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Abstract. The spatial distribution of snow plays a vital role
in sub-Arctic and Arctic climate, hydrology, and ecology due
to its fundamental influence on the water balance, thermal
regimes, vegetation, and carbon flux. However, the spatial
distribution of snow is not well understood, and therefore,
it is not well modeled, which can lead to substantial uncer-
tainties in snow cover representations. To capture key hydro-
ecological controls on snow spatial distribution, we carried
out intensive field studies over multiple years for two small
(2017–2019; ∼ 2.5 km2) sub-Arctic study sites located on
the Seward Peninsula of Alaska. Using an intensive suite of
field observations (> 22 000 data points), we developed sim-
ple models of the spatial distribution of snow water equiv-
alent (SWE) using factors such as topographic characteris-
tics, vegetation characteristics based on greenness (normal-
ized different vegetation index, NDVI), and a simple met-
ric for approximating winds. The most successful model was
random forest, using both study sites and all years, which
was able to accurately capture the complexity and variabil-
ity of snow characteristics across the sites. Approximately
86 % of the SWE distribution could be accounted for, on av-
erage, by the random forest model at the study sites. Factors
that impacted year-to-year snow distribution included NDVI,
elevation, and a metric to represent coarse microtopography
(topographic position index, TPI), while slope, wind, and fine
microtopography factors were less important. The characteri-
zation of the SWE spatial distribution patterns will be used to
validate and improve snow distribution modeling in the De-

partment of Energy’s Earth system model and for improved
understanding of hydrology, topography, and vegetation dy-
namics in the sub-Arctic and Arctic regions of the globe.

1 Introduction

Covering the land for more than half of the year, snow plays
a vital role in the climate, hydrology, and ecosystems of
the Arctic and sub-Arctic. Snow directly impacts climate
through modulation of atmospheric circulation patterns via
the snow–albedo feedback mechanism (Fletcher et al., 2009)
and atmospheric moisture budgets through its control on
the amount of water available for evaporation (Callaghan et
al., 2011). Thus, snow controls water availability, soil mois-
ture, and temperature, affecting all components of an ecosys-
tem, including vegetation (Evans et al., 1989; Schaefer and
Messier, 1995; Scott and Rouse, 1995) animal populations
(Forchhammer et al., 2008; Manning and Garton, 2012), mi-
crobial decomposition, and carbon flux (Mauritz et al., 2017;
Zona et al., 2016). The distribution of snow and timing of its
melt is key to understanding how changes in hydrology, soil
thermal regimes, and vegetation interact across Arctic and
sub-Arctic landscapes (Jafarov et al., 2018). Snow distribu-
tion, however, is a particularly elusive and difficult feature to
characterize, leading to challenges in how to quantify snow
properties over space and understand how snow changes over
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time, especially in remote, under-monitored watersheds of
the Arctic and sub-Arctic.

Within the Arctic and sub-Arctic hydrologic cycle, spring
snowmelt is the single most important event contributing to
the annual water budget of high-latitude watersheds (Ford
and Bedford, 1987; Stuefer et al., 2013). The importance
of understanding end-of-winter snow distribution and its im-
pact on snowmelt and importance in snow modeling has been
shown in previous studies on this topic, including historical
analyses (Homan and Kane, 2015), modeling, and analyses
to characterize the spatial pattern of snow distribution and in-
vestigate how different factors affect the spatial distribution
(Mendoza et al., 2020; Freudiger et al., 2017; Mott et al.,
2018; Revuelto et al., 2014; Trujillo et al., 2007).

There are the following two main approaches to identify
and quantify the influence of different factors on snow distri-
bution: physically based (dynamical) and statistical (empiri-
cal) models (Tarboton et al., 2000; Grünewald et al., 2013).
Physically based dynamical models, including SnowTran-
3D (Liston and Sturm, 1998; Liston et al., 2007; Hirashima
et al., 2004), the distributed blowing snow model (DBSM;
Pomeroy et al., 2007; Essery and Pomeroy, 2004), and the
3D snowdrift model (Jaedicke and Sandvik, 2002), have been
successfully applied to the Arctic. These physically based
models account for both mass and energy exchanges and
allow for a detailed representation of different snow pro-
cesses such as deposition, accumulation, redistribution, sub-
limation, and melting (Tarboton et al., 2000; Grünewald et
al., 2013). However, high-quality meteorology, topography,
and vegetation parameterizations are generally required as
input, and the computational cost can be high for dynamical
models (Liston, 2004; Grünewald et al., 2013).

In contrast, empirically based statistical models use the
relationships between snow depth or snow water equiva-
lent (SWE) and topography, vegetation, and wind to predict
the snow distribution. Statistical models have parsimonious
model structures, so they are computationally inexpensive
and easy to use, but their drawbacks are that they are site-
specific and require substantial data for model calibration
(Tarboton et al., 2000). Decision trees (König and Sturm,
1998) and multiple linear or nonlinear regression models
(Wainwright et al., 2017; Dvornikov et al., 2015) are exam-
ples of statistical snow distribution models that have been
applied in the Arctic and sub-Arctic regions.

More recently, machine learning approaches have been
used to quantify snow distribution using a variety of dif-
ferent algorithms and remote sensing methods. Broxton et
al. (2019) applied artificial neural networks to estimate snow
density, which was then combined with aerial lidar snow
depth to predict SWE. Revuelto et al. (2020) used random
forests to predict lidar snow depth distribution from sev-
eral topographic predictors. King et al. (2020) used random
forests for bias correction of a SWE data assimilation prod-
uct. Other studies have applied machine learning algorithms
using remotely sensed observations as predictors, including

brightness temperature, fractional snow-covered area, or the
normalized difference snow index (Liu et al., 2020; Bair et
al., 2018). Meloche et al. (2022) used random forests to pre-
dict snow depth from topography, an upwind slope index, and
ecotypes in an area of Nunavut. While machine learning ap-
proaches have shown to be an effective method for predicting
snow distribution, few studies have incorporated vegetation
characteristics into the models and validated models with in-
tensive field observations of SWE (Anderton et al., 2004).

A particular interest of this paper is to investigate the spa-
tial pattern of snow distribution based on intensive field snow
sampling surveys to identify what factors have control on
the snow distribution at the local scale for two study sites in
the southwestern and central Seward Peninsula, Alaska. Our
main focus is on identifying secondary factors of snow dis-
tribution as opposed to the primary variables of temperature
and precipitation. Specifically, our goal is to build a statisti-
cal model to (1) characterize the spatial pattern of the end-of-
winter snow distribution, (2) identify the key factors control-
ling the spatial distribution, and (3) predict the snow distribu-
tion for the local study sites. We expect our analysis will be
useful for the validation of the physically based permafrost
hydrology models such as the Advanced Terrestrial Simula-
tor (ATS), which has been developed at fine spatial scales to
understand permafrost dynamics for the region (Atchley et
al., 2016, 2015; Painter et al., 2016). Furthermore, the statis-
tical snow distribution model will be used to validate and im-
proved snow redistribution in Department of Energy (DOE)’s
Energy Exascale Earth System model (E3SM) land surface
model (ELM) and to eventually improve our understanding
of changing hydrology, topography, and vegetation dynamics
in the Arctic and sub-Arctic.

This paper is organized as follows. In Sect. 2, we introduce
the two study sites used for our analysis, describe the field
observations of snow, and outline the site characteristics used
as factors in the study, including topography, vegetation, and
winds. We present the methodology for each modeling ap-
proach in Sect. 3, the results in Sect. 4, and a discussion of
findings and our next steps in the research in Sect. 5. We then
summarize the main conclusions for the study.

2 Data and methodology

2.1 Study sites

The Teller watershed (2.3 km2) and Kougarok Hillslope
study site (2.5 km2) are located in the southwestern part
of the Seward Peninsula, Alaska (Fig. 1). The climate of
the Seward Peninsula is characterized by cool continen-
tal conditions, typified by long, cold winters and short,
cool summers and high precipitation (Peel et al., 2007).
The mean annual air temperature at Nome Airport (1980–
2018; located approximately 35 km from Teller and 78 km
from Kougarok Hillslope) is −2.3 ◦C, with a mean Jan-
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Figure 1. Location and WorldView-2 RGB imagery of the Teller
watershed (lower left) and Kougarok Hillslope study sites (lower
right). Teller has two weather stations (red dots), located near the
top and bottom of the watershed, and the Kougarok Hillslope has
one weather station located near the top of the rocky dome. The
sites are located on the Seward Peninsula of Alaska, with the
HUC12 basins for the Teller watershed and the Kougarok Hillslope
shown in green and the Seward Peninsula road system in red (upper
right). RGB composite from the eight-band WorldView-2 images
obtained on 27 July 2011 (Teller) and 14 July 2017 (Kougarok Hill-
slope) at 1.5 m resolution downloaded from the DigitalGlobe web-
site (https://www.maxar.com/, last access: 29 July 2022) Imagery
© 2011/2017 Maxar. Example of features discussed in the text are
denoted on the map as (1) terraces and risers, (2) the Teller water-
shed stream bed, and (3) the Kougarok Hillslope dome.

uary temperature of −14.4 ◦C and mean July tempera-
ture of 11.2 ◦C. Annual precipitation is 430 mm, with 45 %
falling as snow (National Centers for Environmental In-
formation, National Oceanic and Atmospheric Administra-
tion, https://www.ncei.noaa.gov/cdo-web/datasets/GHCND/
stations/GHCND:USW00026617/detail, last access: 29 July
2022). At Nome Airport (National Centers for Environmen-
tal Information, National Oceanic and Atmospheric Admin-
istration, https://www.ncei.noaa.gov/cdo-web/, last access:
29 July 2022), the average historical (1981–2010) precipi-
tation falling from October to March is 161 mm, while total
annual precipitation (rain and snow) is 425 mm. Snow covers
the ground, generally, from approximately October through
May, depending on the year.

The Teller watershed, with elevations ranging from 50 to
300 m, is located nearby the coast and underlain by discon-
tinuous permafrost, with near-surface permafrost adjacent to
areas with no permafrost or deep permafrost table locations

overlain by a perennially thawed layer (i.e., talik; Jorgenson
et al., 2008; Busey et al., 2008; Uhlemann et al., 2021; Léger
et al., 2019). Topographic features at the sites include terrace
and risers (Fig. 1, no. 1) and stream bed (Fig. 1, no. 2). The
streams in the Teller watershed connect to the Sinuk River,
about 1 km to the south of the study site. Along the streams,
willow shrubs grow, while sedge–willow–Dryas tundra and
mixed shrub–sedge tussock tundra–bog dominate the rest of
the watershed (Fleming, 2015; Konduri and Kumar, 2021).

The Kougarok Hillslope study site is located inland on
the leeward side of the Kigluaik Mountains along a minor
drainage of the Kuzitrin River, which flows into the Imuruk
Basin. The Kougarok Hillslope is situated on a gently rising
upland dome that tops out at an elevation of ∼ 110 m (no. 3;
Fig. 1). The site is overlain by an active soil layer containing
organic peat and mineral horizons (McCaully et al., 2022),
vegetated by alder shrubland, tussock tundra, alder savanna,
and rocky areas dominated by dwarf shrubs and lichens
(Iversen et al., 2019; Salmon et al., 2016). The site is un-
derlain by permafrost approximately 15–50 m thick, with av-
erage active layer thickness of 56 cm (Hinzman et al., 2003).

To obtain spatially consistent and replicable (for differ-
ent study sites and years) estimates of precipitation falling
in each separate year of study, the total winter precipitation
(TWP) for each year was estimated based on the ERA5-
Land hourly reanalysis product (Muñoz-Sabater et al., 2021),
accessed via the Google Earth Engine (https://earthengine.
google.com/, last access: 29 July 2022). For each winter, we
summed the winter (October to March) precipitation and av-
eraged these totals across the study areas.

2.2 Field observations of snow

From 22 to 31 March 2017 (Teller watershed), 26 March
to 5 April 2018 (Teller watershed; Kougarok Hillslope), and
31 March to 7 April 2019 (Teller watershed), end-of-winter
snow surveys were carried out at the study sites to collect
snow depth and snow density to calculate SWE. SWE mea-
sures the amount of water contained within the snowpack and
characterizes the hydrological and thermal impacts of snow
cover better than snow depth (Jonas et al., 2009; Sturm et
al., 2010; Liston and Elder, 2006), which is why we focus on
SWE.

We measured snow characteristics in several different
ways. Snow depth was captured every 1–15 m using a Snow-
Hydro™ GPS snow depth probe (Sturm and Holmgren,
2018). When the snowpack was greater than 130 cm in depth,
which is the length of the snow depth probe, an avalanche
probe was used to manually measure the snow depth. Snow
bulk density was measured with a SWE coring tube, also
manufactured by Snow-Hydro™ (reported error of −9 % to
11 %; Dixon and Boon, 2012; Young et al., 2018; López-
Moreno et al., 2020). Approximately three to five bulk den-
sity samples were taken for each sampling location, with an
interval of ∼ 200–300 m between measurements. The snow
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tube was pressed into the snow until the ground was hit
and the depth of the snowpack in centimeters (snow depth)
was recorded. After the tube was removed from the snow-
pack, the snow in the tube was bagged and weighed in grams
(snow weight). The cross-sectional area of the snow coring
tube (coring tube area) was 30 cm3. Then the snow density
(g cm−2) was calculated from Eq. (1), as follows:

Snow Density=
Snow Weight

Snow Depth×Coring Tube Area
. (1)

Inverse distance weighting (IDW) was used to assign snow
density for each of the observed snow depth locations and
is a common method for interpolating environmental vari-
ables (Franke, 1982; Zimmerman et al., 1999). The IDW
method added uncertainty to our SWE estimates since we
only collected sparse density measurements. These sparse
density measurements ranged over years (Teller) between
0.27 to 0.38 kg m−3, with a standard deviation of 0.03 to
0.04 kg m−3. SWE (cm) was then calculated from the aver-
age of the snow bulk density measurements using Eq. (2),
where water density was 0.997 g cm−3, as follows:

SWE= Snow Depth×
Snow Density
Water Density

. (2)

SWE was then used as the response variable in our statis-
tical models.

2.3 Site characteristics

To model snow redistribution, various landscape factors were
estimated for topographic, vegetation, and wind characteris-
tics, as described below. An overview of data sources, fac-
tors, and descriptions of the factors is given in Table 1.

2.3.1 Topography

To evaluate the effects of topography on SWE distribu-
tions, a digital elevation model (DEM) was analyzed to
estimate elevation, aspect, and slope for each of the study
locations. The Teller watershed and Kougarok Hillslope
DEMs were derived at a 5 m resolution from interfer-
ometric synthetic aperture radar (IfSAR) data available
from https://www.usgs.gov/centers/eros/science/usgs-eros-
archive-digital-elevation-interferometric-synthetic-aperture-
radar (last access: 29 July 2022).

To consider the effects of topography at different spatial
scales on SWE distributions, we included a fine-scale micro-
topography and a topographic position index (TPI) to capture
the range of terrain variability across spatial scales. Values
are calculated by the difference between the cell and the av-
erage elevation of all cells in a surrounding square window
of 15 and 155 m width for microtopography and TPI, respec-
tively.

Microtopography in the Arctic can range from submeter
(e.g., tussocks) to 1–10 m (e.g., hummocks) in scale (Sturm

and Holmgren, 1994). The 15 m microtopography is the
finest scale that can be derived using a DEM at 5 m resolution
and is equal to the curvature of the terrain (Jenness, 2006).
We also consider coarse-scale topographic features defined
using TPI, such as terraces and risers, and the stream chan-
nel (tens to hundreds of meters). To determine the scale of
TPI, we applied a smoothing average window at a range of
widths and then picked the optimal width with the best ran-
dom forest model performance and highest feature impor-
tance (see Sect. 4.4; Fig. A1). We derived both of the above-
described products from the DEM, following Lopez-Moreno
et al. (2009) and Weiss (2001).

2.3.2 Vegetation

Owing to the importance of shrubs for trapping drifting snow
in the Arctic (Sturm et al., 2001a; Essery and Pomeroy, 2004;
Dvornikov et al., 2015; McFadden et al., 2001), we consid-
ered the following different vegetation indicators to reflect
types and distributions: vegetation type and vegetation green-
ness.

Vegetation type was extracted from an updated vegetation
map for both study sites (Konduri and Kumar, 2021) and used
as a continuous feature ranked for each year and site accord-
ing to IDW-interpolated SWE. The continuous ranking was
applied so that feature importance could be compared across
all model features on a consistent basis. The relative rankings
from each year and site were then averaged to produce a final
ranking used in the models (Table A1).

As high-resolution vegetation distribution information is
not widely available for most of the Arctic, a normalized dif-
ference vegetation index (NDVI) was used to approximate
vegetation characteristics. NDVI is indicative of the abun-
dance of photosynthetically active vegetation (Rouse et al.,
1974) and is useful to capture the branch abundance, decid-
uous canopy cover, and maximum height of shrubs in the
Arctic tundra landscape (Boelman et al., 2011). NDVI was
derived from the eight-band WorldView-2 images obtained
on 27 July 2011 at 1.5 m resolution for the Teller water-
shed and 14 July 2017 for the Kougarok Hillslope. Both im-
ages were downloaded from the DigitalGlobe website (https:
//www.maxar.com/, last access: 29 July 2022). To better un-
derstand how the vegetation type was related to NDVI, we
binned vegetation types that were present on more than 1 %
of the total watershed area, which resulted in six representa-
tive categories that encompass the range of wetland species
and short shrub and tall shrub vegetation types. We com-
puted statistics and significance to differentiate the NDVI
values for those bins using analysis of variance (ANOVA)
and Tukey’s honest significant difference (HSD) test (Ta-
ble A1).
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Table 1. Topography and vegetation data sources. Data sources for the input features are listed on the left, and the description of the features
are listed on the right. Note: DEM stands for digital elevation model.

Data sources Features Descriptions

DEM Elevation Elevation (meters)

Slope Slope angle (degrees)

Microtopography Difference between elevation of single 5 m cell and the average
elevation of cells in the surrounding box of 15 m width (m)

Topographic position
index (TPI)

Difference between elevation of single 5 m cell and the average
elevation of cells in the surrounding box of 155 m width (m)

DEM and wind data Wind/aspect Calculated using wind direction and aspect formula (unitless)

WorldView-2 imagery NDVI Normalized difference vegetation index (unitless)

Konduri and Kumar (2021) Vegetation type Vegetation types:
(1) Dryas–lichen dwarf shrub tundra, (2) birch–Ericaceous–
lichen shrub tundra, (3) Ericaceous dwarf shrub tundra, (4)
sedge–willow–Dryas tundra, (5) willow–birch shrub, (5) alder–
willow shrub, (7) tussock–lichen tundra, (8) wet meadow tun-
dra, (9) wet sedge bog–meadow, (10) mesic graminoid–herb
meadow tundra, (11) mixed shrub–sedge tussock tundra, and
(12) willow shrub

2.3.3 Wind

Previous studies showed that snow is usually accumulated
on leeward slopes and blown away from windward slopes
(Evans et al., 1989; Liston and Sturm, 1998; Winstral et al.,
2002; Mott et al., 2011), so we explored whether the prevail-
ing wind would have an impact on the snow distribution. To
understand wind patterns, weather stations within the study
locations and from the nearby Nome weather station were
analyzed (Table A2).

Because faster wind speeds have a greater impact on the
redistribution of snow, we considered winter (October to
March) wind speeds greater than 5 m s−1 (Table A2; Lis-
ton and Sturm, 1998; Berg, 1986; Sturm and Wagner, 2010;
Sturm and Stuefer, 2013). At the weather station at the top
of the Teller watershed, the prevailing wind direction (wind
speeds > 5 m s−1) was the average of the data from the
2016–2017, 2017–2018, and 2018–2019 winters, and at the
Kougarok Hillslope weather station, the prevailing wind di-
rection (wind speeds > 5 m s−1) was based on data from the
2018–2019 winter only due to instrument issues in previous
years. The prevailing wind direction (wind speeds> 5 m s−1)
for each study site was used to represent the exposure of a
particular location to wind as a function of aspect (Dvornikov
et al., 2015). We divided the prevailing winds into the eight
cardinal and ordinal directions (N, NE, E, SE, S, SW, W, and
NW), using 45◦ bins, and then derived a unique wind and as-
pect factor equation for each directional bin. For the Teller
watershed, the prevailing wind direction was 102◦ E, so the
wind and aspect factor (Wf) was calculated using Eq. (3), as

follows:

Wf=−sin(A), (3)

where A is the aspect (Dvornikov et al., 2015; Evans et al.,
1989; Liston and Sturm, 1998). For Kougarok Hillslope, the
prevailing wind direction was 45◦ NE, so the Wf was calcu-
lated using Eq. (4), as follows:

Wf=−cos(A)− sin(A) . (4)

The wind and aspect factor gives positive values for lee-
ward slopes and negative values for windward slopes, since
snow is known to blow away from windward slopes and ac-
cumulate on leeward slopes (Dvornikov et al., 2015). More
details on the wind factors as applied in this work are in-
cluded in the Appendix and Fig. A2.

3 Methodology

3.1 Modeling

We fit three different types of models, namely linear regres-
sion, general additive, and random forest, to quantify the im-
pacts of different factors on snow distribution and character-
ize the spatial pattern of the snow distribution.

3.1.1 Linear regression model

The linear regression model is shown in Eq. (5), as follows:

y = βo+β1x1+ . . .βpxp + ε, (5)

https://doi.org/10.5194/tc-16-3269-2022 The Cryosphere, 16, 3269–3293, 2022
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where y denotes SWE, and β are the coefficient of factors
expressed by the weighted sum of its p features with an error
term, ε. Linear models are useful in that they produce sim-
ple relationships between the response variable and factors,
and the factor rankings are easy to interpret. However, rela-
tionships between snow distribution and factors may not be
linear, and thus linear models may not provide a good result;
additionally, linear models are susceptible to correlations be-
tween parameters. The linear models were implemented us-
ing the Linear Regression class of the Scikit-learn package
in Python (Pedregosa et al., 2011).

3.1.2 Generalized additive model

A generalized additive model, or GAM, is a class of statis-
tical models in which the usual linear relationship between
the response and predictors are replaced by several nonlinear
smooth functions to model and capture the nonlinearities in
the data, as follows:

g (EY (y|x))= βo+ f1(x1)+ f2(x2)+ . . .+ fp(xp), (6)

where g denotes SWE as a link function that links the ex-
pected value to the predictor variables x1, . . .xp, which de-
note smooth, nonparametric functions. This type of model is
useful because it allows for nonlinear relationships between
SWE and the factors. GAMs are generally easy to interpret,
but while they are nonlinear, GAMs still require a fit to a dis-
tribution or shape. The GAMs were implemented using the
LinearGAM class of the pyGAM package in Python (Servén
et al., 2018).

3.1.3 Random forest model

Random forests are based on decision trees, i.e., a series of
yes/no questions asked about our data eventually leading to a
predicted class (or continuous value in the case of regression;
Breiman, 2001). A random forest model is defined by a large
number of individual decision trees that operate as an ensem-
ble. Each individual tree in the random forest generates a vote
for classes (classification) or mean prediction (regression) of
the individual trees, and the one with the most votes is used
for the final prediction (Liaw and Wiener, 2002). Random
forests are useful in that they are not impacted by correlations
in the data, can generally protect against overfitting, and have
built-in feature randomization. The drawback of these mod-
els is that they can be difficult to control if used in black
box mode. The random forests were implemented using the
RandomForestRegressor class of the Scikit-learn package in
Python (Pedregosa et al., 2011).

3.1.4 Model implementation

For all three model (linear, GAM, and random forest) iter-
ations, SWE, the response variable, was square root trans-
formed to ensure its distribution was normal. Model inputs

were also normalized to have a mean of 0 and a standard
deviation of 1. We utilized a split sample approach for all
models, with a train and test set. Performance metrics for all
three statistical models were the coefficient of determination
(R2) and root mean squared error (RMSE) on the test set,
which were evaluated on the untransformed (squared) model
output. Due to the decorrelation effects involved in bootstrap-
ping, the predictive accuracy of random forests is generally
robust to collinearity across features (Dormann et al., 2013).
However, feature collinearity can still be an issue for deter-
mining feature importance (Gregorutti et al., 2017). Prior to
modeling, we used variance inflation factors and pairwise
correlation coefficients to assess collinearity among features
and ensure collinearity was not a significant issue.

We implemented the random forest model using various
subsets of the input factors. One implementation, labeled the
final model, was trained on data from all years at the Teller
watershed and the Kougarok Hillslope combined, with the
TWP for each year included as a feature in the model. We
also trained the model separately for only the Teller water-
shed using all years combined (2017–2019), with the TWP
included as a feature. In addition, we implemented individual
random forest model runs for each year and each site with-
out TWP. The model runs on individual sites and years were
also implemented for linear regression models and GAMs so
that the performance of the three different statistical models
could be compared.

Since the random forest performed the best of the three
models and has the most comprehensive feature importance
metrics, all testing for model features and hyperparameters
was completed with the random forest model. The same fea-
tures were then applied in the linear model and GAM pre-
dictions. Model hyperparameters (tree density, max depth,
max features, min samples split, and min samples leaf) were
selected using Bayesian search (using the BayesSearchCV
function from the Scikit-Optimize package in Python) with
eight-fold cross-validation on the training set. The training
set was a randomly selected 80 % of full dataset, and the re-
maining 20 % of the dataset was used for validation. A com-
plete list of the hyperparameters used for the final model and
the separate the Teller watershed and the Kougarok Hillslope
model runs are given in Table A3.

Using the random forest model, we measured the con-
tribution of each input feature in predicting SWE distribu-
tion with both impurity feature importance and permuta-
tion feature importance (Louppe et al., 2013). Impurity im-
portance, also known as mean decrease in impurity (MDI)
or Gini importance, is proportional to the total number of
splits that each feature divides across all trees in the random
forest, where features with more splits are more important
(Breiman, 2001). While impurity importance is computation-
ally cheap, it is biased towards features with many possible
split points, and suffers from overfitting to the training set.
Permutation importance, also known as mean decrease in
accuracy (MDA), is based on the decrease in model perfor-
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mance when a single feature is randomly shuffled, and more
important features result in larger decreases in performance
when permuted (Breiman, 2001). Permutation importance is
more computationally expensive. We measured permutation
importance on the test set. For this study, we analyzed both
importance metrics (MDI and MDA) to ensure that the rela-
tive feature importance rankings generally agreed.

4 Results

4.1 Meteorological conditions

Meteorological stations located in the study sites (Fig. 1)
recorded temperatures of −7.1 ◦C (the Teller watershed,
2017–2019, including the top and bottom meteorological
stations)/−8.1 ◦C (the Kougarok Hillslope, 2018) during the
winter months of October to March, while Nome Airport re-
ported average 2017–2019 winter temperatures of −8.0 ◦C.
From 2017–2019, Nome Airport reported winter tempera-
tures that were slightly warmer than the recent (1981–2010)
climatological period (−10.5 ◦C). Precipitation recorded at
Nome Airport climate station indicated that, from October to
March, precipitation was 13.3, 28.0, and 25.0 cm, while pre-
cipitation, from December to March, at Nome Airport was
7.2, 15.2, and 16.4 cm for 2017, 2018, and 2019, respectively.
ERA5 average winter (October to March) total precipitation
values are 26.3, 40.3, and 44.9 cm for both the Teller wa-
tershed and the Kougarok Hillslope for 2017–2019, respec-
tively. From October to March, the prevailing wind speed and
direction for the Teller watershed (top station) were predom-
inantly east–northeast (2017–2019), while Kougarok Hills-
lope was predominantly northeasterly in 2019 (Table A2;
Busey et al., 2017). The Kougarok Hillslope meteorological
station experienced issues with its wind sensor in 2018; thus,
those values are not reported herein. The wind directions ex-
perienced at the study sites are similar to that experienced
at Nome Airport (east–northeast). Wind speeds ranged from
4.9 to 6.7 m s−1, which are much lower than wind speeds re-
ported at Nome Airport (10.1 to 12.4 m s−1) in 2017–2019
(Table A2).

4.2 Snow depth, density, and SWE

Snow depth was collected at thousands of locations
(> 22 000 points), while snow bulk density was measured at
hundreds of locations (Table 2; Fig. 2). The number of ob-
servations varied from year to year, with the greatest num-
ber of snow depth observations being collected in 2017, fol-
lowed by 2019, and with 2018 having a similar number of
observations to 2019 in the Teller watershed. In 2017, the
survey was not planned for Kougarok Hillslope, and in 2019,
weather concerns prohibited safe travel to the study site. Note
that, while the Teller watershed’s 2017 survey collected the
most points, the 2019 survey was the most spatially extensive

(Fig. A3). No snowfall occurred during any of the 2017–2019
end-of-winter snow surveys.

The average snow depth at the Teller watershed was ob-
served to be lowest in 2017, and similar depths were noted
in 2018 and 2019 (109.0 and 106.4 cm, respectively). The
average snow depth at the Kougarok Hillslope in 2018 was
75.3 cm. SWE was estimated to be lowest in 2017, lower at
the Kougarok Hillslope versus Teller in 2018, and the highest
SWE values were recorded in 2019 for Teller (Table 2).

High spatial variability in snow depth was measured (Ta-
ble 2; Fig. 2). Snow depth ranged from 2 to 300 cm (mean
89 cm; standard deviation (SD) 40 cm; coefficient of varia-
tion (CV) 0.45). Snow density measurements ranged from
0.146 to 0.433 g cm−3 (mean density of 0.300 g cm−3). SWE
was strongly correlated with snow depth, with correlation co-
efficients ranging from 0.95 to 0.97 (Fig. 3a). Snow density
positively correlated with snow depth with correlation coef-
ficients from 0.51 to 0.59 (Fig. 3b), with higher correlations
deeper than 60 cm. SWE was calculated from snow depth and
snow density, as described previously. SWE ranged from 3.3
to 90.5 cm (with mean 27.4 cm and SD 14.6 cm).

4.3 Topographic, vegetation, and wind features

Topographic features in the study sites illustrate the varia-
tion across the landscape (Fig. 4a, b). Elevational gradients
are strongest at the Teller watershed, topping out at 300 m,
while Kougarok Hillslope’s dome-like feature is approxi-
mately 100 m. Slopes at the Teller watershed are steeper in
the middle of the basin and along the stream banks, while
at Kougarok Hillslope slopes are shallower on the west and
steeper to the east, with overall more gentle elevational gradi-
ents than Teller. TPI highlights dominant features such as the
terraces and risers, the stream bank in the Teller watershed,
and the top of the dome at the Kougarok Hillslope.

Wind and aspect factors illustrate that the Teller water-
shed’s aspects are largely unidirectional (south–southeast
facing), while the Kougarok Hillslope’s west hillslope is pre-
dominantly south facing, with a north-facing slope on the
eastern side over the crest of the dome (Fig. 4a, b). NDVI
patterns in July and August are reflective of taller stature
shrub patches located across the study sites (Figs. 1, 5;
Boelman et al., 2011). Vegetation maps illustrate the dif-
ferences in the two study sites. The Teller watershed con-
tains low-to-mid-slope willow–birch and willow shrub com-
plexes, with Ericaceous dwarf shrub tundra and wet mead-
ows located in the upper slopes. At the Teller watershed, an
ANOVA test of NDVI versus vegetation type (those with
> 1 % of total land cover) indicate significant differences
(p < 0.0001), with the highest NDVI values occurring in wil-
low shrubs (Table A1). Tukey’s HSD test showed significant
differences among all vegetation types (p < 0.0001; Fig. 5).
The Kougarok Hillslope’s slopes are largely mixed shrub–
sedge tussock tundra, with patches of alder–willow shrubs,
Dryas–lichen dwarf shrub tundra, birch–Ericaceous–lichen
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Figure 2. Measured snow depth (cm) and snow density (SWE points) at (a) the Teller watershed (2017–2019) and (b) the Kougarok Hillslope
(2018).

Table 2. Teller and Kougarok Hillslope snow depth and density observations and SWE observations and estimates. The coefficient of variation
(CV) of the observed variables are in parentheses following the average value.

Year Study site Observations SWE Density Snow depth SWE

Snow depth/ Observed, Observed, Observed, Estimated,
SWE (SWE groupings) cm (CV) g cm−3 (CV) cm (CV) cm

2017 Teller 8469/234 (77) 21.03 (0.43) 0.27 (0.11) 73.77 (0.42) 19.37
2018 Teller 5076/150 (49) 32.58 (0.31) 0.32 (0.07) 108.95 (0.31) 34.03
2018 Kougarok Hillslope 4655/96 (31) 21.15 (0.86) 0.29 (0.16) 75.27 (0.57) 23.15
2019 Teller 5376/199 (69) 37.94 (0.36) 0.38 (0.07) 106.38 (0.38) 39.75

Total 23 481/653 (203)

shrub tundra, and willow–birch shrub on the eastern slope
where no snow measurements were taken in 2018 (Konduri
and Kumar, 2021).

4.4 Model optimization and testing

Several different tests were undertaken to determine the opti-
mal features used in the final model; we tested this optimiza-
tion on both sites and for all years. We tested the random
forest model to determine the optimal scale of TPI, with a
smoothing average window from 55 to 505 m (Fig. A1). The
TPI at a scale of 155 m corresponded to the best model per-
formance. Furthermore, the random forest model was used
to determine which vegetation features to use in the final
model. We tested the model using NDVI, vegetation type
as 12 one-hot-encoded categorical features, and vegetation
type as a continuous feature ranked by observed SWE, as
well as combinations of these three features (Fig. A4). We
found that NDVI and the continuous ranking of vegetation

type performed the best, so these two features were included
in the final model. However, while the spatial pattern of veg-
etation type improved model performance, the relative order
of the vegetation type ranking did not appear to be impor-
tant, since other randomized rankings performed similarly
well (Fig. A4). It should be noted that, while NDVI and con-
tinuous vegetation performed the best, the differences across
all tests were similar (R2 values between ∼ 0.86–0.87).

The variance inflation factors of the input features are
shown in Fig. 6. Since the variance inflation factors are all
well below the accepted threshold of 5 (Karimi et al., 2019),
and the largest correlation coefficient between two input vari-
ables (0.49 for microtopography and TPI) is well below the
accepted threshold of 0.70, collinearity is not expected to
severely distort model estimation and predictions (Dormann
et al., 2013).
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Figure 3. Scatterplots of (a) snow depth vs. SWE and (b) snow depth vs. snow density. The linear regressions in panel (b) are for snow depth
> 60 cm.

Figure 4. Input features included in the snow models (elevation, slope, microtopography, TPI, wind and aspect factor, and NDVI and
vegetation type) for (a) Teller and (b) Kougarok Hillslope. The white areas shown in the Kougarok Hillslope maps are lakes. An open circle
on the TPI figure denotes one of the terraces and riser. The vegetation types are (1) Dryas–lichen dwarf shrub tundra, (2) birch–Ericaceous–
lichen shrub tundra, (3) Ericaceous dwarf shrub tundra, (4) sedge–willow–Dryas tundra, (5) willow–birch shrub, (6) alder–willow shrub,
(7) tussock–lichen tundra, (8) wet meadow tundra, (9) wet sedge bog–meadow, (10) mesic graminoid–herb meadow tundra, (11) mixed
shrub–sedge tussock tundra, and (12) willow shrub.

4.5 SWE prediction

The SWE prediction model results for the linear regression,
GAM, and random forest for the individual sites and years
are shown in Table 3. In general, linear regression performed
the worst (R2 ranging from 0.29 to 0.44), random forest per-
formed the best (R2 ranging from 0.72 to 0.92), and GAM
performed in between the other two models (R2 ranging from
0.45 to 0.72). The spatial maps of predicted SWE for the
three different models are shown in Fig. A5 for the Teller
watershed and Fig. A6 for the Kougarok Hillslope. Because
of the success in simulating SWE for the study sites and years
using random forest, we focus the remainder of our study on

the random forest results to discuss the implications and the
driving factors that are ranked to be most important for pre-
diction of SWE in the study sites.

The random forest model results for training and testing
data are given in Table 4. The final random forest model,
which includes data from all years and sites, captures ap-
proximately 86 % of the variance in SWE and has an RMSE
of 5.81 cm on the test set. The scatterplot of predicted and ac-
tual SWE measurements of the test set from the final model
(Fig. 7) shows a linear trend. In comparison to the y = x line,
the linear fit in Fig. 7 shows that the model slightly over-
estimates low SWE measurements and underestimates high
SWE measurements, which could be due to the tendency of
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Table 3. Comparison of model performance for linear regression, GAM, and random forest models that are trained on individual years and
individual sites.

Study site Year Model Train R2 Test R2 Train RMSE Test RMSE

Teller 2017 Linear regression 0.34 0.29 7.17 7.66
GAM 0.49 0.45 6.27 6.56
Random forest 0.97 0.78 1.47 4.25

2018 Linear regression 0.35 0.30 8.85 9.20
GAM 0.53 0.48 7.56 7.92
Random forest 0.97 0.77 1.94 5.28

2019 Linear regression 0.30 0.36 13.58 12.69
GAM 0.51 0.52 11.40 10.91
Random forest 0.96 0.72 3.15 8.31

Kougarok Hillslope 2018 Linear regression 0.45 0.44 12.02 13.60
GAM 0.70 0.72 8.96 9.68
Random forest 0.98 0.92 2.23 5.16

Figure 5. Teller watershed NDVI by major vegetation type. Mesic
gram–herb is short for mesic graminoid–herbaceous tundra. Ta-
ble A1 details each vegetation type.

random forests to decrease the variance by averaging across
many trees.

We also considered the random forest model developed by
using the individual study sites and years as a feature to pre-
dict SWE. The iterations of the random forest model where
we considered only the Teller watershed and all years per-
formed slightly better than the final model, with an R2 of
0.86 and an RMSE of 5.78 cm for the Teller watershed (Ta-
ble 4). The random forest models trained on individual years
and sites ranged in model performance, as shown in Table 4.

Figure 6. Variance inflation factors for the model inputs.

In Fig. 8, we illustrate the spatially predicted SWE from
the final random forest model for the Teller watershed
(2017–2019) and the Kougarok Hillslope (2018). SWE val-
ues across the basin reflect the year-to-year variability in the
amount of precipitation that fell on the study sites. However,
we observe that SWE is variable across the Teller watershed
and the Kougarok Hillslope around major landscape features,
such as the stream bed and terraces and risers within the
Teller watershed. Another location where SWE appears to be
higher is just below the dome on the western hillslope in the
Kougarok Hillslope. The SWE patterns in SWE also reflect
areas of higher NDVI values, where shrubs are identified as
darker patches in both the Teller watershed and the Kougarok
Hillslope (see Fig. 4).

The spatial error, calculated as the predicted minus the ob-
served for the upper and lower quartiles of error in the ran-
dom forest SWE prediction, is shown in Fig. A7 for the Teller
watershed for each year and Fig. A8 for the Kougarok Hill-

The Cryosphere, 16, 3269–3293, 2022 https://doi.org/10.5194/tc-16-3269-2022



K. E. Bennett et al.: Spatial patterns of snow distribution in the sub-Arctic 3279

Table 4. Random forest results for the training and testing data used to estimate SWE.

Study sites Year Train R2 Test R2 Train RMSE (cm) Test RMSE (cm)

Teller and Kougarok Hillslope All 0.98 0.86 2.18 5.81

Teller All 0.98 0.86 2.17 5.78
2017 0.97 0.78 1.47 4.25
2018 0.97 0.77 1.94 5.28
2019 0.96 0.72 3.15 8.31

Kougarok Hillslope 2018 0.98 0.92 2.23 5.20

Figure 7. Random forest results of predicted SWE vs. actual SWE
for the test set when using all year and site datasets, with a test set
of 20 %. R2 is equal to 0.86, and the RMSE is equal to 5.81 cm. The
solid blue line is a linear fit to the scattered points, and the dashed
black line is a y = x line.

slope for 2018. In these figures, we observe that the spatial
error varies from year to year but is not spatially systematic.
Errors are higher in the years where there was lower SWE
in the basin, such as in 2018, compared to the lower SWE
year of 2017 in the Teller watershed, when the survey res-
olution was similar (Fig. A3). In 2019, the survey captured
higher SWE values but similar CV compared to 2018, while
the 2019 survey extent was broader with a finer spatial reso-
lution (Fig. A3). A more detailed consideration of the spatial
error in these datasets is beyond the scope of this work.

4.6 Feature importance

Figure 9 shows the impurity and permutation feature impor-
tance results for the final random forest model. Both of the
importance metrics provide similar results and the same vari-

Figure 8. Spatially predicted SWE for the final model for (a) Teller
in 2017, 2018, and 2019 and (b) Kougarok Hillslope in 2018. The
gray areas in the Kougarok Hillslope map are small lakes. Note that
the scales change for each year and study location across the panels.

able ranking, with the exception of the permutation impor-
tance metric ranking elevation as being higher than NDVI
and impurity ranking NDVI higher than elevation. TWP is
the key primary factor driving SWE distribution. Overall,
NDVI, elevation, and TPI are the most important secondary
features for predicting SWE distribution at our study sites.
Features such as slope, vegetation type, wind/aspect factor,
and microtopography are ranked as the least important in
SWE prediction.

4.7 SWE correlations between years

Heatmaps that illustrate significant SWE correlations be-
tween years 2017–2019 for the Teller watershed are shown in
Fig. 10, based on random-forest-modeled SWE trained with
data from all years and sites. The weakest correlations are
for the years with low (2017) and high (2019) SWE (Pear-
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Figure 9. Random forest feature importance results (where panel a shows the impurity, and panel b shows the permutation) for the final
model, with ±1 standard deviation shown by the black error bars.

son correlation coefficient r = 0.67), with stronger correla-
tions between the two higher SWE years (2018 and 2019;
r = 0.89). These correlations tend highlight the consistency
in SWE values for the study site across highly variable cli-
mate conditions.

5 Discussion

Changes in snowpack characteristics have important impli-
cations for a changing Arctic and are anticipated to be a ma-
jor driver of ecosystem shifts (Bjerke et al., 2015; Cooper,
2014), water and energy balances (AMAP, 2019; Pulliainen
et al., 2020), and biodiversity changes (Niittynen et al., 2018;
Riseth et al., 2011). Changes in snow have implications
for Arctic communities, where snow may impact many re-
sources (Huntington et al., 2004), and for global climate
change (Overland et al., 2019) and carbon cycles (Rogers et
al., 2011; Arndt et al., 2020). Thus, understanding how to
better model snow distribution and the important features in-
volved in snow distribution is fundamental to improving how
we interpret, and plan for, changing Arctic snow in the future
(Zhu et al., 2021; Kouki et al., 2022; Mudryk et al., 2020).

5.1 Snow depth, SWE, and density observations

Snow depth and snow density observations collected from
two small study sites located on the Seward Peninsula of
Alaska comprise an extensive dataset that provides a reliable
and representative estimate of the variation in SWE in this re-
gion. Snow depth showed high variability at both study sites
and years, with a medium level of variability compared to the
variability range reported for other Arctic regions (Bruland
et al., 2001; Hannula et al., 2016; Dvornikov et al., 2015;
Stuefer et al., 2013; Homan and Kane, 2015; Sturm et al.,
2010). Compared to snow depth, snow density showed rela-
tively low variability, similar to the findings for other nonfor-

est Arctic areas by Homan and Kane (2015) and Hannula et
al. (2016).

Consistent with previous studies (Homan and Kane, 2015;
Assini and Young, 2012; Dvornikov et al., 2015; Sturm et
al., 2010), there was a high correlation between snow depth
and SWE in our study, confirming that SWE is more closely
linked to snow depth than to snow density. Sturm et al. (2010)
suggested a nonlinear relationship between snow depth and
density for a large region of the Northern Hemisphere, while
Homan and Kane (2016) did not find any relationship be-
tween snow depth and density for a 200 by 240 km region
of Alaska’s central Arctic slope. Our study showed an over-
all positive linear correlation between snow depth and den-
sity, indicating that snow depth has some control on the
snow density for the study sites. However, snow depth and
density showed no relationship for shallow snow (< 60 cm),
while the linear relationship for deeper snow (> 60 cm) was
strongest at most sites and years (with the exception of 2018
at Kougarok Hillslope), consistent with what has been found
for a study region consisting of a variety of landscapes in
Saskatchewan, Canada (Shook, 1997). The nonlinear rela-
tionship between snow depth and density found in the afore-
mentioned work may be due to the fact that the snow surveys
documented were conducted for different climate and land-
scape classes, where snow density was largely controlled by
climate (wind and temperature) and landscape classes (such
as taiga, tundra, mountain, and coast). On the other hand, a
linear relationship between snow depth and density was ob-
served in this study because the climate and landscape in the
small study sites are more homogenous.

Finally, when we considered SWE between 3 study years
at the Teller watershed site, we found correlations across the
years. This is consistent with other research on snow repeat
patterns (Sturm and Wagner, 2010; Liston, 2004; Kirnbauer
and Blöschl, 1994; Deems et al., 2008; Homan and Kane,
2015; Woo and Young, 2004; König and Sturm, 1998; Rees
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Figure 10. Heatmaps of predicted normalized SWE for Teller in 2017, 2018, and 2019, with Pearson correlation coefficients (r) showing
significant correlations of SWE among the years. Random forest was trained with data from all years and sites. The color scale represents
the density of data points, with dark blue representing areas with the least points and light yellow representing areas with the most points.
Areas with fewer than 100 points are not plotted. The solid red line is a line of the best fit using singular value decomposition.

et al., 2014; Dozier et al., 2016; Erickson et al., 2005; Win-
stral and Marks, 2014), indicating that there are driving fac-
tors that influence snow distribution consistently across the
year-to-year snow variability (i.e., high and lows).

5.2 SWE modeling and prediction

The patterns of our SWE maps illustrate the power of uti-
lizing random forest tools over linear methods of estimating
SWE distributions (e.g., Broxton et al., 2019; Revuelto et al.,
2020; King et al., 2020). When compared to linear and GAM
models, we found that random forests significantly outper-
formed those models. This is mostly likely due to the fact that
SWE distributions are controlled by highly nonlinear inter-
actions between topography and vegetation characteristics;
thus, the flexibility offered by the random forest model can
more accurately account for these interactions. While GAM
models have been applied successfully to estimate nonlin-
ear relationships in snow depth (López-Moreno and Nogués-
Bravo, 2005) in the Spanish Pyrenees, they were not as suc-
cessful at predicting SWE in our study compared to the ran-
dom forests model. Random forest also allowed us to test
different hypotheses of configurations for the model, clearly
determining the success of those configuration and features
combinations.

5.3 Features impacting snow distribution

There were two different techniques measuring importance
in the random forest model that gave similar results, i.e.,
that the greatest controls on SWE were TWP (i.e., precipi-
tation representing climate variability), followed by the key
secondary factors NDVI, elevation, and TPI. These results
in general were consistent with those in previous studies in
terms of how those factors affected snow distribution in the
Arctic, i.e., more snow accumulated in areas with tall shrubs
(Sturm et al., 2001b, a; Sturm and Wagner, 2010; Sturm et
al., 2005), at higher elevations (Dozier et al., 2016; Homan

and Kane, 2015), and within features such as the stream bed
and at the bottom of terraces and risers (Gisnås et al., 2014;
Grünberg et al., 2020).

NDVI in our study tend to reflect the taller shrub patterns
present in the landscape. In this work, we applied the NDVI
estimate from July, near the end of the vegetation growth pe-
riod, which has been corroborated in previous work to be
the peak NDVI (Boelman et al., 2011). Although vegetation
type in our work was slightly less important than NDVI in
our modeling overall, we found taller stature shrub types had
higher NDVI values. Vegetation type has been noted to play
a primary role in end-of-winter snow depth patterning and is
also strongly related to variability in winter and spring soil
temperatures in the Arctic (Grünberg et al., 2020). Because
of the strong feedbacks between snow, shrubs, and climate
(Boike et al., 2019; Sturm et al., 2001a, b), this finding indi-
cates the importance of understanding vegetation dynamics
in sub-Arctic regions.

Interestingly, in a study examining snow depth distribu-
tion using random forests across a low-relief high Arctic
site located in Nunavut, Canada, Meloche et al. (2022) in-
dicate that vegetation ecotype was the least important factor
in snow depth distributions. This was largely explained by
the fact that ecotypes are correlated with topographic param-
eters (such as TPI), and this correlation led to low feature im-
portance in the models. When the authors removed the TPI
parameters in their modeling, ecotype became more impor-
tant, while model skill was reduced. Our study differs from
this work in that it was undertaken using SWE, carried out
in a sub-arctic region with moderate relief, and performed
using a vegetation index (NDVI) to directly represent shrub
influence on the snow, rather than utilizing an ecotype ap-
proach. Hence, the ecotype method applied in conjunction
with the random forests approach by Meloche et al. (2022)
reduced the influence vegetation had on snow distribution,
which made vegetation appear unimportant as a factor in the
snow depth distributions. Instead, as our research indicates,
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vegetation characteristics are an important secondary driving
variable in snow distributions at Arctic sites.

Our results showed that elevation effects are a dominant
factor driving snow distributions at our study sites. We ob-
serve an increase in SWE at higher elevations at the Teller
watershed due to a slight orographic effect, consistent with
the study for a small high-Arctic glacier Svenbreen (Małecki,
2015). However, an apparent orographic effect also occurs
because wind blows snow from outside the catchment into
the upper wetland meadow. Homan and Kane (2015) dis-
cussed a relationship between snow and elevation below spe-
cific elevation bands, above which snow is controlled by
moisture availability; however, the Teller watershed’s max-
imum elevation (300 m) is above the value, suggesting that
the threshold may change due to other local or regional fac-
tors. However, we also observed a decrease in SWE at the
top of the Kougarok Hillslope, where snow is removed com-
pletely from the upper windswept top (Assini and Young,
2012; Shook and Gray, 1996; Homan and Kane, 2015).

TPI in our model was found to be the third most important
variable, indicating the importance of coarse-scale features
in the sub-Arctic landscapes of the Seward Peninsula. These
coarse-scale features, including stream banks and terrace ris-
ers, are areas of topographic variability where shrubs grow
and snow accumulates. Thus, they act as hydrology focal
points in the basins where higher enhanced soil moisture and
soil warming, and associated increased ecological productiv-
ity, can occur (Westergaard-Nielsen et al., 2017). These are
also features that act to entrain snow distributed by wind.
Indeed, recent research into snowdrift landscape patterns in
the Arctic have found that wind transports snow into coarse-
scale features called drift traps, including stream beds, lake
features, outcrop features, and more. These drift traps con-
tain as much as 40 % of SWE found on the landscape and
play a significant role in the distribution of snow in the Arc-
tic (Parr et al., 2020). Meloche et al. (2022) also found that
topographic parameters of TPI and upwind slope index were
the two most important features in the random forest mod-
eling of snow depth distribution for a low-relief high-Arctic
basin.

In our study, microtopography was found to be one of the
least important factors driving snow. However, microtopo-
graphic patterns were highly correlated with curvature. In re-
search from Dvornikov et al. (2015), curvature was found to
have a dominant control on the snow depth at a shrub tundra
area in the central Yamal Peninsula, and there was a posi-
tive correlation between shrub heights, and snow depth was
observed for convex slopes. However, research in fine-scale
polygonal tundra sites of the high Arctic, microtopography
was found to be an important control on snow (Wainwright
et al., 2017). Our study utilized DEMs with a 5 m resolution,
with the caveat that microtopography features dominant in
this landscape (e.g., drainage paths and terraces) range from
centimeters to meters in scale. Thus, we require finer-scale

DEM sources to investigate this in more detail (Adams et al.,
2018; Harder et al., 2020; Revuelto et al., 2021).

5.4 Future work

The ability to model and predict SWE is important on a num-
ber of fronts. First of all, we intend to utilize these findings
to compare them with physics-based modeling efforts and for
future machine-learning efforts. Our models are being used
for investigation of subgrid SWE variability in E3SM’s ELM
(Caldwell et al., 2019; Bisht et al., 2018), along with the
investigation of ecosystem-type constructs for upscaling of
SWE.

Several of our findings require further investigation to
clearly understand their importance for snow distribution.
For example, NDVI was an important parameter in our model
predicting snow distribution, but we do not know which veg-
etation characteristics (e.g., shrub height, density, allometry,
or wetness) NDVI represents, making it harder to extrap-
olate the importance of vegetation characteristics for snow
distribution at other sites across the Arctic and sub-Arctic.
Furthermore, there are likely relationships between TPI and
NDVI that should be investigated, including at smaller spatial
scales. We are also considering the application of more ad-
vanced wind functions (Winstral et al., 2002) in our models
and implementing a physically based wind model for com-
parison and testing against our statistical models (Crumley et
al., 2021; Liston, 2004).

We used multiple study sites with varying characteristics
across multiple climate years to develop our snow distri-
bution estimates. Because of this unique dataset, we were
able to develop robust machine-learning-based models that
we hypothesize are representative of broader SWE patterns
across time and space. However, these theories require ad-
ditional validation at more locations. This hypothesis testing
will be incorporated into current and future work that will
be carried out using broader observations of SWE and snow
depths that can be compared with other remote sensed SWE
data products.

6 Conclusions

The extensive snow depth and density dataset from this study
is of high value for calibrating and validating physically
based models of snow distribution. As the patterns of snow
distribution for a given location are similar from year to year,
the spatial patterns of snow distribution characterized in this
study can be used to represent the typical patterns of snow
distribution and model the relative spatial patterns of snow
distribution for other years for the study sites and across
the region. Linear relationships between snow depths greater
than 60 cm and snow density revealed homogeneity in the
study sites. Snow depth, on the other hand, varied consider-
ably with strong linear relationship to SWE.
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We found that random forest models could simulate the
SWE distribution most accurately when compared to linear
and GAM model approaches, and we were able to simulate
the distribution of SWE across the landscape of these small
sub-Arctic study sites. The results of the statistical model are
useful for understanding the surface water hydrology dur-
ing spring snowmelt and explaining differences in permafrost
distribution and active layer depth, which have an impact on
groundwater hydrology. Using the machine-learning-based
model random forest, we were able to determine which fac-
tors – in addition to precipitation – were most important at
these sub-Arctic study sites for SWE distribution. These fac-
tors were NDVI, followed by two topography indexes, eleva-
tion, and TPI.

Appendix A: Wind equations

The two wind equations in the current study were de-
rived similarly to the wind equation found in Dvornikov et
al. (2015). The purpose of the wind equations is to estab-
lish an index using positive and negative values based on the
topography–wind relationship. First, we used meteorological
station data to calculate an average prevailing wind direction
for the winter months. Second, we used the corresponding
wind equation to assign positive values to the leeward side
of topographical features (where wind loading or drifting of
snow is likely) and negative values to the windward side of
topographical features (where wind scour of snow is likely).

Figure A1. Random forest model performance for model runs using a range of TPI scales. The model performance is optimized when the
TPI scale is 155 m.

To derive our wind equations, we divided the wind rose
into eight cardinal directions by ±22.5◦ increments, i.e., N,
NE, E, SE, S, SW, W, and NW. The eight possible wind
equations that correspond to the eight cardinal directions
are listed below, along with the range of values associated
with each equation. We determined that the coefficients from
Dvornikov et al. (2015) simply added a scaling factor to the
wind equation values and were not necessary for our results.

We chose two wind equations (NE and E) for our study
area based on the prevailing winter wind direction for each
year (Fig. A2).

N, where Wf(x) = −cos(x) and range = −1 to 1

NE, where Wf(x) = −cos(x) − sin (x) and range =
−1.414 to 1.414

E, where Wf(x) = −sin(x) and range = −1 to 1

SE, where Wf(x) = cos(x) − sin (x) and range =
−1.414 to 1.414

S, where Wf(x) = cos(x) and range = −1 to 1

SW, where Wf(x) = cos(x) + sin (x) and range =
−1.414 to 1.414

W, where Wf(x) = sin(x) and range = −1 to 1

NW, where Wf(x) = −cos(x) + sin (x) and range =
−1.414 to 1.414.
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Figure A2. The prevailing wind directions (NE and E) calculated from meteorological station data and the corresponding wind equations
applied in this study.

Figure A3. Teller snow depth and SWE measurements for each year of the survey.
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Figure A4. Random forest model performance for model runs us-
ing various combinations of vegetation features. The categorical
vegetation uses the vegetation types shown in Fig. 4. The contin-
uous vegetation is a ranking ordered by which vegetation type has
higher SWE. The continuous vegetation ranking is also randomized
in three different ways to determine if the ranking order is impor-
tant.

Figure A5. All three statistical models trained on individual years at
Teller. The scale of the SWE changes from year to year, depending
on the annual snowfall.
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Figure A6. All three models trained on single year (2018) at Kougarok Hillslope.

Table A1. Vegetation classes ranked by observed SWE from lowest SWE (1) to highest SWE (12) at Teller. All binned values are significantly
different from each other.

Vegetation type Rank Binned value
(Teller)

Dryas–lichen dwarf shrub tundra 1 2
Birch–Ericaceous–lichen shrub tundra 2 NA
Ericaceous dwarf shrub tundra 3 4
Sedge–willow–Dryas tundra 4 2
Willow–birch shrub 5 3
Alder–willow shrub 6 NA
Tussock–lichen tundra 7 NA
Wet meadow tundra 8 1
Wet sedge bog–meadow 9 1
Mesic graminoid–herb meadow tundra 10 5
Mixed shrub–sedge tussock tundra 11 NA
Willow shrub 12 6

NA in binned values indicates that the vegetation types comprised <1 % of total area at
Teller.

Figure A7. Spatial error (predicted minus observed) for the uppermost and lowermost quartiles of error in the random forest SWE prediction
for Teller.
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Figure A8. Spatial error (predicted minus observed) for the uppermost and lowermost quartiles of error in the random forest SWE prediction
for the final model at Kougarok Hillslope. The error is not distributed systematically through space.

Table A2. Average winter (October–March) wind speed and prevailing direction.

Wind Wind direction Wind direction
speed (prevailing) (prevailing) > 5 m s−1

(m s−1) (◦) (◦)

Nome (measured at 5 m height) 2016–2017 10.14 60.40 (ENE) 65.16 (ENE)
2017–2018 12.42 66.11 (ENE) 67.71 (ENE)
2018–2019 12.06 76.57 (ENE) 78.27 (ENE)

Teller (station at top of watershed) 2016–2017 4.99 83.63 (E) 98.17 (E)
2017–2018 5.47 94.66 (E) 115.38 (ESE)
2018–2019 4.86 76.10 (E) 92.07 (E)

Kougarok Hillslope 2018–2019 6.74 60.23 (ENE) 45.00 (NE)

Table A3. Hyperparameters for the random forest model.

Final model Teller Kougarok Hillslope

Tree density 840 1200 1165
Max depth 90 100 67
Max features 4 4 3
Min samples split 2 2 2
Min samples leaf 1 1 1
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Data availability. Snow observations collected for this study are
available from a publicly available repository, the Next-Generation
Ecosystem Experiments (NGEE Arctic) data portal, which is
accessible at https://ngee-arctic.ornl.gov/ (last access: 29 July
2022; https://doi.org/10.5440/1592103; Wilson et al., 2020b;
Bennett et al., 2020; https://doi.org/10.5440/1593874; Wilson et
al., 2020a). Data used as input to simulate SWE distribution are
available (IfSAR; https://www.usgs.gov/centers/eros/science/usgs-
eros-archive-digital-elevation-interferometric-synthetic-
aperture-radar, last access: 29 July 2022), while the vege-
tation data are also available from the NGEE Arctic portal
(https://doi.org/10.5440/1828604; Konduri et al., 2022).
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