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Key Points:

e Using a grain force-balance model and observed parameter distributions, we
quantify expected variability in incipient-motion thresholds

« Predicted distributions of incipient-motion thresholds match those observed in
laboratory experiments and natural rivers

« A power law can describe mean threshold of motion and its variability for the
relationship between grain size and threshold velocity
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Abstract

Predicting thresholds of sediment motion is critical for a range of applications involving
sediment transport. However, thresholds for sediment motion can vary over an order
of magnitude for a single characteristic low and bed configuration. Lacking simple
ways to incorporate this variability, many assume thresholds are constant for rough,
turbulent flow. Here, we quantify variability of incipient-motion thresholds based on
a commonly used grain-scale force-balance model, with model parameter distributions
determined from published experiments. We show that variability in the threshold
of motion within the 2D force-balance model occurs predominantly due to variability
in the lift coefficient and grain protrusion, and secondarily due to drag coefficient
variability. For a known grain size, the mean threshold of motion, and variability about
the mean, can be predicted from a family of power laws. These power laws can be
altered with site-specific parameter distributions, allowing for site-specific application
to well-studied reaches and other planets. Using compiled flume and field data we
show that constraining force-balance parameter distributions with independent data
results in narrower distributions of the predicted threshold of motion, consistent with
constrained flume experiments. This analysis highlights that while the threshold of
sediment motion is variable, the magnitude of variability is predictable within the
force-balance model based on site-specific physical constraints of local flow and bed
conditions.

Plain Language Summary

Understanding what flow velocities are needed for rivers to move gravel and
boulders is critical for river management, reducing flood hazards, understanding river
ecosystems, and the long-term evolution of landforms such as deltas and mountain
ranges. However, accurate predictions of sediment transport are made challenging
by large variability in flow conditions observed when a particular size of sediment is
moved by a river. In this work we use an existing theory to explore the expected
flow conditions and flow variability needed to move sediment. These results allow for
more accurate river restoration and engineering designs and more sustainable river
management.

1 Introduction

When predicting sediment transport using popular empirical, deterministic ap-
proaches, a threshold of motion is required to define the condition below which sedi-
ment is static and above which sediment transport occurs (e.g., 7,=0.045, where 7" is
the critical Shields stress for grain motion (Shields, 1936; Buffington & Montgomery,
1997)). This approach has been used in a variety of applications, including predicting
the magnitude of bedload flux (e.g., Meyer-Peter & Miiller, 1948; Fernandez Luque
& Van Beek, 1976; Yager et al., 2007), understanding the hydraulic geometry of river
channels (e.g., Parker, 1978; Pfeiffer et al., 2017; Phillips et al., 2022), modeling depo-
sition, erosion, and subsequent evolution of river profiles (e.g., Parker, 1991; Wickert
& Schildgen, 2019), predicting the occurrence of suitable habitat for aquatic organ-
isms (e.g., Riebe et al., 2014; Wohl et al., 2015) and estimating the magnitude of past
floods on Earth, Mars and other planetary bodies (e.g., Baker, 2002; Perron et al.,
2006; Williams et al., 2013).

Many methods exist to estimate the threshold of motion. For example, the
threshold can be quantified as a critical value of a non-dimensional parameter, such as
7., which roughly scales with the ratio of fluid stress on the grain to the grain weight, or
as dimensional parameters such as the critical shear stress on the grain 7. or a critical
velocity near the grain u, when motion first begins (Wiberg & Smith, 1987; Buffington
& Montgomery, 1997; Garcia, 2008). Theory to predict these thresholds often use a
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force-balance approach (e.g., Wiberg & Smith, 1987). In this case, motion is predicted
to occur when the forces promoting grain motion (e.g., fluid drag and lift) exceed the
forces resisting motion (e.g., the grain weight and friction). The force-balance method
can predict threshold conditions for 7, 7., and u., and can be estimated using common
field measurements (e.g., grain-size distribution and channel slope) combined with
generalized assumptions about fluid drag. The ease of application of the force-balance
method has led it to be perhaps the most commonly applied mechanistic method to
predict the threshold of motion (e.g., Kirchner et al., 1990; Bridge & Bennett, 1992;
Vollmer & Kleinhans, 2007; Recking, 2009; Scheingross et al., 2013; Prancevic et al.,
2014; Lamb et al., 2017a; Yager, Schmeeckle, & Badoux, 2018).

However, not every underlying process that controls the onset of motion is cap-
tured in the force-balance framework. Recent work has demonstrated the importance
of turbulent burst durations (known as impulse) (e.g., Diplas et al., 2008; Celik et
al., 2013), moment and torque balances (e.g., Smart & Habersack, 2007; Lee & Bal-
achandar, 2012; Dey & Ali, 2018), and the mechanism of grain entrainment (e.g.,
establishing different criterion for initial particle motion via rolling, sliding or lifting of
a grain out of its pocket) (Pahtz et al., 2020). These recently developed approaches re-
quire more complex measurements to properly estimate the threshold of motion, such
as estimating local inertial forces (e.g., Maniatis et al., 2020), high resolution flow tur-
bulence data and/or a priori knowledge of the dominant entrainment mechanism (e.g.,
Dey & Ali, 2017a). These requirements make these newly developed approaches more
difficult to apply than the simple force balance, and hence the simple force balance,
despite its shortcomings, remains in use. Furthermore, the force-balance approach is
used and performs well in lab experiments, even when underlying model assumptions
such as spherical grains, are broken (e.g., Prancevic & Lamb, 2015; Deal et al., 2023),
and can explain a wide breadth of field and flume data (e.g., Lamb et al., 2008), where
additional model assumption break down.

All of the above-mentioned methods to estimate the threshold of motion are
deterministic; given known input parameters, the models output a single value for
the threshold of motion. Field and flume data show there is not a single value for the
onset of sediment motion, and instead, there is variability around a mean estimate. For
example, in gravel-bedded rivers with slopes less than 5%, the critical Shields number
is often estimated as 7 ~ 0.045, but experimental and field observations show that 7
values can range from approximately 0.02 to 0.09 (Buffington & Montgomery, 1997).
This variability may arise due to local differences in particle shape, flow characteristics,
grain packing, style of initial motion (e.g., rolling vs sliding) and more (e.g., Kirchner
et al., 1990; Hodge et al., 2013; Yager, Schmeeckle, & Badoux, 2018; Deal et al., 2023);
but limited work to date (e.g. Lee & Balachandar, 2012) has shown how variations
in these physical characteristics propagate through the force-balance model to set
variability in observed incipient motion.

Here, we focus on estimating expected variability of the threshold of motion
using the Wiberg and Smith (1987) force-balance model. While our analysis can be
performed on other models (e.g., Dey & Ali, 2018; Péahtz et al., 2020), we explore the
force-balance model because of its ease of application and common use. Furthermore,
because the input parameters to the force-balance model are the most well constrained
of any initial-motion model, using the force-balance model allows us to best explore how
variability in model input parameters results in variability in the threshold of motion.
In this sense, our goal is solely to describe expected variability within an existing model
framework. While our work may yield insights on properties that control incipient
motion within the force-balance model, we do not seek to fundamentally advance
upon existing mechanistic descriptions of incipient motion.

Predicting the threshold of motion with the force-balance model requires several
input parameters, which we refer to as force-balance parameters (FBPs). Variability
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in turbulent fluid stresses, bed packing, grain exposure, and grain geometry result
in FBP variability, and ultimately affect the threshold of motion (e.g., Shields, 1936;
Grass, 1970; Gessler, 1971; Paintal, 1971; Kirchner et al., 1990; Church et al., 1998;
Schmeeckle et al., 2007; Diplas et al., 2008; Booth et al., 2014; Lamb et al., 2017a;
Yager, Schmeeckle, & Badoux, 2018; Masteller et al., 2019; Hassan et al., 2020). We
hypothesize that a majority of the scatter in the threshold of motion observed in gravel-
bed rivers is predictable and can be explained by expected FBP variability. Here, we
quantify variability in the threshold of motion explicitly with expected distributions of
critical velocity and critical shear stress at the onset of sediment motion. We do this
by first quantifying the expected variability in each FBP using published laboratory
experiments and detailed field studies, we then use a Monte Carlo method to propagate
FBP variability through a deterministic force balance to estimate critical velocity and
shear stress distributions at incipient motion. Constraining this variability allows us
to quantify the expected variability in the threshold of motion, ultimately providing
more robust, even if uncertain, sediment transport estimates.

2 Force-balance framework
2.1 Theoretical framework

Particle motion occurs when the forces promoting motion exceed the forces re-
sisting motion (e.g., Wiberg & Smith, 1987). The forces promoting particle motion
include the lift force, Fy,, drag force, Fp, and the downslope component of the buoyant
weight, calculated as (Fg — Fg) sin(f), where F'g is the buoyant force, Fg is the grav-
itational force and f is the bed angle). We assume the buoyant force operates in the
direction opposing the gravity vector and is vertical in our coordinate system (Wiberg
& Smith, 1987; Chiew & Parker, 1995) rather than normal to the water surface as in
Christensen (1995). The forces resisting motion, Fg, are the bed-normal component
of the buoyant weight, Fj, and friction. The threshold of motion occurs when the
forces promoting and resisting motion are balanced

FD + (FG 7FB)SiIl(ﬂ) = FR.

Following Wiberg and Smith (1987), we define the forces acting on the grain as

1
Fp = §CDpAeu2
1 2
FL = §C’LpApu
Fp = pgVp
Fg = psgVp
Fr = Fy tan(¢) = [(Fg — Fp) cos(8) — Fi] tan(¢)
where ¢ is gravitational acceleration, and ¢ is the effective friction angle that param-
eterizes geometric and frictional resistance and is commonly written as the effective

coefficient of friction p = tan(¢). Cp and Cp, are the effective drag and lift coefficients,
respectively, p and p, are the fluid and sediment densities, respectively and w is the
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downstream flow velocity proximal to the grain (Schmeeckle et al., 2007). A, is the
upstream-facing cross-sectional area of the grain exposed to the flow. We calculate A,
assuming spherical grains as A, = A,, — Ay, where A,, = mr? is the full upstream-facing
cross-sectional area of the grain in the plane perpendicular to the mean bed surface,
with r as the radius of the grain and A, is the cross-sectional area of the grain that is
buried or obscured from the flow, calculated as

Ay = 12057 ((r = (D = p)/) = (r = (D =)V (D —p) = (D =)

where p is the grain protrusion (defined as the height of the grain above the local mean
bed elevation). A, is the cross-sectional area of the grain in the plane parallel to the
mean bed surface and is the area over which Fp, is assumed to act. A, is equivalent
to the full cross-sectional area of the grain, A, when the relative protrusion value
(p« =p/D) is > 0.5. When p, < 0.5, we calculate A4, as

Ay =702 = (r=p))

(Figure la). These geometric definitions of A. and A, are dependent on the assump-
tion of spherical grains with particle volume V,, = 4/37(D/2)%. We use the term
‘effective’ to describe parameters that depend on multiple factors, either owing to our
use of simplified equations that neglect variably important physics, as in the case of
Fp and Fp (Schmeeckle et al., 2007; Diplas et al., 2008; Celik et al., 2013; Dey et
al., 2020), or are inherently formulated to include multiple contributing effects that
are scale dependent, as in the case of ¢ (Booth et al., 2014; Yager, Schmeeckle, &
Badoux, 2018). Similarly, because observations of ¢ and Cp are based on lab and
field studies using natural grains mobilized via a mix of rolling and sliding, variability
in observed distributions should capture the expected variability from the presence of
non-spherical grains and different modes of initial motion. We use a 2D force balance
to maintain consistency with previous work and we assume that the flow conditions
at the time of entrainment are fully turbulent (Komar & Clemens, 1986; Lamb et al.,
2008; Scheingross et al., 2013; Prancevic & Lamb, 2015; Ali & Dey, 2018). To avoid
the complications of steep slopes and/or shallow flows on sediment mobilization, we
further assume that the bed slope is constant at tan(3) = 10~2 and that grains are
fully submerged within the flow.

We frame the threshold forces acting on the grain in terms of a critical grain-
proximal velocity, ., by first substituting Equations (2) - (6) into Equation 1 to obtain
an equality defining the critical state at initiation of motion

%CDPAM + (psgVp — pgVp)sin(B) = ((psgVr — pgVp) cos(B) — %CLPAM@) tan(¢) (9)

and we rearrange Equation 9 to isolate u.

- (20l D ntan) s
¢ CpAc + CprAp tan(9) .

Equation 10 defines the grain-proximal downstream flow velocity that must be ex-
ceeded to initiate sediment motion and is dependent on p, ps, Cp, Cr, u, and p (via
A. and A,). Equation 10 does not explicitly account for turbulence; however, turbu-
lence influences the value of C'p and C'p,, allowing us to account for turbulence through
including the large range of C'p and Cp, values. The formulation of Equation 10, al-
though often considered to represent a sliding entrainment mechanism, can be used to

(10)
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represent flow conditions necessary for entrainment through other modes by altering
the effective friction coefficient to approximate the frictional resistance appropriate
for any given mode. For a rolling mode specifically, the effective friction coefficient
is lower than that for a sliding mode (Kirchner et al., 1990). We use Equation 10
to explore the influence of variability in the forces governing grain motion. We focus
on the grain-scale critical velocity threshold, rather than reach-scale or time-averaged
properties (e.g., reach-averaged shear stress or depth-averaged flow velocity), because
near-bed fluctuations of flow velocity more accurately describe incipient motion than
averaged flow measurements (Kirchner et al., 1990; Schmeeckle et al., 2007; Yager,
Schmeeckle, & Badoux, 2018; Yager, Venditti, et al., 2018). Furthermore, using grain-
scale velocity permits flow velocity estimates without requiring flow depth estimates.
To aid comparison to existing data, we also cast the incipient motion threshold in
terms of critical shear velocity, u., critical shear stress and critical Shields stress in
subsequent sections.

2.2 Variability of force-balance parameters

Estimating the variability in incipient motion using the force-balance framework
described above requires quantifying the variability in the FBPs setting the threshold
of motion. In this section we use published laboratory experiments and field surveys
to develop the most general and broad FBP distributions that could be applicable
in natural rivers of low slope (slopes < 5%) with no additional information (e.g., no
information on particle size or shape, water discharge, etc.). The distributions of
force-balance parameters represent observed variability in space and time measured
from independent experiments and field sites. As we show below, measured parameter
variability is generally large relative to expected measurement uncertainty such that
we assume distributions are dominated by observable variability, not measurement un-
certainty. Furthermore, we assume that these limited observations have quantified the
expected FBP variability. Many FBPs have documented parameter ranges, but lack
quantified distribution forms. In these cases we assume parameters follow truncated
normal distributions that have zero probability outside of specified ranges. These FBP
distributions can be narrowed with additional site-specific or experiment-specific data
(e.g., grain packing and particle density) as demonstrated in later sections.

Force-Balance Parameters

Parameter Drag Lift Friction = Relative Fluid Sediment

Input Cp Cr, (9) Pro- den- den-
trusion sity p sity ps
P (kg/m?)  (kg/m?)

Mean 0.76 0.65 2.75 (70°) 0.7 1000 2650

Standard  0.29 0.29 0.27 (15°) 0.4 30 100

Deviation

Minimum 0.1 0.06 0.27 (15°) 0.1 990 2500

Maximum 3 2 11.4 (85°) 1 1200 3000

Table 1. Values used to create generally applicable force-balance parameter distributions.

Grain and bed properties control the effective frictional resistance to motion
(Yager, Schmeeckle, & Badoux, 2018). For a single grain in an idealized pocket geom-
etry, the effective friction coefficient, 1 = tan(¢), can be represented as the rotation
angle between the grain being mobilized and the contact point with the downstream
grain over which mobilization occurs (Figure 1a) (e.g., Wiberg & Smith, 1987). Nat-
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ural bed sediments, however, are generally confined to pockets in which there are
multiple points of contact and the grain may exit oblique to the downstream direc-
tion, creating a distribution of p values that can range from an effective angle (¢) of
10 to 90 degrees (Kirchner et al., 1990; Hodge et al., 2013). Furthermore, p is scale
dependent such that the value for single-grain entrainment differs relative to sediment
mobilization in force-chain clusters (Booth et al., 2014). Field, flume, and numerical
studies commonly document log-normal p distributions (Kirchner et al., 1990; Booth
et al., 2014), with values likely resulting from variable importance of pocket geometry,
grain shape and bed packing (Buffington & Montgomery, 1997; Johnston et al., 1998;
Hodge et al., 2013; Prancevic & Lamb, 2015; Yager, Schmeeckle, & Badoux, 2018;
Deal et al., 2023). We assume p is log normally distributed around a mean effective
friction angle of 70 degrees, a standard deviation of 15 degrees, and is truncated with a
minimum and maximum of 15 degrees and 85 degrees, respectively (Table 1), which is
representative of many naturally packed sediment beds (Hodge et al., 2013; Prancevic
& Lamb, 2015).

The amount of grain protrusion p, adds additional variability as it modulates the
grain area normal (A.) and parallel (A4,) to the bed where Fp and Fy, act, respectively
(Kirchner et al., 1990; Yager, Schmeeckle, & Badoux, 2018). We use field observations
to set the distribution of p, = p/D; we assume p, is normally distributed with a mean
value of 0.7 (i.e., 70% of the grain height is exposed to the flow), and a standard
deviation of 0.4 (Yager, Schmeeckle, & Badoux, 2018). We set the minimum p, value
to 0.1 based on field observations from Yager, Schmeeckle, and Badoux (2018) showing
that >98% of non-buried grains have p, > to 0.1.

Fluid-grain interactions (as quantified in Equations 2 and 3) depend on effective
drag and lift coefficients, Cp and Cp. Cp is commonly assumed to be dependent on
grain size, grain shape, and particle Reynolds number, and is assumed to approach
a value of 0.4 to 1 for natural channels (Ferguson & Church, 2004). However, near
bed velocity fluctuations produce complex flow structures and changing points of flow
separation under variable duration of the imposed fluid force, resulting in instantaneous
Cp values deviating from the 0.4 - 1 range, even for constant grain size, shape and
particle Reynolds number (e.g., Schmeeckle et al., 2007; Celik et al., 2013; Hurst et
al., 2021). This variability in Cp is due to variably important physics, including form
drag, skin friction and the effects of bed roughness, which are lumped into C'p within
the simplified form of equation 2 (Lee & Balachandar, 2017; Dey & Ali, 2017a, 2017b;
Li et al., 2019). Similarly, C}, as represented in Equation 3, encompasses a wide array
of processes including shear lift, Magnus lift, centrifugal lift, and turbulent lift that
have uncertain relative influence on Cy, (Ali & Dey, 2016; Dey et al., 2020). We assume
both C'p and C}, follow a truncated normal distribution, with a mean Cp of 0.76 and
range of 0.1 - 3, as measured for a spherical particle on a gravel bed in turbulent flow
(Schmeeckle et al., 2007). Mean Cr, = 0.85Cp (Ali & Dey, 2016) and range from 0.06 -
2. We assume a standard deviation of 0.29 for both Cp and C}, (Einstein & El-Samni,
1949; James, 1990; Schmeeckle et al., 2007; Lamb et al., 2017a; Dey et al., 2020).

The remaining FBPs represent physical properties that, for a particular reach
of interest, commonly have a narrow range. For generality, we assume the density
of water varies from 0.99 g/cm? to 1.2 g/cm?® (owing to variability in temperature or
suspended sediment concentration) and that the density of grains varies with sediment
lithology, from 2.5 g/cm?® for siliciclastic to 3.0 g/cm?® for mafic grains.

2.3 Potential covariability of force-balance parameters

All FBP distributions presented above are based on empirical observations. In
this section, we account for the possibility that FBP values and distributions may co-
vary. The most well established covariability between FBPs is for F}, and Fp, where
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some represent F7, as the bed normal component of Fp at low slopes (Schmeeckle
et al., 2007), while others have argued Fy, is independent of Fp across a range of
flow conditions (Celik et al., 2013). We assume that Cj and Cp are co-variable
such that when sampling from FBP distributions (see Section 4), the same percentile
value is selected from Cp and Cf, given the parameter distributions described above.
This relationship incorporates the observations that mean Cp = 0.85Cp and that
the effective strength of an imposed fluid force is the same relative magnitude in
the downstream and vertical directions. We also explore a range of simplified linear
relationships between Cp, and Cp as a further test of other possible covariations (or
lack of covariation) between Cp and Cp (Text S1 and Figure S1). Our results show
that the magnitude of variability in the critical velocity for grain motion is only mildly
sensitive to the amount of covariation (or lack of covariation) between Cp, and Cp,
with positive correlation between Cj and Cp resulting in higher critical velocities
and negative correlation producing similar mean values as uncorrelated with reduced
variability (Figure S1).

Covariance between the other FBPs has not been clearly established, however,
relationships between FBPs may be inferred. For example, a high p value may be cor-
related with a low p, value for a grain sitting well below the mean height of surrounding
grains (Yager, Schmeeckle, & Badoux, 2018). Complex bed structure precludes us from
making these direct assumptions however, as a grain with a high p may represent a
grain that is fully exposed to upstream flow (p, value near unity), but is sitting in front
of a larger grain. Other FBPs have no clear correlation; for example, p and ps have
not been explored as co-variable in other FBP, and there is no physical reasoning that
variance in particle or fluid density would dramatically influence bed packing via u or
alter C'p or C,, given they are independent inputs to equation 2 and 3, respectively.
Lacking established relationships between FBPs such as p and p,. we rely on the FBP
distributions as currently measured to ensure we represent all probable bed config-
urations in the general case explored here. We recognize that refining the probable
relationships between all FBPs is a clear avenue for future work, the results of which
could be incorporated into the proposed framework.

2.4 Influence of force duration

Grain-mobilization thresholds depend on the product of the magnitude of the
force and the duration over which it is applied, a quantity termed impulse (Diplas
et al., 2008; Pdhtz et al., 2020). By systematically modulating imposed force dura-
tion and magnitude, Diplas et al. (2008) showed that the magnitude of critical force
rapidly increased as the force duration became vanishingly small, which concentrated
most of the observed variability in the threshold of motion towards exceedingly small
duration of force application. For short force durations, forces well above critical are
needed to rapidly accelerate and move the grain out of its pocket before the force pulse
ends. However, subsequent work demonstrated that high magnitude, exceedingly short
duration forces rarely mobilize grains (Celik et al., 2013). Instead, mobilization com-
monly occurs by longer force pulses sustained at or near the threshold force, where the
threshold force is determined by accounting for all body and surface forces acting on
the grain (Figure 1a).

We assume that the force that results from all sampled combinations of FBP val-
ues are applied with sufficient duration to mobilize the grain and thus correspond to
a unique grain-proximal critical velocity capable of initializing grain motion. This as-
sumption should not be limiting if grain mobilization is dominated by longer-duration
near-critical forces, as has been demonstrated in highly controlled impulse experiments
that have yielded FBPs consistent with the distributions used here (Schmeeckle et al.,
2007; Celik et al., 2013; Maniatis et al., 2020).
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indicating sensitivity of critical velocity to variability in FBPs. Light gray bars represent main
effect indices and black bars represent total effect indices. In (b) - (d), y-axis limits truncate

high-probability peaks of narrow distributions.
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326 3 Sensitivity of critical velocity to variability in force-balance param-
327 eters

308 To determine which FBP distributions contribute most to the variability in incip-
329 ient motion thresholds, we quantified the sensitivity of the expected critical velocity
330 (Equation 10) to variability in each force-balance parameter using a one-at-a-time
331 sensitivity analysis followed by a more formal global sensitivity analysis using Sobol’
332 indices (Sobol, 2001). For the sensitivity analysis, we calculated the expected critical
333 velocity distributions that resulted when only a single FBP was allowed to vary across
33 its complete distribution, with all other FBPs held constant at their mean value. Sobol’
335 global sensitivity indices provide estimates of the influence of individual or groups of
336 variables on model outputs computed using Monte Carlo methods. We calculated
337 Sobol’ indices using Latin hypercube sampling and performed the global sensitivity
338 analysis as implemented in the open-source software package quoFEM (McKenna et
339 al., 2021). For this analysis, we used the distributions specified above (Figure 1b)
340 and assumed near-perfect positive correlation between the lift and drag coefficients
341 (correlation coefficient of 0.99). quoFEM allows users to wrap sensitivity analysis func-
342 tionality around different analysis packages. In this case, we input a Python script
33 describing the force-balance model as the input model for a global sensitivity analysis.
344 We calculated both the main effect and total effect Sobol’ indices to objectively assess
35 the contributions of individual FBPs and FBP interactions to the overall variability
346 in critical velocity predicted by our model. The main effect index provides a measure
347 of an individual FBP’s contribution to the total variance in the force-balance derived

348 critical velocity, while the total effect index assesses variability added by a FBP due
349 to its interaction with other FBPs.

350 For a given grain size, the one-at-a-time sensitivity analysis demonstrates that
351 much of the observed variability in the critical velocity results from the lift coefficient
352 and grain protrusion (Figure 1d) owing to the large variability of their distributions
353 relative to their mean value (Figure 1c). This result does not indicate that other
354 parameters such as p and C'p are unimportant in setting the value of u,.; instead, it
355 suggests that the variability in the FBP distributions for parameters such as g and
356 Cp do not contribute substantial variance to the expected u. distribution.

357 The global sensitivity analysis using Sobol” indices confirms a large individual
358 contribution to the variability in critical velocity from the lift coefficient and protru-
359 sion value. The lift coefficient accounts for 58% of u, variability, while the protrusion
360 and drag coefficient account for 32% and 9%, respectively. Fluid and sediment den-
361 sity combined account for < 1% of the w, variability. Similarly, the effective friction
362 coeflicient accounts for < 1% of the u, variability (Figure 1d). The main effect and
363 total effect for all FBPs show similar patterns, though the total effect is greater than
364 the main effect in all instances. This indicates that interaction between FBPs con-
365 tributes some amount to u. variance, though Cy, and protrusion dominate the variance,
366 whether individually or through interactions with other FBPs. If grain size is allowed
367 to vary and all other FBPs are assumed to be uniformly distributed, grain size alone
368 accounts for 68% of the variability in u. and reduces the main effect for Cp, to 27%.
369 This highlights that grain size is the most dominant independent variable for formu-
370 lating an incipient motion threshold (Figure S1b). Using uniform distributions instead
37 of truncated normal distributions for FBPs results in only minor changes in sensitivity
372 (Figure S2a), suggesting that the relative contributions of FBPs to w,. variability is
373 somewhat independent of the assumed form of the FBP distributions.

374 Although Cp, Cp, and p are rarely quantified and not well known in most envi-
315 ronments, our analysis offers insight into their respective influence on the variability
376 of incipient motion. This sensitivity analysis suggests that further constraints on ef-
377 fective lift, drag and protrusion would decrease expected variability in the threshold
378 of motion. However, if such variability in FBPs is characteristic of a site where one
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wants to predict sediment transport, then the large predicted variability is expected
and should be used in incipient motion predictions.

4 Model-predicted distributions of incipient motion thresholds

To generate of critical-velocity distributions at incipient motion, we used a stan-
dard Monte Carlo method to propagate FBP variability through Equation 10 (Metropolis
& Ulam, 1949). We drew 10° random samples from each respective FBP distribution
to solve Equation 10 for 10° unique realizations of critical velocity for a given grain
diameter. We repeated this Monte Carlo procedure across 1000 grain sizes linearly
spaced from 0.002 m to 1 m diameter and stacked the probability density functions of
critical velocity determined for each grain size to create a probability density map of
critical velocity that varied with grain size and represents the expected variability of
the threshold of motion (Figure 2a).

To compare with other incipient-motion thresholds, we convert these grain-
proximal velocities into corresponding critical shear velocities (u..), critical shear stress
(7c), and critical Shields stress (7) (Figure 2b-d). These conversations are not straight-
forward, because u. represents an instantaneous, point measurement, whereas ., 7¢
and 7} are all spatially and temporally averaged quantities. However, given that wu.,
7y and 7* are arguably the most commonly used metrics to evaluate the threshold of
motion (e.g., Wiberg & Smith, 1987; Lamb et al., 2008; Garcia, 2008; Williams et
al., 2013; Deal et al., 2023), being able to relate the variability we calculate in u. to
these averaged quantities represents a potentially useful contribution. Our approach
is two-fold. We first assume that the instantaneous u. value is approximately equal
to the velocity averaged over the height of a grain, u,, at incipient motion. Second,
we take the full distribution of u. values, and calculate a corresponding distribution
of critical shear velocity using a known velocity profile as described below (Lamb et
al., 2017b). This is similar to the approach of Wiberg and Smith (1987) in converting
a local-scale grain velocity to critical shear velocity using a velocity profile; however,
we make the additional assumption that the instantaneous u. value can be treated as
a time-averaged quantity solely for the purpose of calculating variability in u... This
should result in a wider distribution of critical shear velocity, consistent with our con-
servative approach to estimate the maximum amount of variability in the threshold
for motion. To convert to the corresponding u4., we also assume fully turbulent flow
conditions such that the velocity profile is independent of Reynolds number and can
be described by a modified logarithmic depth profile (Lamb et al., 2017b)

ﬂqﬁz) - %m (1 + 3£Z> (11)

in which @(z) is the downstream velocity temporally averaged over turbulence and
averaged laterally in space over variability in local bed roughness, z is distance above
the bed, k = 0.407 is von Karman’s constant, and k; is the roughness layer height.
From Equation 11 we calculate the velocity averaged over the height of a grain u,. We
assume that for a known grain size D, u, = u. at incipient motion, given u. represents
the grain proximal downstream flow velocity in equation 10, we use this local velocity
to solve for the corresponding u.., 7., and 7 at incipient motion.

1 #2 Use z2 30z
Ug = U = u(z)dz = ————— In(1+ dz 12
22—21/ =) k(Zz—Zl)/zl < ks ) (12)

21

Usee ks 3025 ks 30z
_Ue ([ Fs ] 1) — (= 1 1) - 1
o ((30+22) n( P ) <30+z1) n( T ) 22+z1> (13)
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ks 30z ks 302 -t
Use = Ue(22 — 21)k ((30 + 22> In ( ksz + 1) — (30 —|—zl> In ( ksl + 1) — 29 + 21)

where z; and 25 represent the vertical position of the bottom and top of the grain of
interest, respectively.

We assume kg ranges from D < k; < 6.1D and we allow the grain to sit anywhere
within the roughness layer, that is, ks/30 + D < 29 < ks and set z; = 2o — D (Grant,
1997; Lépez & Barragdn, 2008). While other work has suggested narrow ranges in
ks (e.g., Lamb et al., 2017b), the large range used here ensures the widest possible
distribution of critical velocities, consistent with our goal to quantify the maximum
amount of potential variability in the force-balance approach.

For each Monte Carlo realization of Equation 10, we predicted the variability
of critical shear velocity by randomly sampling values of ks and z; from uniform
distributions with limits as specified above, and we propagate those estimates through
Equation 14, (Figure 2b). Assuming a constant ks (e.g., ks = D) reduces the variability
by up to half relative to the case in which ks varies within a uniform distribution
(Figure S4). We calculated the variability for critical shear stress and critical Shields
stress using

2
TC = pu*c

and )
* pu*c

T = ——
(ps — p)gD

(&

The resulting distributions (Figure 2) highlight the expectation of large variabil-
ity in incipient-motion thresholds given the measured variability in FBPs, but also
show that well-defined high-density regions for each threshold can be characterized by
the interquartile range (IQR) (Figure 2). We found that these high-density regions in
the threshold u., u«., and 7. distributions can be represented by a family of power
laws fit between grain size and the respective flow parameter, with u. and u,. different
only by their coefficient

u. = m.D%°

me = 5.21 £ 0.91

Use = m*DO.S

m, = 0.80 £0.17.

These power laws are based on the form of Equation 10, in which the FBP distributions
reported in Table 1 result in a power law characterized by the reported m., while the
power law exponent of 0.5 remains fixed. We solve for the best fit of 7. by combining
Equations 15 and 18, 7. = pu2, = pm?(D"%)? which results in the linear relationship

Te = m;D

m, = 648 = 285

where m, = pm?2. Combining Equations 15, 16, and 19 yields 7 = m,/(ps — p)g,
resulting in a constant 7 value of
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7x =0.040 £ 0.018.

These functional relationships shown in Equations 17, 18, 19 and 20 predict a wide
range of incipient motion thresholds, owing to our use of broad FBP distributions
(Table 1) and thus should be valid, albeit with large expected variability, for spherical
grains on Earth in low slope rivers. As we show below, if additional site-specific infor-
mation is available (e.g., known sediment density, or a known and tighter range of drag
coefficients), input FBP distributions can narrowed, resulting in reduced variability on
the power law coefficients (m., m., m,) or 7 estimate.

5 Comparison between model-predicted and empirically-observed incipient-

motion thresholds and bedload flux

In this section we compare incipient-motion distributions predicted by our model
to published data from flume experiments with controlled and limited parameter vari-
ability and field data with wider FBP ranges. We also use our model framework
to show how variations in the incipient-motion threshold offer an explanation of the
scatter in existing bedload flux measurements. These comparisons serve as concrete
examples of how FBP distributions and resulting predictions of threshold distributions
can be narrowed for a particular site of interest.

(20)

5.1 Comparison with large-replicate, single-grain entrainment flume ex-

periments

We compared our model-predicted critical velocity distributions with published
distributions measured in idealized flume experiments. Wu and Shih (2012) replicated
two experiments of grain-entrainment (115 and 205 replicates, respectively) by placing
spherical grains in idealized pocket geometries and measuring grain proximal veloci-
ties before and after initial grain motion using high-speed cameras and laser Doppler
velocimetry. They found that the critical velocity at entrainment was not constant
across replicates for an experiment, but instead took on a range of values well outside
the uncertainty in their velocity measurements (Figure 3). The Wu and Shih (2012)
experiments provide idealized data to test the accuracy of our force-balance model
predictions in a fully controlled setting.

To compare our model predictions to the Wu and Shih (2012) data, we narrowed
our input FBP distributions based on the experimental setup. We set the Cp distri-
bution using the experimentally measured median velocity prior to entrainment based
on the relationship between Cp and u, measured by Schmeeckle et al. (2007) (Figure
S3). Similarly, we decreased the mean and narrowed the range of p to reflect the
experimental pocket geometries and observed direction of initial sediment motion out
of the pocket following Kirchner et al. (1990):

v

p=tan(¢p) = \/(Dm/Db)Q +2(Dy,/Dy) —1/3

where D,, is the diameter of the spherical particle being mobilized, Dy, is the diameter
of the spherical, uniform bed particles and - is an empirical coefficient that is equal to
1/4/3 when the mobilizing particle pivots through the saddle between two downstream
bed particles and is equal to 2/v/3 when the mobilizing particle pivots directly over
one of the bed particles. This semi-empirical formulation uses a rolling initiation
mechanism to calibrate the effective coefficient of friction. Although our balance of
forces in Equation 1 is not based on a moment balance in which the rolling regime of
particles are defined (e.g., Péhtz et al., 2020), Equation 21 allows us to characterize

—13—

(21)



=)
T

o

IS

Median

N

Critical velocity, uc (m/s)

IQR
5 to 95t

Critical shear stress, 1. (Pa)

0.200

Tc
o
e
=
el

T

0.150

=}
H
o
=]

Critical Shields stress,

e o 2 9o
o o o o
S N O I
S u o u

| |
0.2 0.4 0.6 0.8 1.0
Grain size (m)

T
0.2 0.4 0.6 0.8 1.0
Relative probability

Figure 2. Probability density maps of critical flow properties calculated from force-balance
parameter distributions specified in Table 1. Distribution of critical velocity (a), critical shear ve-
locity (b), critical shear stress (c) and critical Shields stress (d) as a function of grain size found
using a Monte Carlo Method to propagate variability of the force-balance parameters through

a grain-scale force balance. Solid lines show power law fits to median values, long-dashed lines
show the interquartile range and dotted lines show power law fit to the 5" to 95" percentile
values. Black to gray shading shows density of values from the Monte Carlo method divided by

the maximum density and is defined as the ‘relative probability’ in the colorbar.
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an effective coeflicient of friction to reflect geometric resistance to motion for a grain
that will be mobilized via rolling, resulting in an inherently lower effective frictional
resistance. For Wu and Shih (2012) Experiment 1, in which the mobilizing particle
rotated through the saddle between two downstream particles, we set the mean of the
¢ distribution to 19 degrees with a range of 9 - 29 degrees to account for potential
asphericity of particles and mobilization not directly through the saddle. In Wu and
Shih (2012) Experiment 2, the grain was forced to exit over or oblique to a downstream
particle and we used a mean pu of 35 degrees and a ¢ range of 25 - 45 degrees. We
assumed a constant p, = 0.86 for both experiments based on the position of the
mobilized particle prior to entrainment. We held p and ps; constant to reflect the
values from the study. Lacking additional constraints on Cp,, we assumed a mean C,
= 0.19 (half the value of our general case) due to the low flow velocity, and the full
(', parameter distribution range from the most general case (0.06 < C, < 2) (Table
1). Inputting these experiment-specific distributions into our Monte Carlo simulations
resulted in a best fit m, = 2.54+0.29 (median + /- interquartile range) for Experiment
1 (Figure 3a) and m, = 1.09 £ 0.18 for Experiment 2 (Figure 3b).

We found that the predicted critical velocity distributions using the simplified
power law (Equation 17) and the updated m,. values (2.54£0.29 for Experiment 1 and
1.0940.1 for Experiment 2) bound the range of velocities measured immediately before
entrainment across all replicates (Figure 3a-b). Model-predicted critical velocities, in
terms of both the mean and interquartile range, change in concert with the experi-
mental configuration, owing to our use of experimental constraints on Cy, p, p, ps, and
¢. We interpret this agreement between our theoretical predictions and experimen-
tal observations as evidence that incorporating independently quantified variability
in force-balance parameters allows accurate representation of the distribution of crit-
ical velocities at initiation of sediment motion. This supports our hypothesis that
the variability observed in incipient motion data is encompassed within the expected
variability associated with applicable FBP variability.

5.2 Comparison with field data

The comparison above represents idealized conditions where many replicates were
used to quantify variability in the threshold velocity; however, such data are rarely
available. We assessed the performance of the simplified family of power laws in less
idealized conditions by comparing model predictions to field and flume data spanning
a variety of incipient motion observation techniques, inferred flow conditions, bed
packing and grain size.

5.2.1 Comparison with field measurements of paired incipient motion
and grain-scale critical velocity

Helley (1969) conducted a unique field experiment placing natural grains (up
to 0.52 m in diameter) on a natural riverbed at low flow and recorded the incipient
motion of these grains with concurrent flow depth. This allowed a threshold grain-
scale flow velocity to be determined using a calibrated stage-velocity relation. To our
knowledge, this is the only incipient motion field data with constraints on grain-scale
flow velocity, and is thus the best suited field data to test our model. We used reported
grain properties (the three primary axes, sediment density and particle volume) and the
inferred relative position within the bed to constrain FBP distributions. Owing to the
nature of grain placement on top of the natural sediment bed, we assumed low frictional
resistance from bed packing and grain burial and therefore used a p distribution (mean
¢ = 40° , standard deviation = 15°) which minimizes the contribution of bed packing
to the effective friction angle (Kirchner et al., 1990). We assumed grains have high
protrusion (p, = 0.9 £ 0.2). All other FBP distributions followed the distributions
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Figure 3. Comparison between model-predicted (red lines and red shading) and experimen-

tally observed (various point symbols) flow conditions at incipient motion. (a and b) Downstream
component of the grain-proximal velocity measured using laser Doppler velocimetry by Wu and
Shih (2012) in two different bed packing configurations with different grain densities. Open
circles indicate mean velocity measurements from all replicate experiments averaged over 0.1 s
intervals. Grey shading spans the root-mean-square error of velocity fluctuations measured across
all replicate experiments. (c) Observed velocity at incipient motion by Helley (1969) from Blue
Creek, CA against expected theoretical critical velocity with points colored by their respective
Cory Shape Factor (C'SF), where A is the long axis, B is the intermediate axis and C is the
short axis. Tabular particles that do not conform to the assumptions used to estimate critical
velocity have small CSF, whereas more spherical particles have high CSF. (d) Reported critical
shear velocity from compilation of field (triangles) and flume (circles) data against expected the-
oretical critical shear velocity with point color representing the reported critical Shields stress for
data referred to in Section 6.2.2. For all plots, solid lines show the power law for median values,
dashed lines show power law for the 5" and 95" percentile values, and colored patches span the

interquartile range estimated using the reported grain size.
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specified in Table 1, these broad values and the physical constraints described above
resulted in a best fit m. value of 3.77 £ 0.31.

The resulting comparison between modeled and observed critical velocities shows
that the predicted threshold velocity and the interquartile range of uncertainty encom-
pass a majority of the observations for grains that are approximately spherical (Figure
3c). Some of the reported velocities, particularly for tabular grains, are higher than the
interquartile range estimate from our force-balance predictions (Figure 3c), potentially
due to the fact that we use distributions of drag and lift coefficients for approximately
spherical grains, which may systematically overestimate drag and lift coefficients for
tabular grains. We interpret the tight correspondence between observed and predicted
critical velocities and the degree to which a majority of approximately spherical grains
fall within our predicted interquartile range as a second positive test of our hypothesis
that incorporating variability in FBP offers a reasonable estimate of the critical veloc-
ity and variability in that velocity. This second positive test adds additional credibility
to our hypothesis because it was carried out in a natural setting and with significantly
larger grain sizes (up to D = 0.52 m) relative to the previous laboratory comparison.

5.2.2 Comparison with field and flume data of incipient motion with
reach-averaged critical shear velocity

In practice, most field and laboratory data do not allow a direct estimate of
grain-scale flow velocity as in the Wu and Shih (2012) and Helley (1969) datasets. We
tested the ability of our force-balance model to capture variability in incipient motion
using data more commonly collected in the lab and field data. Specifically, we used
a large compilation of estimated critical shear velocity at incipient motion from flume
experiments and field observations (Aguirre-Pe, 1975; Andrews, 1994; Buffington &
Montgomery, 1997; Andrews, 2000; Shvidchenko et al., 2001; Church & Hassan, 2002;
Mueller et al., 2005; Whitaker & Potts, 2007; Scheingross et al., 2013; Prancevic et
al., 2014). Owing to the diversity of field and flume data included in this compilation,
we predicted critical velocities using the most general FBP distributions in Table
1. We assumed a roughness layer height of ks = D for Equation 14 to maintain
consistency with assumptions in Buffington and Montgomery (1997), this is likely an
underestimate of the true roughness layer height which may result in overestimates of
Uye. We filtered the incipient motion data to include observations with slopes < 5%
and Dso > 0.001 m, set by the assumptions of our methodology. We observe that
61% of the flume data fall within the interquartile range of our model predictions,
and 95% of flume data fall within the 5 to 95% confidence interval (Figure 3d). Field
data shows a similar consistency with 39% and 90% falling within the IQR and 5 to
95% confidence interval, respectively. We interpret this as additional strong support
of our hypothesis that incorporating known variability in FBP can explain observed
variability in thresholds at incipient motion.

While the majority of data fall within our predicted variability bounds, the pre-
dicted critical shear velocity is biased high (i.e., a majority of points plot below the
one-to-one line). One potential explanation for this bias is the assumption of spherical
grains which may overestimate grain volume, thus requiring a higher estimated critical
shear velocity to mobilize the grains than observed. An additional source of variability
not included in our analysis is the variability that might result from mixing measure-
ment techniques and definitions for incipient motion, which in the compilation include
defining a non-zero sediment flux, visual observation of initial to full bed mobility,
empirical competence and theoretical estimates for a given flow condition (Buffington
& Montgomery, 1997). Despite this additional variability, we are able to estimate
the range of threshold conditions observed across decades of incipient motion studies
through incorporating expected variability in the forces controlling entrainment.
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5.3 Estimating expected variability in bedload flux

Bedload flux is characterized by large fluctuations, particularly when flow con-
ditions are near the threshold of motion (e.g., Figure 4 and Ancey et al. (2008)).
Following from the early work of Einstein (1950), there has been renewed interest in
stochastic formulations to predict bedload flux and observed variability (Seminara et
al., 2002; Ancey, 2010; Foufoula-Georgiou & Stark, 2010; Turowski, 2010; Furbish et
al., 2012; Ancey & Heyman, 2014; Fathel et al., 2015; Heyman et al., 2016; Ancey
& Pascal, 2020; Benavides et al., 2022; Pierce et al., 2022). Despite these attempts
that offer new theory to estimate and explain observed variability in bedload flux, em-
pirical, deterministic formulations are still the most common approach to quantifying
bedload flux (e.g., Meyer-Peter & Miiller, 1948; Fernandez Luque & Van Beek, 1976;
Wong & Parker, 2006). Here we present a method that incorporates the expected vari-
ability in incipient motion developed above, and that includes variability in fluid stress
and bed configuration, to offer bounds of expected variability on commonly applied
deterministic bedload flux formulations.

The most commonly used formulae to estimate bedload transport take the form
of

g =a(r* —70)"

where ¢, = ¢s/(RgD?) is a non-dimensional bedload flux per unit width, ¢, is the
volumetric bedload flux per unit width, R = (ps — p)/p and a and b are empirically-
derived constants (e.g., Meyer-Peter & Miiller, 1948; Fernandez Luque & Van Beek,
1976; Wong & Parker, 2006). Inspection of Equation 22 highlights that small variation
in 77 can lead to large variations in bedload flux estimates, due to the non-linear
dependence of sediment flux on excess Shield stress (7* - 7.¥).

To illustrate how variability in the threshold of motion can be propagated to
estimate expected variability in sediment flux, we used our framework to add variability
to the well-established Wong and Parker (2006) bedload flux empirical relationship,

G = 4.93(7F — 7)1

where Wong and Parker (2006) set 7 = 0.0470 based on a best fit to data. We use our
Monte Carlo method to assess variability around 77 = 0.0470. To reproduce this 7}
value, we assume all FBPs follow the most general distributions from Table 1, but we
set mean p, = 0.3 to increase 7. from our estimate of 0.040 to the 0.047 best fit from
(Wong & Parker, 2006). This results in an interquartile range of 7 values ranging
from 0.025 < 7 < 0.69, or 7 = 0.047 +/- 0.022.

The expected variability around the Wong and Parker (2006) relationship derived
from our force-balance framework accounts for 89% of the observed variability in the
bedload flux measurements on which the Wong and Parker relationship was originally
calibrated Figure 4. One potential reason our variability estimates encompass 89% of
the data, even though it is based on the interquartile range of expected 7 values, is
because we used the full range of FBP distributions in Table 1. This variability could
be reduced if FBP measurements were available for the sediment flux data, in which
case we would expect the predicted variability to encompass closer to 50% of the data.
Regardless, we interpret the fact that variability from our framework encompasses
the observed data to suggest that variability in incipient motion from force-balance
parameters can be used to better constrain expected variation in sediment flux.
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Figure 4. Comparison of flume-measured bedload flux (Meyer-Peter & Miiller, 1948) with the
Wong and Parker (2006) empirical fit. Interquartile range of variability on 7. predicted using the

framework developed here (see text for details). g. is the dimensionless volume bedload flux per
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unit width and 7" is the Shields stress.

6 Discussion

Our results demonstrate that the magnitude of scatter observed in flow metrics at
that time of incipient motion is predictable and is encompassed within the variability
expected from independently quantified and site-specific distributions of force-balance
parameters (Figure 3). Furthermore, our results provide a simple method to constrain
expected variability in the threshold of motion using a power law function, u, =
meD"®, where the power law coefficient, m., changes to encompass expected FBP
variability.

The power law relationship between critical velocity and sediment size has been
observed empirically for centuries (Brahms, 1753; Leliavsky, 1955; Strand, 1973) and
is a natural result when formulating a grain-scale force balance to solve for a critical
velocity (Wiberg & Smith, 1987, Equation 10). The novel result found here is that the
degree of variation on the power law coefficient is predictable based on independent
laboratory and field measurements of parameters used to close the force balance (Figure
3), and that this variability is most often dominated by variability in the distributions
of effective lift, drag and protrusion (Figure 1d). When the expected variability in
force-balance parameters is explicitly incorporated, the resulting threshold of motion
distributions show that substantial deviations from commonly assumed values (e.g., 7.*
= 0.045) are possible (Figure 2). The modeling framework presented here allows the
observed FBP variability to be easily propagated to estimated the expected variability
of critical velocity, critical shear stress or critical Shields stress allowing for more
robust, even if uncertain, estimates of incipient-motion thresholds.

While our analysis used a Monte Carlo method to propagate FBP variability to
variability in incipient motion, we show that the threshold of motion can be described
by a family of easy-to-use power laws describing both the mean and variability about
the mean for incipient motion as a function of grain size. To aid in rapid calculation
of expected variability in incipient motion thresholds we compiled a table of power
law fit coefficients (m, i.e., m¢, m«, m,, and 7) with associated variability that span
flow, grain and bed conditions that are likely to be encountered on Earth and other
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planetary bodies (Table S1). If little information is known about the site and flows
expected there, the most variable m values presented in Section 4 should provide
robust estimates that incorporate the possibility of broad variability due to the lack
of site-specific values for FBPs. If it is possible to inform the expected distribution of
flow velocities, bed conditions, grain or fluid properties, then one can better constrain
the variability in the m value selected and reduce the expected variability in incipient
motion.

To facilitate easy selection of m for the most readily constrained bed properties
of ¢ and p, we compiled m values and variability by varying mean values of ¢ and
p« (Figure 5). These results highlight how the expected m., m., m., and 7} and
associated variability change when shifting the mean of two FBPs from those presented
in Table 1. These plots also highlight that changing mean parameter values, such as
the effective friction coefficient u = tan(¢), can have a large impact on the expected
critical velocity (as seen by the notable increases in m as a function of ¢ in Figure 5).
This is despite p being one of the smaller contributors to the expected variance in u.
distributions (Figure 1d) owing to the relatively small variance relative to the mean
found in many field-measured ¢ distributions (e.g., Hodge et al., 2013; Prancevic &
Lamb, 2015). This variability in the respective m values also informs our intuition of
how small changes in bed configuration, expressed through ¢ and p,, may influence
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