
Lawrence Berkeley National Laboratory
LBL Publications

Title
Scheduling and Performance of Asynchronous Tasks in Fortran 2018 with FEATS

Permalink
https://escholarship.org/uc/item/6x42t2dv

Journal
SN Computer Science, 5(4)

ISSN
2662-995X

Authors
Richardson, Brad
Rouson, Damian
Snyder, Harris
et al.

Publication Date
2024-03-28

DOI
10.1007/s42979-024-02682-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x42t2dv
https://escholarship.org/uc/item/6x42t2dv#author
https://escholarship.org
http://www.cdlib.org/


Scheduling and Performance of Asynchronous

Tasks in Fortran 2018 with FEATS

Brad Richardson1,2*, Damian Rouson1,2, Harris Snyder2,
Robert Singleterry3

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
2Archaeologic, Inc., Oakland, CA, USA.

3NASA Langley Research Center, Hampton, VA, USA.

*Corresponding author(s). E-mail(s): brad.richardson@lbl.gov;
Contributing authors: rouson@lbl.gov; harris@archaeologic.codes;

robert.c.singleterry@nasa.gov;

Abstract

Most parallel scientific programs contain compiler directives (pragmas) such as
those from OpenMP [1], explicit calls to runtime library procedures such as those
implementing the Message Passing Interface (MPI) [2], or compiler-specific lan-
guage extensions such as those provided by CUDA [3]. By contrast, the recent
Fortran standards empower developers to express parallel algorithms without
directly referencing lower-level parallel programming models [4, 5]. Fortran’s par-
allel features place the language within the Partitioned Global Address Space
(PGAS) class of programming models. When writing programs that exploit data-
parallelism, application developers often find it straightforward to develop custom
parallel algorithms. Problems involving complex, heterogeneous, staged calcula-
tions, however, pose much greater challenges. Such applications require careful
coordination of tasks in a manner that respects dependencies prescribed by a
directed acyclic graph. When rolling one’s own solution proves difficult, extend-
ing a customizable framework becomes attractive. The paper presents the design,
implementation, and use of the Framework for Extensible Asynchronous Task
Scheduling (FEATS), which we believe to be the first task-scheduling tool written
in modern Fortran. We describe the benefits and compromises associated with
choosing Fortran as the implementation language, and we propose ways in which
future Fortran standards can best support the use case in this paper.
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1 Introduction

Modern computing hardware has evolved to offer a variety of opportunities to exploit
parallelism for high performance – including multicore processors with vector units,
superscalar pipelines, and embedded or off-chip graphics processing units. Exploiting
the abundance of opportunities for parallel execution requires searching for a variety
of forms of parallelism. Chief among the common parallel programming patterns are
data parallelism and task parallelism [6]. Parallel programming languages have evolved
native features that support data parallelism. In Fortran 2018, for example, such
features include giving the programmer the ability to define teams, sets of images
that execute asynchronously, with each image having one-sided access to other team
members’ local portions of “coarray” distributed data structures [4]. These features
have now seen use in production codes running at scale for simulating systems ranging
from weather [7] and climate [8] to plasma fusion [9].

By contrast, task parallelism generally proves to be a larger challenge for appli-
cation developers to exploit without deep prior experience in parallel programming.
Although data parallelism maps straightforwardly onto a bulk synchronous pro-
gramming model in which periods of computation are interspersed with periods of
communication followed by barrier synchronization, efficient execution of independent
tasks generally requires asynchronous execution with more loose forms of coordination
such as semaphores. To wit, it takes roughly 15 source lines of code to implement a bulk
synchronous “Hello, world!” program using Fortran’s barrier synchronization mecha-
nism, the sync all statement; whereas it takes more than three times as many lines
to write a similar, asynchronous program taking advantage of Fortran’s event_type
derived type, the language’s mechanism supporting semaphores [10].

A central challenge in writing asynchronous code to coordinate tasks centers around
task parallelism’s more irregular execution and communication patterns. Whereas par-
tial differential equation solvers running in a data parallel manner typically involve a
predictable set of halo data exchanges between grid partitions at every time step, task
parallelism generally enjoys no such regular communication pattern. Programmers
generally represent task ordering requirements in a Directed Acyclic Graph (DAG)
of task dependencies [11]. Tasks can execute in any order that respects the DAG.
Moreover, the DAG can change considerably from one problem to the next and even
from one execution to the next. For example, a DAG describing the steps for build-
ing a software package will vary over the life of the software as internal and external
dependencies change.

Writing code to handle the level of flexibility needed efficiently is daunting for most
application developers, which makes the use of a task-scheduling framework attractive.
Fortran programmers face the additional challenge that the task scheduling frame-
works of which the authors are aware are written in other programming languages
such as C++ [12] and UPC++ [13] or target specific domains such as linear alge-
bra [14]. FEATS aims to support standard Fortran 2018 with a standard Fortran 2018
framework and is unique in these aspects.

Rumors of Fortran’s demise are greatly exaggerated. Despite longstanding calls for
Fortran’s retirement [15] and descriptions of Fortran as an “infantile disorder,” [16] the
world’s first widely used high-level programming language continues to see important
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and significant use. Fortran is arguably enjoying a renaissance characterized by a
growing list of new compiler projects over the past several years and a burgeoning
community of developers at all career stages writing new libraries [17], including some
in very non-traditional areas such as package management [18]. The National Energy
Research Scientific Computing Center (NERSC) used system monitoring of runtime
library usage to determine that approximately 70% of projects use Fortran [19] and
found that the vast majority of projects use MPI.

In MPI, the most advanced way to achieve the aforementioned requirements of
loosely coordinated, high levels of asynchronous execution required for efficient task
scheduling involves the use of the one-sided MPI_Put and MPI_Get functions intro-
duced in MPI-3. In the authors’ experience, however, the overwhelming majority of
parallel MPI applications use MPI’s older two-sided communication features, such as
the non-blocking MPI_ISend and MPI_IRecv functions partly due to the challenges of
writing one-sided MPI. Our choice to write and support Fortran’s native coarray com-
munication mechanism enables us to take advantage of the one-sided MPI built into
some compiler’s parallel runtime libraries, e.g., in the OpenCoarrays [20] runtime used
by gfortran, or whatever communication substrate a given compiler offeror chooses
to best suit particular hardware. Moreover, this choice implies that switching from one
communication substrate to another might require no more than switching compil-
ers or even swapping compiler flags and ultimately empowers scientists and engineers
to focus more on the application’s science and engineering and less on the computer
science.

Ultimately, the goal is reduce the time to solution, increase the reliability of the
solution, utilize state-of-the-art hardware, and increase the solution’s maintainability
over the lifetime of the solution. Fortran and FEATS allows for a task parallel solution
that hits these marks.

2 Implementation

FEATS is designed around the use of Fortran coarrays to provide distributed mul-
tiprocessing and data exchange between application images. Tasks in FEATS are
represented as objects. FEATS provides an abstract derived type task t, which the
user should extend in their own derived type definition, and provide the necessary
“execute” function required to complete the task.

Tasks have inputs and outputs, so there must be a mechanism by which to transmit
those inputs and outputs between images. This transmission is done using coarrays,
though it should be noted that all image control and coarray code is internal to the
FEATS library, meaning that the user need not directly deal with any details related
to parallel programming, or even understand coarrays. The “execute” function of
each task accepts an array of payload t objects, the results of each task on which it
depends, and returns a single payload t object result. Different tasks will of course
have different input and output types based on their purpose, which brings up another
difficulty of implementing FEATS as a library. Since the library code cannot know
the details of different tasks’ input and output types, it must represent these payloads
in some generic way so that it can be transmitted between images. Additionally,
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coarray elements cannot contain polymorphic components. FEATS solves the problem
by storing payloads as an array of integers (just a string of bytes in memory), and
the user must use the Fortran transfer statement to serialize their data into and
out of payloads. This serialization does come with some caveats; the user needs to
ensure that the types they use as payloads can be serialized and deserialized safely
(for example, a simple derived type with statically sized elements will work correctly,
whereas one with pointers and allocatable components likely will not). Alternately, a
string representation can be used/is supported for the serialization and deserialization.
Although arguably an aesthetically “inelegant” approach, the authors see it as an
acceptable engineering tradeoff in the interest of generality.

The tasks are organized as a DAG. This is stored as an array of vertices, where
each vertex contains a task, and an array of integers identifying the tasks on which it
depends. We note that in theory it would be possible for a single image to construct
the DAG, and for FEATS to use co broadcast to send it to the remaining images,
but not all compilers have implemented the functionality to allow co broadcast of
objects with polymorphic components, so in practice every image must provide exactly
the same DAG to FEATS for execution. It is the responsibility of the framework user
to define the derived types representing each type of task for their application, and to
implement the logic for defining the task DAG. Once the DAG is defined, the FEATS
framework executes it. The scheduler implementation is provided by the framework.
It should be noted that this does require that the entire DAG be defined prior to the
execution of any tasks.

2.1 Scheduling Task Execution

Two different algorithms for scheduling task execution have been implemented and
measured for performance. The algorithms are described in the following subsections.

2.1.1 An Explicit Scheduler Image

This algorithm designates one image, the scheduler, responsible for assigning tasks for
the remaining images, executors, to execute. The general algorithm performed by the
scheduler image is as follows.

• Find an executor that has posted it is ready

– While it does this, it keeps track of what tasks have been completed

• Find an uncompleted task with all dependencies completed
• “Wait” for the ready executor (balances posts/waits)
• Assign the task to the executor
• Post that the executor has been assigned a task
• Repeat

The general algorithm performed by an executor is as follows.

• Post ready for a task
• Wait until it has been assigned a task
• Collect payload outputs from executors that ran dependent tasks
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– it accesses the history kept by the scheduler to determine where the outputs reside

• Execute task and store result in its payload mailbox
• Repeat

2.1.2 First to Claim

This algorithm requires no scheduler image, but rather puts all executors on equal
footing with respect to claiming and executing tasks. The general algorithm performed
by each executor is as follows.

• Find task that hasn’t been claimed, and all of its dependencies have been completed
• Attempt to claim that task

– another executor may have claimed it by now

• Collect payload outputs from executors that ran dependent tasks

– “Wait” on event that it was completed

• Execute task and store result in its payload mailbox
• Post to all executors that the task has been completed and increment task completed
counter

• Repeat

3 Advantages, Disadvantages, and Examples

This section discusses how the features of Fortran enable/support the development
of FEATS, and aspects of the language that currently serve as impediments to the
desired features of the framework.

3.1 Advantages

There are several features of the modern Fortran language that make it a natural fit for
implementing a task scheduling framework. Several aspects have featured prominently
in the implementation, but in this section we will discuss what makes them beneficial
for implementing a task scheduling framework.

3.1.1 Coarrays and Events

The fundamental problem of task scheduling requires methods of communicating data
between tasks, and coordinating the execution of those tasks to enforce prerequisite
tasks are completed before subsequent tasks begin. The coarray feature of Fortran pro-
vides a simple and effective method of performing one-sided communication between
images to facilitate data transfer between tasks. While other languages and libraries
have methods of communicating data between processes, they often require two-sided
operations (i.e. both processes must participate in the communication), require calls
to external library procedures, or require significant expertise to use correctly. Having
the communication facilities as a native feature of the language simplifies the syntax
and implementation complexities and reduces the number of external dependencies.
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Although other language and library communication methods are generally suffi-
cient for implementing coordination mechanisms, doing so manually requires a high
level of expertise and adds complexity to the implementation. Having a native fea-
ture of the language explicitly designed for the purposes of coordination, namely event
types, again simplifies the syntax and implementation complexities and reduces the
number of external dependencies.

3.1.2 Teams

Although there are task scheduling algorithms that do not require a reserved process to
act as a scheduler, these algorithms generally come at the cost of increased overhead in
terms of coordination and complexity of implementation. However, having a dedicated
scheduler can introduce a communication and coordination bottleneck in cases of
large tasks DAGs being executed by large numbers of processes. While we have not
yet implemented it, the teams feature of Fortran allows for a simple and natural
partitioning of processes such that multiple schedulers can coordinate with segments
of executors operating on partitions of the task DAG.

3.1.3 Polymorphism

Although it may be possible to implement a task-scheduling framework without poly-
morphism, it would require implementation of a predetermined set of possible task
interfaces, which would likely be limiting for potential users. By making use of abstract
type definitions and type-extension, and defining a generic interface for a task, the
procedure of defining a task and including it in a DAG becomes a natural process for
users, with help from the compiler in enforcing that they have done so properly. The
process of defining new tasks involves creating a new derived type which extends from
the framework’s task t type and providing an implementation for the run procedure.
A task can then be created by instantiating an object of this new type, to be included
in the DAG.

3.1.4 Fortran’s History

Fortran’s long history of use in scientific computing means that there are likely a
large number of applications that could benefit from a Fortran-specific task schedul-
ing framework. We have already identified a potential target application in NASA’s
OLTARIS [21], space radiation shielding software. Other prime target applications are
those which perform a series of different, but long running calculations, or those which
perform parallel calculations (or easily could), but which experience load balancing
issues.

3.2 Disadvantages

There are some ways in which the Fortran language lacks some important features that
would allow for an even better implementation. We will discuss these shortcomings
and the ways in which the language could be improved to address them, or how they
can be worked around.
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3.2.1 Data Communication

The lack of ability to utilize polymorphism in coarrays means that communication
of task input and output data cannot be done as seamlessly as users would like. In
order to communicate the inputs and outputs between tasks, users are forced to man-
ually serialize and deserialize the data into a pre-defined format for transfer between
processes. This means it will also be difficult for users to make use of polymorphism
in their calculations, as deserialization of polymorphic objects can be done only with
a predefined set of possible result types. Further, the lack of ability to communicate
polymorphic objects via coarrays means that each executor must have a complete
copy of the DAG and its tasks, because the tasks themselves cannot be communicated
to the executors later. This represents a moderate inefficiency in data storage and in
initial execution for each executor to compute/construct the DAG. A strategic relax-
ation of a single constraint in the Fortran standard is all that would be required to
enable the use of polymorphism in the data communication. The Fortran standard
committee has accepted this as an item to address for the upcoming F202Y revision.

3.2.2 Task Detection, Fusion or Splitting

Because Fortran lacks any features for introspection or reflection, it is not possible
for the framework to automatically detect tasks, fuse small tasks together, or split
large tasks apart. All task definition must be performed manually by the user, with
no help from the framework. It would be possible to allow users to manually provide
information about task and data sizes to encourage certain sequences of tasks to
be executed by one executor, but would likely be difficult and error prone. Future
work could involve exploring avenues for annotating tasks to help the scheduler more
efficiently assign tasks to executors.

3.2.3 Task Independence

Task independence is a problem for all task based applications, but Fortran pro-
vides few avenues for mitigating or catching possible mistakes. Any data dependencies
between tasks not stated explicitly in the DAG and communicated as arguments to the
task or its output, allow for the possibility of data races. In other words, all tasks must
be pure functions with all dependencies defined. Many existing Fortran applications
were not written in this style, and may require extensive work to refactor to a form in
which they could take advantage of a task scheduling framework. It is the opinion of
the authors that most applications could benefit from such refactoring to enable par-
allel execution regardless of the desire to use this framework, but understand that the
costs involved do not always make this refactoring feasible. Users could make these
dependencies explicit without using the framework to transmit the data, but it may
be beneficial to develop tools to help users identify these “hidden” dependencies.

3.2.4 Lagging Compiler Support

While the features necessary for developing this framework have been defined by the
language standard since 2018, compilers have been slow to implement them, and sup-
port is still buggy and lacking. For example, we were able to work around a bug in
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gfortran/OpenCoarrays regarding access of allocatable components of derived types
in a corray on remote images by defining the payload size to be static for the pur-
poses of demonstrating the examples shown below. Additionally, we had to simplify
the code, remove the use of external dependencies, and work around various internal
compiler errors in order to get the examples shown to compile and execute with the
remaining compilers.

3.3 Examples

The examples described in this section can be found in the FEATS repository at
https://github.com/sourceryinstitute/feats.

3.3.1 A Quadratic Root Finder

The typical algorithm/equation for finding the roots of a quadratic equation can be
defined as tasks and FEATS can then be used to perform the calculations. The use of
such a simple example can be beneficial for demonstrating the use of the framework.
Given a quadratic equation of the form:

a ∗ x2 + b ∗ x+ c = 0 (1)

then the equation to determine the values of x which satisfy the equation (the roots),
is:

−b±
√
b2 − 4 ∗ a ∗ c
2 ∗ a

(2)

The diagram in Figure 1 illustrates how this equation can be broken into separate
steps and shows the dependencies between them.

The equivalent FEATS application can be constructed as follows, assuming the
tasks have been appropriately defined.

s o l v e r = &
dag t ( [ &

ve r t e x t ( [ i n t e g e r : : ] , a t ( a ) ) &
, v e r t e x t ( [ i n t e g e r : : ] , b t (b ) ) &
, v e r t e x t ( [ i n t e g e r : : ] , c t ( c ) ) &
, v e r t e x t ( [ 2 ] , b squared t ( ) ) &
, v e r t e x t ( [ 1 , 3 ] , f o u r a c t ( ) ) &
, v e r t e x t ( [ 4 , 5 ] , s q ua r e r o o t t ( ) ) &
, v e r t e x t ( [ 2 , 6 ] , minus b pm square root t ( ) ) &
, v e r t e x t ( [ 1 ] , two a t ( ) ) &
, v e r t e x t ( [ 8 , 7 ] , d i v i s i o n t ( ) ) &
, v e r t e x t ( [ 9 ] , p r i n t e r t ( ) ) &

] )

This example produces output like the following, with a slightly different order of
execution being possible each time except that an operation is never performed prior
to the results of the operations on which it depends.
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a

b

c

# ** 2

4 * # * #

s q r t ( #  -  # ) - #  ±  #

2 * #

#  /  # p r in t  r oo t s

Fig. 1: Graphical representation of the computational tasks involved in calculating
the roots of a quadratic equation.

c = 1.00000000
b = −5.00000000
a = 2.00000000
2∗a = 4.00000000
b∗∗2 = −5.00000000
4∗a∗c = 8.00000000
sq r t (b∗∗2 − 4∗a∗c ) = 4.12310553 −4.12310553
−b +− s q r t (b∗∗2 − 4∗a∗c ) = 9.12310600 0.876894474
(−b +− s q r t (b∗∗2 − 4∗a∗c ) ) / (2∗ a ) = 2.28077650
0.219223619
The roo t s are 2.28077650 0.219223619

3.3.2 LU Decomposition

LU Decomposition is a common, computationally intensive operation. It involves find-
ing the lower (L) and upper (U) triangular matrices that when multiplied together
result in the original matrix. By breaking the task down into appropriate steps, we
can define a DAG to perform the operation. The general algorithm is as follows in
pseudo code.

matrix (1 , : , : ) = i n i t i a l m a t r i x
L = 0
f o r i = 1 , num rows ; L( i , i ) = 1
step = 1 , num rows−1

row = step+1, num rows
L( row , s tep ) =

matrix ( step , row , s tep )
/ matrix ( step , step , s tep )

matrix ( s tep+1, row , : ) =
matrix ( step , row , : )

− matrix ( step , row , : ) ∗ L( row , s tep )
U = matrix ( num rows , : , : )
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The code to transform the above algorithm into a task DAG executable by FEATS
is as follows. It prints the initial matrix, as well as the intermediate matrix at the
completion of each step. The final matrix printed is the L matrix, and the penultimate
matrix is the U matrix.

num tasks = &
4 &
+ ( mat r i x s i z e −1)∗2 &
+ sum ( [ ( ( mat r i x s i z e−s tep )∗3 , s tep=1,mat r i x s i z e −1) ])

a l l o c a t e ( v e r t i c e s ( num tasks ) )

v e r t i c e s (1 ) = ve r t e x t ( [ i n t e g e r : : ] , i n i t i a l t ( matrix ) )
v e r t i c e s (2 ) = ve r t e x t ( [ 1 ] , p r i n t ma t r i x t ( 0 ) )
do step = 1 , mat r i x s i z e −1

do row = step+1, ma t r i x s i z e
l a t e s t ma t r i x = &

1 &
+ sum ( [ ( 3 ∗ ( mat r i x s i z e−i ) , i = 1 , step −1) ]) &
+ 2∗( step −1)

ta sk base = &
sum ( [ ( 3 ∗ ( mat r i x s i z e−i ) , i = 1 , step −1) ]) &
+ 2∗( step −1) + 3∗( row−( s tep +1))

v e r t i c e s (3+ task base ) = ve r t e x t ( &
[ l a t e s t ma t r i x ] , &
c a l c f a c t o r t ( row=row , s tep=step ) )

v e r t i c e s (4+ task base ) = ve r t e x t ( &
[ l a t e s t mat r i x , 3+task base ] , &
row mul t ip ly t ( s tep=step ) )

v e r t i c e s (5+ task base ) = ve r t e x t (&
[ l a t e s t mat r i x , 4+task base ] , &
row subt ra c t t ( row=row ) )

end do
r e c on s t r u c t i o n s t e p =

3 &
+ sum ( [ ( 3 ∗ ( mat r i x s i z e−i ) , i = 1 , s tep ) ] ) &
+ 2∗( step −1)

v e r t i c e s ( r e c on s t r u c t i o n s t e p ) = ve r t e x t ( &
[ 1 &
+ sum ( [ ( 3 ∗ ( mat r i x s i z e−i ) , i = 1 , step −1) ]) &
+ 2∗( step −1) &

, [ ( 5 &
+ sum ( [ ( 3 ∗ ( mat r i x s i z e−i ) , i = 1 , step −1) ]) &
+ 2∗( step −1) &
+ 3∗( row−( s tep +1)) &
, row=step+1, ma t r i x s i z e ) ] &

] , &

10



Fig. 2: Task Graph of LU Decomposition for a 3x3 Matrix

r e c o n s t r u c t t ( s tep=step ) )
! p r i n t the j u s t r e con s t ruc t ed matrix
v e r t i c e s ( r e c on s t r u c t i o n s t e p+1) = ve r t e x t ( &

[ r e c on s t r u c t i o n s t e p ] , p r i n t ma t r i x t ( s tep ) )
end do
v e r t i c e s ( num tasks−1) = ve r t e x t ( &

[ ( [ ( 3 &
+ sum ( [ ( 3 ∗ ( mat r i x s i z e−i ) , i = 1 , step −1) ]) &
+ 2∗( step −1) + 3∗( row−( s tep +1)) &

, row=step+1, ma t r i x s i z e ) ] &
, s tep=1, mat r i x s i z e −1)] &

, b a c k s ub s t i t u t e t ( n rows=mat r i x s i z e ) )
v e r t i c e s ( num tasks ) = ve r t e x t ( &

[ num tasks −1] , p r i n t ma t r i x t ( ma t r i x s i z e ) )

dag = dag t ( v e r t i c e s )

For a 3x3 matrix, the above code creates a task DAG like the one shown in Figure 2.
Execution of the task DAG produces output like shown below.

Step : 0
11 .052 411 .77 573 .46
9 .7038 978 .47 751 .12
564 .47 892 .35 806 .38

Step : 1
11 .052 411 .77 573 .46
0 .0000 616 .92 247 .60
0 .0000 −20139. −28483.
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Fig. 3: Intel i5, NAG Compiler, Explicit Scheduler Image

Step : 2
11 .052 411 .77 573 .46
0 .0000 616 .92 247 .60
0 .0000 0 .0000 −20401.

Step : 3
1 .0000 0 .0000 0 .0000

0.87804 1 .0000 0 .0000
51 .075 −32.644 1 .0000

4 Performance

Using the problem of finding the LU decomposition of a 100x100 matrix, the per-
formance of both task scheduling methods was evaluated. See sections 2.1.1 (explicit
scheduler image, ESI) and 2.1.2 (first to claim, FTC) for an overview of the two strate-
gies. Performance experiments were conducted using two computer systems (a desktop
computer equipped with an Intel Core i5-6500, and the Perlmutter supercomputer) and
three different Fortran compilers (the NAG compiler version 7.1 Build 7138, gfortran
version 13.2.0 on the desktop computer and version 11.2.0 on Perlmutter with Open-
Coarrays version 2.10.1, and the Cray compiler version 15.0.1). Experiments using the
NAG compiler were done using the compile time flags -O4 -Onoteams -Orounding

-coarray. Experiments with the Cray compiler and gfortran + opencoarrays used
-O3. Note that the ESI strategy was implemented such that if there is only one run-
ning image, the scheduler image does the work required for each task itself, rather
than assigning it to another image (though the scheduling logic still runs in order to
choose the next task).
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Fig. 4: Intel i5, NAG Compiler, First to Claim

Fig. 5: Intel i5, Gfortran with OpenCoarrays, Explicit Scheduler Image

With the NAG compiler, which was only available on the Intel i5 desktop sys-
tem, moving from the ESI implementation to the FTC implementation reduced the
single-image execution time from almost 12 seconds to under 5 seconds. Both imple-
mentations saw the runtime cut approximately in half by moving to two images, but
adding a third or fourth resulted in little change to the execution time (Figs. 3 and 4).
On that system, which has four cores, more than 4 images was not expected to improve
performance and indeed it did not, with performance getting worse after 4 images.

Gfortran with OpenCoarrays fared quite differently from the NAG compiler. On
the i5 system, the ESI strategy finished with less than half the average runtime of the
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Fig. 6: Intel i5, Gfortran with OpenCoarrays, First to Claim

Fig. 7: Perlmutter (1 node), Gfortran with OpenCoarrays, First to Claim

FTC implementation, in a reversal of the performance of the two algorithms under
the NAG compiler. Scaling to multiple images resulted in longer execution times than
with a single image (Figs. 5 and 6). This was true for both algorithms, though the
ESI approach was dramatically worse. Using multiple images also failed to produce a
speedup on Perlmutter, at least with the FTC strategy (Fig. 7); the ESI strategy was
not tried.

The Cray compiler was only available on Perlmutter. The ESI strategy ran with
about a quarter the runtime of the FTC in the single-image case. However, the ESI
strategy failed to scale; using two or more images (on the same node) doubled the
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Fig. 8: Perlmutter (1 node), Cray compiler, Explicit Scheduler Image

Fig. 9: Perlmutter (1 node), Cray compiler, First to Claim

execution time, which remained roughly constant with number of images thereafter
(Figs. 8 and 9). The FTC strategy, while slower in the single image case, did produce
reductions in execution time for adding additional images until 10 images was reached.

Scaling was also assessed on Perlmutter (using the Cray compiler) when the images
are on different physical nodes. The result for both strategies was that using multiple
nodes dramatically increases total runtime (Figs. 10 and 11).

The results from these experiments are not encouraging. Admittedly, breaking
down the LU decomposition of a 100x100 matrix into 15,000 distinct tasks does make
for something of a toy problem, but regardless of whether this example problem is well
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Fig. 10: Perlmutter (multinode), Cray compiler, Explicit Scheduler Image

Fig. 11: Perlmutter (multinode), Cray compiler, First to Claim

suited to scaling to many images in the first place, the experiments conducted suggest
that some of the parallel features in Fortran 2018 do not enjoy performance portabil-
ity. The specific details of how coarray communication and events are implemented by
a given compiler runtime clearly matter a great deal, which makes it difficult for pro-
grammers to utilize them effectively. Further investigation is needed to determine the
exact cause of the performance pathologies exhibited by certain compiler / algorithm
combinations.
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5 Conclusion

We believe the existing Fortran applications, and the Fortran ecosystem generally,
would greatly benefit from a native tasking framework. The prototype implementation
of FEATS has successfully demonstrated that implementing a task scheduling frame-
work in Fortran is feasible. Working around limitations of the language and the bugs
in various compilers’ coarray feature implementation has proven a challenging but not
impassible barrier. With this demonstration of a working prototype implementation,
we have taken a significant first step towards providing such a capability to Fortran
users.

We look forward to working on several unresolved issues in FEATS. Longer term
work planned will involve collaborating with the Fortran standard committee to add
capabilities to the language that will enable FEATS behaviors such as communication
of polymorphic objects between images using coarrays. We have identified a targeted
relaxation of a specific constraint in the standard to allow for the needed functionality.
We will also explore the applicability of different scheduling algorithms to various types
of applications, and compare the performance characteristics of FEATS with other
task scheduling implementations. We also hope to find potential users of the framework
and help them to integrate it into their applications. Possible initial target applications
include parallel builds with the Fortran package manager [18] and work-stealing with
the Intermediate Complexity Atmospheric Research model [8].

Supplementary Materials

The code for all examples is available on GitHub®1.
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[18] Ehlert, S., Čert́ık, O., Curcic, M., Jeĺınek, J., Kedward, L., Magnin, V., Pagone,
E., Richardson, B., Urban, J.: Fortran package manager. In: International Fortran
Conference 2021 (2021)

[19] NERSC-10 Workload Analysis (Data from 2018). NERSC. https://doi.org/10.
25344/S4N30W

[20] Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., Rouson, D.:
Opencoarrays: open-source transport layers supporting coarray fortran compilers.
In: Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models, pp. 1–11 (2014)

[21] Singleterry Jr, R.C., Blattnig, S.R., Clowdsley, M.S., Qualls, G.D., Sandridge,
C.A., Simonsen, L.C., Slaba, T.C., Walker, S.A., Badavi, F.F., Spangler, J.L.,
et al.: Oltaris: On-line tool for the assessment of radiation in space. Acta
Astronautica 68(7-8), 1086–1097 (2011)

19

https://doi.org/10.25344/S4N30W
https://doi.org/10.25344/S4N30W

	Introduction
	Implementation
	Scheduling Task Execution
	An Explicit Scheduler Image
	First to Claim


	Advantages, Disadvantages, and Examples
	Advantages
	Coarrays and Events
	Teams
	Polymorphism
	Fortran's History

	Disadvantages
	Data Communication
	Task Detection, Fusion or Splitting
	Task Independence
	Lagging Compiler Support

	Examples
	A Quadratic Root Finder
	LU Decomposition


	Performance
	Conclusion



