based predictor [92, 123],

we mark it as value predictable. We simulate alias-free last-value and stride pre-

dictors. The context predictor is modeled after [123], with a 64K entry value

history table, with four data values per entry.

Figure V.2 shows the results of using a value predictor that can provide

1, 2, 3 and 4 predictions per cycle. The same benchmarks and simulator were used

for this experiment as for the last. We have selected the best performing criterion

from the previous experiment with one value prediction per cycle. Namely, the

top line shows the mean speedup over all benchmarks for QOld. The lower line

shows the speedup when the Longest selection scheme is used. The results show

72

that the use of critical path information with 1 prediction per cycle bridges most

of the gap between Longest with 1 and Longest with 2 predictions per cycle.

With 2 predictions per cycle, critical path prediction still provides a noticeable

increase over Longest. When more value predictions can be made per cycle,

the two schemes start to converge, as the critical path arbitration becomes less

necessary.

V.B Critical Path Aware Clustered Architecture

Clustered architectures reduce the complexity and delay associated with

scheduling instructions and bypassing results. A conventional processor is re-

designed as a clustered architecture by separating functional units and associated

structures into multiple groups, or clusters. Figure V.3 shows a basic processor

pipeline, and a clustered architecture. In a simple pipeline, as in Figure V.3(a),

the issue logic or bypass logic may limit the cycle time of the processor. The

capacitance of long wires within these structures is a source of delay. An alter-

native pipeline organization, is shown in Figure V.3(b). Decoded instructions

are steered to one of two sub-pipelines, or clusters. Each cluster has its own

instruction queue, issue logic, functional units, and bypass logic. Because the

instruction queue for one cluster is smaller than in an unclustered processor, the

delay of the issue logic is reduced. Because there are fewer functional units in

a cluster, the complexity of the bypass logic is reduced. However, when depen-

dent instructions are steered to different clusters, there may be a one or more

cycle delay to receive a wakeup signal and/or to receive a bypassed result from

the other cluster. Thus, compared to an unclustered architecture with the same

total instruction queue capacity and number of functional units, a set of clusters

can be operated at a higher frequency and could, in the ideal case, achieve the

same instruction throughput, (IPC). However, in practice, due to the bypassing

73

PC

Inst

Cache

Fetch Decode Queues ExecuteSteer Issue

Bypass

RF

(a) A simple processor pipeline.

2 cycle bypass

Fetch Decode

PC

Inst

Cache

CPB

Cluster 1

Cluster 2

0 cycle bypass

Queues ExecuteSteer Issue

RF

RF

(b) A clustered processor pipeline, with two clusters.

Figure V.3: Illustration of simple and clustered processor pipelines.

74

delay, actual throughput will typically fall short. This is an opportunity to use

critical path prediction.

Performance on a clustered architecture is optimized when the instruc-

tions at both ends of key dependences are assigned to the same cluster. Even

better, we’d like to send an entire critical dependence chain through a single clus-

ter. Our approach is to always send predicted critical path instructions to the

same cluster.

Variations on this basic clustered design are possible. The Alpha 21264 [60]

has two clusters of integer functional units, served by a duplicated register file,

but a single instruction queue. For the studies presented in this section, we simu-

late an architecture with two clusters of integer functional units, each served by a

separate instruction queue. We assume bypassing of data between clusters takes

2 cycles longer than bypassing within a cluster. Instructions are assigned to a

particular structure by hardware. This architecture is similar to that described

in [59] and one of the machines described in [79]. A similar architecture is de-

scribed by Farkas et. al., [31], but instruction scheduling is done statically. The

M-machine [35] also features clusters, but their clusters are also not transparent

to software.

The results in this section were obtained using the experimental method-

ology described in Section IV.B.2, except that the integer queue is divided in half,

each serving half of the integer/load-store functional units. We will examine three

different heuristics for assigning instructions to clusters, with increasing degree

of complexity, and each being modified to incorporate critical path prediction.

The first technique, Blind assignment, assigns instructions randomly,

with its only priority being to balance the load in each queue. Blind cp sends all

predicted-critical instructions to one cluster (if there is room); other instructions

go to whichever cluster has more room. The blind algorithm suffers by not looking

75

burg comp delta gcc go ijpeg li mpeg perl average 4−clus avg
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
p

e
e

d
u

p

blind
blind cp
reg
reg cp
act reg
act reg cp

Figure V.4: The performance of a critical path-aware clustered architecture.

at register dependences, but has the advantage of allowing clustering to take place

earlier in the pipeline, before such information is known, thus allowing more of

the pipeline to benefit from decentralization.

The second technique, abbreviated Reg, takes register dependences into

account. It attempts to send an instruction to whichever cluster the instructions

providing the source operands were assigned. This is only violated when a queue

is full or the queues are significantly out of balance. Reg cp only uses critical

path prediction to break ties when each operand comes from a different cluster.

The third technique, abbreviated Act reg, is similar to Reg, but only

considers the location of the producer of a source operand if that instruction has

not yet completed execution (it is active). This is the mechanism closest to that

assumed in [59] and [79], but is the most complex and assumes information not

typically available to the early stages of the pipeline. Act reg cp again uses CP

information to break ties when both operands are still waiting to execute.

A heuristic predictor (QOld) was used for this application.

From Figure V.4, we see that the critical path prediction data allows

better assignment of instructions for the less complex assignment schemes, achiev-

ing an average 15% increase over the Blind scheme, but a smaller gain over Reg.

That gain is enough to allow Reg cp to overtake Act reg, possibly allowing a less

76

costly way to achieve the result, particularly if we are already using the critical

path predictor for other uses. With Act reg we find even fewer ties that need to

be broken, but the small improvement shown even there demonstrates that we

are still making the right decisions when given the opportunity.

The last set of bars show the same results for a 4-cluster architecture.

In that case we see that the blind allocation algorithm is more handicapped by

the increase in clusters, but that the two register-based allocators are both more

dependent on the critical path predictions to achieve their best performance.

V.C Critical Path Aware Power Reduction

Power consumption is an important design consideration for micropro-

cessors. Many of the stages of the pipeline admit to multiple circuit designs,

including the: instruction queues, functional units, instruction decoding circuits,

and caches. Circuit changes which reduce power typically also reduce perfor-

mance. However, much of this performance loss can be avoided by selectively

reducing power consumption on per-instruction basis. Critical path prediction

can be used to identify which instructions should be handled with reduced power.

This section summarizes the results of a study of using critical path in-

formation to mitigate performance losses resulting from power-reducing changes

to two areas in the processor: the instruction queue and the functional units. To

reduce power consumption in the functional units, we suggest that some func-

tional units run at half the normal processor clock speed. To reduce the power

consumption of the instruction queue, we suggest partitioning it, and making

one half a simple fifo. Both these changes will reduce performance if applied

indiscriminately. By sending non-critical instructions to the slower functional

units, which they tolerate, and by sending critical instructions to the in-order

queue, which they tolerate, the performance impact of the power-saving changes

77

Queue

Non-

Critical

Queue

Critical

PC

Inst

Cache

= Reduced Power

CPB

Fetch Decode Queues ExecuteSteer Issue

Figure V.5: A pipeline with critical-path aware power optimizations.

is reduced. Figure V.5 illustrates a processor pipeline with these changes.

Circuit blocks in general, and functional units, such as adders, in par-

ticular, can typically be implemented in several ways. Each design has different

speed (performance) and power consumption. While the designer will only select

a Pareto optimal design, he is still faced with many design alternatives. The same

circuit can be designed with narrow devices, since the circuit need not operate

as quickly. Also, a slower circuit with fewer devices can implement the same

function. Static power consumption can also be reduced at a small cost in de-

vice speed. A better power/performance characteristic can be achieved if power

decisions are made on a per-instruction basis. To accomplish this, the designer

implements the same functionality in two different ways in the same processor.

For the sake of discussion, call these two ways the slow-cool block and the fast-

hot block. When there would be no performance difference, dynamic instructions

should be executed using the slow-cool blocks. When there would be a per-

formance difference, instructions should be executed using the fast-hot blocks.

Critical path prediction provides the means to determine whether instructions

should use faster functional blocks or a lower-power blocks.

78

V.C.1 Approach

In [97], we presented a microprocessor architecture which uses critical

path prediction to achieve an improved power/performance characteristic and

reduced power density in potential hot-spots. Seng was the primary author and

researcher of that work, and it also appears in his thesis, [96]. Tune was a sec-

ondary author and researcher. However, we do present some of the results of

that study here. Like other works discussed in this chapter, it represents an im-

portant application of critical path prediction, and a validation of the prediction

techniques developed in this thesis.

Again, Figure V.5 illustrates a processor pipeline with critical-path

aware power optimizations. As each block of instructions is fetched, the same

addresses are sent to the critical-path prediction buffer (CPB). By the time the

instructions complete the decode and rename stages, the CPB responds with a

prediction of the criticality of each instruction. This prediction is then used to

steer the instructions to either a fast or slow side of the execution pipeline. At

the same time, as instructions finish execution, the critical path predictor is re-

trained. For this work, the QOld critical-path identification heuristic, described

in Chapter IV, was used.

The slow side of the pipeline is an out-of-order instruction queue which

issues to multiple slow, lower-power functional units. The fast side of the pipeline

is an in-order instructions queue which issues to one fast functional unit. Pre-

dictions from the CPB are used to steer decoded instructions to the appropriate

half of the pipeline.

The technique of slotting instructions before dispatch into an instruction

queue was used in the Alpha 21264 [60]. Once an instruction is slotted to the

fast or slow side, it must remain on that side. Normally, instructions predicted

as critical are steered to the fast side of the pipeline, and instructions predicted

79

0

1

0 1 2 3 4 5 6+

critical

non-critical

F
ra

c
ti
o
n
 o

f
c
y
cl

e
s

Number of ready instruction of that type

Figure V.6: Histogram of the distribution of the number of ready-to-execute
instructions which were predicted to be critical or non-critical on a particular
cycle. From [97]. Using a single 64-entry instruction queue.

to be non-critical are slotted to the slow side of the pipeline. However, if the

ratio of critical to non-critical predictions does not match the throughputs of the

two pipeline sides, then the instruction queue on one side will fill up while the

other goes unused. To avoid such a condition, load-balancing logic can override

the critical-path prediction, and send instructions to the underutilized side of the

pipeline.

The critical path will include many chains of data dependent instruc-

tions, and the critical path predictors described previously will tend to iden-

tify chains of dependent instructions. It is thus reasonable to expect, that, in

most cases, that only one critical instruction will be ready on a given cycle.

Figure V.6 shows the number of predicted-critical and predicted-non-critical in-

structions ready to execute each cycle in a 64-entry instruction queue, from [97].

As the figure shows, there are rarely two critical instructions ready on the same

cycle. To take advantage of this, the queue for the non-critical instructions can

be modified to only consider the one instruction at the head of the queue for

scheduling each cycle.

80

In some cases, an instruction may be critical when executed on the slow

unit, and non-critical when executed on a fast unit. An offline analysis, as in

Chapter VI or [32], can be used to compute how much slack, in cycles, each

instruction has. However, it would require considerable hardware to compute a

numerical value for slack at runtime. Instead, because the counters of the Critical

Path Buffer have hysteresis, slow path will end up being treated as critical. This

approach favors performance over power when there is an unstable situation. This

is the approach taken here, and extended in [32] to include different predictions

about the criticality of an instruction with respect to multiple resources.

V.C.2 Evaluation

We summarize here the how we modeled power consumption in that

paper. Additional background on power-reduction can be found in Section II.B.

To evaluate critical-path aware power reduction, we combined a detailed, exe-

cution based simulation of a processor and an architectural power model. The

Wattch power model [15] measures dynamic power consumption as a function

of the fraction of cycles on which a block is used, and empirically determined

constants. Static power consumption of a unit in the baseline processor was as-

sumed to be 10% of of the dynamic power consumption of that unit when active,

following [109]. Dynamic power consumption of the slower, lower-power blocks

is modeled as 80% of that of the corresponding faster block, and static power

consumption is assumed to be 50% of that in a faster block.

Figure V.7, adapted from [97], evaluates several different processor de-

signs with and without critical path power optimizations. The designs are eval-

uated with performance divided by power as a figure of merit. The y-axis shows

the ratio of performance to power. Performance is measured in instructions per

cycle. The sum of the instruction queue and functional unit power is measured

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

art crafty eon gcc gzip parser perlbmk twolf vortex vpr average

P
e
rf

o
rm

a
n
c
e
 t

o
 t

o
ta

l
p
o
w

e
r

(I
Q

+
F

U
)

ra
ti
o

 64-entry out-of-order IQ / 6 normal speed FUs

64-entry out-of-order IQ / 1 normal +f 5 slow FUs

32-entry out-of-order IQ / 6 normal speed FUs

32-entry out-of-order + 32-entry in-order Iqs / 1 normal + 5 slow FUs

Figure V.7: The effect of different instruction queue sizes and arrangements, and
different functional unit speeds, on power and performance. From [97].

82

in arbitrary units. The leftmost bar in each group represents a baseline configu-

ration with no power optimizations, and no critical path predictions being used.

Proceeding rightwards in the bar-group, the next bar represents a configuration

with multi-speed functional units. As indicated in the legend, there is one normal

speed functional unit, and 5 slow functional units. For comparison, the baseline

has 6 normal speed functional units. For most benchmarks, this configuration has

a better figure of merit. The next bar shows that simply reducing the size of the

instruction queue from 64 entries to 32-entries also reduced power consumption

more than it reduces performance. The leftmost bar represents a configuration

which uses both multi-speed functional units, and two instruction queues, where

one instruction queue is in-order, and thus has a reduced power consumption.

Critical path information is used to steer instructions to the appropriate queue

and functional unit group. This configuration has the highest figure of merit,

on average. On average, this configuration, which has a 32-entry in-order queue

with five slow functional units and a 32-entry out-of-order queue with one nor-

mal functional unit, shows a 20% improvement in the power-performance metric

over the baseline design, which has a unified 64-entry queue and 6 fast functional

units. The benchmark eon stands out from the others. It does not benefit from

the critical-path aware optimizations. A more accurate critical-path predictor

could ameliorate this.

Again, these results are for the power consumed by the instruction queue

and the functional units. Estimates of the contributions of these portions of the

processor to overall power consumption vary considerably. Various sources [38,

2, 15] claim that the power consumption of integer and floating point units is

between 2% and 22%, and that of the instruction queue is between 8% and 27%

of total processor power consumption.

Thus, according to some sources, the functional units and instruction

83

queue may, together, account for between a half and a third of the total power

consumed by a microprocessor. However, if these are areas of high power den-

sity, [48], then reduction of power consumption in these areas alone may be a

worthwhile goal in itself.

Also, the additional power consumption from the critical path predictor

was not considered in this study. However, the power consumption of the critical

path predictor itself can be mitigated in several ways. Its size can be made quite

small–less than 1k entries–for many programs before its effectiveness degrades.

An access to the CPB can take multiple cycles (if pipelined) since the predictions

are not needed until several cycles after the fetch addresses are known. Further,

the storage elements in the CPB can be implemented with weaker, error-prone,

storage elements because prediction errors do not affect correct execution. Fi-

nally, if the critical path predictor is used for other purposes as well, its cost can

be amortized.

V.D Other Critical Path Aware Optimizations

Bahar et al. [7], classified instruction cache misses as being critical or

non-critical, and excluded non-critical instruction cache lines from the cache,

which resulted in an energy savings. Fisk and Bahar [37] classified data cache

lines as critical or non-critical, and excluded non-critical lines from the data cache,

which reduced conflicts, and improved performance.

Fields et al. [34] studied both critical-path aware value prediction and

critical-path aware clustered architectures. They used criticality information to

mitigate the cost of value mispredictions. They found up to a 5% performance

improvement from using critical path information. In addition to using critical

path information to steer instructions in a clustered architecture, as we did, they

also gave critical instructions priority when there was contention for functional

84

units. They found up to a 15% performance improvement from using critical path

information to schedule instructions, and up to a 20% performance improvement

when also using critical path information to steer instructions as well. In [32],

they studied using critical path prediction for power reduction. They consid-

ered a similar architecture, with two pipelines, side by side, with one clocked

at half the frequency of the other. They used their critical path predictor to

steer instructions to the slow or fast pipeline, and to prioritize instructions for

issue within the scheduling queues of each pipeline half. They found that there

was a 1-2% loss in performance over a configuration with all full-speed pipelines,

which suggests the potential for considerable power savings, although they did

not incorporate a power model into their simulations.

Srinivasan et al. [105] proposed a method for identifying and predicting

critical loads, which was described in Section IV.D. They apply these predictions

to two memory hierarchy optimizations. They study a victim cache, [56], that

holds only lines touched by critical loads. The criticality-based filtering may re-

duce contention in the victim buffer. They also investigate a form of prefetching

limited to data associated with critical loads with the aim of reducing bus con-

tention. However, they found that, while only some loads may be critical, their

associated data sets are disproportionately large.

Racvik et al. [87] proposed a method for identifying non-critical loads,

which is described in Section IV.D. They propose a level 0 cache which holds

only data associated with critical loads.

Collins, [22], used a modified version of on of the heuristic predictors

described in Chapter IV to select loads to speculatively pre-compute.

Many other applications of critical-path prediction are waiting to be

evaluated. We suggest two more:

Multiple-path execution [122, 47, 63] follows both targets of conditional

85

branches that have low prediction confidence. Better use of prediction resources

could be obtained by not forking non-critical-path branches, or perhaps not fork-

ing branch directions that are not immediately on the critical path.

Normally, accesses to the L1 data cache tag array and data array are

done in parallel. This speeds up the data cache access, but, for a set associa-

tive cache, does consume excess power, since data must be driven out of all

ways, rather than just one. For non-critical loads, tag and data access could

be serialized. Other researchers have considered using way-prediction to reduce

data-cache access energy [84].

VI

Quantifying the Critical Path

This chapter seeks to increase our understanding of the dynamic critical

path and critical path predictors in several ways. All the critical-path predictors

discussed in Chapter IV produce a binary classification of criticality. In this

chapter, we seek to assign a value to the criticality of instructions–one which

denotes the amount of benefit available from optimizing an instruction. We

show the distribution of criticality and the variability of criticality for several

programs. The critical path prediction buffer which we describe in Chapter IV

predicts instruction criticality based on the program counter. However, in this

chapter, we show that criticality is quite dynamic for many instructions that

are actually on the critical path at least some of the time. Thus, PC-based

predictors are limited in how well they can predict the critical path, even with

very accurate training information. This chapter examines whether instruction

criticality is more highly correlated to other index functions which might include

information such as criticality pattern history, branch history, or load history. In

particular, we show that a critical path predictor which uses the local history

pattern of criticality can significantly improve critical path prediction accuracy.

This chapter presents an offline critical path analysis: a framework that

identifies for each dynamic instruction both whether, and to what extent, it is

86

87

critical. This technique is computationally intensive, and is not intended as an-

other dynamic critical path predictor. Rather, it is a tool for understanding how

dynamic instructions differ in their impact on program runtime. Using this offline

analysis, we: i) evaluate the quality of predictions for several proposed critical

path predictors, ii) study the correlation between the criticality of dynamic in-

structions and the corresponding static instructions, iii) correlate criticality with

other events (e.g., branch history and load history) in the pipeline, iv) mea-

sure the slack (distance from being critical) present in non-critical instructions,

v) present a definition of tautness, a quantification of the importance of critical

instructions with respect to optimization, and vi) present the distribution of slack

and tautness among instructions.

The rest of the chapter is organized as follows: Section VI.A describes

the simulator and the benchmarks used in this study. Section VI.B describes our

approach to quantifying the criticality of instructions. Section VI.C evaluates

several different proposed critical path predictors. Section VI.D studies the dis-

tribution of critical and non-critical instructions in programs. Section VIII.A.3

concludes.

VI.A Methodology

Our framework for this research consists of three parts: a detailed sim-

ulator that produces a dependency trace for each application, a directed graph of

the dependencies in the program built from this trace, and a program called the

rescheduler which computes the effect on the execution time of the program as

various dependencies are changed. The graph model is based on that proposed by

Fields. It is described in detail in Section III.E. In this section, we describe the

simulator and the set of benchmarks we use to generate the dependency trace and

again to validate the results of the rescheduler. In the next section, we describe

88

Parameter Value

Fetch width 2 basic blocks/cycle
8 instructions/cycle

Issue width 8 instructions/cycle
Commit width 8 instructions/cycle

Branch Predictor 8k/8k-entry local-history, 16k-
entry global, 16k-entry choice
8-cycle mispredict penalty

L1 Data Cache 16kB 2-way (8-cycle miss penalty)
L1 Inst Cache 16kB 2-way (8-cycle miss penalty)

L2 Cache 256kB 4-way (20-cycle miss penalty)
L3 Cache 1MB 4-way (100-cycle miss penalty)

Table VI.1: Processor parameters used in this study.

the rescheduler and the constraint-graph model.

Simulations are performed using a detailed architectural simulation of

an out-of-order processor executing the Alpha instruction set architecture. Sim-

ulations for this research were performed with the SMTSIM simulator [113], used

in single-thread mode. The parameters for the processor are summarized in Ta-

ble VI.1. The simulated processor has a reorder buffer of 255 instructions. Our

simulated processor does not have a limited instruction queue; it is only limited

by the size of the reorder buffer. We made this concession to realistic processor

modeling because the graph-model does capture the effect of a limited instruction

queue. The processor can fetch, execute, and commit up to 8 instructions per

cycle. It can fetch up to two non-contiguous basic blocks per cycle. The memory

system models contention at each level of the memory hierarchy.

We chose 5 SpecFP2000 and 8 SpecINT2000 benchmarks for this study.

The benchmarks were fast forwarded (emulated but not simulated) a sufficient

distance to bypass initialization and startup code before measured simulation

began. Then, the cache and branch predictors were warmed up for 50 million

instructions for all benchmarks. Finally, the critical path measurements are based

on 10 million instruction-long traces after warmup. The benchmarks used, their

inputs, and the number of instructions fast-forwarded, are shown in Table VI.2.

The reference input was used for all benchmarks, and where there are multiple

89

Fast Forward

Benchmark Code Input Instruction (×106)

Floating Point

ammp amm ref 2700

applu apl ref 500
equake equ ref 3000
galgel gal ref 2600

swim swi ref 800

Integer

crafty cra ref 1000

eon eok ref (kajiya) 100
gap gap ref 1000

gcc gc2 ref (200) 10
gzip gzp ref (program) 50

parser par ref 320
twolf two ref 2500
vpr vpr ref 1000

Table VI.2: The benchmarks used in this study.

reference inputs, the one used is indicated.

VI.B Measuring Critical and Slackful Instructions

Briefly, the critical path is the longest path through a weighted directed

acyclic graph which represents the ordering of events and duration of activities.

Section III.A provides general background on critical-path analysis. A program

executing on a processor can, to a significant extent, be modeled by such a graph.

Many types of dependences and constraints can be modeled with graph edges.

Fields et. al. propose such a graphical model in [34], which we summarize in

Section III.E. The longest path length of this graph corresponds to the execution

time of the program. Fields et al. classify instructions as being “fetch criti-

cal”, “execution critical”, or “commit critical” if delaying the fetch, execution,

or committing of the instruction would delay the overall program’s execution.

In this chapter, we are only interested in whether instructions are “execution

critical”. We focus on this definition of criticality because all critical-path aware

optimizations studied thus far work by hastening or delaying the execution of

instructions.

90

VI.B.1 Slack and Tautness

This chapter focuses on two metrics, slack and tautness, to quantify

instruction criticality. Intuitively, slack represents how far an instruction is from

becoming critical. The slack of an instruction is the number of cycles that the

instruction can be delayed without increasing the execution time of the program.

Instructions with more than zero cycles of slack are non-critical.

We propose a new metric, tautness, for distinguishing critical instruc-

tions, which corresponds to how far away an instruction is from becoming non-

critical. Tautness is a complementary measurement to slack, for instructions

which are critical. We define the tautness for an instruction as the number of

cycles by which execution time is reduced when the result of that instruction was

made available to other instructions immediately. For all instructions that write

a result to a register, this means making that result available as soon as the pro-

ducing instruction is dispatched. For store instructions, this includes making the

value stored available to dependent loads. For mispredicted branches, this means

removing the misprediction.

Figure VI.1 illustrates tautness. Two fragments of a dataflow graph are

shown, where the length of the boxes signify the latency of an instruction. Non-

critical instructions and dependencies are shown with lighter boxes, and dotted

lines, respectively. In both diagrams, instruction X has a latency of 16 cycles, and

is on the critical path. In Figure VI.1(a), X has a tautness of 13 cycles, because

the next longest path when X is removed is 13 cycles shorter. In Figure VI.1(b),

X has a tautness of 1 cycle, because the next longest path is only 1 cycle shorter.

Tautness is a useful measurement because it quantifies the maximum

benefit of applying an optimization to an instruction. It roughly models what

might be achieved by value predicting or speculatively pre-computing the result

of an instruction. Notice that this information is not immediately available by

91

Instruction X = 16 cycles

1 1 1

(a) Critical instruction X has tautness of 13 cycles.

Instruction X = 16 cycles

5 5 5

(b) Critical instruction X has tautness of 1 cycle.

Figure VI.1: An example illustrating tautness.

identifying or analyzing the longest path through the graph. For example, an

instruction with a latency of 100 cycles would thus contribute 100 cycles to the

length of the longest path, but removing that instruction from the program graph

might expose another path whose total length is only 1 cycle shorter than the

original path. In that case, the instruction has a tautness of 1 cycle. Tautness

accounts for all paths through the program, not just the longest.

The design of an implementable critical path predictor that returns a

tautness value is left to future work, but such a predictor would have several bene-

fits. (1) If the critical path predictor is used to arbitrate a constrained resource, a

binary critical path predictor cannot distinguish between multiple critical instruc-

tions which want to use the resource. (2) Some optimizations, such as speculative

pre-computation [23, 22], devote significant resources to target a single instruc-

tion. In those cases, it is not sufficient to target critical instructions, but rather

we would only want to target critical-path instructions that exceeded a tautness

threshold. Speculative pre-computation [23] could use a static critical path pre-

dictor that included tautness (that might look something like our rescheduler),

92

but dynamic speculative pre-computation [22] would require a dynamic predictor.

Our critical-path analysis framework allows us to precisely measure

these two properties of instructions (slack and tautness). We first discuss the

constraint-graph model of the critical path that we base our work on, and the

algorithms we used to extend the constraint-graph model and to compute slack

and tautness.

VI.B.2 The Rescheduler

In [34], Fields et al. used the graph model to determine what instruc-

tions were critical in a particular execution of a program. This graph is described

in detail in Section III.E. In this chapter, we use the graph-model to efficiently

determine the effect on the execution time of the program if each instruction

were executed sooner or later. We use the rescheduler to efficiently determine

the effects of changes to a large graph. We also use the rescheduler to model

a processor constraint, limited issue bandwidth, which cannot be represented in

the graph.

The simulator which is used to generate program traces is described

in Section VI.A. A program trace provides information about each dynamic

instruction, including fetch delays, execution latency, execution dependencies,

and branch mispredictions. Using the rescheduler, which takes this trace as

input, and converts it into the directed graph model of [34], we can compute the

effect of making an instruction complete execution earlier or later than it did in

the original simulation. The rescheduler can compute the effect of changing a

dependence faster than rerunning a simulation, and thus it is practical for us to

make separate measurement for each instruction in a program trace containing

tens of millions of instructions.

93

VI.B.3 Using Rescheduler to Measure Slack and Tautness

We use the rescheduler to compute two metrics for each instruction:

slack and tautness, as defined earlier. The rescheduler operates on a moving

window of the graph, since the entire graph would be too large to store efficiently

in memory. The longest path to each node is computed for all nodes, which

are already in topologically sorted order as generated from the initial simulator

trace. Next, to compute the effect of a change in the graph, the graph is changed

as desired, and the longest path is recomputed for all nodes that follow the

changes. However, it is not necessary to recompute the longest path for the

entire graph each time a node is changed in order to determine the total effect on

the program execution time. We exploit the fact that no edge spanning more than

R instructions is ever on the longest path, where R is the size of the instruction

window. As the longest path to each node is recomputed, the change in the time

between the original schedule and the modified schedule is computed. When this

difference, ∆, is constant for a run of consecutive instructions of length R, then

we can say with certainty that all subsequent nodes in the graph will also change

by ∆; thus, the runtime of the program changes by ∆. The rescheduler is feasible,

even as an offline technique, only because changes to the constraint graph always

have a localized effect on the entire graph.

To compute the tautness for an instruction I, the rescheduler removes

any data-dependence edges out of I’s E-node. This allows instructions that de-

pend on the result of I to execute independently of I. However, I must still

execute eventually. Thus, if I is “commit critical”–it causes the instruction win-

dow to fill up when a critical instruction is just outside the window–then I will

have a tautness of 0. We chose to define tautness this way so as to be similar to

optimizations such as value prediction, where the instruction that is the target

of optimization must still execute to validate speculative data.

94

To compute the slack for an instruction I, we delay the execution of

I by a large number of cycles, and recompute the longest path for the graph.

The difference between the amount by which I was delayed and the increase in

the longest path is the slack in executing instruction I. For example, if delaying

instruction I by 100 cycles causes the program to run 98 cycles longer, we conclude

that I has 2 cycles of slack, after which it became critical. Using this graph-

adjustment approach, we compute the slack and the tautness for each e-node in

the graph (every dynamic instruction in the program trace.) While there are are

more efficient algorithms for computing slack in an ordinary graph, the additional

issue-width constraint prevents the direct application of such an algorithm in this

case.

We also augmented the longest path computation to adjust for the effect

of a finite number of functional units. For the execution-node, e, of instruction I,

the longest path to node e would correspond to the cycle at which I executes, if

there was not an issue limit. To model this additional constraint, after comput-

ing the longest path l(e) to a node e, we consult a table to see how many older

instructions were scheduled for the same cycle. If all functional units are already

busy at cycle l(e), then we increase l(e) until a issue slot is found. This works

because we assume that the hardware scheduler gives preference to older instruc-

tions when picking from among all of the available instructions that are ready

to execute. This is only one of the resource constraints previous graph-based

approaches do not handle well, but it serves as an example of how others could

be handled, such as more specific functional unit constraints (load-store units,

dividers) or a limited size instruction queue. These limitations are handled by a

combination of the constraint graph and a mechanism for processing the graph.

In the original graph-model, [34], the cycles that an instruction spends

ready and waiting in the queue due to functional unit contention are included in

95

the weight of the EE and EC edges. This is sufficient for determining whether

an instruction was critical in the unchanged graph. When we model the token

passing predictor of [34] in this chapter, we include contention cycles in this

fashion. But that is not adequate for our purposes. We are interested in the effect

of changing the graph. Changing the graph also changes the conflicts. Therefore,

we ignore any contention present in the program trace, and recompute the effect

of contention in the rescheduler.

VI.B.4 Validation of the Rescheduler

The rescheduler and the dependence graph together incorporate many

but not all of the effects modeled by a full simulation. Both the rescheduler and

the simulator compute the cycle when each instruction is executed, and the total

number of cycles to execute the program. There is a certain amount of error in

the cycle times computed by the rescheduler due to effects not modeled.

One way to measure this error is to compare the cycle at which each

instruction executes in the simulator, and when it executes in the rescheduler.

However, this sort of validation can only test whether the unchanged graph is

correct. This was the approach taken in previous chapters, and in prior work.

Since we are interested in changing the graph, it is important that the graph

remains meaningful in the face of changes. The property of remaining accurate

in the face of changes may be termed robustness.

In order to validate using the rescheduler/graph to calculate slack and

tautness, we randomly selected dynamic instructions with a range of different

slack and tautness values, and then compare the slack or tautness computed by

the rescheduler/graph with their corresponding values from the detailed simula-

tor. To measure slack and tautness in the simulator, we ran the simulator with

that one dynamic instance of the instruction delayed (to measure slack) or with

96

0 20 40 60 80 100

0

20

40

60

80

100

Tautness measured by resimulation

T
a
u
tn

e
s
s
 m

e
a
s
u
re

d
 b

y
 g

ra
p
h
 r

e
s
c
h
e
d
u
le

r

(a) Tautness

−200 0 200 400 600
−100

0

100

200

300

400

Slack measured by resimulation

S
la

c
k
 m

e
a
s
u
re

d
 b

y
 g

ra
p
h
 r

e
s
c
h
e
d
u
le

r

(b) Slack

Figure VI.2: Comparison of (a) slack and of (b) tautness values, as computed by
the rescheduler and as determined by re-simulation, for gcc.

that one instruction’s result available early (to measure tautness)1.

Figures VI.2(b) and VI.3(b) are scatter plots showing the agreement

between the slack measured by the simulator and the slack measured by the

rescheduler, for a random selection of instructions that our technique indicates

has slack. Figures VI.2(a) and VI.3(a) shows the same type of scatter plot, but

for tautness.

We validated the rescheduler on a range of benchmarks. We present

the results here for twolf and gcc, because those results fell in the middle of

the benchmarks measured — some correlated better, some worse. The line x =

y is drawn for convenience. Points that lie on this line represent instructions

where the rescheduler agreed exactly with the results of re-simulation. For most

1The instructions result is made available as soon as it is dispatched, which reflects the performance im-
provement a program would enjoy if the instruction in question were correctly value predicted. An alternative
definition of tautness, which we call effective tautness, is if the instruction has zero latency, buy must still wait
for both its operands to be ready before it produces a result. The effective tautness cannot be greater than the
latency of the instruction, even if it lies on a strongly critical path, and can be calculated from tautness.

97

0 20 40 60 80 100

0

20

40

60

80

100

Tautness measured by resimulation

T
a
u
tn

e
s
s
 m

e
a
s
u
re

d
 b

y
 g

ra
p
h
 r

e
s
c
h
e
d
u
le

r

(a) Tautness

−200 0 200 400 600 800
−200

0

200

400

600

800

Slack measured by resimulation

S
la

c
k
 m

e
a
s
u
re

d
 b

y
 g

ra
p
h
 r

e
s
c
h
e
d
u
le

r

(b) Slack

Figure VI.3: Comparison of (a) slack and of (b) tautness values, as computed by
the rescheduler and as determined by re-simulation, for twolf.

instructions, the tautness (or slack) measured by the rescheduler is at or very

close to the result obtained from a full detailed simulation run. The next section

discusses some of the reasons why the correlation is not perfect.

Sources of Error in the Model

We use the graph/rescheduler to measure slack and tautness faster than

would be possible through re-simulation. The constraint graph is, however, a

simplification of all the interactions that take place in a real processor, and some

inaccuracies will result.

One type of discrepancy occurs because the memory hierarchy is only

modeled indirectly in the graph. Load instructions have a variable latency. The

latency on data-dependence edges associated with a load instruction are the ac-

tual execution latency of the load during the initial simulation. Once the weights

are assigned, they do not change. In the most common case, the execution la-

98

tency of a load instruction is the same regardless of changes to the graph. That

is, in the common case, the latency of a load is independent of when it, and other

instructions, execute.

However, there are three ways in which memory latencies can change

that are not modeled by the rescheduler. First, the simulator models conflicts

between non-dependent instructions for cache banks and data buses, but the

rescheduler does not. Second, changes to load ordering can create (or eliminate)

new cache conflict misses that the rescheduler will not recognize. Third, and we

found this to be more significant than the first two, there is an indirect dependence

between loads that access the same cache line. The first load to access the line

essentially does a full or partial prefetch of the line for the other loads. If the loads

are reordered, a different load sees the full latency of the access, and the original

first load no longer does. These types of error also affect the slack measurements

of [32].

Figure VI.1 illustrates tautness. Three fragments of a dataflow graph

are shown, where the length of the boxes signify the latency of an instruction. In

Figure VI.4(a), load A is a miss, and it fetches a line that is later used by load

B. Since the original graph model described in section III.E does not include

any edges to represent the cache line sharing dependence, it will appear, when

the dependence graph is analyzed offline, that load A can be delayed without

changing the critical path, which includes load B. That is, load A appears to

have slack, as shown in Figure VI.4(b). However, if load A were in fact delayed

in the processor, it would make load B a partial miss, as shown in Figure VI.4(c).

One solution is to add a dependence between the completion of A and

load B. There are several ways to add this dependence, none of which are entirely

satisfactory. One approach is to add a dependence between the E-node of a load

that initiates a miss to a cache line, and the E-nodes of any subsequent loads

99

Load A: Miss

B: Hit

Access same cache line

(a) Two loads which share a cache line. Load A is a
miss, and load B is a hit, to the same line.

Load A: Miss

B: Hit

(b) Load A appears to have slack in the graph: it can
be delayed without changing the critical path length.

Load A: Miss

B: Part. Miss

(c) Actually, delaying load A turns B into a partial miss.

Figure VI.4: Example illustrating the effect of cache line sharing.

100

which access the same cache line, with a weight equal to the difference in the

latency between the two loads. This insures that the first load will not appear

to have undue slack. However, this does allow for the possibility that the second

load could be the load which initiates the cache miss. In practice, this limitation

may not be important. However, such a situation illustrates the difficulty in

using a graphical model to represent all the details in a real processor, or even in

a fairly detailed simulator.

VI.B.5 Unclassifiable Instructions

Although most dynamic instructions could be classified as critical or

non-critical by our offline analysis technique, some were unclassifiable. An in-

struction may be unclassifiable for one of three reasons. Either it has a negative

slack (increasing latency lengthens execution time by more than the increase in

latency), it has a negative tautness (breaking dependences slows program execu-

tion), or because both slack and tautness are greater than zero (doing anything

to an instruction seems to improve performance).

All of these unexpected behaviors come from the same source – the

issue width constraint we have added to our graph model. Further efforts to

more exactly model processor behavior would likely increase this phenomenon.

But these are not incorrect or anomalous results – they represent real processor

effects. Consider an otherwise non-critical instruction that becomes issuable in

the same cycle as a critical instruction. If the critical instruction finds the issue

window full, then an optimization that either speeds or delays the issue of the non-

critical instruction accelerates the whole program by allowing the truly critical

instruction to issue earlier. The unclassifiable instructions only occur when there

is contention for issue bandwidth, and completely disappear if we remove this

constraint from the rescheduler. Even negative values of slack and tautness are

101

possible as a result of issue width constraints, although the magnitude of negative

values is limited. It is fair to say that when a program is limited by issue width,

the critical path is less well defined.

In summary, not all aspects of a processor can be captured by a purely

graph-based model. However, it is still a very useful abstraction which can be used

to predict with a useful level of accuracy, what instructions should be optimized

or de-optimized.

VI.C Comparing Critical Path Predictors

Using the framework described in the previous section, we can know

whether delaying each dynamic instruction is safe, and likewise, whether opti-

mizing each dynamic instruction is worthwhile. We use this information about

instructions to evaluate the usefulness of several proposed critical path predictors.

We also explore the potential for new types of critical path predictors.

Critical path prediction differs from other types of prediction, such as

branch prediction, in an important respect. In branch prediction, a predictor ta-

ble is trained using the outcomes of each branch, and there is no ambiguity over

what this training information is. In critical path prediction, there is also a pre-

dictor table, trained based on the criticality of each instruction, but identifying

whether an instruction was critical is a large part of the challenge. Thus, the ac-

curacy of a critical path prediction depends on both the accuracy of the training

stream (identifying whether an instruction was critical after it executed) and the

accuracy of predictions (how training information is used by the prediction table

to predict future criticality). We study both the identification accuracy of differ-

ent proposed methods, and the prediction accuracy when a perfect identification

method is coupled with different prediction tables.

102

amm apl cra eok equ gal gap gc2 gzp par swi two vpr

%
 o

f
D

y
n

a
m

ic
 I

n
s
tr

u
c
ti
o

n
s

0

20

40

60

80

100

Q Q Q Q Q Q Q Q Q Q Q Q QA A A A A A A A A A A A AT T T T T T T T T T T T TV V V V V V V V V V V V V

Non−Critical

 Correct Ident.

Non−Critical

 False Ident.

Critical

 False Ident.

Critical

 Correct Ident.

Q QOld

A ALOld

T Token

V NonVital

Figure VI.5: Correct and incorrect identification for 4 different criticality-
identification mechanisms.

VI.C.1 Training Accuracy

This section examines the accuracy of the training mechanism used by

several critical path predictors. We define an instruction as being non-critical if

it has more than 0 cycles of slack, as measured by the rescheduler, or critical oth-

erwise. Figure VI.5 shows the breakdown of correct and incorrect identification

for various methods of identifying critical instructions across the 13 benchmarks.

Each group of bars represents a benchmark. Within each group, individual bars

represent different methods of identifying critical instructions. A letter at the top

of each bar indicates the identification method. In this figure, QOld and ALOld

represent critical path predictors from [117] using the QOld heuristic and the

ALOld heuristic, respectively. QOld identifies instructions that become the old-

103

est in the instruction queue, and ALOld identifies instructions that become the

oldest in the active list (oldest non-retired). Token is the critical path predictor

from [34], which plants a token at an instruction, and observes whether the to-

ken stays alive, propagating between instructions along last-arriving dependence

edges. We modeled a token-passing predictor which could train 8 instructions at

a time, with a 500-instruction training distance. NonVital is the load-criticality

predictor from [87]. The NonVital predictor marks a load as “vital” if its result

is used immediately.

The number of identifications made by each method varies. Thus, the

ratio of the number instructions which are actually critical versus non-critical

need not be the same for all bars in a group. The Heuristic methods (Q,A) make

an identification for every instruction. The Token-passing predictor (T) only

identifies a sample set of all instructions. The non-vital predictor only predicts

loads. The exact fraction of identified instructions that are critical depends on

the implementation of the predictor. For instance, in ammp, nearly half of all load

instructions are critical, and in galgel, very few load instructions are critical,

hence the fraction of critical instructions is clearly different for the NonVital bar

as compared to the other predictors.

Figure VI.5 shows that the token-passing method does very well over-

all. It does particularly well at correctly identifying instructions that are actually

non-critical – the heuristic techniques tend to be much more liberal in identifying

potential critical instructions. For many optimizations, however, the most impor-

tant category can be the mis-identification of critical instructions. For example,

in a processor with clustered functional units, mistakenly sending a critical in-

struction to a different cluster from other critical instructions will have a direct

cost: increased execution time due to bypass penalty. But mistakenly sending a

non-critical instruction to the wrong cluster only has an indirect cost: possibly

104

causing contention. The token-passer also does well with this criteria overall, but

in several cases does not have the highest coverage of critical instructions.

The Non-Vital predictor (V) was proposed only as a predictor for Load

instructions. The results show that the Non-Vital Loads technique does especially

well at identifying critical loads, but it does poorly at correctly identifying non-

critical loads.

Note that the Token-passing predictor rarely identifies non-critical in-

structions as critical, because its prediction is based on a graph the same graph

we use to measure criticality. But because we define criticality based on the

slack measured using the rescheduler, which incorporates an additional processor

constraint (limited issue width), such mispredictions are possible.

It may seem that the Token-passing method and the non-vital method

would never fail to identify a critical instruction–that is, all their errors would be

mis-identification of a non-critical instruction. Both the token-passing method

and the non-vital method would identify an instruction as non-critical when its

result is not used immediately. However, the definition of a non-critical instruc-

tion, for the purpose of this analysis, is that an instruction can be delayed some

number of cycles greater than 0 without delaying the program. Although some

instruction i may not have its result used immediately by any dependent, it may

still be critical because delaying i causes some a dependent instruction to expe-

rience extra delays due to a functional unit-contention that it would not have

otherwise experienced.

VI.C.2 Criticality Bias of Static Instructions

Given a means to accurately identify which instructions are critical, the

critical path predictor then uses that information to produce a prediction for

future instructions.

105

Benchmark >99% >95% >90% >50% >10% >1% >0%

amm 3.38 3.64 3.64 6.59 13.69 18.63 20.36
apl 6.66 6.66 6.67 7.39 15.83 19.30 22.49
cra 0.67 0.72 0.78 2.20 11.86 25.70 34.68
eok 0.45 0.51 0.58 1.15 6.58 12.03 18.02
equ 0.00 0.00 0.00 0.00 0.85 2.55 3.77
gal 0.00 2.18 4.37 4.37 4.80 16.16 38.86
gap 0.22 0.48 0.63 2.82 14.48 23.35 30.87
gc2 2.59 2.62 2.65 3.79 15.61 29.96 34.49
gzp 3.34 3.43 4.34 6.90 21.18 27.13 38.59
par 3.29 3.46 3.70 7.27 20.95 32.56 37.15
swi 0.00 0.00 0.00 0.00 11.60 19.89 25.97
two 0.40 0.40 1.03 4.53 20.79 35.31 51.93
vpr 0.14 0.14 0.14 0.55 6.57 10.82 17.36

AVG 1.48 1.71 2.07 3.41 12.59 21.23 29.52

Table VI.3: The criticality bias of static instructions.

If criticality is highly biased for individual static instructions, a simple

predictor, even a static predictor, would be sufficient. This section examines the

criticality bias of static instructions for a particular processor configuration. The

results are shown in Table VI.3. In that table, a column labeled x% shows, for

each benchmark, the fraction of static instructions for which more than x% of its

dynamic instances were critical.

Looking at the last column of the table, between 4% and 52%, and on

average 30% of static instructions are critical at least once. Thus, on average,

70% of static instructions can safely be ruled out as not being critical. This

suggests that techniques that need to find a large number of, but not necessarily

all, instructions with slack may not require a complex predictor.

Among static instructions which are at any point in time critical, those

instructions tend to change their criticality often. For three of the benchmarks

(equake, swim, and vpr), less than 1% of static instructions are critical even half

of the times they are executed. That is, there are virtually no “statically critical”

instructions for those benchmarks.

If we want to try to predict the critical path of the program with high

106

Benchmark P > 0.9 P > 0.5 P > 0.1 P > 0.01

amm 0.35 1.91 12.74 18.20
apl 7.73 8.83 17.05 19.61
cra 0.53 1.50 15.05 28.53
eok 0.10 0.79 7.44 13.32
equ 0.00 0.00 1.60 2.55
gal 0.00 0.00 0.44 19.21
gap 0.78 2.88 16.65 24.93
gc2 2.48 3.78 18.80 32.03
gzp 4.30 4.90 22.27 29.08
par 2.82 5.00 23.82 34.03
swi 0.00 0.00 14.92 21.55
two 0.00 1.60 26.25 39.21
vpr 0.08 1.40 8.00 11.77

AVG 1.57 2.56 14.36 22.99

Table VI.4: The fraction of static instructions which change criticality with dif-
ferent frequencies, by frequency.

accuracy, then a purely PC based approach will not be sufficient. According to

the table, on average over all benchmarks, 33% of static instructions are critical

at least once (column labeled 0%) and 12% of static instructions are critical more

than 50% of the time. Thus, 21% are critical, but at a frequency less than or

equal to 50%.

However, this table does not indicate whether static instructions are

changing their criticality only occasionally, such as when the program enters

different phases of behavior, or whether they are changing their behavior rapidly.

Table VI.4 shows the distribution of static instructions according to how often

they change criticality (from critical on one dynamic instance to non-critical the

next, or vice versa.) In this table, a column labeled P > x, with value y for some

benchmark, means that y% of static instructions have a probability greater than x

of changing their criticality between any two subsequent instances. For example,

a static instruction that was critical 50 times in a row, and then non-critical 50

times in a row, and so on, would have P = 2%. A different static instruction that

alternates between critical and non-critical every time would have P = 100%.

107

This table shows that on average 23% of static instructions tend to

change their criticality more often than every 100 instances. Thus, a predic-

tor which identifies the criticality of a static instruction, say, every 10 instances,

would be able to predict 75% of static instructions with reasonable accuracy. This

bodes fairly well for predictors like the token-passing predictor that produce in-

termittent training information. However, predictors that produce more frequent

training information, like the Heuristic predictor, may still be able to use that to

an advantage. 14% of static instructions overall (and up to about 25% for some

benchmarks) change criticality at every 10 invocations or more. For example,

consider a load instruction that has a cache miss every 8th time, because it reads

8 sequential words from a cache line. That instruction or its dependents might

be non-critical 7 times and then critical 1 time, and repeating in that pattern.

Predicting criticality based on a saturating counter would not be effective for

this instruction. The next section examines the possibility of identifying patterns

and correlations which can increase the predictability of the dynamically critical

instructions.

In order to correctly predict the criticality of such a frequently changing

instruction, it would be necessary to use a predictor which uses more than just

the PC of the instruction to make a prediction, but which uses additional history

or correlating information to predict the criticality of an instruction. We perform

an evaluation of such predictors in the next section.

VI.C.3 Prediction

Previous work in critical path prediction used a PC-indexed prediction

table with biased counters2. This means that the address of a an instruction is

used to index into a table of saturating counters, like a branch predictor, and

that the counters are incremented by a large amount when an instruction is
2Srinivasan, [105], used some global branch history to index their load-criticality predictor.

108

apl cra equ swi

%
 o

f
D

y
n
a
m

ic
 I
n
s
tr

u
c
ti
o
n
s

0

2

4

6

8

10

1 1 1 1X X X X2 2 2 2B B B BM M M ML L L L

(a)

amm eok gal gap gc2 gzp par two vpr

%
 o

f
D

y
n
a
m

ic
 I
n
s
tr

u
c
ti
o
n
s

0

5

10

15

20

25

30

35

40

1 1 1 1 1 1 1 1 1X X X X X X X X X2 2 2 2 2 2 2 2 2B B B B B B B B BM M M M M M M M ML L L L L L L L L

Non−Critical

 Correct Ident.

Non−Critical

 False Ident.

Critical

 False Ident.

Critical

 Correct Ident.

1 1−Level

X 1−Level

Biased

2 2−Level

B Branch

History

M Branch Miss

History

L Load Miss

History

(b)

Figure VI.6: The number of correct and incorrect predictions for different pre-
diction tables, all using oracle criticality identification.

109

identified as critical, and decremented by 1 when an instruction is found to be

non-critical. Both the token-passing predictor and the heuristic predictor used

such a prediction table. We examine the accuracy that can be obtained with

different types of prediction tables. In this section, we are less concerned with

the practicality of implementing a prediction table, and more interested in the

limits of how well critical instructions can be predicted. Therefore, we use Oracle

training for all the predictors in this section.

Figures VI.6(a) and VI.6(b) show the accuracy of different types of

prediction tables. Each group of bars represents a benchmark. Within each

group, individual bars represent different predictors. A code at the top of each

bar indicates the predictor. The predictors are as follows: One-Level (1 in

the figure) – A one-level predictor consisting of a PC indexed table of 2-bit

saturating counters. The table is un-aliased. 1-Level, Biased Counter (X) –

A one-level predictor consisting of a PC indexed table of 5-bit saturating counters.

The biased counter increments by 8 when an instruction is identified as critical,

and decrements by 1 otherwise. Two-Level (2) – A two-level predictor, PC

indexed table of 8-bit local histories (un-aliased). Local history is used to index

into a table of 256 2-bit saturating counters. Branch History (B) – A 1-

level predictor, indexed by a concatenation of PC and 8 bits of branch-direction

history, un-aliased. Branch Miss History (M) – A 1-level predictor, indexed

by a concatenation of PC and 8 bits of branch-misprediction history, un-aliased.

Load Miss History (L) – A 1-level predictor, indexed by a concatenation of

PC and 8 bits of load-miss history, un-aliased. All predictors use oracle training.

Note that there are two sub-plots with different vertical scales, to show detail on

those benchmarks that have a small percentage of critical instructions.

Each of the history-based predictors (BranchHistory, BranchMissHis-

tory, LoadMissHistory) use 8 bits of history regarding the last 8 branch or load

110

instructions. BranchHistory refers to the direction of previous branches. Branch-

MissHistory refers to whether previous branches were mispredicted. LoadMis-

sHistory refers to whether previous loads were cache misses. Previous means

older instructions, in program order. Information about the current instruction

is not incorporated in the history.

Branch history would help prediction if the criticality of an instruction

is highly correlated with the control flow path the program took to get to it.

Branch history (B) is sometimes better than a simple PC-indexed prediction (1),

and sometimes worse. The criticality of instructions can be affected by nearby

cache misses and branch mispredictions, but these patterns did little to improve

prediction accuracy except in the isolated case of swim. Note that miss history

and mispredict history are hard to gather in real time, but our focus was on

understanding the causes of varying criticality.

Branch history is information that might reasonably be used to im-

prove critical path prediction, since it is already used in conjunction with branch

prediction. We thought that branch mispredictions and cache misses would be

two events that could cause the criticality of subsequent instructions to change.

Branch mispredictions and load misses are not normally known ahead of time,

thus it is not likely to be practical to use such histories to improve critical path

prediction. However, our interest is in understanding why the criticality of in-

structions varies, and the limits of how well criticality can be predicted.

These results reinforce the findings in the previous subsection; Most

static instructions are always not-critical, and so all of the predictors are able

to identify nearly all non-critical instructions. The critical path runs through a

small set of static instructions, but which of those are critical can vary frequently.

Thus, if we are willing to tolerate predicting some non-critical instructions as

critical (accept low accuracy to get high coverage of critical instructions), then

111

the best approach is to predict as critical any static instruction that was re-

cently critical. This is highlighted by the ”Critical/Correctly Identified” bar for

”Perfect-OneLev-Biased”, which is always very tall. Thus the approach taken by

two critical path predictors [117, 34] of biasing the counters (by incrementing by

a large amount for critical, and decrementing by a small amount for non-critical)

is effective.

However, if we are not willing to sacrifice accuracy, the two-level predic-

tor had significantly higher coverage of critical instructions among the those that

were not biased (few non-critical instructions called critical). In several cases, it

achieves twice the coverage of the PC-based 1-level predictor. This indicates that

many instructions do indeed follow a predictable pattern of criticality that can

be identified by a local history predictor.

However, the two-level predictor would not be compatible with a sampling-

based identification method, such as the token-passing predictor. Recall that the

token-passing method does not produce training information for every instruc-

tion, but has a better training accuracy than the heuristic methods, which do

sample every instruction. Although tokens can be placed in a controlled fashion

to profile several consecutive instances of a static instruction, this would need to

be continued indefinitely to maintain the local history for an instruction.

This section has demonstrated that predictors that predict based on

PC and are slow to change predictions have a difficult time predicting critical

instructions accurately, due to the highly dynamic behavior of those instructions.

It has shown the potential for a pattern-based predictor to be more effective. The

patterns by which instructions change their criticality warrants further study.

One likely source of predictable patterns of criticality could stem from loads that

access memory sequentially, missing for the first access to a line, and then hitting

on subsequent accesses to that line.

112

VI.D Distribution of Critical Instructions

Slack and tautness are two metrics that provide more fine-grained infor-

mation about criticality than a binary prediction (critical vs. non-critical). This

section confirms this by showing slack and tautness are both highly varied in the

set of programs we are considering.

Figures VI.7(a) and VI.7(b) show the cumulative distribution of tautness

values for dynamic instructions in the floating-point and integer benchmarks. A

point on the curve shows what percentage of instructions have at least a certain

number of cycles of tautness. Where a curve intersects the y-axis indicates the

percentage of dynamic instructions that are critical.

Most integer benchmarks (the graph on the right) have fewer than 2.5%

of instructions with tautness of more than 10 cycles. The benchmarks twolf and

parser stand out as exceptions. Three of the 5 floating-point benchmarks have

fewer than 1% of instructions with tautness of more than 10 cycles. We attribute

the reduced amount of tautness in some floating point programs in part to loop

unrolling and instruction scheduling, which will increase the number of similar-

length, independent dependence chains, so that optimizing just one instruction

(as tautness measures) will leave several other equally long, parallel chains which

become critical. Since we define tautness in terms of making the result of an

instruction available as soon as it is dispatched, rather than just reducing its

latency, it is possible for an instruction to have a tautness much greater than

the longest latency of any instruction in our simulator (about 360 cycles). This

is most evident in ammp, which has a significant number of instructions with a

tautness greater than 2000 cycles. Several of the integer programs also have a

significant number of instructions with hundreds of cycles of tautness, as indicated

by the long tails on the curves.

Figures VI.8(a) and VI.8(b) show histograms of the amount of slack in

113

Cycles of Tautness

0 10 20 30 40 50

P
e
rc

e
n
t
o
f
D

y
n
a
m

ic
 I
n
s
tr

u
c
ti
o
n
s

w
it
h
 a

t
L
e
a
s
t
x
 C

y
c
le

s
 T

a
u
tn

e
s
s

0

5

10

15

20

amm

apl

equ

gal

swi

(a) Benchmark group 1

Cycles of Tautness

0 10 20 30 40 50

P
e
rc

e
n
t
o
f
D

y
n
a
m

ic
 I
n
s
tr

u
c
ti
o
n
s

w
it
h
 a

t
L
e
a
s
t
x
 C

y
c
le

s
 T

a
u
tn

e
s
s

0

5

10

15

20

cra

eok

gap

gc2

gzp

par

two

vpr

(b) Benchmark group 2

Figure VI.7: Cumulative distribution (decreasing) of the fraction of dynamic
instructions with certain tautness.

114

Cycles of Slack

0 50 100 150 200 250 300 350 400

P
e
rc

e
n
t
o
f
D

y
n
a
m

ic
 I
n
s
tr

u
c
ti
o
n
s

w
it
h
 a

t
L
e
a
s
t
x
 C

y
c
le

s
 S

la
c
k

0

20

40

60

80

100

amm

apl

equ

gal

swi

(a) Benchmark group 1

Cycles of Slack

0 100 200 300 400 500 600 700 800

P
e
rc

e
n
t
o
f
D

y
n
a
m

ic
 I
n
s
tr

u
c
ti
o
n
s

w
it
h
 a

t
L
e
a
s
t
x
 C

y
c
le

s
 S

la
c
k

0

20

40

60

80

100

cra

eok

gap

gc2

gzp

par

two

vpr

(b) Benchmark group 2

Figure VI.8: Cumulative distribution (decreasing) of the fraction of dynamic
instructions with certain slack.

115

Name of Policy Select the top n static load instructions
according to:

Times-Critical Number of dynamic instances of a static

load which were critical, according to the
rescheduler.

Tautness Sum of tautness, as measured by the
rescheduler, for each dynamic instance

of a static load.

Available

Tautness

Sum of available-tautness for each dynamic

instance of a static load.

L1-Misses Number of L1 cache misses for a static

load.

L2-Misses Number of L2 cache misses for a static
load.

Latency Sum of latencies of each dynamic instance
of a static load.

Table VI.5: Policies used for selecting static loads for optimization.

dynamic instructions. Notice that, particularly for the integer programs, there is

a correlation between programs with high tautness values and high slack values.

The average number of instructions with slack is much higher than the number

of critical instructions, which was one of the original motivations for critical path

prediction.

VI.E Applying Criticality Information

This chapter introduces the idea that we can quantify the criticality

(tautness) of individual instructions. If this metric is useful, it has two implica-

tions for critical path predictors. First, if a predictor does not predict all critical

instructions correctly, it is more important that it correctly predicts those with

higher tautness. Second, a predictor that accurately produces a tautness predic-

tion rather than a criticality (binary) prediction should be more effective. This

section verifies the second implication.

We apply a (perfectly trained) tautness prediction to guide a hypotheti-

cal optimization which reduces the latency of load instructions. This hypothetical

optimization is intended to emulate speculative precomputation. Speculative pre-

computation [23, 22] is an optimization where a speculative hardware thread is

116

1 Static Load Instruction Selected for Optimization

amm apl equ fac gal gap gzp par two vpr H−mean

S
p
e
e
d
u
p
 o

v
e
r

n
o
 S

P

1

1.05

1.1

1.15

1.2

1−Times−Critical

1−Tautness

1−Available−Tautness

1−L1−Misses

1−L2Misses

1−Latency

(a) 1 static load chosen.

4 Static Load Instructions Selected for Optimization

amm apl equ fac gal gap gzp par two vpr H−mean

S
p
e
e
d
u
p
 o

v
e
r

n
o
 S

P

1

1.05

1.1

1.15

1.2

1.25

1.3

4−Times−Critical

4−Tautness

4−Available−Tautness

4−L1−Misses

4−L2Misses

4−Latency

(b) 4 static loads chosen.

Figure VI.9: Idealized speculative precomputation with different ways of choosing
static load instructions to optimize, with 1 or 4 static loads chosen.

117

executed in parallel with the main program. The speculative thread consists of

a subset of the instructions that the main thread will execute. The speculative

thread initiates long latency memory operations earlier, thus allowing the main

program to run faster. Speculative precomputation makes an interesting test case

because the cost of each targeted load is high (requires a hardware thread context

on a multithreaded processor), thus the total number of targeted loads should

be kept low. Collins et. al. [23] selected loads for precomputation based on the

number of L1 caches misses. In the subsequent work, [22], loads were selected

using a method derived from a heuristic criticality predictor from [117].

We measure the speedup on an idealized form of speculative precom-

putation when different methods are used to select static load instructions. The

results are presented in Figure VI.9. In our idealized optimization, there is a limit

to the number of static load instructions that can be selected for optimization (1

or 4 static loads, for the results shown here). When a static load is “optimized”,

all dynamic instances of that load hit in L1 cache. The line which it accesses, if

not already in cache, always arrives just in time for the optimized load to read

it when it executes. Non-optimized loads which access data from the same line

may benefit as a side effect.

We consider 6 different ranking criteria, to choose the best n static

loads for optimization. Loads are ranked according to the criteria and the top n

are selected. Three ranking criteria are based on criticality, and 3 are based on

latency. Table VI.5 summarizes the ranking criteria for static loads.

The L1-Misses ranking criteria counts the number of L1 misses that

a static load experiences. [23] choose L1 misses as a criteria since they were

studying SP on an in-order processor. An out-of-order processor may be better

able to tolerate L1 cache misses, hence we also include the L2-Misses ranking

criteria. We also choose loads using the Latency criteria, which picks static loads

118

for which the sum of the latency of the dynamic instances is greatest.

The Times-Critical criteria ranks a load by the number of times it was

critical during a segment of a program. The Tautness metric ranks a load by the

sum of the tautness of each instance of the load, as measured by the rescheduler.

Recall that tautness represents the maximum reduction in cycles that could be

achieved by optimizing a particular dynamic instruction. Ideally, the sum of

the tautness would correspond to the number of cycles by which the execution

time would be reduced. However, optimizing just one dynamic instruction affects

the critical path later on, and thus the tautness of later instructions would be

changed. So while we would not expect to enjoy the total execution time reduction

suggested by the sum of tautness for all dynamic instances of an instruction, we

do expect that it should be indicative of the potential for speedup.

The tautness metric measures the amount of speedup possible if the data

dependences originating at a particular instruction are removed entirely, and thus

the most improvement that a single instruction optimization might realize. But

tautness is only a maximum. For an optimization like SP, where the latency

of a load is reduced though prefetching, but no dependences are broken, the

reduction in cycle time that can be realized may be less than the tautness. We

define the available tautness of an instruction with respect to a latency-reducing

optimization to be min(t, l0 − l), where t is the tautness of that instruction, l is

its latency after being optimized, and l0 is its unoptimized latency. Thus, if an

instruction has a tautness of, say, 10 cycles, but you only reduce its latency by 4

cycles, then we would expect that the execution time would only be reduced by 4

cycles. Thus, Available-Tautness chooses the static loads which have the greatest

available tautness, summed over all dynamic instances.

Figure VI.9 shows the performance when different policies are used to

choose static load instructions. All are presented as speedup over execution with

119

no SP applied. For each of these metrics, loads were selected using profiling data

from a 10 million instruction program segment, and speedup measurements were

taken over a 100 million instruction program segment. This is representative of

how, in a dynamic implementation of SP, the loads would be profiled, threads

built, and then those threads would be used for an extended period of time.

While no criteria always chooses the best set of loads to optimize, the

harmonic mean of the speedup is greatest with the Available-Tautness metric for

both 1 and 4 loads. The Times-Critical metric, on the other hand, performs

poorly. The difference between the Available-Tautness metric for 4 loads, and

the best latency-based metric, L2-Misses, is 4% speedup. In the best case, the

speedup of twolf is increased from a negligible 0.6% speedup under all three

latency-based criteria, to 20% speedup, using Available-Tautness. Over the pro-

gram segment profiled, twolf has 820 static load instructions, many of which

experience many L1 and L2 cache misses. However, the most frequently exe-

cuted of those loads are well scheduled, and the approaches which are ignorant

of the critical path do not choose appropriate loads.

The effectiveness ratio from using tautness information (Available-

Tautness) versus the L2-Misses criteria is 46% and 40%, for 1 and 4 static loads.

(Effectiveness ratio was used to evaluate critical path predictors in [117] and [34],

and quantifies the extent to which CP prediction makes an optimization more

effective.)

This experiment demonstrates the existence of optimizations for which a

binary prediction of criticality is not as effective as a prediction that also produces

an estimate of the benefit of optimizing that instruction.

VII

Balanced Multithreading

In this chapter, we consider the relationship between critical-path aware

optimization and two important trends in microarchitecture: multithreading,

and the processor–memory gap. These two trends complement each other: the

growing processor–memory gap reinforces the need for multithreading. We do

not attempt to comprehensively consider the interaction between multithreading

and critical-path prediction in this thesis. We do evaluate a new multithreading

architecture which is inspired by our studies of criticality, and which is guided by

a per-thread critical-path summary metric.

Critical path prediction helps make better use of a processors microar-

chitectural resources by identifying which instructions must be optimized to im-

prove performance, and which instructions can tolerate lesser treatment. As the

execution time of critical path instructions is shortened, and as non-critical in-

structions are delayed, the number of parallel operations will increase, within the

limitations imposed by hardware on parallel execution.

In practice, only so much can be done to optimize critical instructions.

For some time, a gap has been growing between processor clock periods and

main memory access times. Although a wealth of techniques exist to reduce the

number and effect of cache misses, some long latency accesses will still remain.

120

121

This leaves the processor hardware underutilized by a single program.

Multithreading is an architectural technique by which the processor

may fetch and execute instructions from several programs or threads without

operating system intervention. Multithreading is especially useful in the face

of this processor–memory gap, because, when one thread is waiting for mem-

ory, the remaining can continue to make good use of the processor. Many

recent and announced processor designs support some form of multithreading

[54, 12, 85, 49, 27]. We provide some background on multithreading in Sec-

tion II.C.

In one sense, critical-path prediction and multithreading are comple-

mentary. Multithreading increases the number of concurrent operations in a

processor, which in turn increase contention for resources, and may reduce the

fraction of instructions which lie on the critical path. Critical-path prediction

provides a guide to arbitrate among instructions for these contended resources.

There is one complication here: in a multithreaded processor running several

independent programs, performance should be measured by throughput: the rate

at jobs are completed, from a continuous stream of independent, unit sized jobs.

Critical-path analysis does not provide any guidance on prioritizing completely

independent tasks. We suggest that critical-path prediction can still be used,

with a small caveat. Critical-path prediction can be used to identify which in-

structions are critical to the progress of an individual thread, without regard to

other threads. When the processor must arbitrate between a critical and a non-

critical instruction, the critical instruction should get priority. The application of

the critical-path predictors described in this thesis to a multithreaded processor

is the subject of an ongoing research effort.

The relation between critical-path prediction and the growing processor

memory gap is less complementary. Basic arithmetic operations, like integer

122

addition, require a single cycle to execute on a contemporary processor, while a

load instruction which accesses memory can require several hundred cycles. Many

programs do not have chains of several hundred operations which are independent

of a load miss. Critical-path prediction may not be needed to determine whether

a long-latency load miss is critical. It is safe to guess that most long-latency load

misses are critical. If they are not, it is most likely because a second long-latency

load miss occurs in parallel with the first. The new multithreading architecture

which we propose in this chapter makes use of these two observations, and thus

it does not directly make use of critical-path prediction.

Although our multithreading proposal stands on its own, it is related

to and inspired by the work described in the previous chapters. As discussed

in Sections VI.B and VI.D, many instructions have high tautness values. As

defined previously, tautness indicates the maximum benefit from speeding-up the

execution of some instruction. This definition can be viewed another way. If

instruction i has a tautness t, then the instructions which follow i either depend

on i, or have t cycles of slack. Thus, when a critical instruction i, with tautness

t, is executing, then we could not execute any other instructions for t cycles, and

still not effect the performance of the program. The longest latency instruction,

and thus those with the highest effective tautness, are loads. In other words, there

is often not enough instruction level parallelism to hide the cost of long latency

load instructions. This suggests an architectural optimization: when a high-

tautness load instruction is executing, we can move out all the other instructions

from the pipeline. In fact, the loads memory request can continue even if the load

instruction is flushed from the pipe (to be refetched later). With all instructions

out of the pipeline, the whole pipeline is free to execute another program. This

is not a new idea; it is called coarse-grained multithreading. However, the rest of

this Chapter explores a novel approach to coarse-grained multithreading, and its

123

combination with simultaneous multithreading.

VII.A Simple Multithreading

The ratio between main memory access time and core clock rates con-

tinues to grow. As a result, a processor pipeline may be idle during much of a

programs execution. A multithreading processor can maintain a high throughput

despite a large relative memory latencies by executing instructions from several

programs. Many models of multithreading have been proposed. They can be

categorized by how close together in time instructions from different threads may

be executed, which affects how the state for different threads must be managed.

Simultaneous Multithreading [115, 112, 50, 126] (SMT) is the least restrictive

model, in that instructions from multiple threads can execute in the same cycle.

This flexibility allows an SMT processor to hide stalls in one thread by executing

instructions from other threads. However, the flexibility of SMT comes at a cost.

The register file and rename tables must be enlarged to accommodate the archi-

tectural registers of the additional threads. This in turn can increase the clock

cycle time and/or the depth of the pipeline.

Coarse-grained multithreading (CGMT) [3, 90, 108] is a more restrictive

model where the processor can only execute instructions from one thread at a

time, but where it can switch to a new thread after a short delay. This makes

CGMT suited for hiding longer delays. Soon, general-purpose microprocessors

will be experiencing delays to main memory of 500 or more cycles. This means

that a context switch in response to a memory access can take tens of cycles and

still provide a considerable performance benefit. Previous CGMT designs relied

on a larger register file to allow fast context switches, which would likely slow

down current pipeline designs and interfere with register renaming. Instead, we

describe a new implementation of CGMT which does not affect the size or design

124

of the register file or renaming table.

We find that CGMT alone, triggered only by main-memory accesses,

provides unimpressive increases in performance because it cannot hide the effect

of shorter stalls in a single thread. However, CGMT and SMT complement each

other very well. A design which combines both types of multithreading provides

a balance between support for hiding long and short stalls, and a balance between

high throughput and high single-thread performance. We call this combination

of techniques Balanced Multithreading (BMT).

This combination of multithreading models can be compared to a cache

hierarchy, which results in a multithreading hierarchy. The lowest level of mul-

tithreading (SMT) is small (fewer contexts), fast, expensive, and closely tied to

the processor cycle time. The next level of multithreading (CGMT) is slower,

potentially larger (fewer limits to the number of contexts that can be supported),

cheaper, and has no impact on processor cycle time or pipeline depth.

In our design, the operating system sees more virtual contexts than

are supported in the core pipeline. These virtual contexts are controlled by a

mechanism to quickly switch between threads on long latency load misses. The

method we propose for adding more virtual contexts does not increase the size

of the physical register file or of the renaming tables. Instead, inactive contexts

reside in a separate memory dedicated to that purpose, which can be simpler

and far from the core as compared to a register file, and will not be timing

critical. Further, those threads that are swapped out of the processor core do

not need to be renamed, which avoids an increase in the size of the renaming

table. This architecture can achieve the throughput near that of a many-context

SMT processor, but with the pipeline and clock rate of an SMT implementation

that supports fewer threads. We find that we can increase the throughput of an

SMT processor design by as much as 26% by applying these small changes to the

125

processor core.

Some background on multithreading and a discussion of related work

is presented in Section II.C. The rest of this chapter is organized as follows:

Section VII.B presents the architecture and mechanisms for combining SMT and

CGMT. Section VII.C discusses our evaluation methodology. Results are pre-

sented in Section VII.D.

VII.B A Balanced Multithreading Architecture

Implementations of SMT processors thus far have been conservative; the

Pentium 4 processor [75] and each core of the Power 5 processor [54] have two

hardware contexts. Although the potential exists for much higher throughputs

when more than 2 contexts are presented to the operating system, just adding

more physical contexts to SMT alone may not be the best way to achieve higher

throughput. Each additional context supported by an SMT processor increases

the size of the register file and of the renaming table. This in turn increases

the pipeline length or clock cycle time, which penalizes performance, especially

when only one or a few threads are available to run. Although at least one

SMT processor design with 4 contexts has been attempted, [29, 30, 77], it never

reached production. Redstone, in [88], citing [85], points out that the register

file of that processor, the Alpha 21464, would have been 3-4 times the size of

its 64k data cache. Likewise, previous work on coarse-grained multithreading [3,

12] used a larger register file to hold the register values of an inactive thread.

Instead, we propose extending an SMT processor design by adding a coarse-

grained multithreading mechanism which requires few hardware changes.

The Sparcle CPU [3] in the Alewife machine implements CGMT. It per-

forms a context switch in 14 cycles (4 cycles with aggressive optimizations). The

Sparcle architects disabled the register windows present in the Sparc processor

126

that they reused, and used the extra registers to support a second context. The

Sparcle processor was in-order, with a short pipeline and did not perform register

renaming. The IBM RS64 IV processor [12] supports CGMT with 2 threads, and

is in-order. The RS64 designers chose to implement only two contexts, which

avoided any cycle-time penalty from the additional registers. For a processor

with a large instruction windows backed by additional registers, the register file

access time is much more likely to be on the critical timing path.

Waldspurger and Wiehl [120] avoid expanding the register file in a

CGMT architecture by recompiling code so that each thread used fewer regis-

ters. Mowry and Ramkissoon [78] propose software-controlled CGMT to help

tolerate the latency of shared data in a shared-memory multiprocessor. They

suggest compiler-based register file partitioning to reduce context-switch over-

head. Horowitz et al. similarly suggest using memory references which cause

cache misses to branch or trap to a user-level handler [51]. Our approach uses

lightweight hardware support to make context switches faster than would be

possible purely using software, and does not require recompilation.

To reduce the incremental cost of additional threads in an SMT pro-

cessor, Redstone et al. [88] propose partitioning the architectural register file.

Lo et al. [72] propose software-directed register deallocation to decrease dynamic

register file demand for SMT processors. Both [88] and [72] require compiler

support. Multi-level register file organizations reduce the average register access

time [10, 26, 8].

Register file speed is a function of the number of ports, as well as the

number of registers it contains. A processor with a high issue width requires a

register file with many ports to avoid contention. The port requirements can be

relaxed [80, 62, 110], but that requires additional hardware to arbitrate among

the ports.

127

VII.B.1 Terminology

In this chapter, we use the term context to refer to the hardware which

gives a processor the ability to run a process without operating system or software

intervention. We use the term thread to refer to a program assigned to a context

by the operating system. Because the BMT architecture we propose exposes more

contexts to the operating system than can be active at once in the processor core,

we distinguish between physical contexts and virtual contexts.

The number of physical contexts, denoted Cphys, is the number of threads

which can have instructions in the pipeline simultaneously, and is limited by the

register file and renaming table sizes. The number of virtual contexts, denoted

Cvirt, is the total number of threads which are supported at once, via CGMT. For

an SMT-only processor, Cvirt = Cphys. We refer to an SMT-only processor design

as being an SMT-C processor design when it has C contexts. For example, the

Pentium 4 is an SMT-2 processor. We refer to a Balanced Multithreading design

with Cphys physical contexts and Cvirt virtual contexts as a BMT-Cphys/Cvirt pro-

cessor. If the Pentium 4 were extended using our techniques to present 2 more

contexts to the operating system, for a total of 4 virtual contexts, then we term

it a BMT-2/4 processor. Because there are more virtual contexts than physical

contexts in a BMT processor, some threads will be inactive at any given time. An

inactive thread can have a pending main memory request, but, unlike an active

thread, an inactive thread does not have instructions in the pipeline nor does it

have values in the primary register file.

VII.B.2 Firmware Context Switching

We propose a context switching mechanism which (1) does not increase

the size of the register file because architectural state of inactive threads is stored

elsewhere, (2) does not increase the number of ports on the register file, because

128

the save/restore instructions access the register file like ordinary instructions, (3)

does not affect the design of the renaming table, because inactive threads have no

instructions in the pipeline, and (4) is considerably faster than a software context

switch by the operating system. This mechanism, which we call firmware context

switching, uses:

1. an exception-like mechanism to initiate a context switch and to flush the

pipeline,

2. a microcoded instruction sequence of special instructions to swap the register

state of active and inactive threads.

3. a separate buffer to hold architectural registers of inactive threads,

4. a small amount of duplicated or additional hardware in areas that should

not be critical to performance.

We now describe the features of firmware context switching in greater detail.

Detecting Load Misses and Flushing—When a load instruction

needs to directly access main memory, a thread swap may be initiated. A firmware

context switch is not fast enough to make thread switching profitable for loads

which hit in a second or third level cache, given current cache latencies. We

use a simple method to detect main memory accesses: if a load has an execution

latency over a certain threshold, the load is assumed to be accessing main memory.

When such a load is detected, it is canceled, but its memory request remains in

the memory system. In the commit stage, the load instruction will raise

an exception when it is the oldest instruction in its thread. Fetching from that

thread stops, instructions from that thread are flushed, the PC of the cancelled

instruction is saved, and the register map is restored to point to the proper

state. However, instead of jumping to a trap handler, control is transferred to a

microprogrammed instruction sequence.

129

One side effect of canceling an instruction, as we do with long latency

loads, is that the possibility of livelock is introduced. Kubiatowicz gives a thor-

ough treatment of these issues in [64]. To avoid livelock in our simulations, we

require that a thread commit at least one instruction before it can be swapped

out.

Tullsen and Brown [111] note that very long latency memory operations

can create problems for an SMT processor. They suggest that when a thread

is stalled waiting for a memory access, the instructions after the miss should be

flushed from the pipeline, freeing critical shared execution resources. Our scheme

inherently provides the same functionality. However, their proposal fails to free

the most critical shared resource – thread contexts. We compare our processor

designs against an SMT processor which implements their flushing mechanism.

Our results show that freeing resources being held by a stalled thread is indeed

very important; however, making those same resources available to a thread that

would not otherwise have a chance to run is also important. Other researchers

have suggested more sophisticated flushing policies for SMT [21], which we do

not evaluate. However, improvements to policies which control when to flush

an SMT processor can also be applied to controlling thread-swapping in a BMT

processor.

Microprogrammed Context Switch—After a thread has been flushed,

instructions are fetched from a microcode control store. This microprogram con-

sists of (1) a sequence of store-like rsave instructions, (2) a special thread-switch

instruction, and (3) a sequence of load-like rrestore instructions. Each of the

rsave and rrestore instructions is renamed, issued, and executed on an in-

teger unit like a normal instruction. They are like a load or store instruction

in they have one register operand, but they do not access programmer-visible

memory space or undergo address translation. Instead they access a special

130

buffer, the Inactive Register Buffer (IRB), which is described below. The ad-

dress in the IRB is implicit given the operand and thread associated with an

rsave/rrestore instruction. An unoptimized microprogram would have one

rsave and one rrestore instruction for each architectural register.

We add two optimizations to this microcode sequence which reduce the

number of instructions in a context switch. First, a Dirty Register Mask (DRM)

tracks which architectural registers have been modified by committed instruc-

tions since the last thread swap. The microcode sequencer uses this bitmask to

selectively generate rsave instructions only for registers which have been modi-

fied. The correct value of unmodified registers is still in the IRB. For the short

times that threads are often swapped in, this can significantly reduce the number

of rsave instructions. Second, for those benchmarks which never use floating

point registers, the floating point registers are not restored. Operating systems

already use this technique to shorten software context switches. Both techniques

shorten the time to swap threads and reduce contention for functional units with

other active threads.

Duplicated Hardware—While registers are saved and restored on

a context switch, some small bits of hardware can simply be replicated for each

virtual context. These include the branch global history register, the return stack,

and processor control registers, such as the page-table base register and floating-

point control register. Each of these resources, which we expect are not likely to

be on a critical circuit path, would need to be accessed through a multiplexer

which would be controlled by a physical-to-virtual context mapping register. The

special thread-switch instruction changes this register to correspond to the next

thread to run.

Selecting the Next Thread—The next thread to swap in is known

before a thread swap occurs. We use a Least-Recently-Run policy for selecting

131

the next thread. When an active thread is swapped out of the pipeline, the

least recently run thread is swapped in. It would be misleading to call this a

Round-Robin policy. The order in which threads are swapped in can change over

the course of a run because one thread may remain active for a long time, while

several other threads are swapped in and out.

When a thread incurs a miss, but all inactive threads are also waiting

for memory, we found that a good policy was to swap out the stalled thread,

swap in the least recently run thread, but gate (stall) fetch for that least recently

run thread until its data is returned from memory. This prevents the still-stalled

thread from introducing instructions into the processor that will interfere with

other active threads. Eickemeyer et al. [28] refer to this policy as switch-when-

ready in their evaluation of a CGMT-only processor.

Inactive Register Buffer—Adding physical contexts to a processor

increases the total number of registers in the register file, which is likely to affect

the clock rate or pipeline length. The access requirements for active and inactive

registers are quite different. As a result of these differences, the design constraints

on the IRB are considerably relaxed, compared to the register file. (We will

use the term primary register file to emphasize that we are not referring to the

IRB.) For a 4-wide processor design, the IRB has at most 4 ports (read/write),

compared to 12 ports (8 read and 4 write) for the primary register file. It does

not require bypassing, because the same locations are never written and then

read close together in time. Also, it can tolerate being placed far from the core

pipeline, and thus has fewer layout constraints. In regard to the last item, we

model a 10 cycle (pipelined) access time for the IRB, implying its distance from

the core is similar to the L2 cache, certainly further than the L1.

In addition, firmware context switching is well-suited to a processor with

a unified register file for both architectural registers and for uncommitted results,

132

as in [128, 49]. In that type of architecture, including those with separate floating-

point and integer register files, an architectural register is not mapped to a fixed

location in the register file, so saving or restoring it involves first consulting the

renaming table. The alternative architecture, with a separate reorder buffer and

commit register file, may allow for greater hardware support of context switching,

but it requires a higher read bandwidth on the reorder buffer for a given level of

instruction throughput, and is poorly suited to SMT.

Our firmware approach to context switching does not add additional

ports to the register file, since the thread switching operations use the ordinary

instruction path. In summary, the inactive register buffer adds no complexity to

the core of the processor.

VII.B.3 Time Required to Swap Threads

In our simulations, with the baseline BMT configuration, a majority of

firmware context switches take 60 cycles or less. However, there is considerable

room for variation. This section describes the range of times required for each

step of the context switch.

25 cycles to detect main memory access—If a load instruction does

not complete execution in 25 cycles, then it is considered to be a main-memory

access. This includes a 3 cycle load instruction latency, a 14 cycle L2 latency, and

several extra cycles to account for contention when accessing the L2 cache. This is

for the baseline memory architecture. For the other memory designs investigated

in Section VII.D.4, this threshold is adjusted. In principle, this time could be

reduced by an early reply from the L2 tag array, or by consulting a load-hit

predictor. However, as we show in Section VII.D.6, switching prematurely can

decrease memory parallelism by missing the opportunity to issue independent

load misses in parallel with the first miss encountered. The 60 cycle figure above

133

does not include these 25 cycles.

3–30 cycles to trigger flush—There is a 3-cycle minimum delay to

trigger a flush in our model. However, older uncommitted instructions from the

same thread may further delay the flush. In our simulations, the flush occurs after

3 cycles 64% of the time, within 15 cycles 94% of the time, and very rarely after

more than 30 cycles. A flush could be triggered before the canceled load becomes

the oldest instruction in its thread, but we found that the cost of unnecessary

flushes caused by wrong path instructions outweighed the advantage of flushing

sooner.

15 cycles for microcode to reach execute—Instructions can be

fetched from the microcode control store immediately after the flush has been

triggered. In the pipeline we model, there are 15 stages between fetch and execute.

∼10 cycles to issue rsave instructions—The microprogram will

contain 1–62 rsave instructions, depending on the number of dirty registers.

There is considerable variation between benchmarks. Overall, though, on 50%

of thread swaps, 20 or fewer registers had been modified, and on 90% of thread

swaps, 40 or fewer had been modified. The rsave instructions compete to use

the integer units with instructions from other active threads, but in the best case,

40 rsaves take 10 cycles to execute, 4 at a time.

∼16 cycles to issue rrestore instructions—The microprogram con-

cludes with 62 rrestore instructions to restore the registers of the new thread.

These take at least 16 cycles to execute. For those 4 of the 16 benchmarks which

do not use floating-point registers, there are only 31 rrestores.

≤10 cycles restore-use latency—After the microprogram is fetched,

but concurrently with the execution of the rrestores, the processor fetches from

the new thread. We model a 10 cycle latency for the rrestore instructions, and

the execution of the rrestore instructions is fully pipelined. Depending on what

134

Fetch ≤ 3 instructions per thread from ≤ 2 threads each cycle
Branch prediction 64Kbit 2bcGskew Deep Pipeline 22 stages, 16 cycle misp. penalty
Out-of-order execution with 48/32/20 entry integer/fp/memory instruction queues, which
may issue 4 integer/mem instructions (≤ 2 mem) and 2 fp instructions each cycle
Instruction Window supports 128 in-flight instructions†
Memory system

32k 4-way 3 cycle L1 Instruction and Data caches (2 acc/cyc)
64 byte linesize for L1 caches
64 entry DTLB / 48 entry ITLB, fully associative
256 entry second level Data and Instruction TLBs
128 byte linesize for higher-level caches
2MB 8-way 14 cycle L2 cache (1 acc/cyc)†
500 cycle memory access time†

†— Baseline parameter, different where noted.

Table VII.1: Processor parameters for Chapter VII.

registers are used first by the new thread, there will be a 0–10 cycle delay. This

could be reduced by strategically reordering the rrestore instructions to match

the order of their use by the new thread, based on the instructions previously

flushed. Of course, the new thread may also incur an instruction cache miss.

VII.B.4 Common Architecture

The parameters common to all processor designs are shown in Ta-

ble VII.1. We intend that these parameters represent a reasonable processor

design one or two process generations from now, except that the cache sizes are

somewhat smaller than might be projected. We chose relatively smaller cache

sizes to match the memory footprint of the benchmarks we use.

The baseline SMT processors we evaluate implements the flush-on-cache-

miss policy from [111], which makes more room in the instruction window for

instructions from non-stalled threads. Thus, the miss detection and flushing ca-

pability required by BMT should not be viewed as an extra cost of our design.

We model a software TLB miss handler mechanism close to that used

in the Alpha architecture [24] for all processor designs. For some workloads,

page-table walks due to TLB misses represent a significant fraction of all main

memory accesses, and a fraction which increases as more threads are run together.

135

Fast Forward
Name Code Input Instructions (×106)

ammp 0 2000
art 1 -startx 110 7500
crafty 2 700
eon 3 rushmeier 100
galgel 4 5000
gap 5 185330
gcc 6 166 2100
gzip 7 graphic 39300
mcf 8 12600
mesa 9 1300
mgrid A 2100
parser B 400
perl C makerand 10000
twolf D 900
vortex E 2 6000
vpr F route 36100

Table VII.2: The benchmarks used in this study.

Therefore, we allow thread swaps to occur on the loads in the TLB miss trap

handler routine. A system with a hardware TLB handler should be able to

accommodate thread-swapping as well.

VII.C Methodology

We evaluate each design alternative by simulation. For each design,

we simulate workloads of different sizes. For each workload size, we present the

average of several different workloads. Each of the workloads are comprised of a

subset of the SPEC2000 benchmarks.

We perform all simulations using a detailed, execution-driven simula-

tor, based on SMTSIM [113]. The simulator executes Alpha binaries which are

compiled with the DEC C (-O4) or Fortran (-O5) compiler. We added a software

TLB miss handler that closely models the Alpha architecture PALCode TLB trap

handler.

The speedup results we present are meant to be an estimate of the

overall improvement in throughput for a system which continuously runs the 16

benchmarks shown in Table VII.2, as compared to a single-threaded system. We

136

2A 01

2B 12

2C 23

2D 34

2E 45

2F 56

2G 67

2H 78

2I 89

2J 9A

2K AB

2L BC

2M CD

2N DE

2O EF

2P F0

Workload

↓ Name

3A 012

3B 345

3C 678

3D 9AB

3E CDE

3F 024

3G 68A

3H CEF

3I 135

3J 79B

3K DF6

Bench.↑

Codes

4A 0123

4B 4567

4C 89AB

4D CDEF

4E 0246

4F 8ACE

4G 1357

4H 9BDF

6A 012345

6B 6789AB

6C ABCDEF

6D 0369EF

6E 147C28

(see Tbl VII.2)

8A 01234567

8B 89ABCDEF

8C 02468ACE

8D 13579BDF

10A 0123456789

10B 456789ABCD

10C 89ABCDEF01

10D CDEF012345

12A 456789ABCDEF

12B 012389ABCDEF

12C 01234567CDEF

12D 0123456789AB

16A 01234567

89ABCDEF

Table VII.3: The workloads used in this study. (Refer to benchmark codes in
Table VII.2.

simulate a portion of each benchmark. With the assistance of SimPoint [98], we

select a starting point for simulation within each benchmark. Using the multiple

simulation point algorithm, we select a phase in each benchmark that represents

the largest amount of execution.

We simulate several different workloads for each workload size, which

represent a sampling of the space of possible workloads. The exact combinations

used are shown in VII.3, where each workload is described as a string of char-

acters. Each character represents a benchmark, as shown in the column labeled

Codes in Table VII.2. For example, workload 2B consists of 2 threads, art and

crafty. The workloads are selected so that each benchmark is included in more

than one workload at each workload size, and to reduce commonality between

workloads without unduly increasing the number of simulations. Beyond that,

the combinations are selected without any design.

In all simulations, after advancing each thread to the simulation start-

ing point indicated in Table VII.2 using a checkpoint, we performed a detailed

137

simulation until 108 × n instructions had been executed (where n is the number

of threads in the workload). When simulating multiple threads, each benchmark

in a single workload will run for a different number of instructions under different

processor parameters. If there is a large variation in performance of the running

threads, this will complicate interpretation of the results. Thus, we present all

performance results as weighted speedup [102, 111]. The weighted speedup of a

multithreaded workload is defined as the sum of the speedups of each individual

thread within the workload over a baseline run (in this case single-thread execu-

tion). The speedup of a thread within a workload is defined as its performance,

in instructions per cycle (IPC), when part of a multithreaded run, divided by

its IPC when run by itself over the same range of instructions. Thus weighted

speedup represents average relative progress on the workload. By contrast, other

metrics, like total instructions per cycle, can artificially create the appearance of

increases in performance when more instructions are executed from a higher-IPC

thread.

Each speedup we present for 2, 3, 4, 6, 8, 10 or 12 threads at a time

represents the average of 16, 11, 8, 6, 5, or 4 different simulations, respectively,

as shown in Table VII.3.

We use CACTI 3.2 [99] for modeling register access times. Since CACTI

3.2 is designed to evaluate the access time of caches, we discarded the tag path

in the measures presented here. Access times assume a 70nm process.

VII.D Analysis and Results

The number of physical contexts supported by a processor, Cphys, affects

the size of the physical register file and the renaming table, both of which are

likely to affect the maximum clock speed and pipeline length. This can degrade

performance, especially when one or few threads are run at a time. In this

138

192256320384448512
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

 SMT−2

 SMT−3

 SMT−4

 SMT−6

 SMT−2 (no flush)

 SMT−3 (n/f)

 SMT−4 (n/f)

 SMT−6 (no flush)

 CGMT−2
 CGMT−3

 BMT−2/4

 BMT−2/6

 BMT−4/6

 BMT−4/8

 BMT−6/8
 BMT−6/12

W
ei

g
h
te

d
 S

p
ee

d
u
p

(r

el
at

iv
e

to
 s

in
g
le

−
th

re
ad

 p
ro

ce
ss

o
r)

Capacity of primary register file, R
phys

Figure VII.1: Performance (weighted speedup) of SMT, BMT and CGMT vs.
physical register file size.

paper, we use the number of physical registers, Rphys, as a proxy for these other

effects. The following subsection examines the relationship between throughput

and Rphys for different multithreading schemes. Also in this section, we examine

how BMT performs over a range of workload sizes and memory parameters. We

also examine the importance of firmware support for thread switching, and of

store retirement policies. We consider the effect of changing the delay to trigger

a thread swap after a miss. Finally, we quantify the effect of a larger register file

on overall performance.

VII.D.1 Increasing Throughput Simply

Figure VII.1 illustrates the tradeoff between throughput and physical

register file size. The figure shows that, for a given register file size, a BMT

processor gets greater throughput than an SMT processor.

139

The x-axis shows the number of registers in the physical register file,

Rphys. We define

Rphys = Cphys × Rarch + Rren

where Rarch = 62 because the Alpha ISA defines 62 non-zero registers, and,

again, Cphys is the number of physical contexts. All designs assume a single

unified physical register file. The IRB is not included in Rphys, because it should

not be part of a critical circuit timing path. For all the results, except where

noted in Section VII.D.7, Rren = 128, which permits 128 in-flight instructions

across all threads. The y-axis shows speedup relative to an otherwise equivalent

single-thread processor.

There are 4 groups of points to consider. The points labeled SMT-n,

in the middle curve, show the speedup of SMT processors running a workload of

size n. For an SMT processor, n ≤ Cphys, and Cphys = Cvirt, so we use Cphys = n

to compute Rphys. The points labeled SMT-n (no flush), in the lower curve, show

the performance of a series of SMT processor designs without a mechanism to

flush a thread with a long-latency load [111]. We present this to emphasize the

importance of having such a mechanism in any multithreading processor with a

shared instruction window. The points labeled BMT-m/n represent BMT designs

with Cphys = m and Cvirt ≥ n, running workloads of n threads.

The BMT-2/4 processor gets 26% more throughput than an SMT-2

processor, while running at the same clock speed with the same pipeline depth. A

4-context SMT processor gets 17% more throughput when enhanced with BMT,

assuming 8 jobs are ready to run.

We model the same pipeline depth and cycle time for all SMT and

BMT configurations. As additional hardware contexts are added, keeping the

pipeline depth or cycle time constant is unlikely, but the focus of our comparisons

are between SMT and BMT configurations with the same number of physical

140

contexts. Because the speedup is not adjusted for these effects, care should be

taken when comparing points with different values of Rphys. For example, while

the 4-context SMT processor shows 54% higher throughput than a 2-context

SMT processor when 4 threads are available, differences in the pipeline and/or

clock rate between those two designs mean that the relative throughput of the

4-context SMT processor will be lower than that number.

Even ignoring complexity differences, however, the additional benefit of

our approach is significant. Regardless of whether a 2, 4 or 6 context SMT pro-

cessor design is the best choice for particular technology and performance goals,

BMT can be added to boost throughput without affecting pipeline complexity.

Additionally, these results assume all physical contexts are filled. When there are

fewer threads than contexts, the advantage of the BMT designs over SMT are

even greater.

This figure also shows the performance of CGMT alone. It provides

only marginal gains over a single-threaded processor. Because of the high cost of

moving state in and out of the processor core, CGMT alone is of less value. But

when CGMT is added to SMT, the additional physical contexts can do useful

work while a context switch is underway, hiding the cost of the switch.

VII.D.2 Scalability of Balanced Multithreading

Adding more threads to a processor can increase performance by in-

creasing memory parallelism. However, with too many threads, the benefits can

be outweighed by the cost of contention between threads. In this section, we

investigate how well different BMT designs perform, compared to SMT designs,

as the virtual-to-physical context ratio, Cvirt/Cphys, increases.

The firmware mechanism to swap threads in and out of the processor

core has two costs. First, the time required to complete the context switch delays

141

the start of execution of the incoming thread. Second, the firmware save/restore

instructions contend with other active threads for execution resources. To un-

derstand the cost of the firmware context switching mechanism, we compare the

performance of the firmware mechanism with a hypothetical instant save/restore

mechanism.

Figure VII.2 shows the weighted speedup of several different SMT and

BMT designs. The x-axis shows the number of threads in a workload, n, which is

assumed to be equal to Cvirt for this study. The y-axis shows weighted speedup

of each design compared to a single-thread processor. On the curve where the

points are labeled SMT-n, the points represent SMT processors capable of run-

ning workloads of n threads together. There are three sets of curves for BMT

designs with 2, 4, or 6 physical contexts. Within each set, there is a curve labeled

firmware, for a processor using the firmware thread swapping mechanism, and a

curve labeled instant which represents a processor with an idealized, nearly in-

stantaneous thread-swapping mechanism. The instant mechanism requires only 1

cycle to save and restore the architectural registers of the outgoing and incoming

threads, once the miss-to-memory is detected and a thread is flushed.

Figure VII.2 illustrates two effects. First, for each value of Cphys, there

is an optimal value of Cvirt/Cphys. Second, as Cphys increases, the relative cost of

the firmware thread swapping mechanism increases too. The figure shows that

the gain from BMT peaks when Cvirt/Cphys = 2. When the ratio is larger than

2, the costs of running multiple threads begin to outweigh the benefits. For a

BMT processor, that cost has two components: the cost of thread swapping and

the cost of interference between threads. The curves labeled instant, while being

perhaps impractical, show the relative contribution of these two effects. When n

is small, the cost of swapping is low. The cost of thread swapping comes from

contention for instruction queue space and load/store ports from the thread-

142

2 3 4 6 8 10 12 16
1

1.5

2

2.5

3

3.5

 BMT 2 firmware
 BMT 2 instant

 BMT 4 firmware

 BMT 4 instant

 BMT 6 frm.

 BMT 6 ins.

SMT−4

SMT−6

SMT−8

SMT−12
 SMT−16

W
ei

g
h
te

d
 S

p
ee

d
u
p

Number of threads in workload, T

Figure VII.2: Weighted speedup of several different SMT and BMT designs.
The X axis shows the number of scheduled virtual contexts for the processor
configuration; that is, the total number of threads run together at once.

143

swapping instructions. Thus, at the BMT-2 design point, there is little reason to

try to further optimize the thread swapping mechanism, but for BMT-6, there is

an incentive to improve it.

For larger values of Cvirt/Cphys and larger n, the benefit from increased

memory parallelism is outweighed by a loss of locality in the higher level caches.

The loss of locality is caused by having many threads in the workload. The

optimal Cvirt/Cphys ratios suggested by this graph are for an average over many

workloads, but will vary with the particular threads running. This represents an

opportunity to further improve performance by adaptively sizing the number of

threads in a workload based on the behavior of the constituent threads.

VII.D.3 Hardware Support for Thread Swapping

The previous section compared the performance of our baseline thread

swapping mechanism with a hypothetical one-cycle latency thread swapping mech-

anism. Our baseline mechanism already includes some optimizations to reduce

swapping latency. This section evaluates two of those optimizations: the Dirty

Register Mask (DRM) and the Inactive Register Buffer (IRB).

The DRM, discussed in Section VII.B.2, allows the thread swap to only

save registers values that have been touched. The IRB may be considered an

optimization compared to a purely software thread swap, where a context’s state

is stored using conventional loads and stores. Figure VII.3 shows the performance

of BMT processors with 2 or 4 physical contexts, with varying levels of hardware

support for thread swapping, and of SMT processors with 2–6 contexts.

The two BMT features are not important for the BMT-2 processor, but

are important for the BMT-4 processor. Of the two, the DRM is more important.

The benefit of the dirty-register mask increases as more threads are run because of

the greater contention for functional units. A lesser effect may be that programs

144

2 3 4 6 8
1

1.5

2

2.5

3

W
ei

g
h
te

d
 S

p
ee

d
u
p

Number of Threads in Workload

BMT−2

BMT−4

SMT
BMT
BMT w/o IRB
BMT w/o DRM

Figure VII.3: Performance of BMT with different levels of hardware support.

are swapped in for less time when more threads are present, and thus have time

to dirty fewer registers.

Without an IRB, inactive registers could be stored directly into memory

(where they would typically be caught by the cache). Thus, for the no-IRB

configuration, the save-restore instructions use the load/store units, which halves

the rate at which they may issue. In the no-IRB configuration, if a miss occurs

in the thread-swap microcode, the thread waits instead of performing a second

swap. Because such misses are uncommon in the BMT-2 configurations, there is

little performance impact. With a larger workload size, the IRB is important for

good performance.

VII.D.4 Sensitivity to Memory Hierarchy

The speedup provided by balanced multithreading is sensitive to three

parameters of the memory hierarchy: The size of the caches, the latency to access

the lowest level of cache, and the latency to main memory. Figure VII.4 shows

the performance of SMT and BMT with different memory configurations. Each

group of bars shows the performance of different processor designs with the same

memory hierarchy. All configurations have the L1 caches described in Table VII.1,

145

but the lower levels of the hierarchy are varied. The configurations were chosen

to study the sensitivity to individual memory-system parameters. The y-axis

represents weighted speedup. For each group of bars, the speedup is computed

relative to a single-threaded processor with the same memory hierarchy. As a

result, the speedup for a design with a larger cache hierarchy may be less than

that for a design with a smaller cache.

The best Cvirt/Cphys ratio for a BMT system depends on the memory

system, so we show two BMT configurations next to each corresponding SMT

processor design. Above each group of bars is shown the speedup of the better of

the two BMT bars over the adjacent SMT bar. All three of those bars the same

Cphys. For example, the first group of bars, labeled Base, represents the memory

configuration used for all previous results in this paper: a 500 cycle memory

latency and a 14-cycle 2MB L2 Cache. As noted in the plot, a BMT-2/4 design

gets 26% speedup over an SMT-2 processor, and a BMT-4/8 gets 16% speedup

over an SMT-4 design.

The speedup from applying our technique will be sensitive to three pa-

rameters of the memory hierarchy: The size of the caches, the latency to access

the lowest level of cache, and the latency to main memory. Figure VII.4 shows

the performance of SMT and BMT with different memory configurations. Each

group of bars shows the performance of different processor designs with the same

memory hierarchy design. All configurations have the L1 caches described in

Table VII.1, but the lower levels of the memory hierarchy are varied as noted in

the figure. The configurations were chosen to study the sensitivity to individual

memory-system parameters. The y-axis represents weighted speedup. For each

group of bars, the speedup is computed relative to a single-threaded processor

with the same memory hierarchy. As a result, the speedup for a design with a

larger cache hierarchy may be less than that for a design with a smaller cache.

146

Base FastMSlowM Big$ Small$Slow$ L3
1

1.5

2

2.5

3

Name
Base
FastM
SlowM
Big$
Small$
Slow$
L3

Size and Latency
2M 14/500
2M 14/350
2M 14/650
4M 14/500
1M 14/500
2M 30/500
256k/2M 14/30/500

26

16

20

8

29

23

20

11

28

20

9

7

9

8

W
ei

g
h

te
d

 S
p

ee
d

u
p

Memory Configuration

SMT−2
BMT−2/3
BMT−2/4

SMT−4
BMT4/6
BMT4/8

Figure VII.4: Performance (weighted speedup) of SMT and BMT for several
different memory hierarchies.

The best Cvirt/Cphys ratio for a BMT system depends on the memory

system, so we show two BMT configurations next to each corresponding SMT

processor design. Above each group of bars is shown the additional speedup of

the better of the two BMT bars over the adjacent SMT bar, all of which have

the same Cphys. For example, the first group of bars, labeled Base, represents the

memory configuration used for all previous results in this chapter: a 500 cycle

memory latency and a 14-cycle 2MB L2 Cache. As noted in the plot, a BMT-2/4

design gets 26% speedup over an SMT-2 processor, and a BMT-4/8 gets 17%

speedup over an SMT-4 design.

Running more threads at the same time has a cost and a benefit. Part

of the cost is from increased contention in the caches, predictors and other struc-

tures. The benefit is an increase in the number of parallel memory accesses.

Changes to the memory parameters shift these costs and benefits.

A larger cache, as in Big$, reduces the number of opportunities to use

coarse-grained thread switching. Also, a slower cache increases the cost of misses

caused by cache contention, and increases the latency before the processor can

detect a main memory access. This is illustrated by the lower additional speedup

147

from BMT for the Slow$ group.

The L3 configuration has a third level of cache, which has both the

detrimental effects just mentioned. In this configuration, context switching only

occurs on an L3 miss, because the firmware context switch mechanism is too slow

to hide an L3 hit. With a faster memory (FastM), the fraction of time spent on

context switches relative to total execution time increases.

In the case of the larger cache for the Big$ configuration, there are sim-

ply not enough misses to main memory to offset the increase in contention. For

example, the BMT-4/6 processor with the Base memory configuration had, over

all workloads, 2.5 main memory accesses per 1000 committed instructions. The

same processor with the Big$ memory configuration only had 0.8 main memory

accesses per 1000 instructions. The larger cache significantly reduces the oppor-

tunity to benefit from thread swapping. At the same time, the number of Data

Cache misses which do not go to memory increases. For BMT-4/6, with the Base

memory, there are 16 L1 misses that do not go to memory per 1000 instructions.

For the Big $ configuration, there are 22 L1 misses per 1000 instructions that are

filled without going to memory.

It should be noted that the lessened need for BMT with large caches is

primarily a function of the workload, rather than the architecture. Even today,

many commercial applications will exercise caches of this size much more heavily.

Thus, while cache sizes will increase, which reduces the number of main memory

accesses, which in turn reduces the effectiveness of our technique, we expect this

effect to be largely mitigated by increases in application working set sizes. Thus,

when evaluating our technique, we feel it is fair to focus on the results for the

baseline memory configuration.

The bar-groups labeled FastM and SlowM show results for processors

with 350 and 650 cycle main memory latencies, respectively. We use 500 cycles

148

2 3 4 6
1

1.5

2

2.5

3

W
ei

g
h

te
d

 S
p

ee
d

u
p

Number of Threads in Workload

SMT
SMT Store Miss Flush
BMT−2
BMT−2 Store Miss Swap
All with Strict Stores

Figure VII.5: Performance of SMT and BMT processors with strict store retire-
ment policy.

as the baseline main memory latency, and we expect that real systems will reach

that level soon. As memory latency increases, the advantage of adding more

virtual contexts increases: With SlowM, the BMT2/4 and BMT4/8 configurations

significantly outperform BMT2/3 and BMT4/6, respectively.

VII.D.5 Store Retirement Policies

All the architectures presented in this chapter allow store instructions

which miss in cache to partially complete; younger non-store instructions may

commit, and free up space in the instruction window, even when a store’s result

has not yet been written to the L1 data cache. We believe that this fairly reflects

some modern processor designs. Nevertheless, we also considered an with a strict

store retirement policy; younger instructions wait for a store to write to the L1

cache. A strict store retirement policy might be necessary in some systems to in-

sure timely handling of interrupts. With a strict retirement policy, a long-latency

store may cause a thread to fill up the instruction window, stalling progress for

all threads. ITo counteract this, we found that swapping on long latency stores

as well as loads produced good results. Figure VII.5 evaluates SMT and BMT

architectures with a strict store retirement policy. This shows that, under a strict

149

BMT−2/3 BMT−2/4 BMT4/6 BMT4/8

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆
W

ei
g
h
te

d
 S

p
ee

d
u
p

Processor Configuration

5
15
25
35
65
95
Per−T

Figure VII.6: Performance of BMT processors with different delays to initiate
swapping on a miss.

store retirement policy, SMT and BMT architectures benefit significantly from

flushing/swapping on stores, and that BMT works well with strict stores as well.

VII.D.6 Delayed Detection of Load Misses

In the baseline BMT configuration, a thread swap is triggered when a

load instruction takes longer than 25 cycles to complete. The minimum latency

for an L2 hit in the baseline architecture is 17 cycles, but some loads take longer

due to contention at the L2 cache. Waiting an additional 8 cycles avoids prema-

ture swapping. The simple wait-25-cycles approach only requires a small counter

for each active load instruction. A alternative mechanism might include a signal

from the L2 cache after the tags has been checked. Detecting a load miss and

switching sooner may improve performance, since the next thread begins exe-

cuting sooner. However, flushing a thread too soon can prevent the execution

of a second load instruction, which would otherwise initiate a second, parallel,

main-memory access.

We evaluated the performance of 4 BMT designs with different values

for the load-execution to miss-detection latency, l. Those results are shown in

Figure VII.6. The value of l is indicated in the legend. The y-axis shows the

150

0

1
ammp

0

1
art−110

crafty eon−rushmeier

galgel gap

gcc−166 gzip−graphic

mcf mesa

mgrid parser

perlbmk−makerand twolf

0 20 40 60
0

1
vortex−2

0 20 40 60
0

1
vpr−route

Figure VII.7: Probability, y, at time x after executing a load instruction which
misses in L2, that no further main-memory accesses will be initiated.

151

change in weighted speedup for a given design when l is changed from its baseline

value of 25. Note that detecting an L2 miss after only 5 cycles would require either

checking the L2 tags very quickly, or a load hit predictor. Fortunately, detecting

a miss sooner actually decreases throughput. For example, if L2 misses could be

detected 5 cycles after a load first executed, the weighted speedup of BMT-2/3

would drop by 0.05 (from 1.70, as indicated in Figure VII.1 or Table VII.4, to

1.65).

In all cases, increasing l to 35 increases the throughput of BMT. How-

ever, with larger workloads, higher values of l may reduce throughput. With a

larger workload, it is more likely that there is a ready-to-run thread waiting to

be swapped in. The best single value of l depends on the number of virtual and

physical contexts, and the particular set of benchmarks. However, an even better

policy would be one which sets a different value of l for each thread.

It is profitable to delay swapping out a thread if it is likely that ad-

ditional main memory accesses can be initiated by waiting. As illustrated in

Figure VII.7, benchmarks differ considerably in the number of main-memory ac-

cesses that may occur in parallel. There is one subgraph for each benchmark we

use. The y-axis shows the probability that no additional main-memory accesses

will be initiated following a load which misses in the L2 cache. The x-axis shows

time in cycles after the first miss. Note that only subsequent accesses to different

cache lines are counted. For perl amd ammp, when a load misses in the L2, it

is highly unlikely that subsequent loads will initiate additional memory activity,

so those threads should be swapped out as soon as possible. For gcc, even 60

cycles following a L2 miss, it is quite likely that additional misses will occur be-

fore the first miss completes, so gcc should be swapped out after a longer delay.

We evaluated a static, per-thread swap-delay policy. This is shown as the bar

labeled Per–T in Figure VII.6. For this policy, all threads are swapped out on

152

Type Cp n WSU Rren Rphys tacc nstg

Uni 1 1 1.00 128 190 0.46 5

SMT 2 2 1.46 128 252 0.58 6
3 3 1.89 ” 314 0.60 7
4 4 2.26 ” 376 0.62 7
6 6 2.73 ” 500 0.65 7
8 8 3.07 ” 628 0.72 8

BMT-2 2 3 1.70 128 252 0.58 6
2 4 1.84 ” ” ”
2 6 1.76 ” ” ”

BMT-4 4 6 2.57 128 376 0.62 7
4 8 2.64 ” ” ”

BMT-6 6 12 2.93 128 500 0.65 7

Cp the number of physical contexts
n the number of threads in workload
WSU the weighted speedup
Rren the number of additional registers for renaming
Rphys the number of physical registers
tacc the register file access time (ns)
nstg the estimated number of stages at 10 Ghz

Table VII.4: Performance and expected register file access times for various mul-
tithreading architectures.

a load which takes more than 20 cycles, except art, galgel, gap, gcc, and vpr,

for which l = 80. In all 4 cases, the Per–T policy performs better than any

single value of l. With this policy, BMT2/4 gets an additional 3% speedup over

single-thread execution.

We present the Per-T policy to show that there is benefit from a dy-

namic policy which detects which threads have high memory level parallelism.

To implement such a policy, l could be held in a counter which is periodically set

to a high value, and which is decremented each time no concurrent misses occur.

VII.D.7 Quantifying the Cost of Additional Registers

The weighted speedup results presented in this paper do not reflect

any cycle time or pipeline length penalties that may arise from adding physical

contexts to a processor. In this section, we attempt to quantify the cost of adding

153

64 96 128

1

1.2

1.4

1.6

1.8

W
ei

g
h

te
d

 S
p

ee
d

u
p

Number of Renaming Registers, R
ren

ST
SMT−2
BMT−2/4

Figure VII.8: Performance (weighted speedup) of SMT and BMT for several
different numbers of additional renaming registers over the baseline 128 logical
registers needed. All speedups are relative to single-thread processor with 128
registers provided for renaming (190 total).

additional physical contexts to an SMT processor, as opposed to adding virtual

contexts.

Table VII.4 lists the different architectures studied in previous sections.

The speedups shown are for the base memory configuration (see Table VII.1).

The last two columns show estimates of the register file access times for differ-

ent architectures and an estimate of the number of clock cycles that it would

require if pipelined at 10 GHz. By this estimate, 3 additional pipeline stages

would be needed for an 8 context SMT processor, compared to an otherwise

similar 1-context processor. Our access time estimates do not quantify several

additional costs of additional contexts. A slower register file read time can add

stages between issue and execute, which complicates scheduling. A slower regis-

ter file write time requires additional hardware to hold bypassed results longer.

And a larger register file in turn increases the size of the renaming table. Also,

the additional pipeline stages required to tolerate a larger register file fall in a

particularly inopportune place in the pipeline. Lengthening the pipeline at this

point increases load hit misspeculation penalties [10].

In previous sections, we simulate processors with a large instruction

154

window. The instruction window requires 128 registers beyond those required to

hold programmer-visible state (which is 62 per physical context). An alternate

way to reduce the size of the register file is to provide fewer of these additional

registers. Doing this does not negate the benefit of BMT. If reducing the size of

the instruction window increases the performance of the processor, or makes room

for additional physical contexts, then BMT can still be used. Figure VII.8 shows

that a BMT-2/4 processor configuration beats an SMT-2 processor configuration,

with fewer additional registers for renaming (a smaller instruction window).

VIII

Summary and Future Work

VIII.A In This Dissertation

Modern processors remove many artificial constraints on instruction or-

dering, permitting multiple instructions to be executed in parallel. As a result,

only a fraction of all the instructions in a program trace determine the execution

time of the program. Any effort to improve program performance is wasted when

not applied to these critical instructions. Likewise, the remaining non-critical

instructions may be delayed, to a point, without affecting performance. Depend-

ing on the program and microarchitecture, typically between a few percent and

half of all dynamic instructions are critical. We propose and evaluate several

hardware techniques to classify whether an instruction is critical or non-critical,

and discuss related efforts at the same. We show that the criticality of dynamic

instructions is correlated to the corresponding static instruction. We exploit this

correlation to predict an instruction’s criticality, in hardware, before it executes.

We call this critical-path prediction. These predictions can be used anywhere

that the processor must arbitrate between instructions for a limited resource. We

demonstrate the utility of these predictions in several such applications, which

we call critical-path aware optimizations: a processor with a limited-rate value-

155

156

predictor, a clustered microarchitecture with inter-cluster communication delays,

and a reduced-power microarchitecture with heterogeneous functional units and

queues. We perform an offline analysis of the critical paths of programs to vali-

date our findings and to quantify the degree of criticality of different instructions.

Our findings lead us to propose a new multithreading architecture. Under our

proposal, threads execute in parallel in a manner sensitive to the hardware im-

plications of supporting multiple contexts, and also sensitive to the critical path

issues.

VIII.A.1 Critical Path Prediction

This thesis introduces the concept of critical path prediction, which

seeks to identify those instructions that constrain the performance of the proces-

sor. We propose several critical path predictor designs.

Our first proposal is heuristic critical path prediction. This scheme

relies on the behavior of individual instructions as they pass through the pipeline

to indicate which instructions are critical. One of the most effective heuristics

relies on the instruction scheduling mechanism already present in the processor

to indirectly indicate relationships between instructions. This focus on individual

instructions means that an implementation of a heuristic critical path predictor

may require the least hardware.

The iterative predictor starts by identifying instructions which are def-

initely on the critical path, and then builds on the resulting predictions to gain

a broader view of the critical path. The hybrid predictor combines the iterative

predictor and a heuristic predictor for more consistent good performance over a

range of benchmarks.

We also compare our predictors to a proposal by another research group:

the token-passing predictor. We find the additional complexity of the token-

157

passing predictor does not bring a clear advantage in comparison to our predic-

tors.

All the critical path predictors rely on the assumption that static in-

structions which were recently critical will be critical again on subsequent iter-

ations. We use a critical path prediction buffer to accumulate observations of

critical instructions, and, in turn, to predict the criticality of instructions.

VIII.A.2 Critical Path Aware Optimizations

Critical path prediction information can be useful just about anywhere

the processor must arbitrate between instructions, or where hardware structures

are prone to contention or pollution. We demonstrate the utility of critical path

prediction by using it to control three different aspect of a processor. We demon-

strate that the effectiveness of a value predictor can be more than doubled through

the use of critical path prediction, relative to a value predictor that must select

randomly among multiple instructions that are deemed to be predictable. It is

68% more effective than a value predictor that uses decoded instruction informa-

tion to make the selection based on expected latency.

We also demonstrate how critical path predictions can be used to steer

instructions in a clustered architecture, where there is a communication latency

between replicated pipeline stages. The effect of this additional inter-cluster

communication latency is mitigated when critical instructions are sent to one

cluster, and non-critical instructions are sent to a different cluster. We find that

critical-path predictions improve on previous proposals for steering instructions,

which did not take criticality into account.

It has also been shown that critical-path predictions can be used to re-

duce power consumption without excessive performance loss. Critical-path pre-

diction can be used to direct instructions to execute on one of several functionally

158

equivalent execution paths. These paths differ, however, in the power/performance

tradeoffs inherent in their design. The viability of such a design demonstrates

that critical-path prediction not only improves existing microarchitectures, but

also makes possible new ones.

As concurrecy in processors continues to increase, application perfor-

mance becomes more tied to the execution of the critical dependence path. These

and other critical path aware optimizations will have an increasingly large ad-

vantage.

VIII.A.3 Quantifying the Critical Path

Having demonstrated the feasability of dynamic critical path prediction

with several applications, we turn to an offline analysis of program traces to help

use better understand the critical paths of programs. We analyze the criticality

(tautness) or non-criticality (slack) of each instruction in a program trace. The

former, tautness, is a new metric we introduce to measure the degree of criticality

of a dynamic instruction. We evaluate the accuracy of several critical path pre-

dictors, both in terms of the accuracy of the training stream and the prediction

mechanism; and we demonstrate the potential for new prediction techniques. We

find that there are more slackful instructions than taut instructions, and examine

the distribution of slack and tautness in programs. We found that a majority of

static instructions are never critical, but among those static instructions that are

ever critical, criticality varied frequently – very few static instructions are always

critical; about 1.5% on average over 13 benchmarks. Thus, predicting exactly

the dynamic instances of these static instructions that are critical is difficult, but

important for a highly accurate predictor. We show that new prediction tech-

niques that recognize patterns in these critical instructions have the potential to

significantly increase the accuracy of critical path predictors.

159

Our work suggests several important future directions to improve the

effectiveness of critical path prediction. It shows that critical path predictors

need to be able to identify patterns of criticality to achieve higher coverage and

accuracy. It also demonstrates the need for predictors that quantify criticality

(or slack) rather than just produce a binary prediction. We provide one example

appliction: selecting loads to speculatively precompute.

VIII.A.4 Multithreading

We also propose a new for multithreading which combines Simultaneous

Multithreading (SMT) and specialized form of Coarse-Grained Multithreading

(CMGT). We call the combination Balanced Multithreading. SMT allows the

processor to tolerate even the smallest latencies. CGMT is sufficient to tolerate

long memory latencies. We present a form of CGMT which requires no changes

to timing-critical processor resources such as the register file and the renaming

table. The combination of the two results in a processor that provides high single

thread performance via a high clock rate, shorter pipeline and high instruction-

level parallelism; and high memory parallelism and thread-level parallelism when

more threads are available.

We find that in the face of long memory latencies, balanced multithread-

ing can provide instruction throughput similar to a wide SMT processor, but

without many of the hardware costs. In particular, we show that by adding sup-

port for balanced multithreading, the throughput of an SMT processor can be

improved by 26%, with no significant changes to the core of the processor, the

cycle time, or the pipeline.

While the work on Balanced Multithreading stands on its own as a

valuable architectural technique, it is closely related to our work on critical-

path prediction. Our finding that many load instructions which miss have a high

160

tautness, in Chapter VI suggests that it is safe to delay all subsequent instructions

for a long time while the load miss completes. And, we show that a critical-path

related policy to control context switches further improves the performance of

BMT.

VIII.B Future Work.

There is considerable opportunity to build upon and extend the ideas

in this thesis.

Althogh we evaluate several critical path optimizations, and other re-

searchers have evaluated several more, there is certainly room for even more.

Using critical path predictions in several places in a processor has the additional

advantage of amortizing the cost of the predictor.

Critical path predictions can be used to control whether the tag and

data lookups in a set-associative data cache are performed in series or in parel-

lel. Critical instructions would access in parallel for high-speed, and non-critical

instructions would access in series for low-power. (When the two are accessed in

parallel, all ways of the data array have to be accessed, but in series, only one

way needs to be accessed.)

The critical-path aware optimizations evaluated or discussed in this the-

sis work by reducing the execution latency of instructions on the critical path.

But several optimizations are possible which do not work by shortening execution

latencies, but by optimizing the rate at which instructions enter the pipeline in ac-

cordance with the critical path. Different programs may enjoy more or less benefit

from keeping a larger instruction window full of instructions. If there are many

critical instructions waiting to execute, this suggests that the processor does not

need to fetch further ahead until some more critical instructions execute. This

could be an opportunity to turn off an unused portion of the instruction queue,

161

or to throttle the fetch and decode stages in a power-saving way.

There are several directions for inquiry which combine multithreading

and critical-path prediction. First, critical path prediction can be used to im-

prove resource sharing in an SMT processor. In an SMT processor, the instruc-

tion queues, and physical register file may be shared between threads, either by

a partitioning, or by a fetch priority mechanism. A critical path aware window

partitioning or fetch priority policy could result in a better division of resources

than one that counts critical and non-critical instructions the same. Second, some

previously examined critical path aware optimizations may be more attractive in

the context of a multithreading processor. For example, the criticality-controlled

victim cache considered by Srinivasan et al. might be more useful in a multi-

threaded processor, where the level of cache contention is higher. Instruction

scheduling may be more attractive in a multithreaded processor as well.

Of course, the critical-path predictors will need to be adapted somewhat

to accomodate multiple threads. For several non-interacting processes, we expect

the changes will be quite limited. For multi-threaded shared memory programs,

additional work needs to be done. How can we track the critical path as it

jumps between several threads? If a load of a shared memory location is on the

critical path for one thread, then the instructions leading up to the store of that

item in another thread should be considered critical as well. Some preliminary

research has already begun in this area, [68]. One result is that it is possible

to view the sections of code between synchronization instructions as a single

node in an inter-thread dependence graph. Under this scheme, the entire thread

would be designated as critical over the span of, say, hundreds or thousands of

instructions. This suggests a range of thread-segement-specific as opposed to

instruction-specific optimizations. One such scheme is analagous to the multi-

speed functional units optimization described in Section V.C. Each thread could

162

be directed to execute on one of the cores of a heterogeneous multi-core processor,

[65], as appropriate to its criticality. The critical thread would execute faster,

which the non-critical threads would execute on lower power processor cores.

Even in a chip-multiprocessor which is not heterogeneous, the power consumption

of indivual cores could be adjusted.

For application-specific processors [43] and reconfigurable processors [46],

hardware is designed, or configured, to take advantage of the properties of a sin-

gle program or class of programs. To the extent that those programs vary at

runtime, dynamic critical-path prediction could be used to further optimize the

behavior on such architectures. In the case of reconfigurable processors, runtime

critical path profiling could be used to guide reconfiguration of hardware, when

precise program behavior is not known at compile/design-time.

Because the level of parallelism that processors can expose and exploit

continues to increase, both at the instruction level, and at the thread level, the

benefits from critical path aware optimization will grow as well. And because

designers have an increasing number of transistors at their disposal, even more

sophisticated program analyses may be possible in hardware.

Bibliography

[1] Computer Industry Almanac. Computer Industry Almanac, Inc., Eighth
edition.

[2] Alpha 21264/EV6 Microprocessor:Hardware Reference Manual. Compaq
Corporation, 1998.

[3] A. Agarwal, J. Kubiatowicz, D. Kranz, B-H. Lim, D. Yeung, G. D’Souza,
and M. Parkin. Sparcle: An evolutionary processor design for large-scale
multiprocessors. IEEE Micro, June 1993.

[4] Cedell Alexander, Donna Reese, and James Harden. Near–critical path
analysis of program activity graphs. In Proceedings of the 2nd Inter-
national Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 308–317. IEEE Computer Society,
February 1994.

[5] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. The Tera computer system. In International Conference on
Supercomputing, pages 1–6, June 1990.

[6] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. The IBM system/360
model 91: Machine philosophy and instruction-handling. IBM Journal of
Research and Development, 11:8–24, January 1967.

[7] R. Iris Bahar, Gianluca Albera, and Srilatha Manne. Power and perfor-
mance tradeoffs using various caching strategies. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design (ISLPED-98),
pages 64–69, New York, August 10–12 1998. ACM Press.

[8] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Re-
ducing the complexity of the register file in dynamic superscalar processors.
In In Proceedings of the 34th Annual International Symposium on Microar-
chitecture, December 2001.

[9] A. Battersby. Network Analysis for Planning and Scheduling. Wiley, 1970.

163

164

[10] Eric Borch, Eric Tune, Bobbie Manne, and Joel Emer. Loose loops sink
chips. In Eigth International Symposium on High Performance Computer
Architecture, February 2002.

[11] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro,
July-August 1999.

[12] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kallaa, and S. R. Kunkel.
A multithreaded powerPC processor for commercial servers. IBM J. Res.
Dev., 44(6):885–898, 2000.

[13] D. Brooks and M. Martonosi. Dynamically exploiting narrow width
operands to improve processor power and performance. In HPCA1999,
January 1999.

[14] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA2001, January 2001.

[15] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In 27th Annual In-
ternational Symposium on Computer Architecture, June 2000.

[16] M. Butler, T. Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow.
Single instruction steam parallelism is greater than two. In 18th Annual
International Symposium on Computer Architecture, pages 276–286, May
1991.

[17] J. Adam Butts and Gurindar S. Sohi. A static power model for architects.
In MICRO33, December 2000.

[18] Alper Buyuktosunoglu, David H. Albonesi, Stanley Schuster, David Brooks,
Pradip Bose, and Peter Cook. Power-efficient issue queue design. pages 35–
58, 2002.

[19] Brad Calder, Glenn Reinman, and Dean M. Tullsen. Selective value predic-
tion. In 26th Annual International Symposium on Computer Architecture,
pages 64–75, May 1999.

[20] Jason Casmira and Dirk Grunwald. Dynamic instruction scheduling slack.
In 2000 KoolChips workshop, December 2000.

[21] Francisco J. Cazorla, Enrique Fernandez, Alex Ramı́rez, and Mateo Valero.
Improving memory latency aware fetch policies for smt processors. In Pro-
ceedings of the 5th International Symposium on High Performance Com-
puting, pages 70–85. IEEE Computer Society, October 2003.

165

[22] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and John P. Shen. Dy-
namic speculative precomputation. In 34th Annual International Sympo-
sium on Microarchitecture, December 2001.

[23] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes,
Yong-Fong Lee, Dan Lavery, and John P. Shen. Speculative precomputa-
tion: Long-range prefetching of delinquent loads. In 28th Annual Interna-
tional Symposium on Computer Architecture, July 2001.

[24] Compaq Computer Corp., Shrewsbury, MA. Alpha 21264 Microprocessor
Hardware Reference Manual, February 2000.

[25] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algortihms, chapter Single-Source Shortest Paths, pages 536–538.
The MIT Press/McGraw-Hill Book Company, Cambridge, MA, 1990.

[26] J. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-banked
register file architectures. In International Symposium on Computer
Architecture(ISCA-27), 2000.

[27] Sun, IBM take processors multithreaded, multicore. EE Times, February
2003.

[28] Richard J. Eickemeyer, Ross E. Johnson, Steven R. Kunkel, Beng-Hong
Lim, Mark S. Squillante, and C. Eric Wu. Evaluation of multithreaded
processors and thread-switch policies. International Symposium on High
Performance Computing, pages 75–90, 1997.

[29] J. S. Emer. Simultaneous multithreading: Multiplying alpha’s performance.
In Microprocessor Forum, October 1999.

[30] Joel Emer. EV8:the post-ultimate alpha. In PACT Keynote Address
(http://research.ac.upc.es/pact01/keynotes/emer.pdf), 2001.

[31] Keith I. Farkas, P. Chow, Norman P. Jouppi, and Z. Vranesic. The mul-
ticluster architecture: reducing cycle time through partitioning. In 30th
International Symposium on Microarchitecture, December 1997.

[32] Brian A. Fields, Rastislav Bod́ık, and Mark Hill. Slack: Maximizing per-
formance under technological constraints. In To appear in the Proceedings
of the 29th International Symposium on Computer Architecture, 2002.

[33] Brian A. Fields, Rastislav Bod́ık, Mark Hill, and Chris J. Newburn. Inter-
action cost and shotgun profiling. In Proceedings of the 36th International
Symposium on Microarchitecture, December 2004.

166

[34] Brian A. Fields, Shai Rubin, and Rastislav Bod́ık. Focusing processor pri-
orities via critical-path prediction. In Proceedings of the 28th International
Symposium on Computer Architecture, 2001.

[35] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich,
and W. S. Lee. The M-Machine multicomputer. In 28th Annual Interna-
tional Symposium on Microarchitecture, November 1995.

[36] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, C-30(7):478–490, July 1981.

[37] Brian R. Fisk and R. Iris Bahar. The non-critical buffer: Using load la-
tency tolerance to improve data cache efficiency. In IEEE International
Conference on Computer Design, Austin, TX, October 1999.

[38] D. Folegnani and A. Gonzalez. Reducing power consumption of the issue
logic. In Proceedings of the Workshop on Complexity-Effective Design, June
2000.

[39] F. Gabbay and A. Mendelson. Speculative execution based on value pre-
diction. EE Department TR 1080, Technion - Israel Institue of Technology,
November 1996.

[40] F. Gabbay and A. Mendelson. The effect of instruction fetch bandwidth on
value prediction. In 25th Annual International Symposium on Computer
Architecture, 1998.

[41] Phillip B. Gibbons and Steven S. Muchnick. Efficient instruction schedul-
ing for a pipelined architecture. SIGPLAN Notices, 21(7):11–16, July 1986.
Proceedings of the ACM SIGPLAN ’86 Symposium on Compiler Construc-
tion.

[42] J. Gonzalez and A. Gonzalez. The potential of data value speculation to
boost ILP. In 12th International Conference on Supercomputing, 1998.

[43] David Goodwin and Darin Petkov. Automatic generation of application
specific processors. In Proceedings of the 2003 international conference on
Compilers, architectures and synthesis for embedded systems, pages 137–
147. ACM Press, 2003.

[44] Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew Pleskun. Con-
fidence estimation for speculation control. In 25th Annual International
Symposium on Computer Architecture, June 1998.

[45] R Halstead and T Fujita. MASA: a multithreaded processor architecture
for parallel symbolic computing. In 25th Annual International Symposium
on Computer Architecture, pages 443–451, 1998.

167

[46] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with
a reconfigurable coprocessor. In Kenneth L. Pocek and Jeffrey Arnold,
editors, IEEE Symposium on FPGAs for Custom Computing Machines,
pages 12–21, Los Alamitos, CA, 1997. IEEE Computer Society Press.

[47] T. H. Heil and James E. Smith. Selective dual path execution. Techni-
cal Report http://www.engr.wisc.edu/ece/faculty/smith james.html, Uni-
versity of Wisconsin, Madison, November 1996.

[48] Seongmoo Heo, Ken Barr, and Krste Asanović. Reducing power density
through activity migration. In International Symposium on Low Power
Electronics and Design, August 2003.

[49] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean,
Alan Kyker, and Patrice Roussel. The microarchitecture of the pentium 4
processor. Intel Technology Journal Q1, 2001.

[50] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura,
Y. Nakase, and T. Nishizawa. An elementary processor architecture with
simultaneous instruction issuing from multiple threads. In 19th Annual
International Symposium on Computer Architecture, pages 136–145, May
1992.

[51] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D.
Smith. Informing memory operations: Providing memory performance feed-
back in modern processors. In 23rd Annual International Symposium on
Computer Architecture, pages 260–270, 1996.

[52] W. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A framework for dynamic
energy-efficiency and temperature management. In MICRO33, December
2000.

[53] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,
Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E.
Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M.
Lavery. The superblock: an effective technique for vliw and superscalar
compilation. J. Supercomput., 7(1-2):229–248, 1993.

[54] IBM. Power5: Presentation at microprocessor forum, 2003.

[55] International Technology Roadmap for Semiconductors. 2003.

[56] Norman P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache prefetch buffers. In 25 Years
ISCA: Retrospectives and Reprints, pages 388–397, 1998.

168

[57] A. Kaufmann and G. Desbazeille. The Critical Path Method. Gordon and
Breach, 1969.

[58] James E. Kelley. The construction scheduling problem (a progress report).
Technical report, UNIVAC Applications Research Center Remington Rand
UNIVAC, Nov 1957.

[59] G. A. Kemp and M. Franklin. PEWs: A decentralized dynamic schedul-
ing algorithm for ILP processing. In International Conference on Parallel
Processing, 1996.

[60] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 micro-
processor architecture. In International Conference on Computer Design,
December 1998.

[61] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztián
Flautner, Jie S. Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrish-
nan Narayanan. Leakage current: Moore’s law meets static power. IEEE
Computer, 36(12):68–75, December 2003.

[62] Nam Sung Kim and Trevor Mudge. Reducing register ports using delayed
write-back queues and operand pre-fetch. In 17th International Conference
on Supercomputing, June 2003.

[63] Artur Klauser, A. Paithankar, and Dirk Grunwald. Selective eager execu-
tion on the polypath architecture. In 25th Annual International Symposium
on Computer Architecture, page To appear, June 1998.

[64] John David Kubiatowicz. Closing the window of vulnerability in multi-
phase memory transactions: The alewife transaction store. Master’s thesis,
Massachusetts Institute of Technology, February 1993.

[65] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-
ganathan, and Dean M. Tullsen. Single-isa heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitec-
ture, page 81. IEEE Computer Society, 2003.

[66] Monica S. Lam and R. P. Wilson. Limits of control flow on parallelism.
In 19th Annual International Symposium on Computer Architecture, pages
46–57, May 1992.

[67] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading
technique targeting multiprocessors and workstations. In Sixth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 308–318, October 1994.

169

[68] Tong Li, Alvin R. Lebeck, and Daniel J. Sorin. Quantifying instruction
criticality for shared memory multiprocessors. In Proceedings of the fifteenth
annual ACM symposium on Parallel algorithms and architectures, pages
128–137. ACM Press, 2003.

[69] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via
value prediction. In 29th International Symposium on Microarchitecture,
December 1996.

[70] Mikko H. Lipasti and John Paul Shen. The performance potential of value
and dependence prediction. In EUROPAR-97, August 1997.

[71] Mikko H. Lipasti, C. B. Wilkerson, and John Paul Shen. Value locality and
load value prediction. In Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, October 1996.

[72] J. Lo, S. Parekh, S. Eggers, H. Levy, and D. Tullsen. Software-directed
register deallocation for simultaneous multithreading processors. In IEEE
Transactions on Parallel and Distributed Systems, 10(9), September 1999.

[73] P. Geoffrey Lowney, Sefan M. Freudenberger, Thomas J. Karzes, W. D.
Lichtenstein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg.
The multiflow trace scheduling compiler. Journal of Supercomputing, 7:51–
142, 1993.

[74] Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline gating: Spec-
ulation control for energy reduction. In 25th Annual International Sympo-
sium on Computer Architecture, June 1998.

[75] D. Marr, F. Binns, D. Hill, G. Hinton, K. Koufaty, J. Miller, and M. Up-
ton. Hyper-threading technology architecture and microarchitecture. Intel
Technical Journal, February 2002.

[76] R. L. Martino. Critical Path Networks. MDI Publications, 1967.

[77] Compaq chooses SMT for alpha. Microprocessor Report, 13(16), December
1999.

[78] Todd Mowry and Sherwyn Ramkissoon. Software-controlled multithreading
using informing memory operations. In Seventh International Symposium
on High Performance Computer Architecture, 2000.

[79] S. Palacharla, Norman P. Jouppi, and James E. Smith. Complexity-effective
superscalar processors. In 24th Annual International Symposium on Com-
puter Architecture, pages 206–218, June 1997.

170

[80] Il Park, Michael Powell, and T. Vijaykumar. Reducing register ports for
higher speed and lower energy. In 35th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-35), November 2002.

[81] Y. N. Patt, W. M. Hwu, and M. Shebanow. Hps, a new microarchitecture:
rationale and introduction. In Proceedings of the 18th annual workshop on
Microprogramming, pages 103–108. ACM Press, 1985.

[82] T. Pering, T. Burd, and R. Brodersen. Dynamic voltage scaling and the
design of a low-power microprocessor system, 1998.

[83] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of
dynamic voltage scaling algorithms. In Proceedings of 1998 International
Symposium on Low Power Electronics and Design, August 1998.

[84] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and
Kaushik Roy. Reducing set-associative cache energy via way-prediction and
selective direct-mapping. In Proceedings of the 34th annual ACM/IEEE in-
ternational symposium on Microarchitecture, pages 54–65. IEEE Computer
Society, 2001.

[85] R. P. Preston, R. W. Badeau, D. W. Bailey, S. L. Bell, L. L. Biro, W. J.
Bowhill, D. E. Dever, S. Felix, R. Gammack, V. Germini, M. K. Gowan,
P. Gronowski, D. B. Jackson, S. Mehta, S. V. Morton, J. D. Pickholtz,
N. H. Reilly, and M. J. Smith. Design of an 8-wide superscalar RISC
microprocessor with simultaneous multithreading. In Proceedings of the
International Solid State Circuits Conference, January 2002.

[86] R. Pyreddy and G. Tyson. Evaluating design tradeoffs in dual speed
pipelines. In 2001 Workshop on Complexity-Effective Design, June 2001.

[87] Ryan Rakvic, Bryan Black, Deepack Limaye, and John Paul Shen. Non-
vital loads. In Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, pages 165–174, February 2002.

[88] Joshua Redstone, Susan Eggers, and Henry Levy. Mini-threads: Increasing
TLP on small-scale SMT processors. In Ninth International Symposium on
High Performance Computer Architecture, February 2003.

[89] E. Rotenberg, S. Bennett, and J. Smith. Trace cache: a low latency ap-
proach to high bandwidth instruction fetching. In 29th Annual International
Symposium on Microarchitecture, December 1996.

[90] R. H. Saavedra-Barrera, D. E. Culler, and T. von Eicken. Analysis of
multithreaded architectures for parallel computing. In Second Annual ACM

171

Symposium on Parallel Algorithms and Architectures, pages 169–178, July
1990.

[91] Toshinori Sato, Akihiro Chiyonobu, and Itsujiro Arita. Energy reduction
via critical path prediction. In Proceedings of the Workshop on Complexity-
Effective Design held in conjunction with 29th International Symposium on
Computer Architecture, May 2002.

[92] Y. Sazeides and J. E. Smith. The predictability of data values. In 30th
International Symposium on Microarchitecture, pages 248–258, December
1997.

[93] M. Schlansker and V. Kathail. Critical path reduction for scalar programs.
In 28th International Symposium on Microarchitecture, pages 57–68, Ann
Arbor, MI, November 1995. IEEE.

[94] Manfred Schlett. Trends in embedded microprocessor design. IEEE Com-
puter, 31(8):44–49, August 1998.

[95] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian, David H. Al-
bonesi, Sandhya Dwarkadas, and Michael L. Scott. Energy-efficient proces-
sor design using multiple clock domains with dynamic voltage and frequency
scaling. In Proceedings of the Eighth International Symposium on High-
Performance Computer Architecture (HPCA’02), page 29. IEEE Computer
Society, 2002.

[96] John Seng. Optimizing Processor Architectures for Power-Efficiency. PhD
thesis, University of California at San Diego, June 2003.

[97] John Seng, Eric Tune, and Dean Tullsen. Reducing power with dynamic
critical path information. In Proceedings of the 34th International Sympo-
sium on Microarchitecture, December 2001.

[98] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Au-
tomatically characterizing large scale program behavior. In Tenth Inter-
national Comference on Architectural Support for Programming Languages
and Operating Systems(ASPLOS 2002), October 2002.

[99] Premkishore Shivakumar and Norm Jouppi. CACTI 3.0: An integrated
cache timing, power and area model. In Technical Report 2001/2, Compaq
Computer Corporation, August 2001.

[100] Burton Smith. The architecture of HEP. In On Parallel MIMD computa-
tion: HEP supercomputer and its applications, pages 41–55, 1985.

[101] J. E. Smith. A study of branch prediction strategies. In 8th Annual Inter-
national Symposium of Computer Architecture, pages 135–148. ACM, 1981.

172

[102] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultane-
ous multithreading architecture. In Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems,
November 2000.

[103] A. Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In 24th Annual
International Symposium on Computer Architecture, pages 194–205, June
1997.

[104] G. S. Sohi and S. Vajapeyam. Instruction issue logic for high-performance,
interruptable pipelined processors. In 14th Annual International Sympo-
sium of Computer Architecture, pages 27–31, June 1987.

[105] S. Srinivasan, R. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs. criticality.
In ISCA01, June 2001.

[106] Srikanth T. Srinivasan and Alvin R. Lebeck. Load latency tolerance in
dynamically scheduled processors. Journal of Instruction Level Parallelism,
1(1):1–24, 1999.

[107] Suphachai Sutanthavibul and Eugene Shragowitz. Dynamic prediction of
critical paths and nets for constructive timing-driven placement. In Pro-
ceedings of the 28th conference on ACM/IEEE design automation, pages
632–635. ACM Press, 1991.

[108] Radhika Thekkath and Susan Eggers. The effectiveness of multiple hard-
ware contexts. In Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, 1994.

[109] S. Thompson, P. Packan, and M. Bohr. MOS scaling: Transistor challenges
for the 21st century. In Intel Technology Journal, Q3 1998.

[110] Jessica Tseng and Krste Asanovic. Banked multiported register files for
high-frequency superscalar microprocessors. In In Proceedings of ISCA-30,
June 2003.

[111] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simulta-
neous multithreading processor. In 34th International Symposium on Mi-
croarchitecture, December 2001.

[112] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In 23rd Annual International Sym-
posium on Computer Architecture, May 1996.

173

[113] Dean M. Tullsen. Simulation and modeling of a simultaneous multithread-
ing processor. In 22nd Annual Computer Measurement Group Conference,
December 1996.

[114] Dean M. Tullsen and Brad Calder. Computing along the critical path.
Technical report, University of California, San Diego, October 1998.

[115] Dean M. Tullsen, Susan J. Eggers, and H. M. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In 22nd Annual International
Symposium on Computer Architecture, pages 392–403, June 1995.

[116] Eric Tune, Rakesh Kumar, Dean Tullsen, and Brad Calder. Balanced mul-
tithreading: Increasing throughput via a low cost multithreading hierarchy.
In Proceedings of the 37th International Symposium on Microarchitecture.
IEEE, 2004.

[117] Eric Tune, Dongning Liang, Dean M. Tullsen, and Brad Calder. Dynamic
prediction of critical path instructions. In Proceedings of the Seventh Inter-
national Symposium on High-Performance Computer Architecture, Febru-
ary 2001.

[118] Eric Tune, Dean Tullsen, and Brad Calder. Quantifying instruction criti-
cality. In Proceedings of the 11th Int’l Conference on Parallel Architectures
and Compilation Techniques. IEEE, 2002.

[119] Richard Uhlig, David Nagle, Trevor Mudge, Stuart Sechrest, and Joel Emer.
Instruction fetching: Coping with code bloat. In 22nd Annual International
Symposium on Computer Architecture, pages 345–356, 1995.

[120] Carl Waldspurger and William Weihl. Register relocation: Flexible contexts
for multithreading. In 20th Annual International Symposium on Computer
Architecture, 1993.

[121] D. W. Wall. Limits of instruction-level parallelism. In Proceedings of the
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), pages 176–188, April
1991.

[122] Steven Wallace, Brad Calder, and Dean M. Tullsen. Threaded multiple
path execution. In 25th Annual International Symposium on Computer
Architecture, June 1998.

[123] K. Wang and M. Franklin. Highly accurate data value prediction using
hybrid predictors. In 30th Annual International Symposium on Microarchi-
tecture, December 1997.

174

[124] Youfeng Wu and James R. Larus. Static branch frequency and program
profile analysis. In 27th International Symposium on Microarchitecture,
pages 1–11, San Jose, Ca, November 1994. IEEE.

[125] Wm. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of
the obvious. Technical Report CS-94-48, University of Utah, 1, 1994.

[126] W. Yamamoto and M. Nemirovsky. Increasing superscalar performance
through multistreaming. In Conference on Parallel Architectures and Com-
pilation Techniques, pages 49–58, June 1995.

[127] C.-Q. Yang and B. P. Miller. Performance measurement for parallel and
distributed programs: a structured and automatic approach. IEEE Trans.
Softw. Eng., 15(12):1615–1629, 1989.

[128] K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro,
16(2):28–40, 1996.

[129] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation techniques for
improving load related instruction scheduling. In Doug DeGroot, editor,
Proceedings of the 26th Annual International Symposium on Computer Ar-
chitecture (ISCA’99), volume 27, 2 of Computer Architecture News, pages
42–53, New York, N.Y., May 1999. ACM Press.

[130] Victor V. Zhirnov, Ralph K. Cavin III, James A. Hutchby, and George I.
Bourianoff. Limits to binary logic switch scaling: A gedanken model. Pro-
ceedings Of The IEEE, 91(11), November 2003.

