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Guobao Wang [Senior Member, IEEE] and Jinyi Qi [Fellow, IEEE]
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Abstract

Image reconstruction from low-count PET projection data is challenging because the inverse 

problem is ill-posed. Prior information can be used to improve image quality. Inspired by the 

kernel methods in machine learning, this paper proposes a kernel based method that models PET 

image intensity in each pixel as a function of a set of features obtained from prior information. 

The kernel-based image model is incorporated into the forward model of PET projection data and 

the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood 

image reconstruction. A kernelized expectation-maximization (EM) algorithm is presented to 

obtain the ML estimate. Computer simulations show that the proposed approach can achieve better 

bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction 

than the conventional maximum likelihood method with and without post-reconstruction 

denoising. Compared with other regularization-based methods, the kernel method is easier to 

implement and provides better image quality for low-count data. Application of the proposed 

kernel method to a 4D dynamic PET patient dataset showed promising results.

Index Terms

PET; image reconstruction; image prior; kernel method; expectation maximization

I. Introduction

Positron emission tomography (PET) can image biochemical processes in vivo using 

radioactive tracers. To monitor rapid change in tracer distribution, short scan durations must 

be used, which often results in low counting statistics (i.e., high noise). Image reconstruction 

from low-count PET projection data is challenging because the inverse problem is ill-posed 

and the resultant image is usually very noisy. To improve the quality of reconstructed 

images, it is desirable to incorporate prior information in PET image reconstruction [1]. 

Such information can be obtained either from a composite time frame of a dynamic PET 

scan that has a longer scan duration, or from a co-registered anatomical image that has good 

tissue contrasts1.

Copyright (c) 2010 IEEE.
1The term “prior” used here refers to any information that is obtained before image reconstruction and may not follow the strict 
statistical definition.
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A common way to incorporate prior knowledge in PET image reconstruction is through the 

use of edge-preserving regularization. A recent review on using anatomical prior 

information for PET image reconstruction can be found in [2]. Among different 

regularization methods [3]–[8], [10]–[13], the Bowsher method [9], which adaptively 

chooses neighboring pixels for each pixel in the image estimate using information from a 

prior image, was found to utilize anatomical prior information better than others in terms of 

performance and computational complexity [16]. The nonlocal regularization [17] can 

incorporate anatomical weights through a methodology similar to the neighborhood 

selection in the Bowsher method [14], [15] to improve emission reconstruction [18]–[20]. 

Alternatively, the prior image constrained compressive sensing (PICCS, [21]–[23]), an 

iterative reconstruction approach introduced in the context of dynamic computed 

tomography (CT), explores sparsity on the difference image between the image estimate and 

a composite image. PICCS can be adapted for use in PET image reconstruction [24].

Besides the regularized image reconstruction methods, post-reconstruction denoising 

methods can also incorporate prior information to improve PET image quality [20], [27], 

[31], [32]. The highly constrained back-projection (HYPR, [25], [26]), which was originally 

developed in magnetic resonance imaging (MRI) for image reconstruction from under-

sampled data, is a method of using a composite image prior and has been applied to 

denoising dynamic PET images [27]. Nonlocal means (NLM, [30]) is another method that 

incorporates prior knowledge into image denoising [20], [31]. Post-reconstruction denoising 

is usually easier to implement than regularization-based reconstruction methods.

In this paper, we propose a new way to incorporate image derived prior information in PET 

image reconstruction. We directly model the PET image intensity at pixel j, xj, as a function 

Γ of a set of features, fj, which is derived from available prior information at pixel j. The 

function xj = Γ(fj) can be very complex. Inspired by the kernel methods in machine learning 

[28], we model the complex function Γ(fj) as a linear function in a higher-dimensional 

transformed space of {fj} that is implicitly determined by a kernel function. The kernelized 

image model can then be incorporated into the forward projection model of PET to perform 

maximum likelihood (ML) image reconstruction without an explicit regularization function. 

The expectation-maximization (EM) [33], [34] algorithm with and without ordered subsets 

[35] can be directly applied to obtain the ML estimate.

The proposed kernelized EM method has the same simplicity as the conventional ML EM 

reconstruction followed by post-reconstruction denoising. We expect the former method to 

result in better performance than the latter for low-count data because it models noise in the 

projection domain where PET data are well modeled by independent Poisson random 

variables. The latter method requires a noise model in the image domain where noise is 

highly correlated and the covariance matrix is very difficult to estimate. The benefit of 

modeling noise in the projection domain over that in the image domain can become 

significant when the count level of PET data is low. Compared to regularization-based 

methods, the advantage of the proposed kernel-based EM reconstruction is its simplicity in 

implementation and readiness to be merged into the OSEM algorithm that is already 

available in commercial clinical PET scanners.
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Part of this work was presented at the 2013 IEEE International Symposium on Biomedical 

Imaging [36]. Zhou et al also presented a kernel-based method for compressive sensing (CS) 

dynamic MRI image reconstruction at the same conference [37]. Both methods share the 

same spirit of using the kernel trick but the technical aims are different. The kernel-based 

CS [37], [38] employs explicit mapping functions, such as kernel principal components or 

polynomial functions, to transform the projection data into a higher dimensional feature 

space where the projection data are nonlinearly sparse. A reverse estimation is required to 

convert the reconstructed coefficients back to the original image. In comparison, this paper 

uses an implicit mapping function through kernels to model PET image intensity as a linear 

function in the kernel space determined by prior images. Our work provides a novel method 

of using prior image information for improving image reconstruction.

This paper is organized as follows. We start with a brief description of PET image 

reconstruction in Section II and then describe the kernel model for image representation and 

kernel-based PET image reconstruction. Section III presents computer simulation studies 

comparing the kernel method with other regularization methods. An application of the 

proposed method to a dynamic PET patient data set is given in Section V. Finally 

conclusions are drawn in Section VI.

II. Theory

A. PET Image Reconstruction

PET projection data y are well modeled as independent Poisson random variables with the 

log-likelihood function [1]

(1)

where M is the total number of lines of response and the expectation ȳ is related to the 

unknown emission image x through

(2)

with P being the detection probability matrix and r the expectation of random and scattered 

events.

The maximum likelihood (ML) estimate of the image x is found by maximizing the Poisson 

log likelihood

(3)

The expectation-maximization (EM) algorithm [33] is derived to find the solution by the 

following iterative update
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(4)

where 1M is a vector of length M with all elements being 1, n denotes iteration number and 

the superscript “T” denotes matrix transpose. The vector multiplication and division are 

element-wise operations.

While the ML estimate can be very noisy at convergence, penalized likelihood (PL) methods 

seek an image estimate by maximizing the penalized Poisson log likelihood

(5)

where β is a hyperparameter that controls the strength of the regularization and U(x) is an 

image roughness penalty that can take the following anisotropic form

(6)

where the weighting factor wjk is inversely proportional to the distance between pixel j and 

pixel k in the neighborhood . The second order neighborhood is usually used that consists 

of 8 nearest pixels in 2D and 26 nearest voxels in 3D. ψδ(t) is the penalty function, e.g. 

, and δ is a parameter that controls the smoothness of the penalty function. N 

is the total number of pixels in the image. U(x) can also take the isotropic total variation 

(iTV) form

(7)

Information from a prior image can be incorporated in U(x). For example, the Bowsher 

method and nonlocal regularization approach set the weighting factor wjk in each 

neighborhood adaptively based on a prior image [7], [17]. PICCS includes a regularization 

on the difference image between x and a prior image, instead of regularizing x itself [21]. 

Compared to the EM update equation (4) for ML reconstruction, optimization algorithms for 

PL reconstruction (5) are more complicated, depending on the complexity of the 

regularization function U(x).

B. Image Representation by Kernels

Inspired by the kernel machines in machine learning [28], we propose a kernel based image 

representation for PET images.

We first identify a set of low-dimensional features fj for each pixel j. The “label” value for fj 

is the image intensity value at j, denoted as xj, and can be described as a function of fj by
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(8)

A linear form Γ(f) = wTf is the simplest model but may represent image intensity poorly 

when Γ(f) is actually nonlinear and complex.

While Γ(f) cannot be accurately described as linear in the low-dimensional space spanned by 

, it is possible to describe Γ(f) linearly in a transformed space  of very-

high dimension,

(9)

where ϕ(f) is a mapping function and w is a weight vector which also sits in the transformed 

space:

(10)

with α being the coefficient vector. By substituting (10) into (9), the kernel representation 

for the image intensity at pixel j is written as

(11)

where κ(fj, fl) ≜ ϕ(fl)T ϕ(fj) is a kernel2. The equivalent matrix-vector form of (11) is

(12)

where the (j, l)th element of the kernel matrix K is κ(fj, fl). In (12), each column of K can be 

considered as a basis function for image representation.

The image intensity xj at pixel j is thus a linear function in the kernel space but is nonlinear 

in the original space of feature points . Note that the mapping function ϕ is implicitly 

defined by the kernel κ(·, ·) and is not required to be known. Typical kernels include the 

radial Gaussian kernel

(13)

which has a mapping function ϕ of infinite dimension [28], and the polynomial kernel

2Note that the kernel defined here should not be confused with image basis functions, which sometime are also called “kernels”.
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(14)

σ, c and d are the kernel parameters in the respective kernels. The polynomial kernel reduces 

to the linear kernel when d = 1.

C. Kernel Method for Image Reconstruction

Substituting the kernel-based image model (12) into the PET forward model (2), we obtain 

the following kernel based forward projection model:

(15)

The forward model in (2) is a special case of the kernelized model (15) with

(16)

where I denotes the identity matrix. The advantage of (15) is that prior knowledge from 

other resources (e.g. whole dynamic frames in dynamic PET, or multi-modality images) can 

be incorporated into the forward projection model, which consequently improves the 

reconstruction of the low-count scan.

Combining the kernel based projection model (15) and the Poisson likelihood function (1), 

the kernel coefficient image α can be estimated by

(17)

where V(α) is an optional penalty function and β is the regularization parameter. Once the 

coefficient image α is estimated, the reconstructed emission image is calculated by

(18)

Because the reconstructed image is already regularized by the kernels, we set β = 0 in this 

work to obtain the maximum likelihood estimate of α by

(19)

The standard ML EM algorithm [33] given in Eq. (4) can be directly applied to find the ML 

estimate of α because (15) is in a linear form and PK can be treated as single matrix. The 

resulting kernelized EM update of α at iteration (n + 1) is

(20)
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Alternatively, one can decouple P and K using the nested EM algorithm [39].

Compared with using an edge-preserving penalty function to incorporate prior information, 

the above kernel-based ML EM algorithm is easier to implement.

D. Practical Construction of Kernel Matrix

A full kernel matrix K of an image is usually too large to be used in practice. We adopt the 

k-nearest neighbors (kNN, [29]) that is widely used for graph construction in machine 

learning to construct a sparse matrix. The kNN method finds k similar neighbors for each 

pixel and defines the (j, l)th element of the kernel matrix K by

(21)

where kNN is sought based on the Euclidean distance between fj and fl. Since a constant-k 

neighboring pixels are used, this above method may oversmooth a small target that has far 

less than k actual neighbors. An alternative to kNN is the ε-ball method, which assigns 0 to 

the neighbors that are outside the ε-ball of a pixel:

(22)

Each pixel thus can find an adaptive number of neighbors.

The computation cost of the kNN and ε-ball method can be expensive when the total number 

of pixels, N, is large. Alternatively, the kernel matrix can be defined only using a local 

neighborhood by

(23)

where  denotes the neighborhood of pixel j. These three strategies stated above can be 

combined to improve the robustness of the kernel method as we will demonstrate later.

The feature set  is required for constructing the kernel matrix. A general requirement 

is that the feature set should be large enough so that the PET image intensity can be 

determined uniquely by the features. For data acquired on a multi-modality scanner, such as 

PET/CT or PET/MR, the features can be obtained from co-registered anatomical images. 

For dynamic PET data, the feature vector fj associated with a pixel j can be derived from an 

initial reconstruction of later frames or of the summed sinogram of different time frames.

In order to make it easy to choose a kernel parameter (e.g. σ in the Gaussian kernel), the 

feature points {fj} can be first normalized by its standard derivation using
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(24)

where σm(f) is the standard deviation of the mth element of fj over all of the pixels.

Instead of K, the normalized matrix K̄,

(25)

can be used. We found K̄ resulted in higher image quality than K in our simulation.

While the use of a kernel matrix in the kernel method requires extra memory and 

computation, the kernel matrix is very sparse so the extra memory and computation cost are 

relatively small compared with the large size of the system matrix and computation time of 

forward and back projections. In our simulation and real data studies, we observed that the 

additional computation cost of the kernel matrix was only 10% of the total image 

reconstruction time.

III. Simulation Studies

The proposed kernel method applies spatial-adaptive smoothing based on prior images and 

has applications in both anatomical-prior guided PET image reconstruction and dynamic 

PET reconstruction. Here we apply the method to frame-by-frame image reconstruction of 

dynamic PET data.

A. Dynamic PET Simulation Setup

Dynamic PET scans were simulated for a GE DST whole-body PET scanner using a Zubal 

head phantom (Fig. 1(a)). The scanning schedule consisted of 24 time frames: 4×20 s, 4×40 

s, 4×60 s, 4×180 s and 8×300 s. Regional time activity curves shown in Fig. 1(b) were 

assigned to different brain regions. Dynamic activity images were first forward projected to 

generate noise-free sinograms. Poisson noise was then introduced. Scatters were simulated 

using the SimSET package [52]. We also included 20% uniform random events. Attenuation 

map, mean scatters and randoms were used in all reconstruction methods to obtain 

quantitative images. The expected total number of events over 60 minutes was 8 million. 

Ten noisy realizations were simulated and each was reconstructed independently for 

comparison.

We compared the proposed kernelized EM (KEM) algorithm with the conventional ML-EM 

reconstruction [34], PL reconstruction using total variation (TV) regularization [40], ML-

EM followed by post-reconstruction denoising methods (HYPR [27] and NLM [30]), PL 

reconstruction using the Bowsher method [9] and PICCS [21] to incorporate the image prior. 

All regularization-based methods used the De Pierro’s EM algorithm [41] with 200 

iterations. All the aforementioned methods, except the ML-EM, make use of spatial 

smoothing to improve image quality. We note that temporal regularization methods have 

also been developed to improve dynamic image reconstruction, such as the temporal 
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filtering methods [42]–[45] and reconstruction using smooth temporal basis functions [46], 

[47]. Readers are referred to [48]–[50] for detailed reviews on the development of temporal 

smoothing techniques. Two temporal-based methods were included here for comparisons. 

The first one is the EM reconstruction followed by a temporal filtering based on the 

principal component analysis (PCA) [43]. The second method is the penalized weighted 

least squares reconstruction in the Karhunen-Loeve (KL) transform domain (KL-PWLS) 

developed by Wernick et al [46], which essentially models the dynamic sinogram in the KL 

transform domain and reconstructs each coefficient image separately from the corresponding 

transformed sinogram. These two PCA-based methods share similar simplicity as the 

proposed kernel method.

B. Use of Composite Images

To construct the kernel matrix, we propose to obtain the prior images from composite 

frames in dynamic PET. Multiple short time frames are summed together to improve the 

counting statistics and reduce noise. Although temporal information is lost, common spatial 

information shared by different time frames is well preserved in the summed frames and can 

be used to aid the reconstruction of short time frames. Choosing a proper number of 

composite frames is important for reconstructing high-quality images. On one hand, a small 

number of composite frames reduces noise in composite images, but is at the risk of losing 

important spatial information in the kernel matrix. On the other hand, a large number of 

composite frames can preserve spatial information but may be ineffective in suppressing 

noise. We found that using three composite frames provided a good balance between 

preserving spatial information and reducing noise in the composite images.

The rebinned sinograms , each with 20 minutes, were reconstructed using the 

conventional ML EM algorithm with 100 iterations. The reconstructed images  of 

the three rebinned frames, shown in Fig. 2, were used as the prior images in all spatial 

smoothing reconstruction methods, except the ML-EM and PL with TV regularization, 

which do not use any composite image prior information from dynamic data.

For the proposed KEM method, the reconstructed activities of the three rebinned frames 

were used to form the feature points ,

(26)

where  is the image intensity value at pixel j in the rebinned time frame m, m = 1, 2, 3. k 

= 48 nearest neighbors of each f̄j were then sought by knnsearch in MATLAB using the 

scaled Euclidean distance. A sparse kernel matrix K was then calculated using {f̄j } by Eq. 

(21). We used the radial Gaussian kernel (13) with σ = 1.

Each column j of K̄ can be seen as a basis image function with αj the corresponding basis 

coefficient. Fig. 3 shows the basis images obtained by reshaping the columns of K̄ that 

correspond to the locations “A”, “B”, “C” and “D” indicated in Fig. 1(a). These four pixels 

are located in the blood region, the gray matter boundary, the white matter and the tumor 
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region, respectively. The basis images are sparse and self-adapt to the corresponding pixel 

locations.

The same kernel matrix K̄ employed in KEM was also used as the weighting matrix in the 

NLM denoising method [30]. The HYPR method [27] used the sum of the three rebinned 

images as the composite image and a 7 × 7 window for Gaussian smoothing. In the PICCS 

method [21], the three prior images were used as the reference image for the individual 

frames in the early, middle and late 20 minutes, respectively. TV regularization [40] was 

used in PICCS with the parameter α that balances spatial smoothness and prior image 

constraint set to 0.7. The Bowsher method [9] used a quadratic penalty function and used the 

radial Gaussian distance of {fj} in (13) to choose pixels in the local neighborhoods. The 

neighborhood size in the Bowsher method was set to 7×7 and 20 pixels were selected for 

each neighborhood. These parameters in different methods were chosen to minimize the 

image MSE.

C. Comparison of Different Reconstruction Methods

For quantitative comparison between different reconstruction methods, we computed the 

ensemble mean squared bias, variance, and mean squared error (MSE), which are defined by

(27)

(28)

(29)

where x̄ is the ensemble mean of the image estimates and Ns is the total number of noisy 

realizations (Ns = 10 in this simulation). Furthermore, we computed the contrast recovery 

coefficient (CRC) of the blood pool and tumor. The CRC is calculated by

(30)

where S̄i denotes the mean activity of the region of interest and B̄i denotes the mean activity 

of the white matter region (background) in the ith reconstructed image.

Figure 4 shows the true image of time frame 2 and reconstructed image samples by different 

methods. This frame has a scan duration of 20 seconds and a total of 26k events (very low 

counts). For each method, the reconstructed image is shown with the minimum MSE, which 

was minimized by varying either the iteration number in the EM-based methods or the 

regularization parameter β in the regularization-based methods. The results of a high-count 

frame (frame 24, 727k events) are shown in Fig. 5. Fig. 6 compares the ensemble mean 
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squared bias versus ensemble variance tradeoff achieved by different reconstruction 

methods by varying either the iteration number or the regularization parameter in each 

method for frame 2 and frame 24. We can see that by using the kernel matrix obtained from 

the composite images, the kernelized EM (KEM) substantially improved the image quality 

over the conventional ML-EM for both the low-count and high-count frames. For the very 

low count frame, the KEM also achieved substantially less bias at a fixed variance than any 

other method in the study. In Fig. 7(a) we plot the minimum MSE achieved by different 

methods for all time frames. The error bars represents plus and minus one standard 

deviation, which was estimated by bootstrapping the 10 noisy realizations. The 

corresponding scan duration and count level of each frame are given in Fig. 7(b). In general, 

the proposed kernel method achieved the lowest MSE for nearly all frames and substantially 

outperformed all other methods for low-count frames.

Figure 8 compares the contrast recovery coefficient (CRC) versus background noise trade-

off achieved by different methods for two regions of interest (ROI). The blood pool was the 

ROI in frame 2 and the tumor was the ROI in frame 24. The white matter region was chosen 

as background to calculate the noise standard deviation (SD). Again, the plots showed that 

the proposed method achieved a higher CRC with a lower background noise than other 

methods, especially for the low-count frame.

D. Effect of Kernel Parameters

Fig. 9(a) shows the image MSE values of different frames as functions of k, the number of 

nearest neighbors in the kernel method. The image MSE generally decreases as the k value 

becomes larger because more pixels are correlated in the kernel matrix to reduce noise. 

However, an overly large k may lead to an increase in MSE if the image contains some 

objects that are of small size but high target-to-background contrast, such as the image of 

frame 2 in Fig. 4. This is because correlating the pixels in these high-contrast small objects 

to pixels in other flat regions can result in many small weights in the kernel matrix which in 

turn lead to underestimation of the high contrast object. A large k also results in a dense K 
matrix and higher computation cost for reconstruction. Overall, the kernelized 

reconstruction achieved a relatively stable MSE with a value of k between 20 and 100 for 

the two selected frames.

The radial Gaussian was found to be generally better than the polynomial kernel in terms of 

MSE in our simulations. Here we focus on investigating the σ parameter in the Gaussian 

kernel. Fig. 9(b) shows the effect of σ on MSE. A small σ can differentiate feature points 

more easily, but is less effective to suppress noise. As σ grows larger, kernels become 

smoother and significant noise reduction is achieved. When σ becomes too large, the kernel 

value by the radial Gaussian function approaches 1 and the resulting MSE also remains 

constant. Since the features points {fj} are normalized, we found that σ value between 0.1 

and 10 provides good results.

E. Reconstruction of a Small Target

Reconstruction of a small target in the presence of background activity can be a challenge in 

PET imaging, as small targets may either be visually obstructed by noise in an unregularized 
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reconstruction or be over-smoothed by regularization. The latter occurs in KEM if the k 

number in kNN is far greater than the size of a small target. Many false neighbors may be 

included in the kNN search, which in turn will over-smooth the small target. To address this 

problem, we can modify the kNN strategy in Eq. (21) by thresholding the nonzero weights in 

the kernel matrix by a threshold τ to remove false neighbors. We validated this modified 

strategy using a new stimulation study with a smaller brain tumor (6 mm in diameter) (Fig. 

10(a)). All the other settings in the simulation remained the same. Since most weighting 

factors in the kernel matrix by kNN are between 0.9 and 1.0, we set the threshold τ to 0.96 in 

the modified strategy.

We compare the reconstructed images by the MLEM, EM-NLM and proposed KEM in Fig. 

10. All reconstruction methods were run for 100 iterations. The MLEM image has a tumor 

CRC of 0.70 but with a high background noise SD=28.4%. The post-smoothed image by 

NLM reduces noise but also decreases the contrast (CRC=0.54). In comparison, the KEM 

preserves the tumor contrast (CRC=0.67) while reducing noise in the background by more 

than a factor of 2 (SD=12.6%). A more complete comparison of the tumor CRC versus 

background noise SD using 10 realizations is shown in Fig. 11(a). A temporal-smoothing 

method, EM-PCA, is also included. The curves are plotted by varying the iteration number 

in each method. The KEM demonstrates a more robust performance of CRC versus noise 

than other methods. Fig. 11(b) shows the CRC vs. SD plots for the blood pool region in 

frame 2. Clearly, the improvement achieved by the proposed KEM is much more 

pronounced for the low-count frame. These results demonstrate that the kNN with 

thresholding for constructing kernel matrix can work robustly for reconstruction of both 

large and small targets.

F. Incomplete Composite Image Prior

The kernel method works best when the structures in each frame are all embedded in the 

composite images. If a region cannot be identified in the composite images, the 

reconstruction accuracy of the region may suffer. To address this potential problem, we can 

combine the kNN approach defined in Eq. (21) with the local window approach in Eq. (23) 

to avoid introducing long-range correlations. An application example of the local kNN in 

MR-guided PET image reconstruction is reported in [51]. Here we applied the method to 

dynamic PET reconstruction.

Fig. 12 shows the reconstructed images of frame 2 by the KEM and EM-NLM using either 

the complete composite images (all three composite frames in Fig. 2) or the middle 20-

minute frame only (incomplete prior case). In both cases, the kernel matrix was constructed 

using the local kNN approach that selects 20 nearest neighbors from each 9×9 

neighborhood. Although it shows that the local kNN results in a slightly higher MSE for 

both the KEM and EM-NLM methods than the global kNN results in Fig. 4, the modified 

KEM, when using the complete composite images, still outperforms all other reconstructions 

shown in Fig. 4. When the kernel matrix was constructed using only the middle 20-minute 

composite image, the boundary of the blood pool become blurrier in reconstructed images. 

Nonetheless, the KEM still achieved lower MSE than the EM-NLM that uses the same 
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kernel matrix, and other reconstructions shown in Fig. 4 that do not use the composite 

image.

IV. Application to Dynamic PET Patient Scan

We have applied the proposed kernel method to a dynamic PET scan of a real patient. The 

data set was acquired using a GE Discovery PET/CT 690 scanner with the patient in the 

prone position. The PET scan started right at the injection and lasted 60 minutes. The 

dynamic PET data were divided into 18 time frames: 3 × 20 s, 3 × 40 s, 3 × 60 s, 3 × 180 s, 

3 × 300 s, 3 × 600 s. A CT scan was acquired to provide the attenuation map for attenuation 

correction. Attenuation factors, detector efficiencies and dead time correction factors were 

incorporated in the forward model. Randoms and scatters were estimated using the 

manufacturer software and were modeled as an additive background.

To derive the composite image prior, the 60-minute dynamic data were rebinned into three 

20-minute frames. Each rebinned frame was reconstructed using the OSEM with 30 subsets 

and 2 iterations. The kernel matrix was then derived using the same procedure as described 

in Section III-B. For each voxel, k=50 nearest neighbors in a 7 × 7 × 7-voxel local region 

were used. The use of the local window is to reduce the computation time. The σ value of 

the radial Gaussian kernel function was set to 1. The original 18 time frames of the dynamic 

PET scan were then reconstructed individually by the kernelized EM algorithm with 100 

iterations.

The kernelized reconstruction was compared with the traditional EM reconstruction that 

contains no prior and the EM followed by a NLM post-filtering that uses the same kernel 

matrix. In our previous simulation, the EM-NLM method was found to outperform other 

existing methods. Fig. 13 shows the 3D reconstructions of two different time frames by the 

three methods at iteration 50. Frame 3 has a 20-second scan duration and frame 18 has a 10-

minute scan duration. The reconstructed images by MLEM have good contrast in the blood 

pool and myocardium regions (indicated by “A” and “B” respectively) but contain high 

noise in uniform regions. By using the composite image prior, the EM-NLM reduces noise 

but at the expense of reducing contrast of the blood and myocardium. In comparison, the 

kernelized EM not only smooths out noise in uniform regions but also preserves the 

boundary and intensity of the blood and myocardium very well.

Quantitative comparisons are shown in Fig. 14. The mean values of two regions of interest 

(blood pool and myocardium in frame 3 and frame 18, respectively) are plotted as functions 

of background noise standard deviation by varying the iteration number of each method 

from 20 to 100. A uniform region inside the liver was chosen as the background and the 

standard deviation (SD) of the voxel intensity values in the region was calculated. The 

results show that at the same ROI mean value, the kernelized EM reconstruction always has 

a lower background noise than the MLEM. The NLM post-filtering removed noise as 

effectively as the kernelized EM does, but the intensities in the regions of interest were 

substantially reduced.
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V. Conclusion

In this paper, we propose a kernel method to model PET image intensity as a function of 

feature points obtained from prior knowledge. The kernelized image model can incorporate 

prior information in the forward projection model. The maximum likelihood estimate can be 

easily obtained using the popular EM algorithm. Dynamic PET simulation results show that 

the proposed reconstruction method can achieve better performance than the conventional 

ML-EM reconstruction and TV regularization, and also outperforms the ML-EM with post 

filtering (e.g. EM-HYPR and EM-NLM), other prior-image-based regularization methods 

(the Bowsher method and PICCS) and temporal-smoothing methods (EM-PCA and KL-

PWLS) for low-count frames. The proposed kernelized EM algorithm has been applied to 

reconstruct the dynamic PET images of a breast cancer patient and has achieved promising 

results.

The kernel method is suitable for applications where prior images can be obtained to 

represent accurately the spatial structures of the image to be reconstructed. Such cases 

include dynamic PET, dynamic contrast-enhanced CT and MRI, as well as static image 

reconstruction with a matched anatomical prior. We note that the kernel method mainly 

explores the spatial correlations embedded in data and can be combined with temporal 

smoothing techniques (e.g. direct reconstruction methods [50]) to obtain more improvement 

on dynamic image reconstruction. One thing that needs further study is the framing of 

composite frames which can be chosen to provide optimized composite image priors for 

specific applications. In addition, patient motion, if not corrected, may result in mismatches 

between the composite images and the dynamic images to be reconstructed, which will 

affect performance of the kernel method. Therefore, incorporation of motion compensation 

in the kernel method will be part of our future investigations.
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Fig. 1. 
The digital phantom and time activity curves used in the simulation studies. (a) The Zubal 

brain phantom composed of gray matter, white matter and a tumor (15mm in diameter); (b) 

the regional time activity curves.
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Fig. 2. 
Composite images reconstructed from the rebinned dynamic sinograms: (a) the first 20 

minutes, (b) the middle 20 minutes, and (c) the last 20 minutes.
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Fig. 3. 
Basis images reshaped from four different columns of the kernel matrix K̄ derived from the 

composite images shown in Fig. 2. The four chosen pixels are located in the blood region, at 

the gray matter edge, in the white matter and in the tumor region and marked by “A”, “B”, 

“C” and “D” in Fig. 1(a), respectively.
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Fig. 4. 
The true activity image (a) and reconstructed images (b)–(f) by different methods for frame 

2 (scan duration: 20s; counts: 26k). (b) ML-EM reconstruction, (c) EM followed by NLM 

denoising, (d) KL-PWLS, (e) PICCS, and (f) the proposed kernelized reconstruction.
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Fig. 5. 
The true activity image (a) and reconstructed images (b)–(h) by different methods for frame 

24 (scan duration: 300s; counts: 727k). (b) ML-EM reconstruction, (c) EM followed by 

NLM denoising, (d) KL-PWLS, (e) PICCS, and (f) the proposed kernelized reconstruction.
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Fig. 6. 
Ensemble mean squared bias versus mean variance trade-off achieved by different 

reconstruction methods in (a) frame 2, 26k counts, and (b) frame 24, 727k counts.
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Fig. 7. 
(a) Comparisons of the minimum MSE for all frames achieved by different reconstruction 

methods. The tuning variable is iteration number for EM-based methods and β for 

regularization-based methods. (b) The total number of counts and scan duration of each time 

frame.
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Fig. 8. 
Contrast recovery coefficient (CRC) of regions of interest versus background noise. (a) 

blood pool region in frame 2, (b) tumor region in frame 24.
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Fig. 9. 
Effect of kernel parameters (a) k and (b) σ on image MSE.
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Fig. 10. 
The true activity image (a) and reconstructed images (b)-(d) for the last frame of a brain 

phantom that is similar to the one defined in Fig. 1 but with a smaller tumor (6mm in 

diameter). (a) true image of the last frame, (b) ML-EM reconstruction (tumor CRC=0.70, 

background SD=28.4%), (c) EM followed by NLM denoising (CRC =0.54, SD = 12.1%), 

and (d) proposed kernelized EM (CRC=0.67, SD=12.6%). All reconstructions were run for 

100 iterations.
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Fig. 11. 
Plots of contrast recovery coefficient (CRC) of regions of interest versus noise SD in 

background with varying the iteration number from 20 to 100. (a) tumor in the last frame, 

(b) blood pool in frame 2.
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Fig. 12. 
Reconstructed images of frame 2 by the EM-NLM and proposed KEM using local kNN. The 

kernel matrix was constructed using a local neighborhood with (a) the complete (all three) 

composite images in Fig. 2, and (b) only the middle 20-minute composite frame in Fig. 2.
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Fig. 13. 
Reconstructed images of a short early frame (#3) and a long late frame (#18) of the real 

patient data by different algorithms with 50 iterations. (a) MLEM, (b) EM followed by 

NLM, and (c) proposed kernelized EM reconstruction. Each 3D reconstruction is shown in 

transverse, sagittal and coronal views.
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Fig. 14. 
Plots of ROI mean of (a) the blood region and (b) myocardium versus liver background 

noise by varying iteration number from 20 to 100 with an increment of 10.
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