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1.  Introduction
One contemporary critical challenge is to significantly mitigate emissions of greenhouse gases in order to prevent 
a dramatic global climate change. In the last decades, geological carbon sequestration (GCS) has been inves-
tigated as one possible solution to reduce emissions of carbon dioxide (CO2) into the atmosphere (Benson & 
Cole,  2008). Geological carbon sequestration (GCS) consists in injecting captured CO2 into deep subsurface 
geological reservoirs such as deep saline aquifers or depleted oil and gas fields (Celia, 2017; Metz et al., 2005).

The underground injection of large volumes of CO2 causes pressure rise that results in geomechanical strain and 
stress changes within and surrounding the targeted storage formation (Rutqvist, 2012). Activation of pre-exist-
ing fractures and faults may be an issue of concern for the potential of inducing seismicity that could be felt by 
humans on the ground surface or for the potential of opening up a new flow path through an overlying caprock 
(Rutqvist, 2012; Rutqvist et al., 2016; Vilarrasa et al., 2019; M. D. Zoback & Gorelick, 2012). In this context, the 
concept of fractures and faults in the host rock being near critically stressed for activation by shear slip is relevant 
(Zoback & Zoback, 1989). It means that a small change in reservoir pressure by injection may be sufficient to 
trigger activation of pre-existing faults and cause seismic events.

Although no significant seismic event induced by CO2 injection has occurred at any geological carbon seques-
tration (GCS) site to date, it is necessary to understand whether industrial scale sequestration can lead to seismic 
events of magnitudes that can be perceived by humans. Indeed, a felt seismic event could potentially lead to the 
abandonment of a project as it has been the case in some geothermal projects (e.g., Deichmann & Giardini, 2009).

Abstract  Injection of CO2 for geologic carbon sequestration into deep sedimentary formations involves 
fluid pressure increases that engage hydromechanical processes that can cause seismicity by activation of 
existing faults. In this work, we use a coupled multiphase fluid flow and geomechanical simulator to model 
spatiotemporal fluid pressure and stress changes in order to study the poroelastic effect of CO2 injection on 
faults in crystalline basement rock below the injection zone. The seismicity rate along features interpreted to be 
basement faults is modeled using Dieterich's rate-and-state earthquake nucleation model. The methodology is 
applied to microseismicity detected during CO2 injection into the Mount Simon formation during the Illinois 
Basin—Decatur Project. The modeling accurately captures an observed reduction in seismicity rate when the 
injection in the second well was into a slightly shallower zone above the base of the Mount Simon formation. 
Moreover, the modeling shows that it is important to consider poroelastic stress changes, in addition to fluid 
pressure changes for accurately modeling of the observed seismicity rate.

Plain Language Summary  The Illinois Basin—Decatur Project (IBDP) is the first carbon 
capture and sequestration project in the United States to inject commercial volumes of CO2 into underground 
subsurface rock formations. Nearly 20,000 injection-induced microearthquakes have been detected during 
the 3 year-long injection, mainly located within the basement rock beneath the reservoir where the CO2 is 
injected. In this work, we aim to model the sequence of microearthquakes induced by the injection of CO2 into 
a permeable reservoir above a crystalline basement rock using a computational model that couples fluid flow 
and geomechanics. Changes in in situ conditions are linked to seismicity induced at the site using an earthquake 
physics-based model. Our model correctly reproduces the main temporal features of the earthquake sequence 
observed at the IBDP.
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Events of significant magnitude have been associated with wastewater injection in the United States midcontinent 
region (Weingarten et al., 2015). Seismicity in these areas has been attributed to basement faults triggered by 
wastewater injection into deep reservoirs close to crystalline basement rock. Seismicity has been inferred to be 
triggered by very small pressure changes indicating activation of faults that are critically stressed (i.e., close to 
instability; Hombach et al., 2015; Keranen et al., 2014).

The potential for fault activation and induced seismicity associated with underground fluid injection during GCS 
activities, has been the subject of a number of modeling studies in recent years (Cappa & Rutqvist, 2011; Jha 
& Juanes, 2014; Rutqvist et al., 2016; Vilarrasa et al., 2019). Fault reactivation mechanisms involve complex 
coupled physical processes that are still not fully understood, but it is generally acknowledged that the first-order 
cause of injection-induced fault reactivation is changes in pore pressure which reduce the shear strength of opti-
mally oriented faults and bring them closer to the point of failure where classical Mohr-Coulomb failure criteria 
is used to characterize the susceptibility of faults to slip.

With the recent surge in seismicity attributed to anthropic activities in United States midcontinent, post-mortem 
numerical modeling studies serve to increase understanding of the mechanisms underlying induced seismicity 
(Choy et al., 2016; Ellsworth et al., 2015). Most studies assume that fault reactivation is primarily driven by 
pore pressure diffusion and thus neglect injection-induced poroelastic stress changes. However, several recent 
numerical studies indicate that poroelastic effects must be captured by numerical models in order to correctly 
forecast fluid-induced seismicity (Barbour et al., 2017; Zhai et al., 2019). Most of these studies are related to 
wastewater injection or enhanced geothermal systems (Barbour et al., 2017; Hakimhashemi et al., 2014; Norbeck 
& Rubinstein, 2018), while only a handful of sites reported fluid-induced microseismicity (i.e., 𝐴𝐴 𝐴𝐴𝑤𝑤 < 2 , not felt 
by humans) associated with CO2 injection, namely at In Salah, Algeria (Rutqvist et al., 2016; Verdon et al., 2015); 
Otway, Australia (Myer & Daley, 2011; Siggins, 2010), and the Illinois Basin—Decatur Project (IBDP), United 
States (Bauer et al., 2016; Kaven et al., 2015; Will, El-Kaseeh, et al., 2016; Will, Smith, et al., 2016).

The IBDP is the first carbon capture and sequestration project in the United States that injected commercial 
volumes of CO2 into a deep saline aquifer for GCS (Finley, 2014). One million tons of CO2 was injected over a 
3-year injection period from November 2011 to November 2014 at the well CCS1 into a high permeability Mount 
Simon Sandstone interval at a depth of around 2,140 m. Nearly 20,000 induced microseismic events were detected 
with most events located within the underlying crystalline Precambrian basement (Williams-Stroud et al., 2020). 
Identified clusters of microseismic events form semilinear features oriented within 30° of the direction of the 
maximum horizontal principal stress (azimuth N068°) and indicate that the seismicity at the IBDP is occurring 
along pre-existing basement faults (Goertz-Allmann et al., 2017). In April 2017, CO2 started to be injected in the 
CCS2 well in a zone less than 50 m shallower than the injection zone in the CCS1 well. Injection was into the 
Lower Mount Simon in both wells, but with a higher injection rate in the CCS2 well compared to that of CCS1. 
Yet, there is very little microseismicity occurring during injection into CCS2 (Williams-Stroud et al., 2020).

Here, we demonstrate an approach for modeling the induced seismicity observed at the IBDP along basement 
faults using multiphase fluid flow and geomechanical model simulations coupled with a rate-and-state nucleation 
model. The organization of the study is as follows: In Section 2, we describe the computational model used in this 
study. In Section 3.1, we show the result of the earthquake catalog declustering that is used to calibrate the rate-
and-state parameters in Section 3.2. The modeling results for both injections in wells CCS1 and CCS2 are then 
detailed in Section 3.3. Finally, we use our model to study the effect of varying injection scenarios on predicted 
induced seismicity in Section 3.4.

2.  Numerical Model
In this work, we consider a three-dimensional domain that includes discretized faults within the basement inferred 
from the microseismic clusters observed at the IBDP site. We simulate the CO2 injection and stress evolution 
using the coupled multiphase flow and geomechanical model and apply the rate-and-state seismicity model to 
study the response of the basement faults to the CO2 injection.
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2.1.  Computational Model

We consider a simplified version of the subsurface structure at the Decatur site with a three-dimensional layer-
cake model geometry consisting of 10 homogeneous geological layers with the top layer representing the primary 
seal Eau Claire formation (1,540 m depth below ground surface [bgs]) and the bottom layer representing the 
crystalline basement (2,100–3,000 m bgs; Bauer et al., 2016). The Mount Simon sandstone formation is divided 
into six different layers in the model, representing from bottom to top, the Lower Mount Simon A—lower zone, 
Lower Mount Simon A—upper zone, and the Mount Simon B, C, D, and E zones. The injection interval is located 
in the Mount Simon A—lower zone which has been divided into three sublayers to improve flow modeling within 
the reservoir. A thin continuous mudstone layer is included to honor multilevel pressure data recorded at the 
IBDP site which shows that vertical migration of the CO2 plume that formed after injection into CCS1 is limited 
by discontinuous low-permeability layers that inhibit vertical fluid flow within the reservoir (Senel et al., 2014; 
Strandli et  al.,  2014; Williams-Stroud et  al.,  2020). Hydromechanical properties of the geological layers are 
summarized in Table 1.

Sixteen microseismic clusters are identified using the DBSCAN algorithm (Ester et al., 1996) and used to map 
faults in our model. Faults are discretized as finite-thickness elements within the basement and are displayed in 
Figure 1 (middle). This type of fault model is conceptually similar to conduits with along fault flow dominated 
by flow in a highly fractured damage zone (Caine et al., 1996). All faults are about 20 m thick and uniform in 
properties (i.e., fault core is not distinguished from damage zone). A detailed microseismic analysis showed that 
the basement faults at Decatur are hydraulically connected to the reservoir (Goertz-Allmann et al., 2017). There-
fore, the faults discretized in our model vertically extend from the bottom of the reservoir (2,146 m) to the bottom 
of the model (3,000 m). We consider the faults to be hydraulically conductive with permeability logarithmically 
decreasing with depth from 1 mD at the top (2,146 m) to 0.1 mD at the bottom (3,000 m). This type of perme-
ability variation has been reported to be associated with critically stressed crystalline basement faults (Barbour 
et al., 2017; Townend & Zoback, 2000). Mechanically, faults are assumed to be transversely anisotropic where the 
Young's modulus in the direction normal to the plane of isotropy is equal to 80% of that of the plane of isotropy 
(Glamheden et al., 2007). As the locations of induced seismicity do not clearly outline the faults and for the sake 
of simplicity, we consider that all faults are vertical (dip angle 𝐴𝐴 𝐴𝐴 = 90

◦ ) and have the same elastic properties as 
the host rock units they transect (i.e., only the permeability of faults are different).

Figure 1 (left-hand side) shows the computational mesh with the applied boundary conditions. The mesh consists 
of 200 × 200 × 50 (2 million) hexahedral elements uniformly discretized horizontally and refined vertically in the 
vicinity of the injection zone. Lateral and bottom boundaries are open to fluid flow with only the top boundary 
being closed to flow. We apply fixed stress conditions at lateral and top boundaries, and rollers at the bottom 
(no vertical displacement). Following Senel et  al.  (2014), we assume an initial hydrostatic gradient for pore 
pressure (10.15 MPa/km) and vertical geothermal gradient for temperature (18.2°C/km). The system is initially 

Layer Top (depth bgs) (m)𝐴𝐴 𝝆𝝆 (kg/m 3)𝐴𝐴 𝐴𝐴 (−)𝐴𝐴 𝑲𝑲𝒉𝒉 (mD)𝐴𝐴 𝑲𝑲𝒗𝒗 (mD) Cp (GPa −1)𝐴𝐴 𝑽𝑽 𝒑𝒑 (km/s)𝐴𝐴 𝑽𝑽 𝒔𝒔 (km/s)𝐴𝐴 𝑬𝑬 (GPa)𝐴𝐴 𝝂𝝂 (−)𝐴𝐴 𝜶𝜶 (−)

Eau Claire 1,540 2,400 0.1 10 –5 10 –5 25.18 4.80 2.94 37.95 0.138 0.541

Mount Simon D-E 1,690 2,450 0.105 71 71 24.55 4.80 2.94 37.95 0.0991 0.554

Mount Simon B-C 1,805 2,450 0.087 1 1 29.63 4.65 2.85 37.95 0.0991 0.504

Mount Simon A-upper 1,965 2,200 0.15 13.7 0.108 37.03 4.50 2.53 17.25 0.135 0.665

Baffle 2,100 2,200 0.15 0.628 0.628 35.03 4.50 2.53 17.25 0.135 0.665

Mount Simon A-lower-1 2,110 1,900 0.143 63 0.015 57.36 4.50 2.53 11.70 0.135 0.648

Mount Simon A-lower-2 2,122 1,900 0.234 75.6 0.0363 57.36 4.50 2.53 11.70 0.135 0.834

Mount Simon A-lower-3 2,134 1,900 0.166 115 1.34 57.36 4.50 2.53 11.70 0.135 0.701

Argenta 2,146 2,450 0.09 0.345 0.00344 28.52 5.90 3.55 37.95 0.108 0.513

Basement 2,170 2,550 0.05 10 –4 10 –4 37.03 5.90 3.43 55.15 0.122 0.38

Note. Reservoir hydrological properties are history-matched against pressure transient and saturation data recorded at verification well VW1 and mechanical properties 
are estimated from well logs (see Appendix A for details). Faults' properties are homogeneous with the layers they transect (Argenta and Basement).

Table 1 
Hydromechanical Properties of Model Layers
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100% brine-saturated with salinity of 20% and hydrostatic initial fluid pressure. Initial in situ stress conditions 
are defined according to Bauer et al. (2016) and correspond to a strike-slip faulting system with 𝐴𝐴 𝐴𝐴𝐻𝐻 > 𝜎𝜎𝑣𝑣 > 𝜎𝜎ℎ 
(Figure 1, right-hand side). In situ stress measurements show that the maximum horizontal stress direction has a 
fairly constant azimuth and is oriented N068° (Bauer et al., 2016; Williams-Stroud et al., 2020). The minimum 
horizontal stress gradient in each formation is estimated based on measurements (obtained using hydraulic frac-
turing, overcoring and borehole pressure meter methods), whereas the maximum horizontal stress gradient is 
calculated assuming that the host rock is near critically stressed conditions for instability for a friction coefficient 

𝐴𝐴 𝐴𝐴 = 0.6 .

Figure 2 shows capillary pressure and relative permeability curves used in the multiphase fluid flow simulation. 
We follow Mehnert et al. (2019) and use van Genuchten capillary pressure model (Genuchten, 1980) with fitting 
parameter 𝐴𝐴 𝐴𝐴 = 0.55 , residual liquid saturation 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙 = 0.6 , saturated liquid content 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙 = 0.999 and maximum capil-
lary pressure 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 6.9 MPa. Relative permeability curves are constructed using the van Genuchten-Mualem 
model with fitting parameter 𝐴𝐴 𝐴𝐴 = 1.36 , residual liquid saturation 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙 = 0.65 and residual gas saturation ��� = 0.01 .

For simplicity, all coordinates shown in this work are relative to injection well CCS1 (i.e., well CCS1 is located 
at 𝐴𝐴 𝐴𝐴 = 𝑦𝑦 = 0 m and its top is at 𝐴𝐴 𝐴𝐴 = 0 m).

2.2.  Seismicity Rate Modeling

2.2.1.  Rate-and-State Seismicity Model

We model the seismicity rate using a hybrid approach where seismicity rate 
is calculated from time-dependent pressure and stress changes simulated by 
our coupled hydromechanical model (Hakimhashemi et al., 2014). We use 
Dieterich's rate-and-state earthquake nucleation model to assess the evolu-
tion of seismicity rate due to injection-induced stress changes along base-
ment faults (Dieterich, 1994). The rate-and-state seismicity model estimates 
the number of independent events in response to a change in stress on a set 
of faults and is described by the following ordinary differential equation 
(Dieterich, 1994; Segall & Lu, 2015)

��
��

= �
��

(

�̇
�̇0

−�
)

� (1)

Figure 1.  (Left-hand side) Computational mesh and boundary conditions. (Middle) Faults discretized within the model and well locations. (Right-hand side) Initial 
stress conditions.

Figure 2.  Capillary pressure (left-hand side) and relative permeability curves 
(right-hand side).
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where 𝐴𝐴 𝐴𝐴 is the ratio between the seismicity rate relative to the background rate, 𝐴𝐴 𝐴𝐴𝑐𝑐 =
𝐴𝐴𝐴𝐴

̇𝜏𝜏0

 is the characteristic 
relaxation time, 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴0 are the Coulomb and background stressing rates, respectively. We solve the ordinary 
differential equation using a fifth-order adaptive time step Runge-Kutta-Fehlberg algorithm (Fehlberg, 1969) 
with a relative error tolerance 𝐴𝐴 𝐴𝐴𝑟𝑟 = 10

−6 .

We note that the rate-and-state seismicity model is only applicable if optimally oriented faults are already crit-
ically stressed prior to injection (Chang & Segall, 2016; Zhai et al., 2019). In addition, the theory only relates 
to earthquake nucleations (mainshocks) and does not account for the physical processes involved in aftershock 
sequences. More specifically, while the geomechanical model accounts for stress transfer from injection pressure 
changes and poroelastic stress propagating ahead of the pressure front, stress changes induced by seismic  slip of 
individual fractures or faults that can trigger another event are not included. Thus, earthquake catalogs must be 
declustered (removal of aftershocks) to be able to compare observed seismicity rates with results of the rate-and-
state model. This model limitation also implies that it does not forecast magnitudes of earthquakes. However, 
physics-based seismicity rate models can be combined with the Gutenberg-Richter law to calculate the probabil-
ity of occurrence of an earthquake of magnitude 𝐴𝐴 𝐴𝐴 (Navas-Portella et al., 2020; Segall & Lu, 2015). For magni-
tudes 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 , the total number of events at location 𝐴𝐴 𝐱𝐱 = (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) at time step 𝐴𝐴 𝐴𝐴 is defined as

𝑅𝑅(𝐱𝐱, 𝑡𝑡𝑡𝑡𝑡) = 𝑟𝑟0(𝑏𝑏 log 10)10
−𝑏𝑏(𝑀𝑀−𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚)𝑅𝑅(𝐱𝐱, 𝑡𝑡)� (2)

with 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴 being the background seismicity rate and the b-value, respectively. The total number of earthquakes 
of magnitude 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 at time step 𝐴𝐴 𝐴𝐴 is then obtained by integrating Equation 2 over the volume 𝐴𝐴 𝐴𝐴  :

𝑅𝑅(𝑡𝑡𝑡𝑡𝑡) = ∫
𝑉𝑉

𝑅𝑅(𝐱𝐱, 𝑡𝑡𝑡𝑡𝑡)𝑑𝑑𝐱𝐱� (3)

The number of earthquakes in time interval 𝐴𝐴 [𝑡𝑡1, 𝑡𝑡2] is written

� (�1, �2) =
�2
∫
�1

����

∫
����

�(�,�)dMdt� (4)

where 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum magnitudes simulated. In the following, 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 is set to the 
catalog's magnitude of completeness and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 is chosen sufficiently large.

Assuming that earthquake occurrence is described by a inhomogeneous Poissonian process, Zhai et al. (2020) 
estimates the magnitude probability of exceedance (i.e., the probability of having at least one event of magnitude 
larger than 𝐴𝐴 𝐴𝐴 ) following

𝑃𝑃≥𝑀𝑀 (𝑡𝑡1, 𝑡𝑡2) = 1 − exp (𝑁𝑁≥𝑀𝑀 (𝑡𝑡1, 𝑡𝑡2))� (5)

where 𝐴𝐴 𝐴𝐴≥𝑀𝑀 (𝑡𝑡1, 𝑡𝑡2) is the expected number of earthquakes with magnitude greater than or equal to 𝐴𝐴 𝐴𝐴 .

Let us define the following cumulative probability distribution as a function of earthquake magnitude:

� (�, ��) = 1 − 1
� (��, ��+1)

��+1
∫
��

����

∫
�

�(�,�)����� (6)

A magnitude-time distribution can be simulated by randomly sampling 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1) earthquakes over this distribu-
tion for the whole injection period (Zhai et al., 2020).

2.2.2.  Stressing Rate Modeling

Dieterich's rate-and-state seismicity model relates changes in Coulomb stress to changes in seismicity rate. We 
define the Coulomb stressing rate as the change in Coulomb stress 𝐴𝐴 ΔCFS per unit of time which is calculated at 
each time step of the simulation following

ΔCFS = Δ�� + �(Δ�� + Δ� )� (7)
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where 𝐴𝐴 𝐴𝐴 is the friction coefficient (assumed to be 0.6 for all faults), 𝐴𝐴 Δ𝜏𝜏𝑠𝑠 is the change in shear stress, 𝐴𝐴 Δ𝜎𝜎𝑛𝑛 is the 
change in normal stress (positive for tension), and 𝐴𝐴 Δ𝑃𝑃  is the change in fluid pressure. Shear stress 𝐴𝐴 𝐴𝐴𝑠𝑠 and normal 
stress 𝐴𝐴 𝐴𝐴𝑛𝑛 acting on a fault plane can be calculated from the stress tensor 𝐴𝐴 𝐴𝐴 following

⎧

⎪

⎨

⎪

⎩

�� =
(

||� ⋅ �||2 − �2
�
)

1
2

�� = � ⋅ � ⋅ �
� (8)

where 𝐴𝐴 𝐧𝐧 is the normal vector of a given fault plane and 𝐴𝐴 ||⋅|| denotes the Euclidean norm.

We simulate the spatiotemporal distributions of fluid pressure, shear, and normal stresses using the latest version 
of the coupled fluid flow and geomechanical software TOUGH-FLAC (Rutqvist, 2011; Rutqvist et al., 2002) that 
sequentially couples the finite-volume multiphase flow simulator TOUGH3 (Jung et al., 2017) and the commer-
cial finite-difference geomechanical software FLAC3D V7. The latest version of TOUGH-FLAC (Rinaldi 
et al., 2021) integrates all the new features of TOUGH3, in particular the use of PETSc parallel solvers which 
allows execution of coupled simulations with a large number of grid blocks (here, 2 million elements). By the use 
of TOUGH-FLAC, we account for full hydromechanical coupling with porosity changes modeled as a function of 
bulk modulus and volumetric strain (Kim et al., 2011). Fluid pressure and stresses are calculated at discrete time 
steps controlled by TOUGH3 using adaptive time stepping based on the number of Newton-Raphson iterations 
needed for each time step. However, we set the maximum time-step size to 3 days to better capture amplitudes of 
pressure changes due to the numerous shut-in phases. We further fit cubic splines to the simulated pressures and 
stresses which are used to calculate the changes in Coulomb stress 𝐴𝐴 ΔCFS . Finally, the stressing rate 𝐴𝐴 𝐴𝐴𝐴 is taken as 
the numerical time derivative of 𝐴𝐴 ΔCFS with a time step size 𝐴𝐴 𝐴𝐴𝐴𝐴 = 1 day, following

𝜏̇𝜏 =
𝑑𝑑ΔCFS

𝑑𝑑𝑑𝑑
� (9)

The coupled hydromechanical model generates spatial and temporal distributions of pressure and stress in the 
whole model. However, we assume that seismicity occurs only along pre-existing critically stressed faults and 
therefore only calculate Coulomb stress changes at integration points corresponding to the finite-thickness fault 
elements.

3.  Results
We apply our coupled hydromechanical rate-and-state nucleation model to generate seismicity forecasts for both 
injections in wells CCS1 and CCS2. Modeled seismicity, especially for the first injection during which most of 
the seismicity is observed, is compared to the declustered catalog.

3.1.  Catalog Declustering

At the IBDP, more than 5,000 microseismic events have been located with magnitudes ranging from −2.1 to 1.2, 
and the magnitude of completeness is 𝐴𝐴 𝐴𝐴𝑐𝑐 = −0.7 (Goertz-Allmann et al., 2017; Williams-Stroud et al., 2020). 
Earthquake catalogs usually contain independent earthquakes (mainshocks) and earthquakes resulting from stress 
release after a mainshock (aftershocks). As explained in Section 2.2.2, the rate-and-state theory mainly focuses 
on the mainshocks and therefore aftershocks must be removed from the catalog to compare the hybrid seismicity 
model with observed seismicity. We consider a complete catalog and remove events with magnitudes lower than 
the magnitude of completeness (𝐴𝐴 𝐴𝐴 𝐴 −0.7 ). We decluster the earthquake catalog using the nearest-neighbor 
method (Zaliapin & Ben-Zion, 2020). By this approach, for each earthquake in the catalog, we calculate the 
nearest-neighbor interevent distance in the space-time-magnitude domain. Given a pair of events 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , the 
nearest-neighbor 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is calculated following

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖� (10)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 are the rescaled time and distance, respectively, written



Journal of Geophysical Research: Solid Earth

LUU ET AL.

10.1029/2021JB023496

7 of 19

{

��� = (���)�10−
���
2

��� = ���10−
���
2

� (11)

with 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 the Euclidean interevent distance, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 the interevent time, 𝐴𝐴 𝐴𝐴 the fractal 
dimension of earthquake epicenter/hypocenter, 𝐴𝐴 𝐴𝐴 a weighting coefficient, and 

𝐴𝐴 𝐴𝐴𝑖𝑖 the magnitude of event 𝐴𝐴 𝐴𝐴 . In this study, we did not consider earthquakes' 
depths due to uncertainties in their locations. In Equation 11, only 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 
are user-defined while the other terms depend on earthquakes' parameters. 
Besides, the nearest-neighbor method has two additional parameters, namely 
an initial cutoff threshold 𝐴𝐴 𝐴𝐴0 and a cluster threshold 𝐴𝐴 𝐴𝐴0 . A sensitivity analy-
sis of these four parameters (see Section S1 in Supporting Information S1) 
showed that the declustering is mainly sensitive to the cluster threshold 𝐴𝐴 𝐴𝐴0 .

Figure 3 shows the 2D distributions of calculated nearest-neighbor distance 
for the full catalog (left-hand side) and a declustered catalog (right-hand 
side). An earthquake that yields a low distance is close in space and time to 
its nearest-neighbor and is thus discriminated as an aftershock.

Following Zaliapin and Ben-Zion  (2020), we set 𝐴𝐴 𝐴𝐴 = 1.1 (b-value) and 𝐴𝐴 𝐴𝐴 = 1.5 (epicenter), we determine 𝐴𝐴 𝐴𝐴0 
using the bimodality of the distribution of earthquake nearest-neighbor proximities, and 𝐴𝐴 𝐴𝐴0 is initialized to 0 and 
expanded until the clustered mode is removed (i.e., lower left corner of plots in Figure 3). Thus, we finally set 

𝐴𝐴 𝐴𝐴0 = 10
−4.5 and 𝐴𝐴 𝐴𝐴0 = 1.9 . The declustered catalog is plotted against the observed catalog in Figure 4 and indicates 

that most of the clustered events occurred at the beginning of the injection around March and July 2012.

It should be mentioned that declustering algorithms are usually tailored to remove aftershocks in natural earth-
quake catalogs. Nevertheless, the bimodality of the nearest-neighbor distribution has been observed in induced 
earthquake sequences (Schoenball et al., 2015; Schoenball & Ellsworth, 2017; Zaliapin & Ben-Zion, 2016).

3.2.  Parameter Calibration

The rate-and-state seismicity model is governed by three parameters, namely the background stressing rate, the 
background seismicity rate and a constitutive parameter 𝐴𝐴 𝐴𝐴𝐴𝐴 that controls the characteristic relaxation time. The 
background stressing rate is usually obtained through geodetic measurements and the background seismicity rate 
can be estimated by monitoring the seismicity prior to the injection. We use a background stressing rate of 𝐴𝐴 𝐴𝐴𝐴0 = 5 
Pa/year as estimated for the Southern Illinois Basin (Hamburger et al., 2010). Continuous microseismic monitor-
ing has been carried out at the IBDP site prior to the first injection during 18 months and eight earthquakes with 
magnitude 𝐴𝐴 𝐴𝐴 𝐴 −1.5 were interpreted as local events (Smith & Jaques, 2016). Because of the lack of recorded 
natural earthquakes with magnitude 𝐴𝐴 𝐴𝐴 ≥ −0.7 in the area of study, we calibrate the background seismicity rate 

𝐴𝐴 𝐴𝐴0 along with the parameter 𝐴𝐴 𝐴𝐴𝐴𝐴 by manually fitting the modeled cumulative number of events during the first 
injection to the observed one (Hakimhashemi et  al.,  2014). We use a global optimization algorithm, namely 
the CMA-ES (Hansen & Ostermeier, 2001), to further refine the two parameters with a population size of 20 

Figure 3.  Two-dimensional distributions of nearest-neighbor distances for 
the full catalog (left-hand side) and a catalog declustered using the nearest-
neighbor method (right-hand side). The red dashed line corresponds to the 
initial cutoff threshold 𝐴𝐴 𝐴𝐴0 used for the declustering.

Figure 4.  Comparison between the observed earthquake catalog and the declustered catalog.
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for the evolutionary algorithm, a maximum of 100 iterations and the manually calibrated parameters as initial 
mean. Eventually, we found a background seismicity rate 𝐴𝐴 𝐴𝐴0 = 0.35 events/year (𝐴𝐴 𝐴𝐴 ≥ −0.7) and 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.0295 
MPa. It should be mentioned that the background seismicity rate is estimated so that model outputs (relative to 
background seismicity) can be compared with the declustered catalog. The calibrated value of the background 
seismicity rate is fairly uncertain (see Section S2 in Supporting Information S1). Figure 5 shows the calibration 
result displayed against the observed cumulative number of events.

3.3.  Seismicity Induced by Injection in Wells CCS1 and CCS2

Figure 6 shows the modeled seismicity rate (integrated over all integration points) considering both injections 
in wells CCS1 (from November 2011 to November 2014) and CCS2 (from April 2017 to April 2018). To model 
the first injection, we inject CO2 below a low permeability mudstone layer simplified in the model to represent 
the discontinuous baffles in the Mount Simon that restrict vertical flow. The two perforated zones (2,121 m and 
2,129 m bgs) are modeled as single injection element. For the second injection, CO2 is injected above the low 
permeability layer 50 m shallower (2,178 m bgs) compared to the first injection. We note that only the first year 
of the second injection is modeled. Overall, the modeled seismicity rate follows the average behavior of the 
observed seismicity rate. More specifically, the modeled seismicity rate is consistent with the declustered catalog 
in terms of onset timings and peak rate amplitudes for the first injection, which means that the model is able to 
reproduce the main temporal features of the earthquake sequence. We observe that many of the longest shut-in 
phases (e.g., September 2012, March 2013, February 2014, October 2014) yield a sharp decrease in the modeled 
seismicity rate which indicates that the modeled seismicity rate and the injection rate are correlated. After the 
end of the injection in well CCS1, the modeled seismicity rate progressively decreases and predicts a lower rate 
than the background seismicity from July 2015 due to negative stressing rates. Despite larger injection rates in 
well CCS2 (1.7 times the injection rate in well CCS1), the modeled seismicity rate is negligible compared to the 
seismicity induced by the first injection (about two orders of magnitude smaller in seismicity rate).

Figure 5.  Cumulative number of events (𝐴𝐴 𝐴𝐴 ≥ −0.7) during the first injection in well CCS1. The gray solid line and the blue 
dashed line represent the observed and modeled cumulative numbers of events, respectively.

Figure 6.  Modeled seismicity rate (blue solid line) compared with the declustered catalog (blue bars). The injection rate is 
represented by the thin gray solid line. The inset shows the same data at increased scale (we note the difference in unit for the 
y-axis).
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We simulate an earthquake magnitude-time distribution by combining the Gutenberg-Richter law and the injec-
tion-induced seismicity rate obtained using our coupled hydromechanical model (Equation 6), Figure 7 displays 
the simulated distribution compared to the observed one, and shows that the simulated earthquake magnitude  time 
dependence is fairly consistent with the observations.

We further investigate the relative contributions of pressure and injection-induced stress changes to the Coulomb 
stress by tracking their evolutions at different points throughout the model. According to Equation 7, contribution 
to the Coulomb stress changes are changes in shear stress 𝐴𝐴 Δ𝜏𝜏𝑠𝑠 , changes in normal stress 𝐴𝐴 𝐴𝐴Δ𝜎𝜎𝑛𝑛 and changes in fluid 
pressure 𝐴𝐴 𝐴𝐴Δ𝑃𝑃  . The changes in shear stress and normal stress are induced by poroelastic stresses in the system that 
are in turn due to injection-induced pressure changes in the system. In the following, we define 𝐴𝐴 𝐴𝐴Δ𝑃𝑃  as the pres-
sure contribution and terms 𝐴𝐴 Δ𝜏𝜏𝑠𝑠 + 𝜇𝜇Δ𝜎𝜎𝑛𝑛 of Equation 7 as poroelastic contribution to the Coulomb stress change. 
Positive ΔCFS indicates weakening of the fault planes bringing them closer to failure. To monitor the evolution 
of the pressure and poroelastic stress to the Coulomb stress, we select a first point midway between wells CCS1 
and CCS2 to study the near-field, and a second point on the westernmost fault for the far-field. For both points, 
we display in Figure 8 the evolution of the Coulomb stress change (black) along with the contribution from pore 
pressure (purple) and poroelastic stress (green) changes at different depths (2,200 m, 2,400 m, and 2,600 m bgs).

During the first injection at well CCS1 (before January 2015) for both the near-field and the far-field cases, the 
pressure front expands radially around the wellbore until it reaches the high permeability faults causing down-
ward propagation of the pressure front within the basement. Besides, poroelastic stresses have a strengthening 
effect on the fault planes where their contributions are negative (𝐴𝐴 Δ𝜏𝜏𝑠𝑠 + 𝜇𝜇Δ𝜎𝜎𝑛𝑛 < 0 ). Inversely, during the second 
injection at well CCS2 (after April 2017), we observe that 𝐴𝐴 Δ𝜏𝜏𝑠𝑠 + 𝜇𝜇Δ𝜎𝜎𝑛𝑛 > 0 which indicates that fault planes are 
weakened by poroelastic stresses. Indeed, in the first case, the fluid is injected below the impermeable baffle, 
yet right above the basement where the permeable faults are hydraulically connected to the reservoir. When the 
fluid flows into the faults, it causes the pressure to build up within resulting in compressive stress. On the other 
hand, during the second injection, fluid is injected above the baffle layer disconnecting the faults from the zone 
of injection. In this case, pressure increase within the reservoir causes lateral expansion of the rock formation, 
inducing extensive stress within the basement beneath. At the top of the basement in the near-field (upper left 
plot), poroelastic stress effects are not negligible and impede reactivation by reducing the changes in Coulomb 
stress as ΔCFS < �Δ�  . However, farther from the reservoir, we have 𝐴𝐴 Δ𝜏𝜏𝑠𝑠 + 𝜇𝜇Δ𝜎𝜎𝑛𝑛 ≈ 0 and ΔCFS ≈ �Δ�  , which 
indicates that the poroelastic stress impact decreases with depth where direct pressure effects become dominant.

The modeled relative seismicity rates at the selected points are also shown in Figure 8 on a logarithmic scale 
(blue). We note the exponential relationship between the Coulomb stress and the relative seismicity rate, consist-
ent with the solution to the ODE described by Equation 1 when the stressing rate is larger than the seismicity rate 
(i.e., 𝐴𝐴

𝜏̇𝜏

̇𝜏𝜏0

≫ 𝑅𝑅 ). We also consider a case where we neglect the first injection and only model the second injection 
(black dashed line). For this case, the injection starts at the original reservoir pressure. This is to investigate the 
relevance of the stressing history on the seismic response. Looking at the modeled seismicity rate (right vertical 
axis of Figure 8), we observe that in the near-field, it becomes lower than the estimated background seismicity 
(𝐴𝐴 𝐴𝐴 𝐴 1 ) after the end of the first injection. This is likely due to the post-injection pressure drop yielding a nega-
tive pressure rate, and thus a decrease in the relative seismicity rate (Almakari et al., 2019; see Section S4 in 
Supporting Information S1). Once the pressure rate becomes zero (around July 2015), the relative seismicity rate 
steadily increases back. This behavior is not observed in the far-field where the seismicity rate goes back to the 

Figure 7.  Observed (top) and modeled (bottom) earthquake magnitude-time distributions.
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estimated  initial background value (𝐴𝐴 𝐴𝐴 = 1 at the end of the first injection). Interestingly, the relative seismicity 
rate in the near-field at the top of the fault is about one order of magnitude larger for the second injection if we 
neglected the first one. Nevertheless, while this local decrease in seismicity rate following the shut-in of the first 
injection may have contributed to the lack of recorded seismicity during the second one, its impact is negligible 
compared to the overall lower pressure changes acting on the faults.

3.4.  Effect of Injection Rate on Seismicity Rate

For equivalent total injected volume, Barbour et  al.  (2017) showed that a variable injection rate may induce 
more seismicity compared to a constant injection rate. Here, we investigate the effect of four different injection 
scenarios by comparing the seismicity rate generated by our hydromechanical earthquake nucleation model for 
different injection rates. We note that we only simulate and compare with the injection in well CCS1 for which 
fluid-induced seismicity has been observed. More specifically, given a total volume of approximately 1 million 
tons injected within the span of 3 years, we consider a first constant injection rate at 11 kg CO2/s (Scenario A), 
and a second piecewise constant injection rate increasing from 10 kg CO2/s to 12 kg CO2/s (Scenario B). For both 
rates, in Scenarios C and D, we also consider a variant with 2-week shut-in phases every 6 months (equivalent 
to the longest shut-in period during injection in CCS1). Figure 9 shows the seismicity rates and annual magni-
tude probabilities of exceedance for the four injection rates using a b-value of 𝐴𝐴 𝐴𝐴 = 1.1 (Bauer et al., 2016), and a 
minimum and maximum magnitudes of 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = −0.7 and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 4 . Figure 10 shows the same annual magnitude 
probabilities of exceedance as Figure 9 with the results displayed for each year. The seismicity rate and magnitude 
of exceedance probability modeled for the first injection in well CCS1 are also displayed for comparison. For the 
reference case, the probability for exceeding M2 is 24%, 21%, and 18% in 2012, 2013, and 2014, respectively. 
For Scenario A, most seismicity occurs at the beginning of the injection and decreases over time resulting in a 
higher probability for exceeding M2 in 2012 (32%). For Scenario B, the seismicity rate steadily increases up to a 
maximum of 0.9 events/day and followed by a steady decrease, annual probabilities for exceeding M2 are simi-

Figure 8.  Calculated Coulomb stress along with contributions of pressure and poroelastic stress changes and relative seismicity rate evolutions at selected (left-
hand side) near-field and (right-hand side) far-field points. The changes in Coulomb stress, and contribution to the Coulomb stress by pressure and stress changes 
are represented in black, purple and green, respectively. The blue solid line corresponds to the relative seismicity rate. The black dashed line represents the relative 
seismicity rate during the second injection if we neglect the first injection.
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Figure 9.  Modeled seismicity rate (blue solid line) for different injection rates (left-hand side). The injection rate is represented by the thin gray solid line. Annual 
magnitude probability of exceedance (right-hand side).
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lar throughout the injection (about 22%). Scenarios C and D show that the shut-in phases induce an immediate 
drop in the seismicity rate, followed by a larger seismicity rate increase when the injection restarts, compared to 
scenarios A and B. This behavior is also observed in the reference case where long shut-in phases (e.g., March 
2013, February 2014, October 2014) yield an instantaneous drop in seismicity rate which subsequently increases 
with a time lag. Yet, annual probabilities for exceeding M2 are only slightly lower for both Scenarios C and D. 
Overall, in our model, we observe a correlation between the injection rate and the modeled seismicity rate for 
which the response appears to depend on the amplitude variations of the injection rate.

4.  Discussion and Conclusion
In this study, we modeled the seismicity induced along the Precambrian basement faults by the two CO2 injection 
wells at Decatur Illinois, specifically wells CCS1 and CCS2 from November 2011 to April 2018. Our coupled 
hydromechanical model reproduces characteristic features of the observed microseismic activity. The modeled 
seismicity rates are comparable to recorded seismicity in terms of onset timings and peak rate amplitudes for the 
first injection, while modeled seismicity is negligible for the second injection consistent with field observations. 
Our modeling results suggest that the seismicity at Decatur is strongly influenced by pressure effects. However, 
modeling of injection in CCS1 indicates that poroelastic stresses are not negligible and tend to impede reactiva-
tion, in particular in the vicinity of the injection wells. Because the seismicity rates forecast by the rate-and-state 
earthquake nucleation model are exponentially related to the pressure and poroelastic stress rates, ignoring poroe-
lastic effects (i.e., only flow modeling and using ΔCFS = �Δ�  ) would overpredict the seismicity rate by approxi-
mately one order of magnitude according to our model (using the same parameters for rate-and-state simulation). 
This result highlights the necessity of coupled hydromechanical modeling to accurately capture the main physical 
processes related to fluid-induced seismicity, in agreement with recent studies (Barbour et al., 2017; Chang & 
Segall, 2016; Fan et al., 2019; Zhai et al., 2019).

In addition, the rate-and-state model used in this study estimates the induced seismicity rate relatively to the back-
ground seismicity rate. Due to the lack of earthquake with magnitude 𝐴𝐴 𝐴𝐴 ≥ −0.7 recorded prior to the injection, 
we could not derive a background seismicity rate based on recorded data. Hence, we calibrated the background 
seismicity rate along with the constitutive parameter to match the observed seismicity rate. The background 
seismicity rate has been calibrated for comparison purpose and the inverted value is fairly uncertain (see Section 
S2 in Supporting Information S1). An analysis of the sensitivity of the seismicity rate with respect to the back-
ground seismicity rate shows that modeled seismicity rates would fit the observed seismicity rate comparably 
well for background seismicity rates ranging between 0.2 and 0.6 events/year. Outside this range, the main peak 
amplitudes of the earthquake sequence are not properly captured. Given these uncertainties on the background 
seismicity rate, the modeled seismicity rates shown in this work must be interpreted within the context of a prob-
abilistic analysis (Barbour et al., 2017). Nevertheless, regardless of the value of the background seismicity rate, 
our numerical model shows that the seismicity rate after the end of the first injection becomes lower than the 
initial background seismicity rate (𝐴𝐴 𝐴𝐴 𝐴 1 ), in particular near the injection well CCS1. Similar results have been 

Figure 10.  Annual magnitude probability of exceedance for different injection rates sorted by year.
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observed in other modeling studies (Almakari et al., 2019) and is linked to negative pressure rates as the pressure 
is diffusing out of the faults. Due to the stressing history, seismicity rates forecast for the second injection are 
lower than if we had ignored the first injection phase. Nevertheless, despite the higher injection rate, the modeled 
pressure changes induced by the second injection on the basement faults are significantly lower which indicates 
that the absence of observed seismicity during the second phase is principally due to the injection zone in the 
CCS2 well location above the low permeability mudstone layer and the higher porosity and permeability in CCS2 
injection zone relative to the CCS1 injection zone (Williams-Stroud et al., 2020).

We note that our model domain is fairly simple and consists of a three-dimensional layer-cake model that only 
includes vertical basement faults inferred from the observed microseismic clusters. Structural faults interpreted 
in the 3D seismic volume that could potentially impede pressure diffusion have not been modeled. Because of the 
locations of the induced seismicity do not tightly outline the faults, and also due to the absence of inverted source 
mechanisms for all the events in the catalog, we assumed that all faults are vertical and that micro-fault planes 
are aligned with the embedding faults. This simplification can lead to errors in the calculation of the CFS using 
Equation 7 and thus in the resulting seismicity rate. Langet et al. (2020) showed for one cluster in the catalog 
that the source mechanisms are mostly dipping sub-vertically with slip direction around −10°. However, source 
mechanism inversion should be carried out for the whole catalog to obtain more accurate CFS and seismicity 
rate. For the sake of simplicity, we also assumed that the basement faults are merely hydraulically connected to 
the lower part of the reservoir, but do not vertically extend across it. Additionally, we only considered a homoge-
neous set of faults with invariable permeability. Several numerical simulations have demonstrated that location 
and timing of fluid-induced seismicity is affected by the variations of fault permeability (Chang & Segall, 2016; 
Zhang et al., 2013). Besides, we considered the rate-and-state parameters to also be homogeneous across the area 
of study. All these simplifications yield some discrepancies between the model outputs and the observations. For 
example, in our model, seismicity initiates at the top of the faults and propagates downward into the basement, 
while in some clusters, the observed seismicity starts within the basement. Despite these disagreements and the 
low complexity of our model, it is able to reproduce the principal features of the earthquake sequence recorded at 
the site, implying that the main physical processes involved are captured by our model.

Finally, we used our coupled hydromechanical earthquake nucleation model to study the effect of different injec-
tion scenarios on the seismicity rate, assuming equivalent total injected volumes of CO2. We found a correlation 
between the injection rate and the modeled seismicity rate. More precisely, seismicity rate immediately decreases 
in response to a shut-in phase and increases with a time lag when the injection restarts, the peak amplitude of 
the seismicity rate depending on the amplitude of the injection rate increase. However, we did not find signifi-
cant changes in terms of modeled seismicity (total number of events and magnitude probability of exceedance) 
between the few scenarios tested and the actual injection rate, which can be explained by the already fairly 
constant injection rate used for the first injection in well CCS1. Additional studies are being planned to improve 
the model by considering heterogeneity in several model parameters and to identify factors leading to more accu-
rate characterization of the risk of inducing earthquakes in GCS activities.

Appendix A:  Calibration of Hydromechanical Model Parameters
We history-matched hydrological model parameters against multilevel pressure data and saturation profiles 
measured at verification well VW1 located approximately 300 m away from injection well CCS1 (see Figure 1, 
middle). We inverted porosities and permeabilities of layers Mount Simon A-upper through Argenta by minimiz-
ing the joint objective function defined by Equation A1, written

𝐸𝐸(𝐦𝐦) = 𝑤𝑤𝑝𝑝

(
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𝐬𝐬
− 𝑔𝑔𝑠𝑠(𝐦𝐦)

)
� (A1)

where 𝐴𝐴 𝐦𝐦 is the vector of model parameters to invert (porosities and permeabilities of layers), subscripts 𝐴𝐴 𝐴𝐴 and 
𝐴𝐴 𝐴𝐴 respectively denote pressure and saturation, 𝐴𝐴 𝐝𝐝

obs

𝐩𝐩
 and 𝐴𝐴 𝐝𝐝

obs

𝐬𝐬
 are the measured data vectors to history-match, and 

𝐴𝐴 𝐴𝐴𝑝𝑝(𝐦𝐦) and 𝐴𝐴 𝐴𝐴𝑠𝑠(𝐦𝐦) the data vectors calculated by the forward operator 𝐴𝐴 𝐴𝐴 . 𝐴𝐴 𝐴𝐴𝑝𝑝 and 𝐴𝐴 𝐴𝐴𝑠𝑠 are coefficients that weigh 
the contributions of each data set to the joint objective function, and are arbitrarily set to 1 and 2, respectively 
(with pressure expressed in MPa). The objective function is optimized using the CMA-ES (Hansen & Oster-
meier, 2001) which is known to be a robust stochastic global optimization algorithm, especially when the number 
of parameters to invert is relatively high (Auger, 2016). For the CMA-ES, we use a population size of 20 and 100 
iterations, the initial means and standard deviations are summarized in Table A1.
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Layer Parameter Initial mean Initial std.

Mount Simon A-upper Horizontal permeability −13.5 0.2
H/V permeability ratio 2.0 0.2

Baffle Permeability −15.0 0.2
Mount Simon A-lower-1 Horizontal permeability −13.0 0.2

H/V permeability ratio 3.5 0.2
Porosity 0.15 0.02

Mount Simon A-lower-2 Horizontal permeability −13.0 0.2
H/V permeability ratio 3.0 0.2

Porosity 0.22 0.02
Mount Simon A-lower-3 Horizontal permeability −13.0 0.2

H/V permeability ratio 2.0 0.2
Porosity 0.15 0.02

Argenta Horizontal permeability 15.0 0.2
H/V permeability ratio 2.0 0.2

Note. Permeability values (horizontal and ratio) are given as log10 with permeability expressed in m 2.

Table A1 
Initial Means and Standard Deviations for the CMA-ES of Each Model Parameter

To reduce the computational cost of the forward modeling (TOUGH3 simulation), we considered a radially 
symmetric layer-cake model with the same layering as our 3D computational mesh. Only the pressure data meas-
ured in the vicinity of the injection zone (zones 1 through 4) and the saturation profiles measured in March and 
July 2012 are inverted. Results of the history matching for the best fit model are represented in Figure A1.
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Figure A1.  (Left-hand side) History-matched and modeled pressure data for zones 1–4. (Right-hand side) History-matched and modeled saturation profiles for March 
and July 2012. The black dotted and blue solid lines correspond to the history-matched and modeled data, respectively.

Poisson’s ratio, bulk modulus, Biot's coefficient and pore compressibility are calculated using mechanical conver-
sion functions or empirical models (see Table A2). Figure A2 shows the pressure change front and CO2 plume 
modeled for March 2012 using the 3D geomechanical model with porosity and permeability values inverted using 
the radial layered mesh.

Parameter Function/Empirical model Reference

Poisson's ratio (dynamic)
𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 = 0.5

(
𝑉𝑉𝑝𝑝

𝑉𝑉𝑠𝑠

)2

−2

(
𝑉𝑉𝑝𝑝

𝑉𝑉𝑠𝑠

)2

−1

 

Poisson's ratio (static)

����� =

⎧

⎪

⎨

⎪

⎩

���� − 0.06

0.5����
 

(Will, Smith, 
et al., 2016)

Bulk modulus 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3(1−2𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
 

Biot's coefficient 𝐴𝐴 𝐴𝐴 = 1.75𝜙𝜙
0.51  (Laurent et al., 1993)

Pore compressibility
𝐴𝐴 𝐴𝐴𝑝𝑝 =

1

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙

(

1 −
2(1−2𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
3(1−𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

)

  (Settari et al., 2005)

Note.Young's moduli are given in Table 1.

Table A2 
Functions and Empirical Models Used to Calculate Mechanical Parameters
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Declustering
𝐴𝐴 𝐴𝐴 	 Fractal dimension of earthquake epicenters
𝐴𝐴 𝐴𝐴𝑖𝑖 	 Magnitude of earthquake 𝐴𝐴 𝐴𝐴

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 	 Euclidean interevent distance (km)
𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 	 Rescaled distance
𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 	 Interevent time (year)
𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 	 Rescaled time
𝐴𝐴 𝐴𝐴 	 Weighting coefficient
𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 	 Nearest-neighbor proximity
𝐴𝐴 𝐴𝐴0 	 Nearest-neighbor proximity cutoff threshold

Reservoir model
𝐴𝐴 𝐴𝐴𝑝𝑝 	 Pore compressibility (Pa −1)
𝐴𝐴 𝐴𝐴 	 Young's modulus (Pa)
𝐴𝐴 𝐴𝐴 	 Shear modulus (Pa)
𝐴𝐴 𝐴𝐴ℎ , 𝐴𝐴 𝐴𝐴𝑣𝑣	 Permeability (horizontal and vertical) (mD)
𝐴𝐴 𝐴𝐴𝑝𝑝 , 𝐴𝐴 𝐴𝐴𝑠𝑠	 Velocity (P- and S-wave) (m/s)
𝐴𝐴 𝐴𝐴 	 Biot's coefficient
𝐴𝐴 𝐴𝐴 	 Fault dip angle (°)
𝐴𝐴 𝐴𝐴 	 Poisson's ratio
𝐴𝐴 𝐴𝐴 	 Density (kg/m 3)
𝐴𝐴 𝐴𝐴𝑣𝑣 , 𝐴𝐴 𝐴𝐴𝐻𝐻 , 𝐴𝐴 𝐴𝐴ℎ	 Principal stress (vertical, max. and min. horizontal) (Pa or Pa/m)
𝐴𝐴 𝐴𝐴 	 Porosity

Seismicity model
𝐴𝐴 𝐴𝐴𝐴𝐴 	 Rate-and-state constitutive parameter (Pa)
𝐴𝐴 𝐴𝐴 	 b-value
𝐴𝐴 𝐴𝐴 	 Magnitude of earthquake
𝐴𝐴 𝐴𝐴𝑐𝑐 	 Magnitude of completeness
𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴0	 Seismicity rate (absolute and background) (event/day)
𝐴𝐴 𝐴𝐴 	 Relative seismicity rate
𝐴𝐴 ΔCFS 	 Coulomb stress change (Pa)
𝐴𝐴 Δ𝑃𝑃  	 Pore pressure change (Pa)
𝐴𝐴 Δ𝜎𝜎𝑛𝑛 	 Normal stress change (Pa)
𝐴𝐴 Δ𝜏𝜏𝑠𝑠 	 Shear stress change (Pa)

Figure A2.  Modeled (left-hand side) pressure change front and (right-hand side) CO2 plume for March 2012 using the three-dimensional geomechanical model.
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𝐴𝐴 𝐴𝐴 	 Friction coefficient
𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐴0	 Stressing rate (absolute and background) (Pa/day)

van Genuchten model
𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 	 Maximum capillary pressure (Pa)
𝐴𝐴 𝐴𝐴𝑔𝑔𝑔𝑔 	 Residual gas saturation
𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙 	 Residual liquid saturation
𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙 	 Saturated liquid content
𝐴𝐴 𝐴𝐴 	 Fitting parameter

Data Availability Statement
The induced seismicity catalog (2019 version) and injection data used in this work were acquired by the Illinois 
State Geological Survey under projects funded by the U.S. Department of Energy through the National Energy 
Technology Laboratory. Updated data sets have been uploaded to EDX (https://edx.netl.doe.gov/dataset). The 
three-dimensional computational mesh is generated using the open-source meshing software LaGriT (https://
lagrit.lanl.gov/). Hydromechanical properties are taken from published literature and the computational model is 
fully described in Section 2.1. The numerical simulations are carried out using TOUGH3-FLAC3D. TOUGH3 
is a fluid-flow numerical simulator developed at Lawrence Berkeley National Laboratory and FLAC3D is a 
geomechanical simulator commercialized by Itasca Inc. TOUGH3 input and output simulation files are pre- and 
post-processed using the Python package toughio (Luu, 2020, 2022b). The calibration of the model parameters 
(history matching and rate-and-state) uses the CMA-ES optimizer implemented in the Python package stochopy 
(Luu, 2021). Earthquake declustering, modeling of rate-and-state seismicity and magnitude-time distributions are 
implemented in the Python package bruces (Luu, 2022a). These three packages are available on Zenodo at the 
links below: (a) toughio: https://zenodo.org/record/3961278; (b) stochopy: https://zenodo.org/record/4058008; 
(c) bruces: https://zenodo.org/record/6422572.
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