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1. INTRODUCTION 

It is now known that parity is violated in the electron-nucleon 

interaction e + N ~ e + N. The results of diverse experiments, employ-

ing scattering of high energy polarized electrons and low energy atomic 

spectroscopy, imply that e and N (or in more basic terms e and quark q) 

engage in a neutral weak coupling, in addition to their mucp more power-

ful electromagnetic interaction. This neutral weak eq coupling now 

takes its place (see Table 1) with the observed neutral weak interactions 

vq and ve, knowledge of which is by now quite extensive. Yet to be 

observed in their own right are the neutral weak couplings (ee) or 

(qq). Nevertheless the experimental facts from the vq, ve, and eq 

sectors are already sufficient to provide a stringent test of theo-

retical models, and the evidence is strongly in favor of the unified 

theory of weak and electromagnetic interaction proposed by Weinberg 

and Salam. In the remainder of this section we shall present general 

ideas concerning the neutral weak eq interaction. Then we shall 

describe the salient features of the Weinberg-Salam model (section 2), 

discuss in detail the principles and methods of the SLAC polarized 

electron scattering experiment (section 3) and atomic physics experi-

ments (section 4), and summarize neutral weak interaction results and 

their implications (section 5). 

Unlike the (vq) and (ve) interactions, the (eq) interaction is 

described by an amplitude containing an electromagnetic as well as a 

weak portion: A "" AEM + Aw• with AE~1 >> Aw In each (eq) process, the 

transition probability, proportional to IA! 2, thus contains an inter­

ference term """ 2AwAE~t in addition to the dominant term IAEM 1
2 

and the 
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very small term 1Awl 2 (which we neglect). If the weak interaction vio-

lates parity, the interference term contains a pseudoscalar portion 

Awp• the sign of which depends on the "handedness" of the coordinate 

system in which the experiment is performed. When the rates for a 

process I± in the two coordinate frames of opposite handedness are 

compared, one obtains an asymmetry 

I - I 
+ (1) 

In the case of high-energy electron scattering at SLAC the handed-

ness is defined by the helicity of the longitudinally polarized elec-

tron beam. We may estimate ~ crudely in this case by employing the 

Feynman diagrams for the electromagnetic and neutral weak interactions 

in lowest order (Figure 1). 
1 The former proceeds by photon exchange, 

2 
with AEM = 4na/q . 

The latter is presumed to be mediated by a neutral vector boson 

Z
0

. Even in primitive theories which attempt to establish a connec­

tion between weak and electromagnetic interactions its mass should be 

m2 - (na/G)!. For jq2
j << m~ the weak amplitude should be of order G. 

Assuming that parity is violated near-maximally for the neutral weak 

interactions as it is for charged weak interactions, we find: 

-
1we adhere to the relativistic conventions employed by Bjorken & Drell 

(1964); q is the invariant four momentum transfer from electron to 

nucleon, and q2 
< 0 for spacelike q 

employ units h = c = 1 unless otherwise noted, and the Fermi coupling 

constant is G = 1.02 x 10-S m- 2• where m is the proton mass. p p 



(J = (J 
+ 

(J + (J 
+ 

2 2 2 - Gq /4na - q /m2 . 
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(2) 

For Jq2
J ~ (1 GeV) 2 this yields~~ 10- 4• an estimate originally given 

by Zel'dovich (1959). According to a more detailed analysis presented 

in section 3, the electron scatters from individual quark-partons in 

the nucleus (Cahn & Gilman 1978). The weak and electromagnetic con-

tributions from each quark are coherent and interfere, but the sum 

over all quarks is incoherent. The asymmetry predicted on the basis 

of the Weinberg-Salam model, and actually obtained in the experiment 

(Prescott et al 1978, 1979) is still of order 10-4 . 

One employs the same amplitudes (Figure 1) in low energy atomic 

physics, but they are described in somewhat different language. Pho-

ton exchange between atomic electron and nucleus is expressed by the 

ordinary atomic Hamitonian H , whose eigenstates, the usual atomic 
0 

states, may be separated into two classes l$0
}, lx 0

> of opposite n m 

parity. Exchange of the massive Z0 is described by an effective 

zero-range potential H' of order G, which contains scalar and pseudo-

scalar parts: H' =·H5 + HP (Bouchiat & Bouchiat 1974a,b, 1975). H5 

is in principle observable (it leads to energy shifts), but these 

are so small that they cannot be separated from effects due to H 
0 

in any known practical experiment, because of small uncertainties in 

H , Hp is a significant perturbation on H , however, since it causes 
0 0 

a state J$0
} to be admixed with states lx0 > of opposite parity: 
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(3) 

Let us consider how the electronic and nucleonic currents contribute 

to the pseudoscalar portion of the Hamiltonian Hp. A priori these cur­

rents may possess scalar (S), vector (V), tensor (T), axial vector (A) 

and pseudoscalar (P) components. Thus, neglecting momentum transfer 

dependent terms we may write 

H = p 

where the ck are coefficients to be determined. However, the term corre­

sponding to rk = r
5 

(P term) vanishes in the non-relativistic nucleon 

limit. Also it can be shown that the S and T terms are time reversal 

odd as well and lead to a permanent electric dipole moment of the atom 

(Hinds 1976, Sandars 1968). Experiments to search for linear Stark 

effect in Xe, Cs, and T~ place an upper limit on the coefficients c8, 

cT of less than 10-3 (Hinds 1976, Player &Sandars 1970, Bouchiat 1975, 

Gould 1970). Furthermore, it can be shown that the S, T, and P terms 

yield no interference with electromagnetism in high energy electron 

scattering where quark and electron masses may be neglected. Thus, 

we shall assume that the electronic and nucleonic weak neutral currents 

contain only vector and axial vector components: 
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JN = VN + AN' 

Then. we may write Hp = H(l) + H(2) where H(l) H( 2) arise from the , p p • P' p 

combinations AeVN and VeAN, respectively. Ignoring momentum transfer-

dependent terms, we have: 

G - - A - A 
-- ~ ~ y,yS~ [Cl ~ .y ~p· + Cln~nl·Y ~n1.) l2 i e 1\ e p p1 1 

(4) 

(5) 

where the sum is taken over all protons (p) and neutrons (n) in the 

nucleus. 

The coupling coefficients Clp' Cln' c2p, c 2n are model-dependent 

and must be determined by experiment. As will be demonstrated in Sec-

tion 2, the Weinberg-Salam model (Weinberg 1967, Salam 1968) predicts: 

clp :::; Hl - 4 sin2e) (6a) 

cln = -~ (6b) 

g 
- 4 sin2

e) c2p = -Ao 
2 

(6c) 

c = 
gA 

- 4 sin2e) -- (1 2n 2 
(6d) 

where gA = 1.25 is the axial vector coupling constant of neutron beta 

decay, and e is the Weinberg angle (Weinberg 1972). A variety of experi-

. ld . 2 0 23 ments y1e Sln 6 = . . Assuming Eqs. (6) and performing a non-

relativistic reduction of the nucleonic currents we obtain from Eq. (4) 

the effective electronic weak Hamiltonian corresponding to AeVN: 
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(1) G -+ 
K': "'-Q P (r)y --w 212 w N s (7) 

2 -+ + 
where QW = (l - 4 sin e)Z - N and pN(r) is the nuclear density, r being 

the electron position. In the limit of a point nucleus and a non-rela-

tivistic electron, Eq. (7) yields: 

( 1) G 1 + + 3 + 3 + + + 
Hhr +-- Q [o•po (r) + o (r)o•p] " 412 mec W 

(8) 

++ 
where o,p refer to the electron. In the first (second) term on the RHS 

of Eq. (8), p = -ih~ is understood to apply to the electronic wave 

function on the left(right) in <xiH~l)l~>. The factor QW- Z arises 

because we sum coherently over each nucleon (since the atomic elec-

tron wavelength is much larger than the nuclear diameter). 

In the case of H~ 2 ) which corresponds to VeAN, a non-relativistic 

reduction of the axial nucleonic current yields factors proportional 

to nucleon spin, and these cancel 'in pairs in the sum over nucleons, 

leaving at most two unpaired spins. Thus in the non-relativistic limit 

of the electron and for a point nucleus, the Weinberg-Salam model yields 

an effective Hamiltonian: 

_Q_ __ 1_ (1 4 . 2 ) + +[+ +k3(+) k3(+)+ +] (9) - Sln e gAoN•o o•pu r + u r o·p • 
412 mec 

H~2 ) contains no enhancement factor QW and its effects are therefore 

smaller than those of H~l) by a factor- Z(l- 4 sin2e)- 1. ~2 ) is 

therefore quite negligible compared to H~l) for heavy atoms where 

z >> 1. 

We now consider an electromagnetic transition between two atomic 

states 1~ 1 >. !~ 2 >'of the same nominal parity (i.e .• absorption or 

emission of an optical or microwave magnetic dipole photon). Examples 



in T.t .. From 

Eq. (3), the transition amplitude is 9 to order G: 

(10) 

where the first term on the RHS is the zero-order Ml amplitude~and 

B.p,given by 

(11) 

is an electric dipole (El) amplitude caused by parity violation. In 

a standard phase conventionJ?(is real; then from Eqs. (8) or (9), 

&p is imaginary, and in general this is required by time reversal (T) 

invariance. 

Experiments have been proposed to detect the existence of & in 
p 

the isotopes of atomic hydrogen, and in heavy atoms (Cs, T£, Bi). So 

far parity violation has been observed in T£ and Bi. The hydrogenic 

atom experiments are important because the electronic wave-functions 

are known exactly, so no uncertainty is introduced by atomic theory, 

7 

and in principle one can measure all four coupling constants Clp' Cln' 

c 2p' c 2n. However, the expected effects are small and very difficult 

to observe. In heavy atoms the effects are larger than in hydrogen 

but uncertainties in atomic theory make precise calculations 

difficult task. Moreover, since H~l) greatly dominates over 

of & a p 
H(Z) for 
w 

large Z, only the coefficients c1p and c1n can be studied. Indeed, 

in the Weinberg-Salam model, with sin2e = 0.23, the contribution of 

clp is much less than that of cln' 
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2. THE WEINBERG-SALAM MODEL 

2.1 Local Invariance 

The unified theory of weak and electromagnetic interactions is 

based on the principle of local gauge invariance, according to which 

the Lagrangian density_describing the various particles and their 

interactions must be invariant under a local gauge transformation; 

that is, one which can vary in an arbitrary manner from one space-

time point to another. The Dirac Lagrangian density for a free 

electron: 

(12) 

is invariant under the infinitesimal lobal U(l) gauge transformation 

o~ = ~~ - ~ = iS~ (Ban infinitesimal real constant). However, under 

the local U(l) gauge transformation o~ = ia(x )~ (a a real infinitesi­
ll 

mal depending on the x\1), £ 0 is not invariant. In fact, o£0 = £0 - £0 = 

-(a a) • ~yllw. Nevertheless, the invariance is restored by adding to £0 ll . 

the term: 

(13) 

where g' is a constant, and B is a vector field, provided we stipulate 
ll 

that under the gauge transformation, 

oB (x) = B'(x) - B (x) = 
ll ll ll 

(14) 

The addition of £I to £D is equivalent to the replacement of the ordi-

nary derivative by the "covariant" derivative a -+\/ - d + ig'B in 
ll ll ll ll 

£D. If we were to put g' = e and identify B as the ordinary vector 
ll 

potential A • Eq. (14) would become the familiar gauge transformation 
11 

condition of electrodynamics. £ 1 in Eq. (13) would then be the "minimal" 
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interaction Lagrangian, seen here to arise from the condition of local 

gauge invariance. Of course. in electrodynamics it is necessary to 

include an additional gauge invariant term corresponding to the field 

alone: 

(15) 

where 

F = a A - a A . vv ~ v v ~ 
(16) 

These ideas are readily extended to the case of an isodoublet 

"Yang-Mills" field 1jJ = (lj!l) (Yang & Mills 1954). We consider the local 
ljiz 

SU(2) gauge transformation: 

(17) 

i where the ' (i = 1,2,3) are 2x2 Pauli matrices, and the real infini-

tesimals E- depend on the x . Defining a Lagrangian !D for the doublet 
1 ~ 

1jJ as in Eq. (12) we find 

&CD= -~y~(a~E)lj!. (18) 

Now defining a triplet of vector fields A= A1• 2•3 and A _ Ai(;./2), we 
~ ~. ~ 1 

restore the invariance of !D by making the replacement a~ ~ V~ = 
A 

a + igA (g a constant), provided that 
~ ~ 

a A 
~ 

1 ._. -a E + i[£,A ]. 
g ~ ~ 

(19) 

A term analogous to that in Eq. (15) must be added to describe the 

"field energy" 

{20) 

but now, since A ,A are 2x2 matrices, in general non-commuting, we 
~ \) 

require 
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(21) 

in order that .CYM shall be gauge-invariant. The term in Eq. (21) 

proportional to g has no analog in electrodynamics. Physically it 

corresponds to the fact that the fields Al±i 2 themselves carry "charge," 
j.l 

and it implies that nonlinear self-interaction terms of order g ("A 3") 

and g2 ("A4") appear in Eq. (20). 

When the fields A and B are quantized, 1 four massless vector 
j.l 'll 

3 . . l±i2 
quanta appear; two neutral: (A ,B). and two charged: (li:2)(A ). 

j.l 1J j.l 

Attractive possibilities are thus suggested for a unified theory of 

weak interactions (charged and neutral), and electromagnetic interac-

tions (neutral), in which vector fermion currents are coupled to the 

aforementioned vector fields. However, at this stage the theory is 

still unacceptable, for several reasons. First, weak currents have 

axial-vector as well as vector components. This requires that .CD also 

be invariant under chiral gauge transformations ow = ini(T./2)y5w, 
l 

where the ni are real infinitesimals depending on the x . It can 
j.l 

easily be shown that this requires mf . = 0 in .CD, and an additional erm1on 

means must therefore be found to give mass to the fe:rmions without 

spoiling gauge invariance. Second, the weak interactions are short-

ranged, and thus at least some of the Yang-Mills quanta must gain 

mass, without spoiling the local gauge invariance or renormalizablity, 

another attractive feature of the massless theory. 

2.2 Spontaneous Symmetry Breaking 

The problem of massive gauge quanta is solved by means of "spon-

taneous symmetry breaking," a crucial feature added to the SU(2)xU(l) 

, for example, Abers & Lee,(l973). 
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Yang-Mills theory by Weinberg (1967) and Salam (1968). Spontaneous sym-

metry breaking refers to the situation in which a Lagrangian possesses a 

symmetry not shared by the ground state of the system.- In field theories 
-

not of the gauge (Yang-Mills) type, it can be shown (Goldstone 1961, 

Goldstone et al 1962) that there is massless spin-zero excitation (the 

so-called "Goldstone boson") for each degree of freedom in which the 

symmetry is spontaneously broken. However, the proof of this statement 

is based on two assumptions: manifest covariance and a positive metric 

in Hilbert space. In a gauge theory, one or the other of these condi-

tions is always invalid. The net effect in the case of a Yang-Mills 

field is that the Goldstone theorem is evaded [the Higgs phenomenon, 

see Higgs (1964a,b, 1966), Englert & Brout (1964), Guralnik et al (1964)], 

each of the unwanted Goldstone bosons disappears, and in its place a 

corresponding massive gauge field appears. In this process, renormali-

zability is retained, as was first proved by 't. Hooft. [See 't. Hooft 

(1971), Lee (1972a,b), Abers & Lee (1973)]. In an oft-quoted example, 

we may consider a complex scalar isodoublet (charged)field 

where ~ 1 •... ~ 4 are real scalar fields. We employ the SU(2)xU{l) glo­

bally-invariant langrangian density: 

(22) 

2 2 4 where 11 > 0 and .A. > 0 correspond to mass (~ ) and ~~~ " interaction terms, 

respectively. We now regard 11
2 as a variable parameter. For 11

2 > o. 
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Eq. (22) describes four real scalar fields with the same mass, and also 

the vacuum state of the system (classically, the state with lowest energy) 

is ' = 0. However, for v2 
< 0 the symmetry of the ground state is broken; 

the lowest energy state is not ~ = 0, and one obtains three scalar fields 

with zero mass (these correspond to Goldstone bosons) and one scalar field 

with finite mass ~. 

However, let us now require £ in Eq. (22) to be rendered invariant 

under local SU(2)xU(l) gauge transformations, by the replacement 

B I) 
lJ 

(23) 

where I is the 2x2 identity matrix. The constants g and g', corresponding 

to SU(2) and U(l) gauge transformations respectively, are independent. 

We also add to Eq. (22) the terms -i;f flJV - i;G GllV where f is 
lJV VV ' lJV 

defined in Eq. (21), and 

G ~ a B - a B . 
lJV J,J V V lJ 

(24) 

We make the substitutions 

(n 2 
> 0 for JJ

2 
< 0) 

g I /g - tan e 

and define the new vector fields: 

z :::: cos e A3 - sin e B 
jJ lJ v 

(25a) 

A :::: sin e A
3 

+ cos e B 
'11 jJ ll 

(2Sb) 

where A is a new field, not to be confused with A 
ll ll 

In a straightfor-

ward analysis in which higher order infinitesimals are dropped, the 

modified lagrangian becomes 
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(26) 

Here Z - a Z - a Z • etc. The first term in square brackets on the 
'IJV '11 V V '11 

RHS of Eq. (26) corresponds to the kinetic energy and finite mass of 

the single scalar boson ("Higgs" boson). Such objects must necessarily 

arise in the procedure of spontaneous symmetry breaking even if a some-

what different choice is made for£ in Eq. (22). The second and third 

2 2 2 2 terms correspond to the field energy and finite mass m2 = g n 1e2 cos e) 

of a neutral vector gauge boson Z0
. The fourth and fifth terms corre-

spond to the 2 2 2 eld energy and finite mass ~ = g n /2 of charged vector 

gauge bosons W± = (l/12)(A + iA2). Finally the last term corresponds 
'11 '11 

to the field energy of a massless vector field A • which we naturally 
lJ 

identify as the EM field. 

(g'/2)B I in Eq. (23) can 
'11 

£ 3 + ~ B I = 2 A'IJT3 2 lJ 
A g sin 

lJ 

3 Then using Eqs. (25a,b) the term (g/2)A'IJT3 + 

be rewritten: 

I 2 I + T3 - tan e • 
e ( 

2 
) + z g cos e . (27) 

11 

The first term on the RHS of Eq. (27) contains A and the charge operator 
l1 

i(I + T3). Therefore, we can identify g sine as the electric charge: 

g sin e = e. (28) 
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2.3 Coupling of Gauge Fields to Leptons and Quarks 

We now introduce the material particles (leptons and quarks) and 

couple them to the gauge fields. Our choices here are largely con-

strained by the requirement that the new theory reproduce the known 

and valid results of electrodynamics and of the old "current-current" 

charged weak-interaction theory [Feynman & Gell-Mann (1958), Sudarshan 

& Marshak (1958)]. The charged weak interactions involve only the left-

handed fields eL = HI - y5)e, JJL = HI - y5) , uL = HI - y 5)u, etc. 

Many experimental facts suggest the arrangement of all fermions in 

"weak left-handed isodoublets"(Glashow et a1 1970): 

v v v 
(e e)L • C/)L • C,/)L , • . . (Leptons) 

(Quarks) 

where de = d cos ec + s sin ec· sc = -d sin ec + s cos ec· ec is the 

Cabibbo angle, and u,d,s,c are the up, down, strange, and charged 

quarks. The right-handed fields eR = !(1 + y5)e, JJR = ~(1 + y5)JJ, etc .• 

do not participate in any known way in the charged weak interaction, 

and this provides a clu·e as to their weak isomultiplet assignments. In 

the Weinberg-Salam model one assumes that the components eR,JJR, ... uR,dR, ... 

are all (right-handed) weak isosing1ets under SU(2). Within SU(2)xU(1) 

other possibilities may be entertained but as we shall see, these are 

now ruled out by experiment. 

It remains to determine the transformation properties of the fermions 

under U (1) from the electromagnetic couplings. We introduce the "weak 

hypercharge" Y. defined by the U(l) gauge transformation ox = (ia/2) (Yx) 

where a is a real infinitesimal depending on the x , x is a column matrix 
'iJ 
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of the fermion fields: 

veL 

eL 

veR 
Leptons 

eR 

X = 
UL 

deL 

uR 
Quarks 

dR 

and Y is an N N diagonal matrix. When the SU(2)xU(l) covariant deriva-

tive is introduced into the fermion Dirac langrangian, and if we assume 

the Weinberg-Salam weak isomultiplet structure, a minimal interaction 

coupling term arises, of the form: 

(29) 

where Li = ((1- y 5)/2](ti/2). Froms Eqs. (25) and (28) we find: 

3 3 y 3 y 2 
gA~ 3L + ~g'B~Y = e(L + z)A~ + g cos 8 (L - z tan 8)Z~. (30) 

The first term on the RHS of Eq. (30) represents the EM coupling of 

each fermion; therefore L3 + (Y/2) is plainly the charge operator Q. 

The second term on the RHS of Eq. (30) may then be expressed in terms 

of t
3 and Q as (g/cos e)Z [L3 - sin2e Q] which yields directly the neu­

IJ 

tral weak coupling of each fermion in terms ot L3 and Q. 

To summarize, we write: 

for EM, charged weak, and neutral weak interactions respectively. Here 

(32) 
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Next, 

(33) 

(34) 

+ 
and T~ = T ± iT Finally. for the neutral weak interaction: 

X y 

(35) 

where 

J A - A(l ) '!3 2 . 26 JA 
N = XY - Ys ~ X - s1n EM" (36) 

We remind the reader that the 1:. refer to weak isospin. 
1 --

The constant 

g may be expressed in terms of the more familiar Fermi coupling constant 

G by comparing expressions for the muon decay amplitude in the new theory 

and in the old V-A theory. As is well known, the latter describes 

muon decay accurately in terms of the amplitude: 

where the u's and v are single-particle Dirac spinors. From Eqs. (33) 

and (34), the new theory yields: 

where the factor in brackets corresponds to the W propagator. In muon 

decay, lq2 l << ~· hence Eq. (38) reduces to Eq. (37) if we put G/1:2 = 
2 2 

g /8mw. Thus, 

(37.5 GeV) 2 
"' . 2 

Sln 6 
(39) 

and 



2 cos e 
"" (27.5 GeV)

2 

• 2e s1n 
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( 40) 

From Eqs. (35) and (36) we may also obtain an effective current-current 

] . f 1 k . h 1' . 2 2 agrang1an or neutra wea processes 1n t e 1m1t q << m
2

. This is: 

(41) 

In order to apply Eq. (41) to the neutral weak e-N coupling in low 

energy atomic physics we must obtain matrix elements of JNA between 

physical nucleon states in the limit of zero momentum transfer (Weinberg 

1972). Application of simple isospin arguments, of the conserved vector 

current hypothesis, and neglect of all momentum-transfer dependent terms, 

results in the following amplitudes: 

acep + ep) :::: 

G 2 - A 2 - --- u'y (1 - 4 sin e - y5)ue • up'y (1 - 4 sin e - gAy5)up (42) 
212 e A 

Qcen + en) (43) 

Thus for a nucleus with Z protons and N neutrons, the A V component e n 

is: 

where ~N is a nucleon spinor. In the N.R. limit., 

where xN is a two-component Pauli spinor. - A t 
Thus ~NY ~N = xN xN.(=O); 

if A.:::: 0, (=1,2,3); and we obtain Eq. (7). The non-relativistic limit 

of the electron [Eq. (8)] is easily obtained by noting that 
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and 

Similar considerations apply to Eq. (9), 
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3o POLARIZED ELECTRON-NUCLEON SCATTERING 

3" 1 Theoretical Analysis_ 

We now consider the helcity-dependent asymmetry in scattering of 

high energy polarized electrons by nucleons, measured in the experiment 

at SLAC (Prescott et al 1978, 1979)" Our discussion here is initially 

independent of any particular gauge theory, and follows the treatment 

of Cahn & Gilman (1978) who employed the quark-parton model" Here the 

nucleon is assumed to consist of three "valence" quarks plus a "sea" 

of virtual quark-antiquark pairs" This is appropriate in the regime 

of large energies and momentum-transfers actually used, where electron 

and quark-parton masses may be neglected" In this limit (1 ± y5)/2 

are ± helicity projection operators, respectively, while vector (yv) 

and axial vector (yVy5) interactions preserve helicity" The photon 

couples to quark or electron through the vector current y with a 
v 

strength given by its charge Q}. Using yv = yv(l + y5)/2 + y~(l - y5)/2 

we may define left- and right.-handed charges 

Qy -QY -QY Lf - Rf - f. (45) 

The Z0 couples to left- and right-handed fermions with strengths Q~f 

and Q~f' respectively; these are in general different" Thus the Z0
-

fermion Dirac vertex has the form: 

(46) 

Now consider the scattering of electron and quark in the CM frame. It 

is easy to show that if both (massless) fermions have the same helicity, 

the scattering is isotropic, while if they have opposite helicity, the 

A 2 A 

angular distribution is proportional to (1 + cos e) • where e is the 
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scattering angle. In both cases the helicity of each fermion remains 

unchanged in the scattering process. In the lab frame this translates 

into a dependence of the differential cross-section on y = 1 - E'/E: 

v/E where E' and E are the final and initial lepton energies, respec-

tively. Recalling that the electromagnetic and weak interactions con-

tribute coherently to the amplitude for each quark. we easily obtain 

the following results for the differential cross-sections: 

RH e on RH quark of type i: 

Q~eQ~i 
z z 2 

do a: 
QReQRi 

2 
+ 2 2 q q - mz 

( 47) 

RH e on LH quark of type i: 

y y z z 2 

do a: 
QReQLi QReQLi 

(1 - y)2; + 
2 2 ( 48) 

q - mz 

LH e on LH quark of type i: 

y y z z 2 

do a: 
QLeQLi QLeQLi 

+ 
2 2 

(49) 
q - mz 

LH e on RH quark of type i: 

QleQ~i 
z z 2 

do « 
QLeQRi 

(l 
2 

+ - y) . 
2 2 q - m z 

(SO) 

The asymmetry for longitudinally polarized e : 

(51) 

is now computed simply by multiplying Eqs. (47) - (51) by the probabi-

lity fi(x) of finding a quark of type i with fractional longitudinal 
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momentum x = -q2/2m v in the nucleon and noting that the differential 
p 

cross sections doR,L = doR,L(x,y) involve an incoherent sum over LH, 

RH quarks in the unpolarized nucleon. Recalling that Qie = Q~e = Q~ = -e, 

and Qii = Q~i' and putting gv = (Q~ + Q~)/2 and gA = (Q~ - q£)!2, we 

2 2 obtain, to order -q lmz: 

fl(x,y) - -
!: f. (x)(Q!') 
. 1 1 
1 

(52) 

The sum over quark types i in Eq. (52) must include both quarks and 

antiquarks at a given x. However, for x ~ 0.2 it is known from various 

deep-inelastic scattering experiments that antiquarks may safely be 

neglected, and we confine ourselves to this region henceforth. Also we 

now restrict ourselves to SU(2)xU(l) (but not yet to the Weinberg-Salam 

model). Then the weak charges of the fermions are given by 

(53) 

e e (R3 - qY sin2 e) e cos (54) 

where L3 and R3 are the third-components of the weak isospin for left, 

right-handed fermions, respectively, as in Section 2. In the Weinberg-

Salam model, of course, L3 = +! for up-quark, Le = -! for down-quark 

and electron, and R3 = 0 for all fermions. Also for an isosinglet tar­

get (deuterium), fu(x) = fd(x). Assuming this, neglecting antiquarks, 

and employing conventional L3 assignments, we obtain from Eq. (52) the 

formula: 

2 
[ 1 - (1-y) 2] al + a2 
1 + (1-y) 

(55) 
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where 

G io (1 + 2R~)(l -
20 . 26 4 u ~ Rd) (56) al = - - s1n + 3 R3 

2& o; 
9 3 3 

and 

G 9 
(1 - 4 sin2e - 2R;)(l - ~ Ru 3 d 

(57) a2 = - TO + 2 R3). 
2& o; 

3 3 

The quantity t.e/ ( -q2) is plotted in Figure 2 as a function of y for 

various SU(2)xU(l) models, identified by their assignment of RH fermions. 

The Weinberg-Salam model has right-handed isosinglets only. The other 

models place the RH electron in a weak isodoublet with a hypothetical 

neutral heavy lepton E
0 

("hybrid" model) or assume one or more of the 

quarks to be in RH doublets. In the past, models based on other gauge 

groups have also been considered. Most of the SU(2)L xSU(2)RxU(l) models 

predict no parity violation: t. d(x,y) = 0. Most of the other models e, 

[SU(3)xU(l), SU(3)xSU(3), etc.] are ruled out by the results of neutrino 

experiments. 

3.2 The SLAC Experiment 

The asymmetry t. was measured in the scattering of 19.4 GeV pola-

rized electrons on a stationary target (Prescott et al 1979). Since 

t. is expected to be small, (t. = 10-4), the experimenters abandoned tra-

ditional single particle counting techniques. On each 1.5 ~s pulse of 

the accelerator, they detected - 103 scattered electrons in the same 

detector and integrated the total signal. In this way a statistical 

-5 7 precision of 10 was possible after only 10 pulses, or about 1 day's 

running. 

POLARIZED ELECTRON SOURCE A block diagram of tr"; experiment is 

shown in Figure 3. The polarized electrons were produced in a GaAs 
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crystal by exciting transitions from the J = 3/2 valence band to the 

J = ! conduction band with circularly polarized 7100 A light from a 

flashlamp pumped dye laser. These conduction electrons then left the 

surface of the crystal and were injected into the Linac. The maximum 

possible polarization obtainable in this way is P = .5, but during the 

actual experiment, P = .37. P was measured every eight hours by M¢ller 

scattering of the electrons on a magnetized iron foil placed behind the 

target. (The target was removed for the polarization measurement.) A 

statistical precision of 3% in P was obtained in 20 minutes. The heli-

city of the beam could be reversed by reversing the polarization of the 

light. This was accomplished in two ways. The light was first linearly 

polarized with a Glan-Air prism, and then circularly polarized with a 

Pockels cell. The sign of the voltage on the Pockels cell was chosen 

randomly from pulse to pulse: sign reversal changes the polarization of 

the light. The Glan polarizer could also be rotated by 90°, which 

reverses the circular polarization.as well. In addition, unpolarized 

electrons could be produced, either by substituting the normal thermionic 

SLAC source for the GaAs crystal, or by rotating the Glan prism 45°, in 

which case the Pockels cell has no retardation effect. 

Approximately 3 x 1012 electrons per pulse were injected into the 

Linac, and about 1011 electrons remained after acceleration. The beam -

energy and position were carefully monitored and stabilized by computer-

controlled feedback loops. After acceleration, the beam was bent 

through an angle of 24.5° in the SLAC switchyard to reach the experi-

mental area. The highly relativistic electrons underwent a precession of 
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where y ~ E/me, g-2 ~s the anomaly in the electron g-factor, and E is 

in GeV. The beam was longitudinally polarized only when E/3.237 = 

integer. This provided a source-independent way of reversing the elec­

tron helicity or making it zero. 

TARGET AND SPECTRO~ffiTER After passing through the beam transport 

system, the electrons struck a 30 em target containing liquid D2. Elec-

trons which scattered at 4° in the vertical plane entered the spectro-

meter, which analyzed the momentum in the horizontal plane and accepted 

a very broad momentum range, as shown in Figure 4. For most of the 

experiment, the beam energy was 19.4 GeV, and the momentum acceptance 

peaked at 14.5 GeV/c. Note that electrons from elastic and resonant 

scattering also fall within the acceptance range. These contributed 

a few percent to the cross section. Figure 4 also shows the pion cross 

section. Since individual particles cannot be discriminated against in 

a flux counting experiment, the kinematics were chosen to reduce the n, 

K, and ~ background to a few percent. 

DETECTORS Two electron detectors were used: a Cerenkov counter 

and a lead-glass shower counter. They were placed in series, as sholm 

in Figure 3. Since coincidence counting techniques could not be used, 

the detectors each measured the asymmetry separately. The Cerenkov 

counter was filled with N2 at atmospheric pressure. A single spherical 

mirror focused the light onto a photomultiplier tube. The shower 

counter consisted of nine radiation lengths of lead glass viewed by 

four photomultipliers. During the second experimental run the data from 

the two halves of the counter, each representing half of the momentum 

acceptance, were analyzed separately, thereby providing an asymmetry 
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at two values of y simultaneously. The properties of the detectors are 

summarized in Table 2. 

Behind the shower counter was 6" of lead, which absorbed electrons. 

The background particles (~,K.~) penetrated this barrier or formed 

hadronic showers, and were detected by a shower counter behind it. The 

background asymmetry was observed with this detector, and found to give 

less than a 1% correction to the final measurement, and consistent with 

zero. 

DATA Data collection was divided into runs of approximately 

3.5 hours each. During each run the Pockels cell polarization reversed 

randomly from pulse to,pulse. In between runs, changes were made which 

reversed the helicity relative to the Pockels cell voltage or eliminated 

it altogether. These were (1) rotation of the Glan prism by 45° (null 

experiment) or 90° (polarization reversal); and (2) changes of the beam 

energy by an amount causing the electrons to precess in the switchyard 

by integral (reversal) or half integral (null) multiples of~. The 

changes in ~ under these conditions are shown in Figs 5 and 6. 

3.3 Results of the SLAC Experiment 

Data were obtained with an e beam energy of 19.4 GeV, and at values 

of y corresponding to scattered e energies from 10.2 to 16.3 GeV. Cor­

rections for radiative effects were made by assuming that ~ed has kine­

matic dependence given by Eq. (55) and by applying previously measured 

cross sections and radiative correction formulae (3% correction). Higher 

order weak processes were ignored. The errors assigned to the data arose 

mainly from counting statistics with some contribution from uncertainty 

in beam polarization. However, there were also contributions to the 
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uncertainty from systematic errors: imbalance in beam parameters c- .025 

~ed). and uncertainty in beam polarization p c- 2.5%). 

Figure 7 displays the corrected experimental asymmetry as a function 

of y. Even preliminary data at low values of y ruled out SU(2)LxSU(2)RxU(l) 

models and SU(2)xU(l) models other than the Weinberg-Salam and the "hybrid." 

The best-fit y dependencies of these latter two are displayed in Figure 7 

along with a model-independent parametrization of the data assuming only 

the formof Eq. (55) with a1 and a 2 as constants to be determined. The 

:results are clearly consistent with the Weinbe:rg-Salam model, and give 

a best fit of sin2e = 0.224 ± 0.020 with a x2 probability of 40% (a value 

in good agreement with that obtained in neutrino experiments). The 

results are just as clearly inconsistent with the hybrid model; here, 

a best fit gives sin2 e = 0.015 (widely at variance with neutrino results) 

and a x2 probability of 6 x 10-4 . The best fit for model-independent 

parameters is 

a
1 

= -(9.7 ± 2.6) x 10-S 

-5 a
2

= (4.9 ± 8.1) x 10 . 

Further discussion of these results will be given in Section 5. 

(58) 

(59) 
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4. PARITY VIOLATION IN ATOMS 

4.1 Hydrogenic Atoms 

ANALYSIS All hydrogenic atom experiments now being pursued 

utilize the special properties of the 22si and 22P1 
states (see Figure 

8). zero magnetic field B, 2 2 levels are separated At the 2 S, and 2 r
1 2 

by the Lamb shift S = 1058 MHz. The natural lifetime of 22r
1 

is short 

-9 [T(2P) = 1.6 x 10 s] since a 2P atom can decay to the ground state 

by allowed El photon emission (Lyman a). The 2P state has natural 

width r 2p = 100 MHz. In the absence of external electric fields (which 

2 mix 2P and 2S by Stark effect) the 2 s1 state is metastable [T(2S) = 

1/8 s] since its only effective mode of decay is by two-photon emission. 

Thus one can form a beam of 25 atoms which exists over the length of 

a practical apparatus (meters). The zero B field hyperfine structure 

splittings (hfs) of the 22s! and 22r1 states are precisely calculable, 

as is the Zeeman effect; and the 22s! hfs splitting has been measured 

accurately. Parity violation causes a mixing of 22s! and 22r1 Zeeman 

1 components with the same mF (e.g .• the levels 8
0

e
0 

or S
0

f
0 

in 
1

H .) 

The matrix elements <e
0

IHpiS
0

>, etc. are extremely small, but by way 

of compensation the effective energy denominator ~E in Eq. (11) is 

It is in fact, ~E = ~E0 + ir2p/2 where ~E0 is the real 

energy separation (6E = S at zero magnetic field and ~E + 0 at a 
0 0 

also small. 

level crossing.) 

One may carry out a general analysis of parity violating effects 

starting from the forms given in Eqs. (4) and (5) (Dunford et al 1978). 

We begin with the matrix element of H(l) in the non-relativistic point­
p 

nucleon limit, between states I~> and lx>: 
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(60) 

where c1 = zc1p + NC1n. Next we carry out a two-component reduction of 

(xty ''') In the special case where x and •1• correspond to n2P and so/ r=o· o/ t 
2 n S 1 states, respectively, we find 

~ 

3G __!:_ R' (O)R (0)6 6 
m c nP nS m'm· m'm 8TI e J J I I 

(61) 

where the R's are Schroedinger radial wavefunctions, and I and J are 

nuclear and atomic angular momenta, respectively. Employing explicit 

values for the R's we obtain: 

where 

V = _G __ 

2TII2 

Similarly, for H~2 ), one obtains: 

(62) 

(63) 

(64) 

where c2 = c2p for hydrogen, and c2 = t(C 2p + c2n) for deuterium (neg­

lecting the small 3o1 component in the nuclear wavefunction). In terms 

of individual hyperfine components IFmF)' the matrix elements are 

(65) 

We next consider the effect of an external magnetic field B (Zeeman 

effect). For 22st, 22Pt states the energy levels of hydrogen in finite B 
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are shown in Figure 8. The states a+l' a
0

, 6
0

, etc. may be expressed 

in terms of states j2Li,m3 ,m1 > as follows: 

la+1) "' lzs!. +i. +i > 

Ia ) "' coseslzsi.i.-i> + sin e5 12s i. -L i > 
0 

IB ) = cose5 12si.-i.i> sine5 12si.i.-i> 
0 

:::: I B -1) 12si.-·Li> 
(67) 

I e +1 > "' lzr:!.i.i> 

le > "" cos0pi2Pi.!.-i> + sin0ri2Pi,-t.!> 
0 

If > = cos0P I2P !' --!. !> sin8P I2Pi. :!. -:! > 
0 

If -1 > ::: I2P,,-L+·P 
~ 

where 

and as.P = zero field hfs splitting. (In fact, e5 "' epand the P sub­

scripts may be disregarded.) From formulae (67) it is easy to show that 

the only non-zero matrix elements of Hp between states crossing in a 

magnetic field are: 

<e IHrls > = 0 0 
-2C cos 20 • 2p iV (68) 

(foiHrlBo> = [Clp + (1 + 2sin 20)C2p] iV (69) 

<f_l!Hpl B_l > ::: cc1P - c2P)iV. (70) 

Note that mixing of e
0 

and S
0 

involves only c2p; thus according to the 

Weinberg-Salam model the matrix element is proportional to the small 
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quantity c2p = .62(1 - 4 sin2e) - .OS for sin2e = .23. Similar formulae 

to Eqs. (68) - (70) are easily obtained for deuterium and tritium. 

We now consider the mixing of 22s! and 22P! components, according 

to the equation: 

2 • 12 p!). (71) 

As noted previously in the energy denominator we must include a term 

for damping of the 2P state: 

\vhere r2p :::: 100 HHz, and 

Also, ~E is variable in 
0 

e.g., it becomes zero at 

crossing at 1160 Gauss. 

r2 
E

2
S - E = ~E + i _££ 2P o 2 

t:.E
0 

is the real part of 

(72) 

the energy splitting. 

a magnetic field B because of Zeeman effect; 

the 8 e crossing at 545 Gauss; or the Sofo 0 0 

For the (3 e crossing we find from Eqs.(68) 
0 0 

"and (63), (64): 

<2
2
P!,e0 IHpi2

2
S!,S

0
> 

H 2p/2 
, -2C (.Ol3 Hz) = -2.6 x lo- 10 c

2
. (73) 

2 100 MHz 

SCALARS AND PSEUDOSCALARS From Eq. (73) it is plain that parity 

violating effects in hydrogenic atoms are exceedingly small. In order 

to design effective experiments to detect them it is useful to consider 

all possible scalar and pseudoscalar forms which can be constructed 

from the various vectors describing experimental arrangements. (Such 

an exercise is also helpful for heavy atom experiments.) In general, 

the relevant vectors are external static electric (E) and magnetic (B) 

fields, electric vector € and direction k of a light beam, £R' kR and 

magnetic vector mR for a microwave field (tR and mR are not necessarily 
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orthogonal), initial and final atomic polarization!. and so on. Any 

term, scalar or pseudoscalar, appearing in the transition probability 

W, must be expressible in terms of these vectors. However, whether a 

term actually appears in W, and if so, its magnitude, depends on 

detailed physical arguments rather than the present S)~etry 

considerations. 

For example consider a circular dichroism experiment. Here the 

only available vectors are those describing a circularly polarized 

light beam, namely K and£ (which is complex). The only pseudoscalar 

we can form is i£* 
A 

X £ • k, which is the photon helicity h. 

Certain general considerations restrict our choice of possible 

forms. First, since reversal of ( produ~es no physical change, any 

acceptable term must contain only even powers of E (as in h = iE* x 

£ • k). Next, if E appears in a pseudoscalar term, it is contained 

in a Stark amplitude which interferes with ap; thus E must appear 

linearly. Third, under time reversal (T), E ~ E, ·B ~ -B, K ~ -K, £ ~ £, 

m ~ -m, h ~ h, and j ~ -1. If damping lS negligible (the case for 

all heavy atom experiments and hypothetical hydrogenic atom experi-

ments in which 2S- 2P level separations are large compared to r 2p)• 

then scalar and pseudoscalar terms must be even under T. (We assume 

T-invariance.) for example,(£ • B)~ • ExB)is aT-even pseudoscalar 

and an acceptable possibility, while(£ • £)~ • B)is T-odd and thus 

unacceptable. However, if damping is important (as in hydrogen 

experiments where 2S - 2P level separations are small compared to r 2p) 

then it can be shown that formally T-odd terms are acceptable (Bell 

1979). Loosely speaking, this occurs because an extra factor of i 
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appears in & • due to AE = AE + (ir/2) ~ ir/2. An example of a pseudo-p 0 

scalar term which is acceptable in these circumstances, though formally 

a complete 

list of possible scalar and pseudoscalar terms for hydrogen experiments. 

EXPERIMENTS Experiments are now underway at Seattle (Trainor 1979), 

f>1ichigan (Dunford et al 1978). and Yale (Hinds 1979). The important 

parameters in each experiment are summarized in Table 3. Each employs 

2 a beam of 2 S! atoms traveling along a coaxial B field. The beam is 

polarized, and then enters one or more resonance regions where transi­

tions are induced to another 22s, state at a 2S - 2P level crossing. 
~ 

At present, each experiment is designed to work at the 8 e crossing 
0 0 

and is thus sensitive to c2p. Future extensions to the B
0

f
0 

and s_1f_ 1 

crossings and the use of deuterium or tritium as well as hydrogen may 

permit measurements of all four coupling constants. 

Since the parity mixing indicated by Eq. (73) is so small, efforts 

must be made to suppress the parity conserving amplitude as much as 

possible, but this results in low counting rates and dilution of signal 

by background. -7 Asymmetries at the 10 level are expected if the 

coupling constants are described by the Weinberg-Salam model. 

In the Michigan experiment (Figure 9) a metastable beam is produced 

by passing a proton beam from a duoplasmatron source through a cesium 

charge transfer canal, which yields a flux of- 1014 atoms/s in the 

2S state. A 575 Gauss magnetic field is applied in the "8 quench" 

region, and an electric field mixes S and e states, causing decay of 

all S's. The beam, now pure a, continues to the interaction region, 

which consists of a nt0• 0 cylindrical microwave cavity which is til ted 
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at an angle ~ = 5° with respect to the beam axis and B, and tuned to 

the a e transition. The rf polarization ER along the cavity axis. 
0 0 

A de electric field E of 1 V/cm Stark-mixes 8 and e states. E is 
0 

applied perpendicular to B, with thin wire electrodes inside the cavity. 

The a B transition rate is proportional to 
0 0 

(74) 

where the term in r
5

(rp) is scalar (pseudoscalar). (As we have noted, 

the pseudoscalar term is formally T-odd.) It is clear from expression 

(74) that the transition rate exhibits an asymmetry with respect to 

reversal of E or B, or if $ + -¢. The asymmetry is detected by selec-

tive quenching of B atoms in the detection region downstream. 
0 

W. h . d. . f 1013 d d 1t present runn1ng con 1t1ons o a
0 

atoms per secon an 

an a + B conversion fraction of 5 x 10-6, the expected detection rate 
0 0 

7 -6 is R = 10 (1 ± 5 x 10 c2p) counts/s which should yield a statistical 

precision equal to the asymmetry in 400 hours for sin2e = .23. At 

present, the a
0 

+ 8
0 

transition has been observed, but much work remains, 

and the apparatus just described may be altered considerably before the 

experiment is completed. Currently, efforts are being made to reduce 

diluting backgrounds, which may come from such diverse sources as back-

ground gas or wall collisions, scattered Lyman-a radiation from the source, 

or cascades from higher n states. Future work at Michigan will concen-

trate on detecting and eliminating systematic errors, which have been 

analyzed by Dunford et al (1978). Reduction of false asymmetries to a 

level below the signal (for c2p = .1) requires beam alignments of better 

-3 than 10 radians, and electric and magnetic field reversals accurate 

-4 to 10 or better. Stray electric fields, and the average motional 
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electric field due to misalignments or divergence of the beam, must be 

smaller than S x 10-6 V/cml 

The Seattle experiment is similar, although details of the inter-

action region differ slightly. The Seattle group employs an rf cavity 

with sR parallel to the beam and B, and alters the axis of quantization 

by'the small angle¢, by applying a small perpendicular B field. A 

static electric field is applied to cancel out the resultant motional 

field, in addition to the Stark~mixing E field. The a
0 
~ 8

0 
transition 

is the same, as are many of the systematic problems, and the experi-

mental parameters and estimated running time are similar. Reduction of 

stray and motional electric fields may be the chief difficulty in these 

two experiments. The problem may be simplified by a "separated oscil-

lating fields technique," suggested by E. Hinds of Yale (Hinds 1979) 

who proposes measuring c2p by driving the transition e_ 1 ~ B
0 

near the 

B
0

e
0 

crossing. Unlike the transition a
0 
~ 6

0
, this is a proton spin­

flip. The experiment is done in two separate regions 1 and 2, which 

contain oscillating fields ~Rl and 8R2 (see Figure 10). Region 1 also 

contains a static field E
1

, and the principal contribution to the 

8 ~ 8
0 

rate is a Stark-induced electric dipole transition in region 1. 

Region 2 contains no static electric fields, and tR2 drives the princi­

pal contribution to the PNC electric dipole transition. As long as 

phase coherence between ~Rl and ~R2 is maintained, the total transition 

rate contains an interference term between these two amplitudes, pro-

portional to the pseudoscalars 

(75) 

or 



c2p (El. B) ctRl x}tR2. B). 

depending on the relative angle of ~Rl and ~R2 . 

(76) 

The scheme has con-

siderable flexibility since the size of the asymmetry now depends not 

only on IEj, but also on 1tR2111tR), and this together with the fact 
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that the PNC transition takes place in a field-free region may decrease 

the effects of stray electric fields. The major advantage, however, 

comes from the ability to change the relative phase of the parity­

conserving and non-conserving amplitudes by varying the tRl' tR2 phase. 

During the experiment this will be rapidly varied back and forth by n, 

which reverses the sign of the interference term. In addition, sign 

changes occur for E
1 

+ -E
1 

and B + -B. The observed asymmetry can also 

be distinguished by its magnetic field-dependence near the 8 e crossing, 
0 0 

which differs from the field dependence of stray or motional field 

asymmetries. 

Hinds has carried out an extensive study of possible systematic 

errors, and has concluded that stray E fields must be kept to the 

level of- 3 x 10-4 V/cm in region 2, and average beam alignment to 

-4 10 radians. The pseudoscalar contribution to the overall rate is 

expected to be 1. 5 x lO-S c2p, and a precision of 1 o after 16 hours 

of running is expected. Since the 8 
1 

+ 8 transition is a nuclear 
- 0 

spin flip, it is relatively insensitive to backgrounds caused by 

collisions or stray light. The resonance region can be longer than 

in the Michigan and Washington experiments because of the lower fre-

quency (100 ~lliz vs. 1.5 GHz) and this results in greater sensitivity. 

The advantages of the two-cavity experiment are not restricted 

to nuclear spin transitions. but may be equally well applied to the 
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a
0
-8

0 
experiments. Such modifications are currently under investigation 

at Washington and Michigan. 

In one version, under study at Washington, the Stark-effect tran­

sition occurs in the first cavity, in which E
1 

and &Rl are both perpen­

dicular to the beam. The second cavity has &R2 along the beam. The 

~Rl' ~R2 phase is adjusted for maximum weak-EM interference. This 

scheme has the added advantage that the large Stark-allowed a B and 
+ 0 

a B transitions, which cause backgrounds in the one-cavity experiment, 
0 -

cannot occur with &Rl II E1 . 

In addition to the atomic hydrogen experiments described so far, 

experiments involving the decay of muonic hydrogenic atoms have also 

been suggested (Moskalev 1974a,b). 

4.2 Atoms 

GENERAL CONSIDERATIONS Two parity violating effects turn out to 

be of practical importance for heavy atoms. These are "optical rota-

tion," and "circular dichroism," each of which may be understood from 

consideration of the "Ml" transition 

using circularly polarized photons. If k is the direction of photon 

momentum and £
1 

= (i ± iJ)/1:2 describes a circular polarization state 

of helicity ±1, then OEM in Eq. (11) is: 

0 = -( •d - kx EM ± 

where d and tare El and Ml transition operators, respectively for the 

atom. From this expression we easily obtain OEM= -E
1 

•(a +it). which 

implies a transition probability 
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and a characteristic asymmetry~- 2Im(&p)/~. From Eq. (11), &p ~ 

(ea0/~E) <xl~1 )1~ 1 >,where a single state lx> is assumed to dominate 

in the sum, and the electric dipole matrix element <~2 1oEMix> is 

assumed to be that of an allowed El transition, "' 3 ea
0

, \vhere a
0 

is the Bohr radius. Also, we take ~E to be a typical spacing between 

atomic energy levels ~E ~ .0Se 2/a . Now, matrix elements of H(l) are 
0 p 
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non-zero only for atomic orbitals of opposite parity with non-vanishing 

value/gradient at the origin (si,pi orbitals). From Eqs. (7) or 

(8), one finds: <x !H~l) I~) ~ l0- 19 (e 2 /a
0

)Z 3
K where K is a relativistic 

correction factor (K- 10 for Z- 80). (This was first demonstrated 

by Bouchiat & Bouchiat 1974b). Thus one obtains: 

This is, of course, an extremely small electric dipole amplitude in 

comparison to allowed El transition amplitudes (of order ea
0
). How­

ever, the enhancement factor z3K helps considerably for large Z. We 

find: 

I I -10 8. ~ 10 ea p 0 
for Z - 80. (78) 

It is therefore clear why heavy atoms are chosen for study. 

In optical rotation experiments, originally suggested by a number 

of authors (Zeldovich 1959, Khriplovich 1974, Sandars 1975, Soreide & 

Fortson 1975), a beam of linearly polarized light with frequency close 

to resonance traverses a cell of length L em containing an atomic vapor 

-3 of density N em Optical rotation of the plane of polarization 

occurs because the linear polarization is a superposition of circular 



polarization states (±) which propagate with different indices of 

± 2Im(&p'!F..*)] < w - wo 1 ) ···~ + (v/c)w
0 

+ i(r/2) (79) 

Here w is the photon frequency, w is the transition frequency, r is 
0 

natural width of the excited state, v is the thermal atomic velocity 

the direction of the light beam, and < ••• )indicates an average over 

the Doppler width of the line. Also the bar over the matrix element 

squared indicates a sum over final, and ave~age of initial, atomic 

polarizations. Absorption occurs (by slightly differing amounts for 

the± components), with the result that the light emerging from the 

cell is elliptically polarized. The absorption coefficients are 

2w 
a = - Im(n+). 

± c -
(80) 

The optical rotation angle is easily found to be: 

(81) 

where t is one absorption length. The rotation angle ~ follows a 

dispersion-like dependence on w - w
0

, and near resonance, 

For experiments actually performed on the allowed ~fl transitions in 

bismuth. Z = 83 (see Figure 11): 

6p3• J = 3/2 (ground state) ~ 6p3• J = 5/2 ).. = 648 run 

A = 876 nm. 

~is approximately one Bohr magneton: 11t- ea
0
a. Thus from Eqs. (78) 

and (82) we estimate 
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the 

in 



8 -7 
~ /i - 10- - 10 radians/abs. length. max 

(82) 

As we shall see, rotations of this order are in fact observed (Barkov 

& Zolotorev 1978a,b; 1979). 
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One may also investigate circular dichroism o in certain forbidden 

~11 transitions in heavy atoms (Cs, 62S! + 72St)' (Tt. 62Pi + 72P!) (see 

Figures 12 and 13). By definition. o = (a+- a_)/(o+ + o_) where o± 

are the cross-sections for resonant absorption of circularly polarized 

photons with helicities ±1. From Eq. (77) we obtain: 

6 = 
a+ - a 
a + a 

+ 

2Im(&p"'ilt) 

I~ I + l&p 12 

2Im(&p) 
~ ---.,--- (83) 

The Ml amplitudes in these cases are extremely small:~~ (10- 4 - 105) 

~.,w. -3 -4 ea
0 

• and so 6 = 2Im(&p)/ ,.,~ 10 - 10 . Unfortunately, full advantage 

cannot be taken of this relatively large asymmetry because the Ml 

intensity itself is very small compared to background signals in 

actual experiments. To overcome this it is necessary to apply an 

external electric field E which causes Stark mixing of I~> with 

the lxn> and introduces an El transition amplitude &S, 

[ 
ol I o ol+l o ol-+1 o ol I o J ,~ <~2 °EM Xn > <xn r ~1 > <~2 r Xn > <xn °EM · ~1 > 

s,s = -eE . ~ E(~o) - E(xo) + E(~o) - E(xo) 
n 1 n 2 n 

(84) 

For sufficiently large E. we obtain: 18,sl 2 
>> 1~1 2 and the transition 

strength becomes greater than background. To detect 8p one exploits a 

pseudoscalar interference term - 8P8S. 

CALCULATIONS OF OPTICAL ROTATION For a heavy atom with many (N) 

electrons calculation of 8p from Eq. (ll) is a formidable problem in 

atomic theory. containing a number of subtle difficulties. First. 



evaluation of matrix elements of HP ) requires knowledge of wave­

functions and gradients at the nucleus. where relativistic effects 

are important. Second, Eq. (11) includes a sum over intermediate 

states, possibly with significant contributions from the continuum 

and from states of the form N+l electrons, 1 positron (e+e- "pair" 

states). Moreover, li.p may be seriously affected by shielding cor­

rections, especially in the bismuth optical rotation transitions 

(Harris et al 1978). 

Hiller et al (1979) have discussed a basic theoretical frame-

+ -work which makes possible a consistent treatment due to e e pairs, 
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from which they have shown there is an appreciable contribution. They 

have also shown that when the Dirac "velocity" operator a is eliminated 

in favor of the "length" operator iwr in the factors <wiOEMix> appear­

ing in Eq. (11), cancellations occur which result in an accurate for-

mula for li.p• involving only the positive energy N-electron eigen­

states of the so-called no-pair Hamiltonian H+. The latter is defined 

as: 
N N 2 
"' H ( ) L ( "' !__)L . ..., D ri + + .... r .. + 

i=l l<J lJ 

(85) 

Here L = L (l) .... L (N), where L (i) is a positive energy projection 
+ + + + 

operator for the i'th electron, defined by: 

L (i)~(r.) =! u (r.) unl~>. + 1 n 1 

and the u's are normalized positive energy eigenfunctions of the exter-

nal field one-body Dirac Hamiltonian: 

-+ -+ 0 
H

0 
= a•p + Bm- eA (x). nuc 
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Thus specific calculations including only positive energy inter-

mediate states and the length form of the dipole operator are justified. 

Furthermore, Hiller et al have shown that when the central-field-

approximation is used, the sum in Eq. (11) ~an be extended over nega-

tive energy states with very small error, since these states make only 

minor contributions. This is important for central field calculations 

utilizing a Green's function approach, in which the sum is automatically 

carried over all intermediate states. 

Bismuth has three equivalent p electrons outside of closed shells, 

and jj coupling is dominant, though not perfect. Thus Bi has a complex 

structure, and it is not surprising that calculations of & are diffi­
p 

cult, and that various estimates in the literature disagree by as much 

as a factor of 2. In the calculation of optical rotation in bismuth 

by the Novosibirsk group (Novikov et al 1976, Khriplovich 1979) the 

3 ~2 closest levels of opposite parity to 6p , namely the 6p 7s levels are 

considered, and it is assumed that the 7s electron is added to the 6p2 

configuration of the Bi II ion without changing the state of the latter. 

Effective principle quantum numbers of the 6p and 7s electrons are com­

puted from the known energy levels, and the admixture of 6p27s states 

to 6p3 states is thus obtained. Numerical calculations of dipole radial 

integrals are checked by comparing with lifetimes of Bf excited states. 

Appreciable contributions also arise from states where a 6s electron is 

promoted to a 6p orbital: 6s6p4. However, the experimental data from 

Bi II are insufficient to yield numerical values here; so an extrapola-

tion is made from the effective principal quantum number of the 6s 

electron in Pb and an overall correction factor is applied, since 



42 

calculated and observed El rates in Pb do not agree. Configuration 

interaction corrections are found to be relatively small from compari-

son of calculated and observed hfs splittings. The results are in good 

agreement with other single-particle calculations using the length 

form of the dipole operator (see Table 4). However. when one goes 

beyond this approximation, and employs ab initio methods (e.g., the 

Hartree-Fock method) the situation becomes complicated and somewhat 

unsatisfactory. Sandars (1979) has review~d the various calculations 

(see Table 4) and has suggested three possible sources of difficulty: 

(~) Complications due to the breakdown of jj coupling. 

(~) Exchange effects, of special importance when the velocity 

form of the dipole operator is employed. Possibly there 

exist large corrections due to pair states in this case. as 

suggested by Hiller et al (1979). 

(£) Shielding effects by parity conserving El excitations of the 

remaining electrons. It has been shown that the importance 

of this effect diminishes as photon frequency increases, and 

it is expected to enter but play a relatively minor role in 

the Cs (6
2
si ~ 72Si) and Tt (6 2Pi ~ 72Pi) circular dichroism 

experiments. 

Evidently, more work remains to be done on ab initio calculations 

of &p in bismuth. Finally, we note that in optical rotation experi­

ments one requires knowledge of~as well as &p. Although the Ml ampli­

tudes have not been measured directly, they can be calculated quite 

accurately (see Novikov 1976). 

OPTICAL ROTATION EXPERIMENTS Three groups have published results 

of bismuth optical rotation experiments: Seattle (Lewis et al 1977). 
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Oxford (Baird et al 1977), and Novosibirsk (Barkov & Zolotorev 1978a,b; 

1979). The first two groups independently reported no parity volations 

at a level which seemed to exclude predictions based on the Weinberg­

Salam model; but this was contradicted by the Novosibirsk results, which 

are in agreement with the predictions of Novikov et al (1976), based on 

the Weinberg-Salam model. More recently, the Seattle and Oxford groups 

have also observed parity violation in agreement with predictions of the 

Weinberg-Salam model. 

As noted earlier, the optical rotation per unit absorption length 

¢/£ follows a dispersion shape, and the peaks of dispersion correspond 

to rotations of 1 - 2 x 10- 7 radians (see Figure 14). An effect this 

small cannot be measured with a bismuth cell between crossed polarizers. 

because the intensity of transmission is proportional to the angle squared. 

Seattle and Oxford overcome this difficulty by introducing an external 

optical rotation ¢F by means of a Faraday cell. This interferes with 

the optical rotation ¢PNC due to parity violation in a known way. The 

total intensity of light transmitted through the system is 

where 1
0 

is the incident laser intensity, b is the residual angle­

independent transmission th~ough the polarizer (for instance, due to 

a small birefringence in a window) and ¢R is any residual optical 

rotation not caused by parity nonconservation. By varying the mag­

netic field in the Faraday cell, one modulates ¢F at frequency w, 

and lock-in techniques are employed to isolate the w-dependent part 

of the intensity: 
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The signal-to-background ratio is: 

I 
(for Oxford) 

where the optimum condition ~F ~ b has been assumed, All three groups 

depend solely on the dispersion shape of ~PNC to eliminate ail possible 

sources of ~R' which cannot be distinguished from ¢PNC 

4 The Oxford group is working on the 648 nm s
312 

+ 

in any other way, 

2 o
512 

line. 

This was chosen because at the time it was most accessible to narrow 

bandwidth CW dye lasers, which must be used to resolve the details 

of the lineshape. Unfortunately, molecular bismuth absorption in this 

band limits the density to that corresponding to about one atomic 

4 2 
absorption length, Seattle chose the 876 nm s

312 
+ o

312 
line which 

has no molecular absorption, and this permits much higher densities. 

Recent advances in tunable diode lasers make available a narrow band-

width source for 876 nm as well. 

In both experiments, the light enters the first polarizer and 

goes through a Faraday cell, Then it enters the bismuth cell, which 

is enclosed by an oven and surrounded by magnetic shielding. (Mag­

-4 netic fields must be kept below 10 G because of the Faraday effect 

in bismuth, which is a serious potential source of ~R.) The light 

then passes out of the cell, through the second polarizer, and is 

detected. The cell contains a buffer gas which keeps the bismuth 

vapor from condensing on the cool windows, Data are taken by scanning 

over the hyperfine structure (Seattle) or switching between points of 

maximum dispersion (Oxford). The Oxford group can move its cell in 

and out of the beam (see Figure 15a) to perform null experiments. 
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Other control experiments include the use of a quadrupole resonance 

or a molecular absorption line, where there is no parity effect. 

The Novosibirsk group also employs the 648 nm transition, but 

instead of modulating a Faraday cell, they deliberately misalign their 

polarizers bye= ±4 mrad (see Figure 15b). The light which is 

detected has the form I = 1
0 

sin2(e + ~PNC + ~R) ~ e2I
0

[1 + 2(~PNC + 

~R)/8]. A Spectra Physics 375 CW dye laser, operating single mode, 

is modulated back and forth by 416 MHz every millisecond. The signal 

is phase-locked to this frequency, and it is proportional to d~PNC/dA 

(see Figure 14). For technical reasons it is only possible to obtain 

data with the laser frequency centered on the absorption peaks, but 

null experiments are still possible by locking to quadrupole or molecu-

lar lines in the 648 nm band. The angle 8 is reversed every minute 

or so, and the optics are aligned so that this change does not deviate 

the beam. The calibration was made by applying a known magnetic field 

and measuring the Faraday effect. The result of the Novosibirsk 

experiment may be expressed in terms of R = Im(&p)/~: 

R t = (-20.6 ± 3.2)x 10-8 . exp 

This result is in agreement with theoretical calculations of Novikov 

et al (1976): 

R /R h = 1.07 ± 0.14. expt t eo 

It yields the value:. 

Qw(Bi) = -140 ± 40. 

CESIU~1 AND THALLIUM CALCULATIONS For the transitions Cs 

2 2 2 2 2 . 
7 s~. 8 S!) and Ti (6 P! ~ 7 P!. 7 P312) relat1vely straight-

forward semi-empirical calculations of &p are expected to be 
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reasonably accurate. since the ground sta~e and low-lying excited states 

of these atoms are quite well described by a single valence electron 

outside a spherically symmetric core (one-electron central field approxi-

mation). Core excitation effects on &Pare believed to be small in 

each case and susceptible to effective treatment by perturbation theory. 

The first central field calculation was performed by Bouchiat & 

Bouchiat (1975) who evaluated &p for Cs (6
2
S! + 72S!) with a finite 

sum over 2P! terms in Eq. (11). Matrix elements of H~l) were calculated 

by means of a modified Fermi-Segre technique, and relativistic correc-

tions were applied. A correction for the contribution of continuum 

states was also taken into account. Sushkov et al (1976) employed a 

somewhat similar semi-empirical method in calculations of &p(T£, 

did Novikov et al (1976) in calculations ~p (T£, 

Neuffer & Commins (1977a) also used the central field 

2 2 2 2 approximation for &p (T£, 6 P!+ 7 P!' 6 P312 , 7 P312 ) by fitting a 

modified Tietz potential (which yields a good approximate solution to 

the Thomas-Fermi equation) to the 62P!' 72P! levels ofT£ and solving 

the Dirac equation numerically for the valence electron. &P was cal­

culated by a finite sum over nearest 2s! states and also by means of a 

Green's function (sum over all states, including auto-ionizing states 

in the continuum). A similar calculation was carried out on Cs (Neuffer 

& Commins 1977b}. The wavefunctions generated in these calculations 

were used to compute many auxiliary quantities, which could be compared 

with atomic-beam and spectroscopic data, especially complete for Cs and 

T£. These are: 
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(~) Allowed El transition rates and excited state lifetimes (test 

of wave functions at large r) 

CE0 Energies and fine structure splittings 

(S) Hyperfine structure splittings (t~st of wavefunctions near the 

origin, which is especially important for &p) 

(~) Stark-induced El amplitudes &S [see Eq. (84)] 

(~) Ml transition amplitudes 

(f) Anomaly in gJ for ground state. 

In general, agreement between calculation and experiment for these 

auxiliary quantities is very satisfactory, when certain configuration­

interaction corrections are taken into account; these are of special 

importance in 

(1975), Flambaum et al (1978)). Thus one has confidence that these 

one-electron central-field approximation calculations are quite adequate 

for estimating &p to ~ 20% accuracy in each transition. The predicted 

values of &p and o for Cs and Ti transitions are summarized in Table 5. 

CIRCULAR DICHROISM EXPERIMENTS IN CESIUM AND THALLIUM The transi­

tion Cs (6 2S~+ 72s
1

) is being investigated at Paris (Bouchiat & Pottier 

1976b, 1979) while parity violation has been observed at Berkeley (Conti 

et al 1979) in Ti (62P! + 72P ~). and work continues to refine the result, 

One of the original motivations for these experiments is that large cir­

cular dichroisms o are expected according to the Weinberg-Salam model 

(see Table 5). However, for 6 to be observed directly it would be 

necessary to detect the Ml transition itself with a signal clearly 

discernible above background. Unfortunately, this has not been possi­

ble so far, because in an actual experiment, one must utilize atomic 



48 

vapor at rather high densities order to achieve acceptable signals. 

In this case, random local electric fields due to collisions, (and 

also possibly molecular effects), make it possible for weak photon 

absorption to occur over a rather broad band of frequencies, and with 

a strength much larger than that expected from the extremely feeble Ml 

amplitude. Thus.~as well as &p must be measured indirectly by 

interference with a Stark-induced El amplitude due to external elec-

tric field E [Eq. (84)]. It is helpful in considering these effects 

to proceed with a general analysis of possible scalar and pseudo-

scalar terms in the transition probability, as was considered for 

hydrogenic atoms. If we restrict ourselves to linearl polarized light 

and external E field, and also measure the polarization J of the final 

atomic state (7 2S in Cs, 72P in T£), only the following T-invariant 
! ~ 

scalars representing Stark-Ml interference, can be formed: 

~·E kx~.j (86) 

A 

Figure 16 gives the orientation of the various vectors. Choosing k 

aleng i, E along y, and £ along y, we find that expression (86) per­

mits a final polarization along z, which reverses sign with k and E. 

Such a polarization actually occurs in the transitions (Cs, 62S! ~ 72s
1

) 

and (T£, 62P! ~ 72P!) for ~F = 0; mF = 0; for example in T£, the so-
A A 

called "a" transition F = 1 ~ F' = 1, ~mF = 0. If e: is along z instead, 

one again has a polarization along z which reverses sign with k and E. 
This occurs, for example, in the so-called "S" transition F = 0 ~ F = 1 

inTi, (~mF = ±1). Detection of such polarizations by observations of 

the circular polarization of decay fluorescence yielded measurements 
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of '7ft in Cs (Bouchiat & Pot er 1976a) and in T£ (Chu et al 1977). 

If circularly polarized light is employed, with helicity h = ±1, 

one can form the T-invariant pseudoscalar 

h~xl • J (88) 

which represents &p-Stark interference. With ~ along i. f along ~. 

E = cY ± iz)/1:2. expression (88) yields a polarization in the z direc­

tion which reverses with h and E, but is independent of the sign of ~. 

Both the Paris and Berkeley experiments utilize this effect. 

At Paris, a CW ring dye laser is employed to excite a single 

hyperfine component in the 5399 A transition (Cs, 6 2S~ ~ The 

laser light is circularly polarized with a Pockels cell. It then 

enters a cesium cell, where it is reflected back and forth about 100 

times by a pair of curved mirrors inside the cell. This "multipass" 

design has two advantages: It amplifies the signal, and at the same 

time essentially eliminates the polarization caused by the Ml-EStark 

interference, since this reverses with k. 

The static electric field is maintained with plane parallel 

electrodes inside the cell. The 7S ~ 6P fluorescence at 1.36~ is 

collected and collimated by a lens, passes through an interference 

filter and circular polarization analyzer, and is then focused onto a 

germanium detector. The laser polarizer and fluorescence analyzer 

are both modulated, and lock-in detection techniques are used to 

extract the parity-violating signal. Background is chiefly due to 

black-body radiation at 1.36~ from the oven and cell, and a Stark 

field of - 300 V/cm is required to produce a signal large enough for 

convenient use. 
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In the Ti, 62P! + 72P! experiment (see Figure 16), the transition 

wavelength of 2927 A is produced by nonlinear second harmonic generation 

from the output of a flashlamp-pumped pulsed dye laser tuned to 5854 A. 

The light is circularly polarized by passing it through a crystalline 

quartz quarter-wave plate capable of producing circularly polarized 

light of great purity (intensity of unwanted polarization -4 10 x inten-

sity of wanted polarization). The light then enters the quartz thal-

lium cell, which is in an oven heated to 7S0-800°C. Oven and cell are 

inside a rough vacuum, and the cell itself is connected to an ultra-

high vacuum system, which is employed to reduce molecular backgrounds 

due to contaminants. Technical difficulties have prevented using a 

multipass system; the laser beam either makes a single pass, or makes 

one reflection and returns. At best, this only reduces the Ml polari-
+ 

zation by 78%. L is produced by plane parallel electrodes either inside 

or outside the cell. The F = 0 + F = 1 transition is used for all parity 

data. However, the 2.13 GHz hyperfine splitting of the 72P! state is 

easily resolved, and so it is possible to tune to the F = 0 + F' = 0 

line. In this case, there is no final state polarization; the 0 + 0 

line is thus used for a null experiment. 

In thallium the polarization the 72P state is not easily ana­
! 

-lyzed by observation of circular polarization of decay fluorescence. 

Black-body radiation prevents viewing the 1.3~ 7Pi + 7Si transition, 

and the 5350 A 7S! + 6P312 light has only one-twelfth the original 

polarization. Instead, a second laser is utilized. It drives an 

optical parametric oscillator which produces photons circularly 

polarized along the z axis and tuned to the 2.18~ 7Pi + 8Si El trans ion. 
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2 selective excitation of the 7Pi F = 1, mF = +1 or -1 states to 8 Si, 

and by observation of the s2si ~ 62P312 fluorescence, the analyzing 

power the 72Pi polarization is about 70%. The chi source of back-

ground in the thallium experiment is UV fluorescence from the cell scat-

tered into the detectors at the wavelength 3230 A corresponding to the 

s2si ~ 62P
312 

transition. Signals appreciably greater than background 

are achieved for a Stark field of 170 V/cm or more. 

In order to eliminate laser fluctuations, two separate interaction 

regions are used, which have opposite handedness for each laser pulse. 

This is accomplished by splitting the 2.18~ beam and polarizing the 

two halves oppositely in the two regions. Thus the polarization asym-

metry can be measured on each pulse. In addition to reversing the UV 

A/4 plate on successive pulses, the IR polarization and the electric 

field directions are also reversed periodically. All of these rever-

sals, plus the 0-0 null experiment, reduce possible systematic errors 

to acceptable levels. The mo.st critical reversal is the UV polariza-

tion, which is needed to cancel the Ml asymmetry. By contrast, in 

the cesium experiment the multipass cell eliminates the Ml, but the 

extremely small size of the expected effect makes the electric field 

reversal critical. For instance, if the laser beam in either experi-

ment is misaligned so that small components of E:exist along x (the 

beam direction) and z, there will be a Stark effect polarization along 
A -('J 2 
z of r = 2E E /E which mimics the parity effect. 

X Z 
(This is described 

by the scalar invariant h j.£ k•E.) The result of the Berkeley experi­

ment (Conti et al 1979) is 6 = (5.2 ± 2.4) x 10-3• which yields QW = 
-280 ± 140. 
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Alternative versions of these experiments with attractive features 

have been considered independently by Bouchiat et al (1979) and Commins 

(Bucksbaum 1979) and are being carried out. Here one employs linearly 

polarized light and selects the mF components of the final -state by 

using an external magnetic field to split Zeeman components. The pseudo-

scalar of interest is now proportional to 

A 

and k is chosen II to E. In this version of the experiment, possible 

systematic errors arising from circularly polarized light are elimi-

nate~ and expected signals in the T£ case are much larger than previously 

attained. 

MISCELLANEOUS EFFECTS There should also exist effects in atoms 

due to the parity-violating neutral weak electron-electron interaction. 

(Bouchiat & Bouchiat 1974b, Sushkov & Flambaum 1978a). but these are 

expected to be reduced relative to effects due to ~l) by a factor of 

. -1 2 
order Z (1 - 4 sin e) in heavy atoms; that is, comparable to effects 

due to H~2 ) (Novikov et al 1977). Additional modifications arise from 

radiative corrections to HP (Marciano & Sanda 1978). 

Parity violation effects in diatomic molecules have been discussed 

by Sushkov & Flambaum (1978b); and Rein et al (1979) have considered 

parity-violating energy differences between mirror-image molecules and 

have found them to be very small. Other aspects of the latter question 

have been considered by Harris & Stodolsky (1978). Possible manifesta-

tions of parity violation in the Josephson effect have been discussed 

by Vainshtein & Khriplovich (1974, 1975). 
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5. SUMMARY AND CONCLUSIONS 

The results of electron scattering and atomic physics experiments 

(eq sector) may be combined with neutrino-nucleon (vq) and n~utrino-

electron (ve) scattering data to provide a stringent test of neutral 

weak interaction theories. In carrying out this analysis it is useful 

to begin with the simplest possible model-independent assumptions (Hung 

& Sakurai 1979, Sakurai 1979). Thus we start merely by assuming ~e 

universality. that the contributions of heavy quarks c,s, ... may be 

neglected, and that all neutral weak currents possess only vector 

and axial vector components. We may then ·write the effective 

Hamiltonians: 

H vq 

H ve 

H eq 
-

dyAu) + t (uyAu + dyAd)] 

--

(90) 

The ten coupling constants a.e •..• e,o must be determined by experiment. 

Note that Eq. (91) reduces to Eqs. (4), (5) provided we put 

which follow from the assumption that p"" 2u+d, n = 2d+u. 

The neutrino-nucleon scattering data yield values of a,B,y. and o 

which are determined up to an overall sign ambiguity. These are listed 

in Table 6, column 1. For a review of neutrino-scattering. see Cline & 
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Fry 1977). Note that S determined from a recent measurement the 

cross section for 

(92) 

in which low-energy electron-antineutrinos are employed (Pasierb et al 1979). 

In v + e + v + e charged and neutral currents can participate. All e e 

other neutrino scattering experiments have so utilized high energy 

v or v . 
jJ jJ 

The coupling constants gV.gA for ve scattering have now been mea-

sured to be: 

gA = -0.52 ± 0.06 

gv = .06 ± .os. 
(93) 

Actually there is an ambituity involving gA # gV here; we have written 

the "axial vector dominant" solution. 

Next, the results of the SLAC electron scattering experiment are 

expressed in terms of the coefficient a1• a2 appearing in ~/(-q 2) [Eq. 

(52)]. 

Writing 

G 9a + 31 al "" 
12 5 

(94) 

G 9~ + 3! 
a "" 5 2 12 

(95) 

and recalling the experimental values for a1 2 [Eqs. (58) (59)]. we 
• 

find: 

d + t::::: -0.60 ± 0.16 (96) 

~ 8 + 3 = o.31 ± o.s1. (97) 
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The results of the Novosibirsk and Berkeley Tt and Bi experiments: QW(Bi)= 

-140 ± 40 and QW(T£) = -280 ± 140 are expressible in terms of a and y by 

means of the relation: 

QW = -ey(Z+N) + ~(Z-N). (98) 

We plot the experimental constraints on a andy in Figure 17. Thus we 

obtain: 

a = -0. 72 ± 0. 25 

-'Y = .38 ± 0.28. 

(99) 

(100) 

Further restrictions on the coupling constants are obtained if one 

assumes a model with single Z boson exchange (the "factorization" 

hypothesis). Assuming ~e universality, this is characterized by seven 

independent parameters for coupling Z to vL' uL R' dL R' and eL.R' 
' . , 

Since we started with ten parameters a,s, ... 6 there must be three 

independent "factorization" relations connecting the latter. Hung & 

Sakurai (1977) have shown these to be 

y/a = y/a (101) 

(102) 

(103 

Let us plot the allowed values of y/a from vq data (Table 6) on Figure 

17 and utilize Eq. (101). Then we see that the SLAC and Bi,Tt results 

fall within the region permitted by vq data; this provides model-

independent evidence for factorization. 

Since B and 6 have not yet been separately determined (this would 

require a measurement of parity violation at the 8 e crossing in 
0 0 

hydrogen, for example). one cannot test Eq. (1 02) directly. However, 

combining Eqs. (101). (102). and (103), one obtains: 
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I = [a+ (y/3)][6 + (6/3)] 
gv gA - • (104) 

[a+ ty/3)][S+ (l/3)] 

From the experimentally determined ratio a2/a1 [Eqs. (96) and (97)] 

one can determine the right hand of Eq. 04). This determines 

that only the "axial-vector dominant" solution for gV,gA is acceptable 

in ve scattering, as we have written in • (93)' 

One may make use of the SLAC experimental result [Eqs. (96), (97)] 

and the factorization condition [Eq. (102)], with 6/B determined from 

vq data (Table 7) to obtain: 

'i'r"' 0 29 +0.55 
p ' -0.51 

':r = 0 02 +0. 1 7 
u • -0. 06 

Another factorization relation: 

yields more precise limits: 

gv a + Ci/3) 
gA a + (y/3) 

e = o.o6 ± o.21 

6 "" 0.00 ± 0.02 

(105) 

(106) 

(107) 

Now, the signs of the vee coupling constants gV,gA can be determined 

experimentally, since the neutral-current and charged-current ampli-

tudes interfere. (We make a standard V-A choice o£ sign for the latter.) 

Also, the signs of the eq constants a,S,y,! are determined because of 

interference with the electromagnetic amplitude of known sign. One can-

not measure directly the absolute sign of vq coupling constants. How-

ever, it can be shown (Sakurai 1979) that the factorization hypothesis, 

together with the assumption that the coupling strength c2 in v + v ~ 
v 

v + v is positive, removes the sign ambiguity in the vq constants. 
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Table 6 column 2 gives the present values of the ten coupling parameters 

which are thus obtained. The Weinberg-Salarn model predictions of these 

parameters are also given in Table 6, column 3, and it is clear that 

very satisfactory agreement is obtained for sin2e = 0.23 (column 4). 

However, it is obviously desirable and important to improve the preci­

sion of determination of the parameters, especially y,o,S,y and 6. 

Better values of y will soon be obtained from heavy atom experiments, 

and ~. y, and l may be measured accurately in hydrogen atom experi­

ments within the next few years. Beyond this one may hope that various 

experiments will eventually shed light on small but important effects 

such as the electron-electron parity violating coupling, momentum-transfer 

dependent terms and higher order corrections to the Weinberg-Salam model. 

The latter would be particularly exciting to observe since the ability 

to predict them is one of the most important features of unified gauge 

field theories. 
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Figure Legends 

Figure 1_ Feynmann diagrams for photon (y) and neutral intermediate 

boson (Z0
) exchange between e and N. 

6l 

Theoretical asymmetry in scattering of polarized electrons by 

deuterons, according to various SU(2)xU(l) gauge models, plotted as a 

function of y. In all models, the leptons and quarks are assigned to 

left-handed weak isodoublets. Models differ according to assignment 

of particles to right-handed weak isomultiplets, as indicated. 

a hypothetical neutral heavy lepton. sin2e = 0.23 assumed. 

E is 
0 

Figure 3 Schematic diagram of SLAC polarized electron scattering 

experiment. 

Figure 4 Momentum acceptance, SLAC polarized electron experiment. 

Figure 5 Asymmetry data, SLAC polarized electron experiment. Beam 

polarization is reversed by reorienting polarizing prism from 0° to 

90°. (From Prescott et al 1978.) 

Figure 6 Observed asymmetry, SLAC polarized electron experiment (discrete 

points). Dotted curve represents expected energy-dependence of asymmetry 

due to electron spin precession. (From Prescott et al 1978.) 

Figure 7 Experimental asymmetry in scattering of polarized electrons 

on deuterium (SLAC), as a function of y. B: E = 19.4 GeV; ~ : E = 

16.2 GeV; 0: E = 22.2 GeV. (From Prescott et al 1979.) 

Figure 8 Zeeman effect in the hyperfine structure of 22st and 22st states 

of atomic hydrogen. Parity violation causes mixing of levels B ,e ; 
0 0 



Schematic diagram of experiment to observe parity violation 

in hydroger• a. t Michigan. 

Figure 10 (a) Schematic diagram Yale hydrogen experiment. 

(b) Orientation of vectors in the Yale hydrogen experiment. 

+ + 
ERl' £R2 refer to microwave electric fields in regions 1,2 respectively. 

E1 is static electric field, B is magnetic field. 

Figure 11 Low-lying energy levels of the bismuth atom. Optical rotation 

experiments have been carried out using the 648 nm and 876 nm transitions. 

Figure 12 Energy levels of the cesium atom. The forbidden Ml transition 

2 72S 6 S! + ! (593 nm) is employed by the Paris group to search for parity 

violation. 

Figure 13 Energy levels of the thallium atom. Parity violation has been 

observed in the transition 62P! + 72P (293 nm) at Berkeley. 
i 

Figure 14 Novosibirsk optical rotation experiment. 

(a) The dashed curve gives the theoretical prediction for 

parity violating optical rotation vs. wavelength A. The solid line is 

calculated Faraday rotation. 

(b) Observed absorption spectrum. 

(c) Calculated curve (1/!)d~PNC/dA and results of measurements 

of the lines 1,2,3 A. The numbers 6-7, S-7. etc. refer to hyperfine com-

ponents F,F'. A is a control line. 

Figure 15 Schematic diagrams of optical rotation experiments. 

a) Oxford. 

b) Novosibirsk. 
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Figure 16 Schematic diagram the Berkeley thallium experiment. Ll' L2 : 

Flash-lamp pumped dye lasers. ADA: Nonlinear do:1bling crystal. LP: 

linear polarizer. UV A/4: 293 nm qua:rte:r-wave plate. OPO: Optical para­

metric oscillator. BS: Beamsplitte:r. L(R)p R(L): :reversible 2.18 

quarter-wave plates. F: Filters for 323 nm radiation. 

Figure 17 Results of the SLAC polarized electron experiment (parameter 

a
1

) and the Novosobirsk (Bi) and Berkeley (Ti) atomic physics experiments 

are plotted on the a-y plane. The factorization hypothesis together 

with v-hadron scattering data constrain the allowed :region of the a-y 

plane as shown. (From Sakurai 1979.) 



Table 1 Neutral weak interactions 

neutrino 

\) + \) -+ \) + \) 

neutrino 

electron 

quark 

electron 

) + e -+ (v ) + e 
jJ 

v + e -+ v + e 
e e 

e + e -+ e + e (g) 

+ - + 
e +e -+JJ +IJ 

quark 
--

v (v ) + N -+ 
IJ IJ 

(V" ) + x. 
IJ 

-+u(v)+N+ 
IJ 

-+ (v ) + N, 
jJ 

\) +D-+v +n+p (d) e e 

e + N -+ e + X (e) 

e + N -+ e + N (f) 

-
N + N -+ N + N 

p+p-+Z+ ... (j) 

p+p-+Z+ 



(Notes to Table 1) 

Reaction a - f have been observed. 

aScattering of high energy v (v ) by e 
il il 

67 

bscattering of low energy (reactor) v by e-. This process also occurs 
e 

by coupling of charged weak currents. 

cHigh energy neutrino-nucleon scattering (Cline & Fry 1977). 

dLow energy reactor ve- deuteron scattering (Pasierb 1979). 

eHigh energy polarized electron scattering (see Section 3). 

fA . h . ( S . 4) tom1c p ys1cs see ect1on . 

(Reactions e and f are the subject of this article.) 

gThis reaction can also cause small parity violation effects in atoms. 

hinterference between photon and Z0 exchange (parity conserving) affects 

+ -the angular distribution of il il • 

iParity violation in nuclear forces. The charged weak currents also 

contribute. 

jz production in high energy pp. pp collisions. 
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Table 2 Systematic error summary,SLAC polarized electron experimenta 

Measured fference 

Parameter Units (+) - (-) Correction to t:./ -q2 

Beam energy % (1.5±.28)xl -.37xl 

Beam current ma (2.2±.4)xl0 -3 -.03 

Position parameters 

X 11 (-8.9±3.3)xi0- 2 +.04 

y J1 (-.65±1.8)xiO-Z -.02 

Beam angle 

e J.lrad (-.37±.7)xi0-3 .00 
X 

J.lrad -3 +.01 e (1. 5±. 9)x10 y 

Total systematic correction -.37xl0 -5 

aFrom Prescott et al (1978). 
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Table 3 Experimental Parameters for the Hydrogen Experiments 

Experiment 

Transition 

Magnetic field 

PNC mixing 

Coupling constant 

Pseudoscalar 

Michigan 

a -6 Stark induced 
0 0 

Size of expected asymmetry 3 x 10- 7 

for sin2e = , 23 

Expected running time 400 h 

to l cr 

Yale 

8 -B Stark induced 
0 -

500-600 g 

c2p 

CE1·B)(eR1xB)e(ER2xB) 

or ·(E1·B)(£R1x£R2·B) 
1.5 X 10-6 

16 h 



Table 4 Calculations of ~p in bismutha (sin2e = .23 assumed throughout) 

a 

Method 

Semi-empirical 

Parametric potent 

Parametric potential 

with shielding 

Cowan potential 

(Hartree) 

Hartree-Fock length 

Multiconfiguration 

Hartree-Fock(MCHF), 
b length 

~1CHF, velocityb 

HF ve1oci ty 

From Sandars (1979a). 

b6s and 7s contributions only. 

Reference 

(Novikov et al 1976) 

(Harris et al 1978) 

(Harris et al 1978) 

(Henley et al 1977) 

(Henley & Wilets 1976) 

(Carter & Kelly 1979) 

(Grant et a1 1979) 

(Grant et a1 1979) 

(Carter & Ke 1 1979) 

10 
Im(~p) x 10 a.u. 

J=3/2-+ J'= 2 2 -+ J' 

-3.24 .94 

-4.16 1.31 

-2.78 .73 

-5.31 

-3.40 .95 

-2.82 1.32 

-2.52 1.53 

-2.81 .13 

-....! 
0 



Table 5 Calculations of &p and o in cesium and thallium (sin2e = 0.23 assumed throughout) 

Element/Transition 

2 2 
Cs 6 s i -+ 7 s! 

2 2 
Tt 6 P! -+ 7 P! 

62P! -+ 62P3/2 

2 
6 p! 4- 2 

Reference 

(Bouchiat & Bouchiat 

1974b. 1975) 

(Loving & Sandars 1975, 

Brimicombe et al 1976) 

(Neuffer & Commins l977b) 

(Sushkov et al 1976) 

(Neuffer & Commins l977a) 

(Novikov et al 1976) 

(Neuffer & Commins 1977a) 

(Henley et al 1977, 

Henley & Wilets 1976) 

(Neuffer & Commins 1977a) 

10 Im(lhp)xlO a.u. 

-0.12 

-0.15 

-0.09 

-0.76 

-0.83 

-3.3 

-3.5 

-4.04, 

-2.76 

+ .76 

o=2Im rm_ 

1.17><10-4 

2.2 xl0-3 
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Table 6 Determination of Neutral-Current Coupling Parameters (from 

Sakurai 1979) 

Model- Factorization W-S l~-s Model, 

Parameter Independent a Dependent b Model sin2e = o. 23 

a. ±0.58±0.14 0.58±0.14 l-2s 0.54 

B ±0.92±0.14 0.92±0.14 1 1 

'Y +o. 2B±o. 14 -0. 28±0.14 2 . 26 - - Sln 3 -0.153 

0 ±0.06±0.14 0.06±0.14 0 o.o 

gv 0.00±0.18 
-! (l-4sin2e) 0.03±0.12 -0.04 

or -0. 52±0.1.3 

gA -0.56±0.14 
-0.56±0.14 -t -0.5 

or -0.07±0.15 

-a. -0.72±0.25 -0.72±0.25 - (1-2sin2
e) -0.54 

8 0.06±0.21 - (l-4sin2
e) -0.08 

'Y 0.38±0.28 0.38±0.28 2 . 28 3 Sl.n 0.153 

~ 0. 00±0. 02 0 0.0 

- 1- -0.60±0.16 -0.60±0.16 - (1 20 . 2e) -0.489 a.+-y - - Sl.n 
3 9 

- 1 ,._, 0.31±0.51 0.06±0.21 - (l-4sin2e) 0.08 t:s +- 0 3 

aCoup1ing constants determined without recourse to factorization or 

gauge theory considerations. 

bCoupling constants determined with factorization constants included. 
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