
UC Berkeley
UC Berkeley Previously Published Works

Title
Analytical harmonic vibrational frequencies with VV10-containing density functionals: 
Theory, efficient implementation, and benchmark assessments

Permalink
https://escholarship.org/uc/item/6x6426hj

Journal
The Journal of Chemical Physics, 158(20)

ISSN
0021-9606

Authors
Liang, Jiashu
Feng, Xintian
Liu, Xiao
et al.

Publication Date
2023-05-28

DOI
10.1063/5.0152838

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x6426hj
https://escholarship.org/uc/item/6x6426hj#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/
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1)Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,

University of California at Berkeley, Berkeley, CA 94720, USA
2)Q-Chem Inc., Pleasanton, CA 94588, USA
3)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

CA 94720, USA

(*Electronic mail: mhg@cchem.berkeley.edu)

(Dated: 1 June 2023)

VV10 is a powerful nonlocal density functional for long-range correlation that is used to in-

clude dispersion effects in many modern density functionals such as the meta-generalized

gradient approximation (mGGA), B97M-V, the hybrid GGA, ωB97X-V and the hybrid

mGGA, ωB97M-V. While energies and analytical gradients for VV10 are already widely

available, this study reports the first derivation and efficient implementation of the analyti-

cal second derivatives of the VV10 energy. The additional compute cost of the VV10 con-

tributions to analytical frequencies is shown to be small in all but the smallest basis sets for

recommended grid sizes. This study also reports the assessment of VV10-containing func-

tionals for predicting harmonic frequencies using the analytical second derivative code.

The contribution of VV10 to simulating harmonic frequencies is shown to be small for

small molecules but important for systems where weak interactions are important, such

as water clusters. In the latter cases, B97M-V, ωB97M-V, and ωB97X-V perform very

well. The convergence of frequencies with respect to grid size and atomic orbital basis

set size is studied and recommendations reported. Finally, scaling factors to allow com-

parison of scaled harmonic frequencies with experimental fundamental frequencies and to

predict zero-point vibrational energy are presented for some recently developed functionals

(including r2SCAN, B97M-V, ωB97X-V, M06-SX, and ωB97M-V).
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I. INTRODUCTION

Density functional theory (DFT) is currently the most popular approach to predicting molecu-

lar properties, such as relative energies, equilibrium geometries, frequencies, excitation energies,

permanent and induced moments, etc.1–4 However, standard semi-local exchange-correlation func-

tionals cannot properly account for the long-range correlation effects such as dispersion (van der

Waals) interactions.5–8 A range of methods have been developed to address this issue.9,10 One

popular, effective, and computationally very inexpensive strategy to fix the problem is adding an

empirical dispersion correction, such as the exchange-dipole model (XDM)11, the Tkatchenko-

Scheffler van der Waals method12 and the DFT-D family.13–16 However, strictly speaking, these

methods are not density functionals, as they depend explicitly on nuclear positions. The most

elaborate methods are orbital-dependent, like the random-phase approximation (RPA)17–19 and

double-hybrid density functionals,20,21 but they are very time-demanding. To strike an interme-

diate balance between rigor and computational tractability, researchers have devised a series of

nonlocal correlation functionals that aim to capture only long-range dispersion effects. The first

was the well-known vdW-DF functional,22 which was designed in 2004, followed by vdW-DF2

in 2010.23 Vydrov and Van Voorhis also proposed the VV09 functional24 and its more successful

successor, VV10,25 for the calculation of dispersion-containing interactions in molecules.

VV10 has since been widely used as an add-on to existing functionals.10,16,25,26 Further-

more, VV10 has been incorporated as a component in self-consistently training new functionals,

such as ωB97X-V27 [range-separated hybrid (RSH) generalized-gradient approximation (GGA)],

B97M-V28 [local meta-GGA (mGGA)], and ωB97M-V29 (RSH mGGA). Their success has been

demonstrated by improved accuracy in predicting energy differences across broad classes of

molecules composed of main group elements, with particular improvements noted for intermolec-

ular interactions1,8,29 In addition, for applications in condensed matter, VV10 was reformulated,

leading to the closely related rVV10 functional,30 which offers significant implementation advan-

tages in periodic codes, while yielding virtually identical results.

Analytical derivative theory31,32 has long been essential for exploring potential energy sur-

faces using electronic structure methods. Indeed, the analytical gradient of VV10 is widely

available, enabling geometry optimizations. Building on the theory of Hartree-Fock second

derivatives33,34, efficient algorithms and implementations of DFT analytical second derivatives

are well established,35–37 with some development continuing.38–40 However, to the best of our

2



knowledge, the VV10 analytical second derivative has not yet been implemented in any quan-

tum chemistry software. There has been recent interest in analytic derivatives through automatic

differentiation41,42 or symbolic algebra,43–46 but VV10 Hessians have not been reported that way

either, possibly due to its complexity (as shown in this paper and similarly for vdW-DF47,48).

In this context, the finite difference (FD) method has to be employed for frequency,49 excita-

tion energy, and stability analysis calculations.50 Even though the FD approach approximates

analytical methods, it has more limited precision and may require significantly more computa-

tional resources. Therefore, analytical derivatives are typically preferred when feasible, and the

first purpose of this paper is to report the theory and implementation of VV10 analytical second

derivatives.

Nowadays many functionals have been benchmarked extensively for predicting frequencies and

zero-point vibrational energies (ZPVEs).51–65 Most of these works calculated harmonic frequen-

cies with a scaling factor to fit experimental frequencies or ZPVEs, which accords with practical

usage, but introduces an additional error in benchmarking.51–63 In this scenario, B3LYP is good

enough to consistently provides the best (or near-best) results among hybrid functionals.56–58 For

detailed reviews on the topic, please consult refs. 2, 3, and 63. By contrast, relatively few papers

have compared harmonic frequencies with theoretical best estimates (TBEs), so as to directly as-

sess the accuracy of functionals themselves.54,65 Here, as our second purpose, we will benchmark

B97M-V, ωB97X-V, and ωB97M-V with other popular functionals mainly against TBEs to avoid

errors from other sources. Finally, at the end will we employ experimental reference values to de-

velop scaling factors for recently developed functionals (including r2SCAN, B97M-V, ωB97X-V,

M06-SX, and ωB97M-V).

In this paper, we will describe the theory and implementation of the second analytical deriva-

tives of VV10-containing functionals (Section II), including orbital Hessian, nuclear Hessian, and

Fock nuclear derivative contributions. We have already discussed the contribution of VV10 to ex-

citation energies,4 so we only benchmark the performance of B97M-V, ωB97X-V, and ωB97M-

V for simulating molecular frequencies here. We will benchmark the computational time (Sec-

tion III B), explore the basis set and quadrature grid convergence (Section IV A), study the con-

tribution of VV10 to frequency prediction (Section IV B), compare VV10-containing functionals

with other popular functionals against TBEs on various data sets (Section IV C), and finally rec-

ommend scaling factors to employ in practice (Section IV D).
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II. THEORY AND IMPLEMENTATION OF VV10

A. VV10 Energy and First Derivative

The energy of the nonlocal correlation functional, VV10, can be written as (here we use atomic

units)

EVV10 =
∫

d3rρ(r)
[
β +

1
2

∫
d3r′ρ(r′)Φ(r,r′)

]
, (1)

where ρ(r) is the total electron density and Φ(r,r′) is the correlation kernel defined as

Φ =− 3
2gg′(g+g′)

(2)

with

g(r,r′) = ω(r)|r− r′|2 +κ(r),

g′(r,r′) = ω(r′)|r− r′|2 +κ(r′).
(3)

ω(r) and κ(r) are both intermediate single-variable functions, defined as

ω(r) =

√
C

γ(r)2

ρ(r)4 +
4πρ(r)

3
, (4)

κ(r) = b
3π

2
(
ρ(r)
9π

)
1
6 , (5)

where γ = |∇ρ|2 is the square of the density gradient and b and C are two parameters that control

the behavior of VV10. For the detailed physical meaning of each variable, please consult the

original paper.25 The correction β in Eq 1 is also determined by b to ensure that the VV10 energy

is equal to 0 in the uniform density limit,

β =
1

32
(

3
b2 )

3
4 . (6)

To evaluate the VV10 functional on a quadrature grid (for example the widely used atom-

centered method pioneered by Becke66), we adopt the following formalism. The energy can be

calculated as

EVV10 = ∑
i

wi f 0
i , (7)

f 0
i = ρi

(
β +

1
2

Ei
)
, (8)
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Ei = ∑
j

w jρ jΦi j, (9)

Φi j =− 3
2gi jg′i j(gi j +g′i j)

. (10)

Here the subscript i indicates that the value is at the i-th (outer) grid point. For example, wi is the

quadrature weight of the i-th grid point and f 0
i is the VV10 (outer) integrand at this quadrature

point. Ei is an intermediate variable representing the inner integral of Eq 1 at point i. Similarly, j

indicates that the value is at the j-th (inner) grid point. gi j = ωiR2
i j +κi, g′i j = ω jR2

i j +κ j, and

R2
i j = |ri−r j|2 are corresponding to Eq 2 and 3. It is worth noting g′i j = g ji but we keep the index

j as the fast index throughout the implementation.

The VV10 contribution to the Fock matrix can be calculated by

Fµν = ∑
i

wi

[
f ρ

i φµiφν i +2 f γ

i ∇ρi · (φν i∇φµi +φµi∇φν i)
]
, (11)

f ρ

i = β +Ei +ρi

[
(
∂κ

∂ρ
)iUi +(

∂ω

∂ρ
)iWi

]
, (12)

f γ

i = ρi(
∂ω

∂γ
)iWi. (13)

φµi and φν i are the values of atomic orbitals φµ and φν at the quadrature point i. We use real

functions and thus omit complex conjugations for simplicity. ∇ without any subscript stands for

the gradient with respect to the electron position. f ρ

i and f γ

i are the partial derivatives of the outer

integrand at point i with respect to ρi and γi individually. (∂κ

∂ρ
)i, (∂ω

∂ρ
)i, and (∂ω

∂γ
)i are also the

partial derivatives of κ and ω . Ui and Wi are two intermediate integral values similar to Ei, which

are defined as

Ui =−∑
j

w jρ jΦi j(
1

gi j +g′i j
+

1
gi j

), (14)

Wi =−∑
j

w jρ jΦi jR2
i j(

1
gi j +g′i j

+
1

gi j
). (15)

We split the VV10 gradient into three terms:

EA = ∇AE = EA
G +EA

w +EA
gr. (16)

Here A stands for one cartesian coordinate (i.e., x, y, or z) of one atom. EA
G, EA

w, EA
gr denote the

contributions from the change of Gaussian basis functions, quadrature weights, and grid positions

respectively.

EA
G = ∑

i
wi[ f

ρ

i ρ
A
i + f γ

i γ
A
i ], (17)
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EA
w = ∑

i
wA

i ρi
(
β +Ei

)
, (18)

EA
gr =−∑

i∈A
∑
j/∈A

wiw jρiρ jΦi j(
ωi

gi j
+

ω j

g′i j
+

ωi +ω j

gi j +g′i j
)(ri − r j)

−∑
i/∈A

∑
j∈A

wiw jρiρ jΦi j(
ωi

gi j
+

ω j

g′i j
+

ωi +ω j

gi j +g′i j
)(r j − ri)

=−2 ∑
i∈A

∑
j/∈A

wiw jρiρ jΦi j(
ωi

gi j
+

ωi

gi j +g′i j
)(ri − r j)

−2 ∑
i/∈A

∑
j∈A

wiw jρiρ jΦi j(
ω j

g′i j
+

ω j

gi j +g′i j
)(r j − ri).

(19)

Here wA
i , ρA

i , and γA
i are the gradient of wi, ρi, and γi with respect to the change of A. The

calculation time of Eq 19 can be saved half by translational invariance. Eq 19 can also be written

in the form of Eq 44,

EA
gr = ∑

i∈A
wiρiE

Agr
i (20)

B. Second Derivative

To simulate the molecular frequencies by coupled self-consistent field theory (CPSCF), we

need several key quantities. The first quantity contains the orbital Hessian contributions (the sec-

ond derivative of the VV10 energy with respect to the density matrix, which is also needed for

time-dependent density functional theory (TDDFT) to predict the excitation energy.4). Usually,

we only calculate contracted orbital Hessian Gt
µν , to avoid the fourth-rank tensor storage of or-

bital Hessian. The second quantity is the nuclear Hessian, EAB, which is the second derivative

of the VV10 energy with respect to nuclear positions. The third quantity is the Fock nuclear

derivative FA
µν , which is the derivative of the VV10 contribution to the Fock matrix with respect to

nuclear position.

The contracted orbital Hessian term Gt
µν defined in Eq 9 of ref 4 can be calculated by

Gt
µν = ∑

i
wi

[
f ρ,t
i φµiφν i +2[ f γ,t

i ∇ρi + f γ

i ∇ρ
t
i ] · (φν i∇φµ.i +φµi∇φν i)

]
, (21)

f ρ,t
i =∑

j
w j( f ρρ

i j ρ
t
j +2 f ργ

i j γ
t
j),

f γ,t
i =∑

j
w j( f γρ

i j ρ
t
j +2 f γγ

i j γ
t
j).

(22)
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ρ t
i and γ t

i are the trial electron density and trial gamma density on i-th grid point, which are defined

as

ρ
t
i = ΣµνPt

µνφµiφν i, γ
t
i = ∇ρi ·∇ρ

t
i , ∇ρ

t
i = ΣµνPt

µν∇(φµiφν i). (23)

Pt
µν is the trial density matrix defined in Eq 8 of ref 4.

f ρρ , f ργ , f γρ and f γγ in Eq 22 are all the second derivatives of the VV10 energy, which can be

calculated by

f ρρ

i j =
∂ 2EVV10

∂ρi∂ρ j
= Φi j

{
ρi

(
R2

i j(
∂ω

∂ρ
)i +(

∂κ

∂ρ
)i

)
ρ j

(
R2

i j(
∂ω

∂ρ
) j +(

∂κ

∂ρ
) j

)( 2
(gi j +g′i j)

2 +
2

gi jg′i j

)
−ρi

(
R2

i j(
∂ω

∂ρ
)i +(

∂κ

∂ρ
)i

)
(

1
gi j +g′i j

+
1

gi j
)−ρ j

(
R2

i j(
∂ω

∂ρ
) j +(

∂κ

∂ρ
) j

)
(

1
gi j +g′i j

+
1

g′i j
)+1

}
+

δi j

wi

{ [
2(

∂ω

∂ρ
)iWi +2(

∂κ

∂ρ
)iUi

]
+ρi

[
(
∂ 2ω

∂ρ2 )iWi +(
∂ 2κ

∂ρ2 )iUi

+(
∂κ

∂ρ
)i(

∂κ

∂ρ
)iAi +(

∂ω

∂ρ
)i(

∂ω

∂ρ
)iCi +2(

∂ω

∂ρ
)i(

∂κ

∂ρ
)iBi

] }
,

(24)

f γρ

i j =
∂ 2EVV10

∂γi∂ρ j
= ρi(

∂ω

∂γ
)iR2

i jΦi j

[
ρ j

(
R2

i j(
∂ω

∂ρ
) j +(

∂κ

∂ρ
) j

)( 2
(gi j +g′i j)

2 +
2

gi jg′i j

)
− (

1
gi j +g′i j

+
1

gi j
)
]

+
δi j

wi

[
(
∂ω

∂γ
)iWi +ρi(

∂ 2ω

∂γ∂ρ
)iWi +ρi(

∂ω

∂γ
)i(

∂κ

∂ρ
)iBi +ρi(

∂ω

∂γ
)i(

∂ω

∂ρ
)iCi

]
,

(25)

f ργ

i j =
∂ 2EVV10

∂ρi∂γ j
= ρ j(

∂ω

∂γ
) jR2

i jΦi j

[
ρi

(
R2

i j(
∂ω

∂ρ
)i +(

∂κ

∂ρ
)i

)( 2
(g′i j +gi j)2 +

2
g′i jgi j

)
− (

1
g′i j +gi j

+
1

g′i j
)
]

+
δi j

wi

[
(
∂ω

∂γ
)iWi +ρi(

∂ 2ω

∂γ∂ρ
)iWi +ρi(

∂ω

∂γ
)i(

∂κ

∂ρ
)iBi +ρi(

∂ω

∂γ
)i(

∂ω

∂ρ
)iCi

]
,

(26)

f γγ

i j =
∂ 2EVV10

∂γi∂γ j
= ρiρ j(

∂ω

∂γ
)i(

∂ω

∂γ
) j(R2

i j)
2
Φi j(

2
(gi j +g′i j)

2 +
2

gi jg′i j
)

+
δi j

wi
ρi((

∂ 2ω

∂γ2 )iWi +(
∂ω

∂γ
)2Ci).

(27)

Here, Ai, Bi and Ci are integrals that are similar to Ui and Wi:

Ai = ∑
j

2w jρ jΦi j(
1

(gi j +g′i j)
2 +

1
(gi j +g′i j)gi j

+
1

g2
i j
), (28)

Bi = ∑
j

2w jρ jΦi jR2
i j(

1
(gi j +g′i j)

2 +
1

(gi j +g′i j)gi j
+

1
g2

i j
), (29)
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Ci = ∑
j

2w jρ jΦi j(R2
i j)

2(
1

(gi j +g′i j)
2 +

1
(gi j +g′i j)gi j

+
1

g2
i j
). (30)

Similarly to the nuclear gradient, the nuclear Hessian can be split into nine terms:

EAB =∇B∇AE

=EAB
G,G +EAB

w,w +EAB
gr,gr +EAB

w,G +EAB
gr,G +EAB

G,w +EAB
gr,w +EAB

G,gr +EAB
w,gr

=EAB
G,G +EAB

w,w +EAB
gr,gr +EAB

w,G +(EAB
w,G)

⊺+EAB
gr,G +(EAB

gr,G)
⊺+EAB

gr,w +(EAB
gr,w)

⊺.

(31)

EAB
w,w =∑

i
(wAB

i )ρi
(
β +Ei

)
+∑

i
wA

i ⊗ρiEBw
i , (32)

EAB
w,gr =∑

i
wA

i ⊗ρiE
Bgr
i , (33)

EAB
G,w =∑

i
wB

i ⊗ [ f ρ

i ρ
A
i + f γ

i γ
A
i ] (34)

+∑
i

wiρ
A
i ⊗

[
EBw

i +ρi[(
∂κ

∂ρ
)iUBw

i +(
∂ω

∂ρ
)i ⊗WBw

i ]
]

(35)

+∑
i

wiγ
A
i ⊗ρi(

∂ω

∂γ
)iWBw

i , (36)

EAB
G,gr =∑

i
wiρ

A
i ⊗

[
EBgr

i +ρi[(
∂κ

∂ρ
)iU

Bgr
i +(

∂ω

∂ρ
)iW

Bgr
i ]

]
(37)

+∑
i

wiγ
A
i ⊗ρi(

∂ω

∂γ
)iW

Bgr
i , (38)

EAB
gr,gr =∑

i∈A
wiρiDB

i if A ̸= B and EAA
gr,gr =− ∑

B ̸=A
EAB

gr,gr, (39)

EAB
G,G =∑

i
wi

[
f ρ

i ρ
AB
i + f γ

i γ
AB
i +ρ

A
i ⊗∑

j
w j( f ρρ

i j ρ
B
j + f ργ

i j γ
B
j )+ γ

A
i ⊗∑

j
w j( f γρ

i j ρ
B
j + f γγ

i j γ
B
j )
]
.

(40)

wAB
i , ρAB

i , and γAB
i are the Hessian of wi, ρi, and γi with respect to the change of atoms A and B.

EBw
i , EUw

i , EWw
i , EBgr

i , EUgr
i , and EWgr

i are all integrals in the form of three-element vectors (for

x, y, z directions). Di is a three-by-three matrix. They can be calculated through the following

equations.
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EBw
i =∑

j
wB

j ρ jΦi j, (41)

UBw
i =−∑

j
wB

j ρ jΦi j(
1

gi j +g′i j
+

1
gi j

), (42)

WBw
i =−∑

j
wB

j ρ jΦi jR2
i j(

1
gi j +g′i j

+
1

gi j
), (43)

EBgr
i =


−2∑ j∈B w jρ jΦi j(

ωi
gi j

+
ω j
g′i j

+
ωi+ω j
gi j+g′i j

)(r j − ri), i /∈ B

−∑C ̸=B ECgr
i , i ∈ B

(44)

UBgr
i =


2∑ j∈B w jρ jΦi j

[
( ωi

gi j
+

ω j
g′i j

+
ωi+ω j
gi j+g′i j

)( 1
gi j+g′i j

+ 1
gi j
)

+
(

ωi
g2

i j
+

ωi+ω j
(gi j+g′i j)

2

)]
(r j − ri), i /∈ B

−∑C ̸=B UCgr
i , i ∈ B

(45)

WBgr
i =


2∑ j∈B w jρ jΦi j

[
R2

i j(
ωi
gi j

+
ω j
g′i j

+
ωi+ω j
gi j+g′i j

)( 1
gi j+g′i j

+ 1
gi j
)

+R2
i j

(
ωi
g2

i j
+

ωi+ω j
(gi j+g′i j)

2

)
− ( 1

gi j+g′i j
+ 1

gi j
)
]
(r j − ri), i /∈ B

−∑C ̸=B WCgr
i , i ∈ B

(46)

DB
i =−2 ∑

j∈B
w jρ jΦi j

[
2
[
(

ωi

gi j
+

ω j

g′i j
+

ωi +ω j

gi j +g′i j
)2 +(

ωi

gi j
)2 +(

ω j

g′i j
)2

+(
ωi +ω j

gi j +g′i j
)2
]
(r j − ri)⊗ (r j − ri)− (

ωi

gi j
+

ω j

g′i j
+

ωi +ω j

gi j +g′i j
)I3

]
, i /∈ B

(47)

Here the symbol ⊗ represents the outer product of two vectors and I3 is the three-by-three identity

matrix.

The nuclear derivative of the Fock matrix can be also split into three terms:

FA
µν = ∇AFµν = FA

µν ,G +FA
µν ,w +FA

µν ,gr, (48)

FA
µν ,G = ∑

i
wi

[
f ρ

i ∇A(φµφν)i +2 f γ

i ∇A[∇ρ ·∇(φµφν)]i

]
+∑

i
wi

[
φµiφν i ∑

j
w j[ f

ρρ

i j ρ
A
j + f ργ

i j γ
A
j ]+2(∇ρ)i · [∇(φµφν)]i ∑

j
w j[ f

γρ

i j ρ
A
j + f γγ

i j γ
A
j ]
]
,

(49)

FA
µν ,gr = ∑

i
wiφµiφν i

[
EBgr

i +ρi[(
∂κ

∂ρ
)iUBgr

i +(
∂ω

∂ρ
)iWBgr

i ]
]

+2∑
i

wi(∇ρ)i · [∇(φµφν)]iρi(
∂ω

∂γ
)iWBgr

i ,

(50)
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FA
µν ,w = ∑

i
(∇Awi)

[
f ρ

i φµiφν i +2 f γ

i (∇ρ)i · [∇(φµφν)]i

]
+∑

i
wiφµiφν i

[
EAw

i +ρi

[
(
∂κ

∂ρ
)iUAw

i +(
∂ω

∂ρ
)iWAw

i

]]

+2∑
i

wi(∇ρ)i · [∇(φµφν)]i

[
ρi(

∂ω

∂γ
)iWAw

i

]
,

(51)

where the dot symbol · represents the dot product of two vectors.

When implementing the equations above, we have adopted some important optimizations to

improve efficiency. For example, translational invariance is employed to avoid or minimize some

computationally heavy tasks, like the computations of wA
i (i ∈ A), EBgr

i (i ∈ B), and EAA
gr,gr. Grid

screening technology is also used to avoid unnecessary calculations like ∑ j w j[ f
ρρ

i j ρB
j + f ργ

i j γB
j ]

when ρB and γB are under the precision threshold in this batch of j.

III. COMPUTATIONAL DETAILS AND TIME BENCHMARK

A. Computational details

We have selected a range of widely used density functionals, as well as a set of density func-

tionals containing the VV10 functional for the assessment of predicted frequencies. The tested

density functionals include

1. GGA (Rung 2): B97-D13, PBE67;

2. mGGA (Rung 3): B97M-V28, SCAN68, r2SCAN69, M06-L70;

3. hybrid GGA (Rung 4a): ωB97X-D71, CAM-B3LYP72, ωB97X-V27, HSE-HJS73,74, B3LYP75,76;

4. hybrid mGGA (Rung 4b): BMK77, M06-SX78, M06-2X79, ωB97M-V29, SCAN080.

The D3(BJ) empirical correction15 is added to any functional without its own dispersion compo-

nent.

We benchmarked the performance of these functionals for predicting harmonic frequency TBEs

on the data sets shown in Table I and used their theoretical best geometries (TBGs) as the starting

geometries of the optimization.

Q-Chem 5.4 and Q-Chem 6.0 were used to perform all of the calculations.93 In Section IV A,

the def2 basis set family94,95 (def2-SVP, def2-SVPD, def2-TZVP, def2-TZVPD, def2-QZVPP, and
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TABLE I: Summary of data sets used for benchmarking the performance of density functionals

for predicting harmonic frequencies.

Data set Subset Name
Computational method

to generate TBEs

Computational method

to generate TBGs

Number of molecules

(or conformations)

Number of

frequencies

Covalent Set

HFREQ201481,a CCSD(T*)-F12c/cc-pVQZ-F12 CCSD(T*)-F12c/cc-pVQZ-F12 30 112

Diatomic82,b
CCSD(T)(:κ-OOMP2)c/

aug-cc-pwCVTZ84,85

CCSD(T)(:κ-OOMP2)/

aug-cc-pwCVTZ
70 70

Noncovalent Set

H2O86,d CCSD(T):MP2e/haQZf CCSD(T):MP2/haQZ 7 282

V3088,g CCSD(T)/haQZ CCSD(T)/haQZ 30 331

H2S89,h CCSD(T)/aug-cc-pVQZ CCSD(T)/aug-cc-pVQZ 1 12

N2O90,i CCSD(T)-F12b/cc-pVQZ-F12j CCSD(T)-F12b/cc-pVQZ-F12 4 36

CO291,k CCSD(T)-F12b/cc-pVTZ-F12 CCSD(T)-F12b/cc-pVTZ-F12 2 24

P92,l CCSD(T)/aug-cc-pVTZ CCSD(T)/aug-cc-pVTZ 5 79

At total 149 946

a A set of common small molecules with high-quality benchmark values. We discarded the CH3OH molecule

because its geometry is not reported clearly in the original paper.
b A set of diatomic molecules containing more diverse elements than the HFREQ2014 set. We split it into a

restricted subset (DiatomicR, which has 25 frequencies) and an unrestricted subset (DiatomicU, which has 45

frequencies).
c CCSD(T) based on κ-OOMP2 orbitals.83

d A set of water clusters ranging in size from the trimer to four different isomers of the hexamer.
e 2-body:Many-body CCSD(T):MP2 theory87

f aug-cc-pVQZ basis set for non-hydrogen atoms and cc-pVQZ for hydrogen atoms.
g A set of molecular dimers with different polarity combinations (polar-polar, polar-nonpolar, and

nonpolar-nonpolar).
h H2S dimer.
i A set of 4 dimers incorporating N2O.
j O2-N2O is an exception which is calculated by UCCSD(T)-F12b/cc-pVTZ-F12 method.
k CO2 – CO dimer and CO2 – NH3 dimer that are not in the V30 set
l A set of P2 dimer and PCCP dimers in different point group symmetries.

def2-QZVPPD) is used to study the basis set convergence, and the standard grids96,97 (SG-0/1/2/3)

in Q-Chem and their parents [(23, 170), (50, 194), (75, 302), (99, 590)] are used to study the grid

convergence. Here (X, Y) means a radial grid with X points and an angular Lebedev grid with Y

points. After that, all the calculations employ the (99,590) grid for local functional (XC) integrals

and SG-1 for nonlocal VV10 correlation (NL).
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It is worth noting that optimizing the geometries of molecules in the Noncovalent Set proved to

be quite challenging due to obtaining imaginary frequencies at a fraction of the optimized geome-

tries. To eliminate imaginary frequencies, we have attempted a variety of techniques to refine the

optimized geometries, including altering convergence thresholds, employing the exact Hessian,

perturbing the geometries, and so on. The details are described in the Supporting Information.

B. Time benchmark

As described in Section II B, we can divide a frequency job into different computational tasks:

self-consistent field (SCF) energy, orbital Hessian contributions (G), nuclear Hessian (Hess), and

Fock nuclear derivative (Fnuc). For each task, we need to construct matrix contributions from the

XC, NL, and Coulomb and HF exchange (JK) parts individually. Here we report the parallel effi-

ciency and time scaling with respect to basis set size and molecule size for ωB97M-V frequency

calculations in our implementation. All timing jobs were run on a single Haswell node of the

NERSC supercomputer. Each Haswell node (Intel Xeon Processor E5-2698 v3) has two sockets,

each populated with a 2.3 GHz 16-core Haswell processor. These timings reflect OpenMP perfor-

mance up to 32 physical cores, as well as system-size scaling for our current implementation.

From Figure 1(a), the parallel efficiency of the NL part is as good as for the XC part and we

can still get an appreciable speedup between 16 and 32 physical cores. While it is not the topic of

this work, we see that the parallel efficiency of the JK terms is not good, and suggests that these

codes would benefit from restructuring. Figure 1(b) and 1(c) displays the elapsed time of those

tasks which take more than 1% of total wall time. It is clear that only the orbital Hessian (G) of

the NL part takes more than 1% of the total wall time. Encouragingly, this is still less than the

XC part and likewise is less than 10% of total wall time except for the smallest basis set, 6-31G*.

The total wall time and time scaling are both dominated by the JK part, which appears to reflect

its relatively poor parallel scaling as already discussed.

From Figure 1(b) and Table S1.1, we can see that the elapsed time for the NL part of all tasks

grows sublinearly with respect to the number of basis functions (Nbasis) (i.e. increasing basis set

size for fixed molecule size). This is because the dominant step of the NL calculations is mainly

the double integral, which is not related to the basis set. The scalings of wall time with respect

to the molecule size (M, the number of non-hydrogen atoms) in alanine poly-peptide systems are

around O(M3.0), O(M3.44), and O(M2.77) for Fnuc, G, and Hess respectively. They can be further
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FIG. 1: Wall time for calculating the analytic frequencies with ωB97M-V under different

conditions: (a) (H2O)6 using the def2-SVPD basis set as a function of the number of physical

cores. (b) (H2O)6 system using different basis sets (6-31g*, def2-SVPD, def2-TZVPD,

def2-TZVPPD, def2-QZVPP, def2-QZVPPD in order of increasing size), in calculations using 32

physical cores. (c) alanine polypeptide systems using the def2-SVPD basis set with 32 physical

cores. We use benchmark-level accuracy for (a) and (b), with (99, 590)/SG-1 as the XC/NL grid

type and 10−14 as the integral threshold, and routine production-level protocol for (c), with

SG-2/SG-0 as the XC/NL grid type and 10−10 as the integral threshold.

reduced to O(M2.84), O(M2.90), and O(M2.73) if only fitting the data with 20 and 30 non-hydrogen

atoms, indicating the optimized code performs very well with the SG-0 grid.
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IV. RESULTS AND DISCUSSION

A. Basis set and grid convergence

We explored the basis set and quadrature grid convergence of harmonic frequencies evaluated

with B97M-V, ωB97X-V, and ωB97M-V functionals at their optimized geometries (OptGs) and

compared them with B97-D and B3LYP-D3(BJ). These calculations used the (99, 590) XC integral

grid, and the SG-1 NL grid. From Figure 2, it is evident that basis set convergence for water

clusters is more difficult than for the HFREQ2014 set. The difference in root-mean-squared errors

(RMSEs) obtained with def2-TZVP and def2-QZVPPD basis sets for the HFREQ2014 set is at

most 4 cm−1, around 10% of the method error. In contrast, the larger def2-TZVPPD basis is

needed to achieve the same accuracy for the H2O set. As a result, we recommend def2-TZVP for

common chemically-bonded systems and def2-TZVPPD for systems with noncovalent interactions

such as water clusters.
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FIG. 2: Comparison of the RMSEs (cm−1) of several basis sets relative to TBEs using the

optimized geometries against their average number of basis functions (for the HFREQ2014 data

set) or the number of functions on a single water molecule (for the H2O cluster data set) (Nb f )

Tested basis sets include def2-SVP, def2-SVPD, def2-TZVP, def2-TZVPD, def2-TZVPPD,

def2-QZVPP, def2-QZVPPD, and haQZ (only for the H2O set).

Figure 3 displays the RMSEs produced with different grids on the HFREQ2014 data set. It

turns out that quadrature grid convergence is quite easy to achieve for simulating frequencies. If

we regard 1 cm−1 of RMSE difference with the biggest tested grid as the accepted threshold, then

SG-2 is large enough for semi-local XC integrals and SG-0 is large enough for the nonlocal (NL)
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integrals of VV10. The smaller SG-1 grid for XC integration can also offer an RMSE difference

of at most 4 cm−1. Table II and Table S1.3 further validate this conclusion on the H2O set and

the DiatomicU set. We only found that the XC part of B97M-V is a little more sensitive to the

grid type, especially the pruning associated with the use of standard grids. For example, SG-3 is

a pruned subset of (99, 590) grid and its performance is expected to be fairly similar to (99, 590)

and better than (75, 302). However, the difference between RMSEs obtained with SG-3/SG-1

and (99, 590)/SG-1 on the H20 data set is 2.42 cm−1, much bigger than the difference between

(75, 302)/SG-1 and (99, 590)/SG-1 (0.66 cm−1). One possible reason is that SG-3 removes some

grid points far away from the nucleus, which are important to describe hydrogen bonds. From

Table S1.3, we can see that the low frequencies (< 1000 cm−1) are more affected than the high

frequencies (≥ 1000 cm−1). Therefore, we recommend the SG-2/SG-0 grid combination for com-

mon functionals on chemically-bonded systems and (75, 302)/SG-1 for sensitive functionals on

hydrogen-bonding systems, provided that SCF and CPSCF can be converged. It’s worth noting

that purely dispersion-bound systems such as Ar2 and He2 may require a larger grid according to

Ref 98. Additionally, some functionals, like SCAN, exhibit poor grid convergence behavior on

all systems, as shown in Figure S18 of Ref 98. In fact, we also tested SCAN on the HFREQ2014

dataset using (99, 590) and (250, 974) grids, and the RMSE difference is as high as 8 cm−1.
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FIG. 3: Comparison of the RMSEs (cm−1) of several grid types for XC and NL functionals

relative to TBEs using the optimized geometries against the number of grid points for one carbon

atom on the HFREQ2014 set. Tested grid types include the standard grids (SG-0/1/2/3) in

Q-Chem and their parents [(23, 170), (50, 194), (75, 302), (99, 590)].
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TABLE II: Comparison of the RMSEs (cm−1) of several grid types for some representative

functionals relative to TBEs using the optimized geometries on the H2O set. For B97-D and

B3LYP-D3(BJ), only one entry is displayed at each XC grid level since they have no NL

component.

XC/NL Grid Type B97-D B97M-V B3LYP ωB97X-V ωB97M-V

SG-2/SG-0 112.72 16.92 63.31 22.72 29.31

SG-3/SG-0 113.19 13.71 63.71 22.72 29.48

SG-3/SG-1 13.67 22.70 29.22

(75, 302)/SG-1 11.91

(99, 590)/SG-1 113.35 11.25 63.57 22.74 29.08

(99, 590)/(50,194) 11.26 22.75 29.08

B. Effect of VV10

Figure 4 compares the RMSEs of B97M-V, ωB97X-V, and ωB97M-V with VV10, without

VV10, and with D3(BJ) [namely replacing VV10 with D3(BJ)]. The inclusion of the dispersion

correction [both D3(BJ) and VV10] has a minimal impact on the Covalent Set and a slightly bigger

impact on the Noncovalent Set. Therefore, the following analysis is based on the Noncovalent Set

and should be suitable for molecules with non-covalent interactions. For B97M-V, both D3(BJ)

and VV10 can lower the RMSEs of low frequencies and high frequencies, implying the importance

of dispersion correction on a semi-local functional such as B97M-V. For ωB97X-V and ωB97M-

V, the high-frequency RMSEs are increased with both D3(BJ) and VV10, while the low-frequency

RMSEs are reduced with VV10. If we compare the RMSEs on each subset (Figure S1), we can

see VV10 is able to improve the low-frequency predictions on all Noncovalent subsets, which

is consistent with VV10’s goal of better describing long-range correlation predictions, namely

weak interactions. However, the consistent improvement is small and only exists at the optimized

geometries in this work.
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FIG. 4: Comparison of the RMSEs (cm−1) of low frequencies (< 1000 cm−1) and high

frequencies (≥ 1000 cm−1) of B97M-V, ωB97X-V, and ωB97M-V with VV10, without VV10,

and with D3(BJ) [replacing VV10 with D3(BJ)] relative to TBEs at the optimized geometries on

the Covalent set (with def2-TZVP for the HFREQ2014 subset and aug-cc-pwCVTZ for the

Diatomic subsets) and Noncovalent Set (with aug-cc-pVTZ for the P subset, the def2-QZVPP for

the H2O and V30 sets, aug-cc-pVQZ for the H2S set, and the def2-QZVPPD for the N2O and

CO2 sets)

C. Comparison of functionals on all data sets

Figure 5 shows some recent or popular functionals’ performance at theoretical best geometries

(TBGs) and optimized geometries (OptGs). The SCF for M06-L cannot be converged for some

radicals, and thus M06-L results for the Covalent Set are not presented. The D3(BJ) empirical

correction is added to any functional without its own dispersion component.

The first striking outcome of Figure 5 is that the RMSEs of all functionals at TBGs are sig-

nificantly lower than those at OptGs for predicting high frequencies. We tend to always perform

frequency calculations at the optimized geometry because this is essential to reliably character-

ize stationary points and avoid imaginary frequencies. One might also believe that there exists

cancellation of method error and geometry error at the optimized (i.e., equilibrium) geometry of

the same-level method and thus frequency prediction could be more accurate. This is consistent

with our results for low frequencies, especially on the Noncovalent Set, where a lot of imaginary

frequencies appear at TBGs. However, this is clearly not true for simulating high frequencies.

One possible explanation is that the high frequencies imply that the potential energy surface (PES)

curve is steep and sensitive to even very small structure changes. Therefore, a better geometry
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FIG. 5: Comparison of the RMSEs (cm−1) of low frequencies (< 1000 cm−1) and high

frequencies (≥ 1000 cm−1) of different functionals relative to TBEs using TBGs and optimized

geometries (OptGs) on the Covalent Set and Noncovalent Set (with the same basis sets as

Figure 4). The results are organized left to right in order of increasing RMSE using TBGs on

each rung of Jacob’s Ladder. The D3(BJ) empirical correction is added to any functional without

its own dispersion component.

will improve frequency prediction. Given that geometry optimization consumes less computa-

tional resources than frequency calculations, it can therefore be useful to geometry optimize with

a more accurate (and more expensive) method than that used for frequency evaluation when high

frequencies (≥ 1000 cm−1) are of primary interest.

Turning to the performance of individual functionals, the conclusions are very different for the

Covalent Set and Noncovalent Set. It is evident from Figure 5 and Figure S2 that B3LYP offers

the overall smallest RMSEs at TBGs and nearly the smallest RMSEs at OptGs on the Covalent

Set. While we do notice a significant improvement of all mGGAs relative to GGAs (B97-D and

PBE), Jacob’s Ladder99 is partially violated since the best hybrid mGGAs (ωB97M-V and M06-

SX) are not better than the best hybrid GGA (B3LYP). In fact, r2SCAN, a semi-local mGGA, is

the second-best functional at TBGs and can slightly outperform B3LYP at OptGs. It is possible

that present functionals like B3LYP or r2SCAN might have reached the maximum capability of

semi-local/hybrid DFT to predict the frequencies of common small molecules. It is also possible

that the hybrid mGGAs can be further improved because of their enormous functional flexibility.1

The molecules included in the Covalent Set are too small for intramolecular dispersion to be

significant, and therefore the effect of the VV10 component of the tested functionals is very small
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as discussed in the previous subsection. However, the situation changes for the intermolecular

interactions associated with the Noncovalent Set. Firstly, the inclusion of many low-frequency

vibrations causes the overall RMSE at OptG to be smaller than the RMSE at TBG. Secondly, we

observe dramatic improvements in frequency prediction in the VV10-containing functionals using

OptGs. Figure 5 shows that B97M-V (overall RMSE of 29.4 cm−1) dramatically outperforms

r2SCAN (RMSE of 59.3 cm−1) at the mGGA level and both ωB97M-V (RMSE of 32.3 cm−1)

and ωB97X-V (RMSE of 35.4 cm−1) outperform B3LYP (RMSE of 41.0 cm−1) significantly

at the hybrid level. When we look at each subset separately in Figure S3, we can observe that

the main advantage of the VV10-containing functionals comes from the H2O set. Figure S4

also shows that VV10-containing functionals describe dipole-dipole interactions better than pure

dispersion. This is a surprising result that seems at odds with the design goal of using VV10 to

better describe weak interactions, and could merit further studies, and/or support the idea of using

(finite difference) frequency information in the development of future functionals.

D. Scaling Factors for New Developed Functionals

The data presented in previous sections are all based on the comparison of calculated harmonic

frequencies and corresponding TBEs. However, in practice, many researchers prefer to employ

scaled harmonic frequencies to approximate (anharmonic) experimental fundamental frequencies

and to evaluate the zero-point vibrational energy (ZPVE). Therefore, we present the scaling factors

and after-scaling RMSEs of some recent functionals (i.e., SCAN, r2SCAN, B97M-V, ωB97X-V,

ωB97M-V, SCAN0, M06-SX, and HSE-HJS) with the def2-TZVP basis set in Table III. For a

detailed error display, please see Table S1.6. The data set used here is from ref 56 and most TBGs

are from the HFREQ2014 set. Only CH3OH TBG is from CCCBDB, optimized by CCSD(T)/aug-

cc-pVTZ, and unrestricted species TBGs are from the DiatomicU set.

As shown in Table III, RMSEs at TBGs are larger than those at OptGs for predicting fundamen-

tal frequencies but smaller for predicting ZPVEs. Although no modern functional can outperform

B3LYP (RMSE of 19.44 cm−1 at OptGs), scaling significantly lowers functional sensitivity for

fundamentals (the biggest RMSE at OptGs is just 28.3 cm−1 here). Similar findings hold true for

ZPVEs, however, r2SCAN can provide RMSE that is comparable to B3LYP at TBGs and even

smaller at OptGs. Compared with the result of ref 56, the optimal scaling factors of most func-

tionals for fundamental frequencies and ZPVE are still around 0.96 and 0.98 respectively. Note
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TABLE III: The scaling factors (λ ) of some recent functionals with the def2-TZVP basis set for

predicting fundamental frequencies and zero-point vibrational energy (ZPVE), and their RMSEs

(cm−1 for frequency and kcal/mol for ZPVE) after scaling. The D3(BJ) empirical correction is

added to any functional without its own dispersion component. Note that SCAN is tested at the

same grid type (99,590) as other functionals rather than at its own converged grid type.

Property Result SCAN r2SCAN B97M-V ωB97X-V SCAN0 M06-SX HSE-HJS ωB97M-V B3LYP

fundamental

frequency

TBG
λ 0.962 0.962 0.963 0.952 0.954 0.959 0.957 0.959 0.964

RMSE 30.9 28.4 28.1 30.7 35.6 31.2 32.4 28.5 25.6

OptG
λ 0.963 0.967 0.957 0.954 0.941 0.949 0.958 0.958 0.967

RMSE 27.6 21.5 27.8 25.4 25.3 28.3 25.5 24.5 19.4

ZPVE

TBG
λ 0.988 0.989 0.984 0.977 0.973 0.979 0.984 0.984 0.989

RMSE 0.105 0.057 0.099 0.080 0.114 0.101 0.073 0.084 0.056

OptG
λ 0.986 0.991 0.980 0.978 0.965 0.972 0.983 0.983 0.990

RMSE 0.123 0.085 0.133 0.128 0.148 0.148 0.117 0.115 0.092

that the data set only involves small molecules here so it is not clear how well these conclusions

will transfer to larger systems with significant noncovalent interactions.

V. CONCLUSIONS

In this work, we have formulated and efficiently implemented the analytical second derivatives

of the nonlocal (NL) correlation functional, VV10. Tests of our OpenMP NL implementation es-

tablish that its parallel performance is quite good out to at least 32 cores. Furthermore, aside from

the smallest basis sets, we have shown that the computational time for the NL part is negligible

compared with that of the entire job.

As an application of the new analytical derivative code, we have also examined the performance

of some recent or popular functionals for molecular vibrational frequencies. The assessment work

builds on a number of previous efforts to establish benchmark data sets, which we have compiled

into a Covalent Set and a Noncovalent Set. The Covalent Set contains small molecules without

weak interactions while the Noncovalent Set can represent chemical systems containing weak in-

termolecular interactions. As shown in Table IV, our conclusions are different for these two kinds

of systems. While VV10-containing functionals provide little or no advantage in the accuracy of
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harmonic frequencies for small molecules, recent functionals such as B97M-V, ωB97X-V, and

ωB97M-V provide very significant improvements for harmonic frequencies in polar molecular

complexes. It is a fascinating question as to whether those same advantages will hold for vibra-

tional frequencies in larger molecules. At the moment, a lack of suitable benchmarks for such

molecules prevents an answer.

Finally, we also examined scaling factors for harmonic vibrational frequencies to permit direct

comparison against (anharmonic) experimental fundamental vibrational frequencies and to evalu-

ate the ZPVEs. B3LYP-D3(BJ) provides the smallest RMSE after scaling although the importance

of functional choice is greatly reduced by scaling, at least for the small molecules which we have

assessed.

TABLE IV: Broad conclusions and recommendations for simulating molecular harmonic

frequencies (and ZPVE) for small molecules and weakly interacting systems. Note that choice of

functional is less important if frequencies are scaled to compare against experiments, at least for

small molecules.

Conclusions Small molecules Weak-interaction systems

Recommended

basis set
def2-TZVP def2-TZVPPD (or larger)

Recommended

XC/NL grid
SG-2/SG-0

SG-2/SG-0 typically but (75, 302)/SG-1

for sensitive functionals

Effect of VV10 minimal helpful for low-frequencies

Recommended functional B3LYP-D3(BJ), r2SCAN-D3(BJ) B97M-V, ωB97X-V, ωB97M-V
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