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ABSTRACT 
 

Pseudomonas aeruginosa (PA), a biofilm forming bacterium, commonly affects cystic fibrosis, burn victims, 
and immunocompromised patients. PA produces pyocyanin, an aromatic, redox active, secondary metabolite as part of 
its quorum sensing signaling system activated during biofilm formation. Surface enhanced Raman scattering (SERS) 
sensors composed of Au nanospheres chemically assembled into clusters on diblock copolymer templates were 
fabricated and the ability to detect pyocyanin to monitor biofilm formation was investigated.  Electromagnetic full wave 
simulations of clusters observed in scanning electron microcopy images show that the localized surface plasmon 
resonance wavelength is 696 nm for a dimer with a gap spacing of 1 nm in an average dielectric environment of the 
polymer and analyte; the local electric field enhancement is on the order of 400 at resonance, relative to free space. 
SERS data acquired at 785 nm excitation from a monolayer of benzenethiol on fabricated samples was compared with 
Raman data of pure benzenethiol and enhancement factors as large as 8×109 were calculated that are consistent with 
simulated field enhancements. Using this system, the limit of detection of pyocyanin in pure gradients was determined to 
be 10 parts per billion. In SERS data of the supernatant from the time dependent growth of PA shaking cultures, 
pyocyanin vibrational modes were clearly observable during the logarithmic growth phase corresponding to activation of 
genes related to biofilm formation.  These results pave the way for the use of SERS sensors for the early detection of 
biofilm formation, leading to reduced healthcare costs and better patient outcomes. 
 
Keywords: Colloids, self-assembly, surface enhanced Raman scattering, plasmonics, biofilms, metabolomics, quorum 
sensing, biosensor 
 

1. INTRODUCTION 
 

Biofilms, cellular aggregates embedded within an extracellular polymeric substance (EPS), account for an 
estimated 80% of all infection,1 and commonly contaminate medical devices.2 Bacterial biofilms are able to survive 
exposure to antibiotic treatments in part because the EPS reduces diffusion into the center of the biofilm masses, leading 
to lower exposure to the drug.3 Bacteria that aggregate into a biofilm also express different phenotypes compared to their 
free floating, planktonic counterparts4 and often exhibit resistance mechanisms such as efflux pumps, which specifically 
pump out antibacterial molecules.5 Pseudomonas aeruginosa (PA) is an opportunistic, biofilm-forming pathogen 
associated with lung infections in cystic fibrosis and in indwelling device infections.6 Individuals with the genetic 
disorder cystic fibrosis (CF) are particularly at risk of biofilm infection because they lack mucociliary clearance 
mechanisms in the lung epithelia, due to mutations in the CF transmembrane conductance regulator (CFTR) protein.7,8 

Dysfunctional CFTR protein prevents clearance of bacteria entering the lung, enabling biofilm formation.9,10 PA 
establishes a chronic infection in CF patients, developing a biofilm with an associated EPS.11 Prior to chronic infection is 
the intermittent colonization phase where high doses of antibiotics are used for extended periods of time12 until the 
chronic infection eventually forms.13,14 These conditions have led to the evolution of antibiotic resistant PA which is a 
serious danger to those at risk of PA infection.15 

In order for a biofilm to form, members of the population interact with one another via signaling molecules or 
by trading metabolites, a process known as quorum sensing (QS).16,17 These signals trigger the conversion of planktonic 
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cells into biofilm cells by altering the phenotypes expressed by the cells.4 The expressed genes aggregate the cells and 
start the production of EPS and QS signaling molecules. The process of QS causes specific cells to produce metabolites 
so that a division of labor is exhibited that proves advantageous for these biofilm forming cells.18 The success of the 
consortia then becomes dependent on the efficacy of regulating this QS process in order to produce dedicated molecular 
signaling for each task. Among the many virulence factors and QS compounds that PA produces is pyocyanin19. 
Pyocyanin is a blue green redox active secondary metabolite that is produced by PA which can act as a terminal 
signaling factor in the QS process. In the presence of oxygen, phenazines such as pyocyanin can generate reactive 
oxygen species that are toxic to neighboring bacterial or human cells in an infection, while in low oxygen conditions, 
phenazines can act as an alternative electron receptor, enabling respiration in dense biofilms with low oxygen 
conditions.20 Pyocyanin can be detected in PA wound infections and the lungs of infected CF patients using high 
performance liquid chromatography (HPLC).21 

Unfortunately HPLC is expensive, time consuming, and requires skilled laborers to use. Optical spectroscopy, 
such as surface plasmon resonance, and color changes are increasingly used for biomolecule detection.22 An alternative 
method is Raman scattering, a label free detection method that produces “molecular fingerprints” composed of the 
spectrum of the different vibrational frequencies produced when light inelastically scatters with molecules.23 The Raman 
scattering cross section is typically on the order of 10-6 cm-1 per unit volume (cm-3) or  10-32 cm2 for a molecule  with 
length of 1.5 nm24 and this high limit of detection is not sufficient for diagnostic applications. Surface enhanced Raman 
scattering (SERS) spectroscopy can have detection limits reaching a single molecule due to enhancements of the local 
electric field due to nanostructures.25,26 On a SERS active surface, incoming field light excites the plasmon resonance of 
nanostructures that generate high intensity fields.27 As a near field phenomenon, the plasmon modes are not diffraction 
limited and the electric field is concentrated locally in so called hotspots. Importantly, the a SERS surface serves to 
enhance the incident electric field, |

→

E |  that excite molecules as well as the the Raman scattered intensity from molecules 
in the vicinity of hotspots. In summary the SERS surface acts as nano antennas that enhance the incoming and scattered 
field compared to a case without SERS active nanostructures with a proportionally of |

→

E |4.28 Engineering hot spots has 
been heavily pursued since the first measurement of enhanced Raman scattering intensity at roughened electrodes, where 
simple roughened silver electrode29 can provide a SERS enhancement factor (EF) of 105.30 

Molecular detection via SERS has heavily benefited from advances in nanofabrication technology as hotspot 
intensity increases with decreased gap spacing in nanostructures.31 32 For example, the enhanced electric field intensity, 
|
→

E |2 , in the gap region is reported to reach values larger than 103 when the gap size in a Au bowtie nanoantenna 
decreases to values less than 20nm.33,34  Top-down, planar lithographic approaches such as photolithography, electron 
beam lithography 35, and ion beam lithography,36 achieve a variety of nanoscale patterns but are essentially too expensive 
for medical diagnostic applications.  In addition, while gap spacings below 10 nm are desirable for SERS applications, as 
they yield increasing large signal enhancements with decreasing gap spacing up to the quantum tunneling limit,37–39 they 
are extremely difficult to produce with top down methods such as electron beam lithography.40  In this work, we utilize 
chemical self-assembly to drive Au nanospheres into clusters with approximately 1 nm separation distances. Chemical 
self-assembly permits the inexpensive production of large scale (> 1 cm2) nanostructures with relatively uniform and 
high single enhancements SERS substrates. SERS sensors have demonstrated capacity for clinical applications with 
reports of ng/ml limits of detection for pharmaceutical opioids,41 selectivity of various influenza viruses,42 part per 
trillion detection limits of cancer biomarkers,43 and part per trillion detection limits of milk contaminants..44 Low cost 
fabrication of these sensors with low detection limits will have significant impact for medical diagnostic applications 
including clinical sensing of pyocyanin that has the potential to reduce the cost of healthcare for chronically ill patients, 
and in the quantification of QS for understanding, and eventually preventing, biofilm formation. 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 
 

Random copolymer Poly(styrene-co-methyl methacrylate)-α-Hydroxyl-ω-tempo moiety (PS-r-PMMA) (Mn = 
7,400, 59.6% PS), diblock copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymer PS-b-
PMMA with Mn = 170-b-144 kg mol-1 forming lamellar template) were purchased from Polymer Source, Inc. (Dorval, 
Canada). Gold nanospheres with a diameter of 40 nm and with lipoic acid functionalization were purchased from 
Nanocomposix (San Diego, CA). Si(001) wafers with resistivity of 0.001-0.004 ohm-cm were purchased from Virginia 
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Semiconductor (Frederickburg, VA). Sodium citrate, sodium hydroxide (NaOH), and hydrofluoric acid (HF) were 
purchased from Fisher Scientific (Pittsburgh, PA). 2-(N-morpholino)ethanesulfonic acid (MES) 0.1M buffer, 1-ethyl-3-
[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC), and N-hydroxy sulfosuccinimide (S-NHS) were purchased 
from Pierce (Rockford, IL). Dimethyl sulfoxide (DMSO), ethylenediamine, benzenethiol, pyocyanin, toluene, ethanol, 
isopropanol (IPA), and 52-mesh Pt gauze foil were all purchased from Sigma Aldrich (St. Louis, MO). Nanopure 
deionized water (DI) (18.2 MΩ cm-1) was obtained from a Milli-Q Millipore System. 
 
2.2 Nanosensor Fabrication 
 

Template Preparation:  Diblock copolymer templates on Si(001) substrates were used as a self-assembled 
template for chemical assembly of Au nanospheres. A solution of 1 wt% (PS-r-PMMA) random copolymer, in toluene, 
was deposited onto a clean Si wafer by spin coating at 3000 rpm for 45 s. After spin coating, a PS-r-PMMA brush layer 
was annealed for 72 hours in low vacuum at 170° C. PS-r-PMMA/Si was then cleaned by rinsing with toluene while spin 
coating at 3000 rpm in order to remove unbound polymer. Solutions of 1 wt% PS-b-PMMA (PS/PMMA =170 kg mol−1 / 
144 kg mol−1) in toluene is applied onto the PS-r-PMMA coated wafer at 5000 rpm for 45s; afterward the sample was 
annealed for 48 hours at 170° C. The PMMA regions of the template were functionalized with amine surface end groups 
by immersing the whole sample in ethylenediamine in DMSO (2% v/v) for 5 minutes. Additional details can be found 
here.45–47 
 Nanosphere Functionalization:  Au nanospheres with 40 nm diameter were prepared for chemical attachment by 
centrifuging 0.05 mg/mL solution of nanospheres at 1.1g for 25 minutes to resuspend at triple the initial nanosphere 
concentration. Chemical attachment of Au nanospheres to PMMA regions on PS-b-PMMA was performed using a 
chemical crosslinker EDC/S-NHS that was added to the aqueous lipoic acid functionalized colloidal solution. The 
concentration of EDC and S-NHS in a 0.1 M MES buffer, used were 8 mM and 20 mM, respectively. Addition of 
crosslinker to aqueous lipoic acid functionalized colloidal solution occurred immediately before exposure to PS-b-
PMMA surfaces in order to minimize nanosphere aggregation in solution. 

Cluster formation of Au nanospheres on PMMA: Lipoic functionalized Au nanospheres in colloidal solution 
were selectively attached to ethylenediamine functionalized PMMA domains via electrophoretic deposition (EPD). The 
ethylenediamine  treated PS-b-PMMA template on Si was suspended vertically and parallel to a Pt mesh electrode in a 
10 mL beaker, serving as the anode. The beaker was then filled with 3 mL of the colloidal Au nanosphere solution, 70 
μL of EDC solution, and 70 μL of S-NHS solution. A BK Precision 1621a DC Regulated Power Supply was used to 
apply a voltage of 1.2 V across a distance of 1 cm for ten minutes. This process was then repeated with 3 mL of the 
lipoic acid functionalized Au nanosphere solution, 45 μL of EDC solution, and 45 μL of S-NHS solution. Samples were 
then rinsed with IPA and dried under nitrogen. 
 
2.3 Bacterial cell culture and supernatant preparation 
 

Pseudomonas aeruginosa (PA14)48 shaking culture supernatant was used to measure pyocyanin production over 
time. Planktonic cultures of PA14 were prepared by inoculation of one colony from agar plate into a 5ml lysogeny broth 
(Fischer Scientific) overnight. 50 μl from the 5 ml culture was diluted into 24 ml of 10 g/L tryptone media 
(Bactotyptone). 2 ml aliquots were made from the 24 ml tryptone media and optical density was measured every hour 
and the supernatant of 2 ml PA culture was collected to measure pyocyanin levels. Supernatant samples were centrifuged 
at 10,000 g for 20 minutes and then eluted through 0.2 micron syringe filters to remove PA cells. The rate of pyocyanin 
production was then used to determine the phase of PA growth. 
 
2.4 Raman Spectroscopy 
 

Surface enhanced Raman scattering (SERS) measurements were conducted using a Renishaw Micro Raman 
system with laser excitation wavelengths of 785 nm and integration time of 10 s. A laser power of 50 μW was used for 
all Raman and SERS measurements. The objective used for collection of SERS measurements was a 60X water 
immersion objective with a 1.2 NA that was wetted with DI water. The objective used for collection of pure analyte 
samples in cuvettes was a long range 5x objective with an NA of 0.12. In order to estimate signal enhancements due to 
the presence of nanosphere clusters, samples were immersed in a 10-3 M solution of benzenethiol (BZT) in isopropanol 
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for 12 hrs, followed by a methanol rinse to leave a molecular monolayer of BZT on the Au nanospheres. Enhancement 
factors (EF) were calculated using the following equation:29,32,46 

                                                                 (1) 

ISERS, Ineat, NSERS, Nneat are the SERS and neat Raman intensities, and the number of molecules for each measurement, 
respectively. The EF is simply the ratio of observed Raman scattering intensity of SERS measurements compared to the 
Raman scattering intensity of pure analyte normalized by the ratio of molecules that the spot illuminates in each case. 
The number of molecules measured for NSERS was estimated by normalizing the area excited in the laser spot size by the 
BZT coverage on Au nanospheres, where  
     NSERS = ρsurf NA × 4 fAuASpot                     (2) 
The BZT monolayer density on the Au nanospheres, ρsurf is reported to be .54 nmol/cm2 49 and Avogadro’s number, NA, 
converts the molarity to a molecular density. Aspot is the area of the FWHM spot from a diffraction limited Gaussian 
beam. The fraction areal coverage of Au nanosphere, fAu, is included to account for the presence of BZT only on Au 
regions where the cross sectional area of Au nanospheres is determined from SEM imaging; the factor of 4 is included to 
convert cross sectional area of a sphere to surface area as these are not 2-dimensional structures. The FWHM beam 
waist, w0, used for calculating Aspot is obtained using the classic optics expression determining the diffraction limited 
beam waist as:  

          w0 ≈
λ0

π ×NA
ln2
2        

       (3) 

Where λ0 is the free space wavelength and the square root term converts from e-2 beam waist to the FWHM beam waist. 
Finally the FWHM spot area is calculated simply as the area of a circle with diameter w0: 

                           ASpot =
π ×w0

2

4
        (4) 

In order to determine the number of molecules in the neat Raman measurements, the number of molecules probed from 
BZT solution in a cuvette is:  

        NNeat = ρneat ×NA ×V                     (5) 
Where ρneat is the density of benzenethiol, 9.739 mmol/cm3 and V is the confocal volume, which is determined for the 
Gaussian, diffraction-limited case as: 

         V = 2.33π
3
2 ×n

NA
× w0

3

8
                                                            (6) 

Where n is the refraction index of benzenethiol.50 These calculations for the enhancement factor allow one to compare 
SERS sensor performance with other systems as it is a standard method. Yet limits in accuracy of calculated EF arise 
from the difference between the actual beam waist and theoretical beam waist, as the EF is proportional to volume area 
ratio so EF ~ w0. If w0 is underestimated, thereby underestimating the true interaction area, then the calculated EF will 
underestimate the actual enhancement; if it is overestimated the opposite will occur. While EF is only accurate with 
approximately an order of magnitude, the uniformity of how this is performed in the literature allows one to compare 
different fabricated systems with one other. 

SERS spectroscopy was also performed on gradients of synthetic pyocyanin that were prepared at 
concentrations of 48nM, 240nM, 480nM, 2.4 μM, 4.8 μM, 9.6 μM, 19.2 μM, 28.8 μM, 38.4 μM, and 48 μM to establish 
the limit of detection. SERS spectroscopy was performed using the same laser power, integration times, and objective 
outlined above. The measurements were taken from low to high concentration with a thorough 90 s isopropanol wash of 
the sensor and air dried between measurements. In addition, SERS measurements were performed in the same fashion on 
supernatant obtained from PA14 culture as a function of incubation time. The supernatant was diluted 100:1 in deionized 
water and sensor surfaces were rinsed with isopropanol in between measurements as well. 
 

3. RESULTS AND DISCUSSION 
 

Chemical assembly of Au nanospheres is performed on poly(styrene-b-methyl methacrylate) (PS-b-PMMA) 
diblock copolymer templates on Si(001) substrates to form clusters with regions of high localized electric fields, referred 

EF = ISERS / NSERS

Ineat / Nneat
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In order to calculate an enhancement factor (EF) from SERS measurements, one must determine the coverage 

of Au nanospheres on the surface. Scanning electron microscopy (SEM) images were acquired after chemical assembly 
of lipoic acid functionalized Au nanospheres to PS-b-PMMA templates, using a Magellan XHR SEM (FEI). Assemblies 
of ad hoc clusters are observed in Fig. 2 (a). The PS-b-PMMA domain morphology strongly dictates cluster geometry 
due to the preferential attachment to the hydrophobic/hydrophilic interface between the PMMA and the PS.47 An atomic 
force microscopy (AFM) topography image with line profile is shown as an inset in the right of Fig. 2 (a).  The AFM 
image and line profile shows that the PMMA domains recede due to the ethylenediamine functionalization of this region. 
Lamellar domains were chosen to promote linear clusters and Fig. 2 (a) shows that the majority of the clusters conform 
to a quasilinear geometry. Linear clusters provide a larger local electric field enhancement in the gaps between 
nanospheres than circular clusters of the same size when excited with light polarized along the long axis of the cluster.47 
Analysis of the number of particles per cluster in Fig. 2 (b) shows that 85% of clusters have fewer than 5 particles. This 
was achieved by carefully controlling the amount of EDC/S-NHS added during chemical attachment to the surface. 
When larger cluster aggregates form, the electric field enhancement will approach that of an infinite hexagonally close 
packed lattice that is broader and less intense than discrete clusters,43 thus this is not desirable for optimized sensor 
performance. A packing fraction of 0.24 was achieved that is close to the areal coverage of PMMA domains on the 
surface and it is also much greater than previously obtained when only a single concentration of EDC/S-NHS was used.47 
While the packing fraction is normalized in EF calculations it is still an important parameter since increasing the surface 
area of hotspots will increase the amount of molecules participating in SERS events and thus will improve SERS 
intensity, and thereby detection limit.  Though as noted, when packing density reaches the HCP limit, the SERS signal 
will decrease again.   
 

 
 

Figure 2. (a) SEM image of Au nanospheres on PS-b-PMMA templates with higher resolution inset on the left and AFM 
topography image with line profile is shown as an inset on the upper right.  (b) Statistics of the number of clusters of a given 
particle number. 

 
Experimental investigation of the electric field enhancements provided by the fabricated SERS substrates was 

achieved using, a well-characterized analyte, benzenethiol (BZT), as a standard. BZT forms a molecular monolayer on 
Au due to the strong Au-sulfur interaction55 and thus one can calculate the number of molecules probed by the laser. 
BZT also has a large Raman scattering cross section56 making it an ideal molecule for determining the performance of 
SERS sensors as a Raman signal is observable for pure (neat) BZT that is used as a reference to calculate enhancement 
of signals due to the SERS substrate.29,32,46 Fig. 3 shows the Raman and SERS spectra of neat BZT and the SERS 
substrate after BZT exposure, respectively. The SERS BZT spectrum is offset by 35 × 103, and the neat spectrum is 
multiplied by 10 so that the Raman peaks can be observed on the same scale as the SERS measurement. The neat 
spectrum was acquired with a 5x objective with a NA of 0.12, while the SERS spectrum was acquired with a 60x water 
immersion objective whetted with DI water and with a NA of 1.2, both spectra were taken with a 50 μW and integrated 
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During functionalization of PMMA domains with amine groups using ethylenediamine, the PMMA domains 
appear to be etched in atomic force microscopy (AFM) images.47 From AFM topography images, see inset of Fig. 2 (a), 
one can see the PMMA regions are lower than PS regions and a ridge forms around PMMA domains as PMMA is 
displaced; PMMA cannot be completely removed due to covalent bond between PMMA and PS in the diblock 
copolymer. Overall this leads to the Au nanosphere clusters to be slightly embedded in the polymer template. Previous 
simulations of 20nm Au clusters with gap spacing of 2 nm on PS-b-PMMA templates predicted the LSPR wavelength of 
nanospheres is 600 nm when the nanospheres are embedded in a dielectric environment of PMMA and analyte.51 This 
value of LSPR wavelength is consistent with high SERS EF experimentally observed for 20nm Au clusters on PS-b-
PMMA templates when excited at 633 nm.46 

The higher local permittivity that results when nanospheres are embedded in the polymer template leads to a 
redshift of the LSPR frequency when compared to the predicted resonance frequencies for clusters in a permittivity 
environment of free space. In order to simulate the experimental conditions of clusters fabricated here, a multilayer 
structure composed of a silicon substrate, a thin film of PS-b-PMMA with average permittivity of 2.47 and thickness of 
40 nm with vacuum above is illustrated in Fig. 4. Two Au nanospheres with diameter of 40 nm are partially 
embedded into PMMA domain. Two cases were simulated.  They are referred to as  Case A and Case B where 70%  and 
20% of dimer are embedded into the PMMA and analyte layer, respectively. The gap spacing was also varied from 1 to 2 
nm.  The structure was illuminated by a plane wave that is polarized along the axis of the dimer (x axis). We performed 
full-wave simulations employing the finite element method (FEM), implemented in CST Microwave Studio by 
Computer Simulation Technology AG. In order to find the field enhancement, we calculate  |

→

E |  that is is the electric 
field magnitude at the center of the gold dimer relative to the electric field magnitude at the same location in the absence 
of dimer nanoantenna. The simulation results of |

→

E |  that shows the LSPR wavelength as the peak value are shown in 
Fig. 4 (b-c), where one can observe that the field enhancement and resonance wavelength are highly dependent on 
geometry. First by decreasing the gap from 2 nm to 1 nm, the resonance wavelength shifts to higher wavelength, 
redshifts, and a stronger field enhancement is obtained as expected.47 Also, in Case A where the hot spot (gap center) is 
located inside the PS-b-PMMA and analyte, the field enhancement is much stronger than Case B.  This result shows that 
dielectric medium plays an important role in designing spectroscopy systems.  

 

 
 

Figure 4. (a) Schematic of the simulation geometry used for the case of 70% embedded Au nanospheres (case A) and 20% 
embedded Au nanospheres (case B). (b) (c) Simulations of electric field enhancement in the hot spot between the nanospheres in 
case A and B shown for different gap spacings. 
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power yielded a limit of detection of 10 parts per billion of pyocyanin in deionized water that was determined by 
tracking the linear relationship between the Raman intensity at characteristic pyocyanin molecular vibrations and the 
concentration of pyocyanin. Note that these are acquired with very low laser power; furthermore exciting at resonance 
can yield a lower limit of detection.  These “molecular fingerprints,” the characteristic pyocyanin molecular vibrations, 
were then used to determine the growth phase of a Pseudomonas aeruginosa (PA) culture. The work described here is a 
first step in using the ultrasensitive detection method to examine clinical respiratory samples obtained by patients 
infected with PA. Since SERS sensors do not require receptor molecules, quorum sensing molecules can also be 
monitored during biofilm formation to build a better understanding of quorum sensing and how to combat the biofilm 
formation process. 
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