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Statistical Biophysics in Global Disease

Abstract

This dissertation develops physical and mathematical models for the trypanosome para-

site’s mitochondrial DNA and for SARS-CoV-2 mutagenesis. In the case of the trypanosome

parasite, we introduce a liquid-crystal based knotting model to improve upon two earlier,

purely mathematical models for minicircle topology that were proposed by Chen, Arsuaga,

and their colleagues. In chaps. 1 and 3, we provide a detailed review of these models and their

extensions, explaining the biological evidence for the model assumptions and discussing their

performance in predicting topological quantities like linking probability and mean valence.

Then, in chap. 2, we introduce an orientational energy—the Lebwohl-Lasher model—that

reproduces the order of its kinetoplast “minicircles” (mitochondrial DNA plasmids).

We develop a mean-field theory (MFT) for this model, which predicts a field-parallel

pseudo-transition in the quadrupolar 〈Q0〉 order parameter. We then expand on this analysis

with Markov-chain Monte-Carlo simulations. These results match the MFT predictions for

most temperatures and they predict pseudo-transitions at T ∗pc,0 = 0.5 and T ∗pc,2 = 1.1 (for

〈Q2〉). The latter crossover is particularly interesting because it breaks the systems symmetry

while remaining consistent with the Hohenberg-Mermin-Wagner theorem.

Our study of SARS-CoV-2 spike (S) mutagenesis addresses the question of whether or

not the S477N substitution in the protein’s important “receptor-binding domain” provides a

binding improvement consistent with its empirically observed fitness advantage in worldwide

genomic data. We use 3-D modeling, molecular dynamics simulations, and binding free-

energy calculations to show that the S477N substitution likely improves fitness, consistent

with the population behavior.
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Preface & Dedication

What is worth a grown man’s or woman’s time?

In 2015 in my last semester of Boston College’s Arts & Sciences Honors Program, Pro-

fessor Mark O’Connor asked our class to read Michel de Montaigne’s “On the Education of

Children.” Prof. O’Connor told me that it was particularly important that I read this essay

as an aspiring physicist, because he wanted me to develop an appreciation for intellectual

breadth and interdisciplinary just at the moment when I was to begin diving deeply into the

technical knowledge of physics.

“I was a researcher, and am one still, but I no longer

look in the stars or in books. I am starting to listen

to what murmers in my own blood.”

—Demian, Herman Hesse

Prof. O’Connor’s primary message was that our personal development should occur hand-

in-hand with the intellectual kind. As a scientist my learning from papers and seminars will

continue throughout my career—as will my hopeless attempt to check off every title on his

“lifetime reading list,” (those Great Books of philosophy, literature, and religion). In line

with Prof. O’Connor’s advice, even as I have become a Doctor of Philosophy in physics, so

too have I taken steps to “learn to live” in this life, as Hemingway puts it in The Sun Also

Rises. This dissertation is dedicated to those role models who taught me the questions to

ask in order to lead a “life well lived,” and, indeed, to the same persons, who demonstrated

what such lives look like: Mark O’Connor and Jim Keenan.
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CHAPTER 1

Introduction

1.1. An Overview of Kinetoplast Biology

As disease-causing parasites, trypanosomes attracted significant interest among biologists

well before their complex mitochondrial DNA was discovered. The invention of transmission-

electron microscopy in the 1930s and the development of effective ultra-microtomes in the

early 1950s [PB53] provided biologists with adequate tools to study the sub-cellular struc-

tures of trypanosomes. In 1958 Meyer and colleagues reported the first thin-section images

of Trypanosoma cruzi [RN58], the parasite responsible for Chagas disease. Although the

kinetoplast had already been identified via light microscopy, its purpose was still unknown.

Meyer and colleagues showed that the kinetoplast contains electron-dense material; com-

bined with a study by Steinert and colleagues in the same year showing the incorporation

of 3H thymidine [SHM58], biologists concluded that the kinetoplast contains DNA. In the

1960s, Delain showed that kDNA is comprised of circular DNA molecules, which could be

topologically linked, or “catenated” [DG69,DP67].

In Trypanosoma brucei and Trypanosoma cruzi, kDNA is partitioned into thousands of

circular DNA molecules called minicircles and several larger maxicircles. Maxicircles contain

genes associated with mitochondrial function (reviewed in [JSE08]) and minicircles tran-

scribe RNA that edits the transcription products of the maxicircles (reviewed in [Gor08]).

Both minicircles and maxicircles vary in size among organisms and, sometimes, within an or-

ganism. In most trypanosomes minicircles range in size from 0.5 kb to 2.5 kb and maxicircles

from 20 kb to 40 kb [SE95]. Together, minicircles and maxicricles are spatially clustered in a
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small cylindrical volume—the kinetoplast discussed earlier—whose dimensions are correlated

with the size of the minicircles (reviewed in [Lea08]).

1.1.1. Experimental Evidence for Minicircle Topology. In this section we will dis-

cuss the experimental evidence for several key aspects of our model of kDNA topology. These

include: C. fasciculata minicircles are linked on average to three other circles (“mean va-

lence”); catenated minicircle dimers are limited to simple Hopf links—where the two strands

cross over and under just one time; minicircle DNA is relaxed (non-supercoiled); the mini-

circle network is two-dimensional; and the kinetoplast has no visible structural changes in

the absence of maxicircles. These terms

Diao and his colleagues made an important modeling choice by deciding to treat mini-

circles as rigid, geometrical circles [DHK+12]. They believed that this simplification would

still allow the model to capture the topological properties of the system. Their choice is

supported by the experimental results produced by Rauch and her colleagues in 1993, which

indicated that C. fasciculata minicircles are not supercoiled and that topological linkages

between two circles are of the simplest variety—Hopf links [Rea93]. We note that a Hopf

link is the only topological linkage available to a pair of rigid circles and that supercoiled

plasmids are more likely to follow complex trajectories.

Minicircles are linked via Hopf links.

Rauch and her colleagues determined that minicircles are linked only once by partially di-

gesting kinetoplasts with the restriction enzyme SstII, and then studying the resultant cate-

nated minicircle dimers under electron microscopy. SstII cleaves minicircles a single time,

and networks were analyzed after treatment using gel electrophoresis. The authors used

RecA-coating to visualize the DNA, and they note that this allows “rigorous evaluation of
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strand overlay at crossover points.” Ibrahim and colleagues produced results that were con-

sistent with those found by Rauch et al.—a singly linked minicircle dimer from Ibrahim’s

study is shown in Figure 1.1 [ILK+18].

Figure 1.1. A singly linked minicircle dimer

Minicircles are not supercoiled.

Prokaryotic DNA and mitochondrial DNA in eukaryotic cells is negatively supercoiled

due to excess torsional strain in the double helix. The typical superhelical density of a DNA

molecule is about +0.06 (right-handed over-twisting) [Rea93]. This means that the mole-

cule wraps about its backbone more than is energetically favorable in a counter-clockwise

direction with respect to the backbone. In Rauch’s study, the authors estimated the degree

of supercoiling in C. fasciculata minicircles by comparing minicircles released from the net-

work by sonification with free, 3H-labeled minicircles that had been previously relaxed by

topoisomerase-I. The authors separated the products by gel electrophoresis and quantified

the amount of kDNA belonging to each oligomer band. The authors used the linking num-

ber between the minicircles that were released from the network and the relaxed 3H-labelled

minicircles as a control.
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They found that more than 90% of the unlabeled minicircles (i.e, those treated with

topoisomerase-I) were either (1) nicked–i.e, a single-strand break—or (2) released from the

network (as intact circular monomers or linear molecules). They found that the average

superhelical density is +0.002, which represents a nearly relaxed right-handed over-twisting.

The mean valence of C. fasciculata minicircles is three.

As we mentioned earlier, Chen and his colleagues determined that the mean valence

of C. fasciculata minicircles is approximately three. This is a key result for our model’s

quantitative predictions. The authors used three different analysis methods to determine

this property of the kinetoplast, and they determined that the average value is ∠V 〉 = 2.96.

First, Chen and colleagues partially digested isolated (purified) C. fasciculata kDNA

networks with the restriction enzyme Xhol, which cuts each minicircle at a single location.

The authors partially digested minicircles into a Tris-borate-EDTA (TBE) gel, which allowed

them to fraction the minicircle oligomers. They then extracted the kDNA bands correspond-

ing to dimers and trimers from the gel and visualized the DNA via electron microscopy.

In addition, Chen and his colleagues used two other techniques that are similar to one

another to confirm this result. These graphs include the square, hexagonal, triangular planar

lattices and several others. Both techniques rely on the seven regular graphs that the authors

propose as candidate kDNA topology models. They use these models to make quantitative

predictions for the number of minicircle dimers and trimers that would be released from the

network as a function of restriction-enzyme concentration. The plots on which the authors

compare their experimental data to their theoretical predictions are shown in Fig. 1.2.

Results for the fractional release of minicircle dimers agree with the predictions of three

of the authors’ four valence-three graphs (and with none of the valence-four or valence-six

graphs). The trimer data is consistent with all four valence-three graphs, and possibly with

one of the valence-four graphs.
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Figure 1.2. Mean valence and the fractional release of minicircle oligomers
(adapted from [CRW+95])

C. fasciculata minicircles form a 2-D topological network.

As in Chen’s and Diao’s models, we treat the kinetoplast in our model as a two-dimensional

system. In other words, the centers of all of the minicircles fall within a plane. This

assumption is largely accepted and is supported by several pieces of biological evidence.

In-vivo studies using electron microscopy have determined that the C. fasciculata kineto-

plast is approximately 0.35 µm in thickness. In one of these studies, Ferguson and his col-

leagues used thin-section confocal microscopy to measure kinetoplasts stained with acridine

orange [FTWE92]. Now, the contour length of a C. fasciculata minicircle is approximately

833 nm. A geometrical circle of circumference 833 nm has diameter 0.27 µm. Similar calcula-

tions led Delain and Riou to predict that the kinetoplast contains a single layer of minicircles

(i.e, their centers are co-planar), which are stretched like rubber bands [DG69]. However,

these calculations do not rule out the possibility of a kinetoplast with a few topologically
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linked, compressed layers (i.e, where a minicircle is linked to circles whose centers are in

planes above and below it—not just to circles in its plane).

In order to rule out this non-two-dimensional case, Pérez-Morga and Englund used elec-

tron microscopy to visualize isolated networks [IME93]. The authors performed single-angle

metallic shadowing with a Pt-Pd alloy, and then coated grids with carbon in the presence of

ethidium bromide. After this, they coated the grids via photographic emulsion and imaged

them with a Zeiss 10 A/B EM. The isolated networks are visible as spread single-layer sheets

of linked plasmids (see Figure 1.3).

    

Figure 1.3. (Left) Electron micrograph of an isolated C. fasciculata kineto-
plast (scale bar 2 µm). The right image is an unspecified magnification of a
region of the first image [IME93].

These in-vivo size measurements and the in-vitro imaging of expanded networks still leave

open the possibility that networks that are 2-D when isolated are folded into several layers

inside the organism, reproducing the observed thickness. To rule out this last possibility,

Ferguson and colleagues performed in-situ hybridization with a fluorescently labelled A-track

probe (this binds to AT-rich regions of DNA) to identify nicked and gapped minicircles
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(with single- and double-stranded breaks, respectively) [FTWE92]. This probe hybridizes

efficiently only with non-intact minicircles.

Now, previous studies had established that non-replicating kinetoplasts consist solely

of closed minicircles and that partially replicated, isolated kinetoplasts contain nicked or

gapped minicircles around their peripheries only [Eng78]. So, Ferguson and his colleagues

showed that in-situ kinetoplasts could not be folded in such a way that their boundaries

would not be the same as the boundaries of isolated networks. In other words, the in-situ

networks that they observed were necessarily monolayer structures like the isolated networks.

We model the kDNA networks in the absence of maxicircles.

For our model we choose to neglect maxicircles, focusing solely on the kinetoplast’s

minicircles. As with the other assumptions discussed in this section, this choice is consistent

with Chen’s and Diao’s models. In C. fasciculata the number of maxicircles is only 0.5%

of the number of minicircles. Although no one has studied the topological properties of

kinetoplasts containing both minicircles and maxicircles, two teams—one led by Pérez-Morga

and the other by Hoeijmakers—have shown that isolated kinetoplasts deficient in maxicircles

do not exhibit any visible structural alterations.

Hoeijmakers and Weijers studied the species Trypanosoma brucei evansi, which naturally

lacks maxicircles [HW80]. The authors imaged the kDNA using negative-staining electron

microscopy technique.Briefly, Hoeijmakers and Weijers prepared a DNA-cytochrome C com-

plex in the presence of formaldehyde vapor, and then shadowed it with a Pt-Pd alloy. They

took images using a Philips EM300 microscope. The authors were unable to distinguish

isolated T. evansi networks from those of T. brucei, and the T. evansi networks had the

same sizes and shapes as the T. brucei networks.

Pérez-Morga and Englund performed electron microscopy on isolated C. fasciculata kine-

toplasts after treating the networks with the restriction enzyme SstI, which cuts maxicircles
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only—not minicircles [IME93]. In a similar fashion to Hoeijmakers and Weijers, these latter

authors observed no structural differences in these SstI-treated networks when compared to

C. fasciculata networks that were prepared in the same way but not treated with SstI.

1.1.2. The Tripartite Attachment Complex and the Energetics Model. This

project aims to answer one of the important outstanding questions that Jensen and En-

glund identified in their 2012 review: “How is the complicated and compact structure of the

kinetoplast and its associated machinery maintained? Does the TAC play a role? [JSE08]

As shown in Figure 1.4—and as implied by its name—the tripartite attachment complex

consists of three components. The first part binds the kinetoplast to the trypanosome’s in-

ner mitochondrial membrane (the “unilateral filaments”). The other two parts connect the

inner mitochondrial membrane to the outer membrane, and from there to the basal body,

which is the structure at the base of the organism’s flagellum. Together, the inner and outer

membranes are said to comprise the differentiated mitochondrial membranes.

Our direct knowledge about the TAC is limited. We have some information from mi-

croscopy studies [ILK+18], and we have a limited amount of knowledge with respect to

TAC biochemistry. Fortunately, most of this biochemical information pertains to our species

of interest, T. brucei, via the RNAi gene-disruption studies referenced in the remainder of

this section. In RNAi (“RNA interference”), a specific gene is silenced after translation via

the action of a cellular machine called the RNA-induced silencing complex (RISC), which

specifically binds and degrades the target mRNA transcript. We discuss the known protein

constituents of the T. brucei TAC in the following paragraphs.

The TAC component closest to the kinetoplast is TAC102 [ILK+18]. TAC102 is a

102-kDa protein involved in kDNA segregation—Trikin and colleagues have shown that cells

deficient in this protein produce offspring in which the majority of the kDNA stays with the

parent basal body [WHF+77]. p166 (166-kDa mass) was the first TAC protein identified,

and its RNAi knockdown exhibits a similar kDNA-segregation defect to TAC102 [WHF+77].
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Figure 1.4. The tripartite-attachment complex (grey filaments) and its
neighborhood: Minicircles are shown in dark orange, contained within the
mitochondrial membrane (in blue). The flagellum (at left), the basal body
(bottom portion of the flagellum), and the pro-basal body (on the right) are
shown in purple. All three of these latter structures are cylindrical.

p166 is acidic and localizes to the region between the inner membrane and the kDNA. In

the exclusion zone (the region outside the mitochondrion proximal to the basal body) there

are three known TAC proteins: p197, TAC65, and Mab22 [ZLRC+08]. p197 depletion

leads to a defect in kDNA segregation [GBZH13], and TAC65 also exhibits a kDNA-mis-

segregation phenotype [Kea16]. It is not known, however, whether either of these proteins

has a function beyond kDNA segregation. The final protein is known by the monoclonal

antibody that associates with it, Mab22, and is part of the cytoskeleton.

There are two known TAC proteins associated with the differentiated mitochondrial

membranes. TAC40 functions in segregation with a similar RNAi phenotype to that of

p166, although the kDNA structure shows no apparent changes under EM outside of a

change in size [Sea14]. TAC40 is an outer mitochondrial-membrane porin protein (which

facilitates intra-membrane transport), and it is closely related biochemically to another outer
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membrane protein, TAC60, which also has a segregation function [JSE08]. Finally, there

are two additional T. brucei proteins—the universal minicircle-sequence binding proteins

(UMSBPs)—that localize to the region of the TAC [JSE08]. However, these proteins are

not considered part of the TAC. Onn and colleagues have speculated that the UMSBPs play

a role in the initiation of kDNA replication through their binding to two minicircle sequences.

These proteins are tangential to the current study, and will not be discussed further.

The most natural protein to study from the perspective of our model is TAC102, because

it is the closest protein to the kinetoplast. TAC102’s impact on kDNA topology is unknown.

However, Trikin and his colleagues used thin-section electron-microscopy to show, in 2016,

Figure 1.5. TAC102-disrupted kinetoplast. The arrow indicates a non-2-D
region of kDNA. This kinetoplast is approximately 1µm in diameter [Tea16].

that when TAC102 is disrupted in T. brucei, the parallel striation of kDNA strands with

respect to the kinetoplast’s symmetry axis is preserved, even as the kinetoplast increases in

surface area and sometimes exhibits non-two-dimensional extensions (see Figure 1.5).
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1.2. Mathematical Models for kDNA Topology

In this section we describe our mathematical and computational models, which we use to

describe the minicircle network’s topology The topology of a minicircle network is determined

by two pieces of information: (1) the type of link connecting any two minicircles and (2)

the minicircle mean valence, i.e, the average number of minicircles that are linked to any

given circle . As discussed in the previous section, Rauch and her colleagues determined that

pairs of minicircles are linked only via Hopf links, and Chen and his colleagues found that

the mean valence of C. fasciculata minicircles is three. In this analysis, and in the studies

discussed in the following pages, one of our goals is to test the confinement hypothesis, which

postulates that the kDNA network’s topology results from packing the minicircles into a

limited volume. This hypothesis is consistent with theory and experimental results for other

macromolecules whose topological complexity increases upon confinement [ATV+02].

We made the following modeling assumptions, which are supported by the information

presented in the previous section:

(1) Biological assumption Maxicircles do not play a significant role in determining

kDNA topology.

(2) Biological assumption The minicircles forms a monolayer, i.e, the system is two-

dimensional.

(3) Biological assumption Minicircle valence is spatially uniform (homogeneous).

(4) Mathematical assumption The minicircle centers are located at the vertices of

a regular square lattice.

(5) Mathematical assumption The minicircles are treated as geometric circles of

unit radius.
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The second mathematical assumption imposes a distribution on the positions of minicircles.

Since the true distribution of minicircle centers is unknown, we choose to start with a sim-

plified model. This simplification is extremely helpful in developing a theoretical analysis

framework and, as we discuss in section 3.2, it does not significantly affect our results.

In the case of the third mathematical assumption, there are two possible interpretations.

First, minicircles might have a relatively simple, circular shape—this is consistent with two

experimental observations that were discussed in the previous section: (1) kDNA minicircles

are relaxed rather than highly supercoiled; and (2) the only observed type of link is the Hopf

link, which is the only possible link that can be formed with geometrical minicircles. In

the second interpretation, we model flexible minicircles generated via a polymer model (e.g,

wormlike chain or freely jointed chain) by rigid minicircles whose radii are the same as the

radii of gyration of the flexible chains. The third mathematical assumption is primarily a

simplifying choice postulated a priori, but it is consistent with biological evidence that few

holes (regions with missing minicircles) are observed within isolated kinetoplasts [CRW+95].

1.2.1. The MC-kDNA Model for Minicircle Topology. In 2011 members of our

lab and our collaborators presented a Monte-Carlo-based random knotting/linking model

called Monte-Carlo kDNA (MC-kDNA) [DHK+12, DAH12]. MC-kDNA was designed to

extend the model proposed by Chen and colleagues in 1995 [CRW+95]. To generate an MC-

kDNA conformation, we map a finite set of minicircles to the vertices of a finite square region

of a square lattice in a one-to-one and onto fashion. Each minicircle (a geometrical circle of

unit radius) is centered at a site in a 2-D lattice, which can be square, triangular, hexagonal,

or random. We show a sample conformation is in Fig. 1.6. The minicircle density—defined

as the number of minicircles per unit area—is given by a−2 where a is the lattice constant.

A minicircle has two orientational degrees of freedom—the tilting angle and the azimuthal

angle. These angles describe the circle’s orientation in space and specify the vector normal

to the plane containg the circle (see Fig. 1.7). The tilting angle, θ, is the angle between the
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Figure 1.6. A grid generated by MC-kDNA

normal vector and the positive z-axis, and the azimuthal angle, φ, is the angle between the

x-axis and the normal vector’s projection onto the xy-plane. Figure 1.7 illustrates how each

minicircle is defined. In the standard MC-kDNA model, minicircles are oriented randomly,

i.e, the normal vectors are assumed to be uniformly distributed over the unit sphere. As

such, θ is chosen from [0, π] (using the well-known result that cos θ is uniformly distributed

in [−1, 1]), and φ is taken uniformly from [0, 2π].

z

φ

θ

x

y

Figure 1.7. Orientation of a minicircle (adapted from [LPDA20])
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1.2.2. Extensions of the basic random knotting model for kDNA.

Angle restrictions limit the random orientations of minicircle normals to a

biologically relevant range.

In [ADH12] Arsuaga and colleagues proposed restrictions on minicircle orientations:

θ ∈ [θ0, π − θ0] and φ ∈ [φ0, π − φ0] ∪ [π + φ0, 2π − φ0] for positive constants θ0 ≥ 0, φ0 < π.

θ0 is called the tilting-angle restriction and φ0 is called the azimuthal-angle restriction. In

the work discussed here, we will consider only the tilting-angle restriction.

Volume exclusion models electrostatic repulsion.

In [DHK+12] Diao and his colleagues modeled excluded-volume effects by placing a

hard cylinder-potential around each kDNA minicircle, which themselves are modeled as

rigid geometrical circles. This approach has been shown to adequately approximate repulsive

electrostatic interactions [RCV93]. The authors observed that most of the conformations

generated using standard random sampling were invalid and proposed to address this problem

using an imputation approach. The idea of this imputation approach is to estimate the

various conditional linking probabilities using a simulated annealing algorithm on small

(10 × 10) minicircle grids. These empirically obtained linking probabilities were then used

to generate larger grids.

Hard-shell repulsion can be used to model the effects of a positively charged kDNA envi-

ronment, which could contain concentrations of cations or of histone-like proteins. Positive

ions and proteins decrease the effective excluded volume by shielding the repulsion between

negative charges. There are four known histone H1-like proteins associated with the kine-

toplast in C. fasciculata [Lea02]. Each of these is small and basic. KAP1 is implicated

in the structure of the kinetoplast in vivo, but is not required for viability of the organism.

The substantial structural rearrangements induced by KAP1 gene disruption are not com-

pensated for by the activity of KAP2, 3, or 4. KAP1 is the most basic of the four proteins
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and 50% of its amino-acid residues are either lysine or alanine. KAP2, 3, and 4 also contain

a large number of lysine residues, which account for the large positive charges of all four of

these proteins [XHE+02]. KAP1 binds nonspecifically to kinetoplast minicircles, whereas

KAP2, 3, and 4 all bind specifically to a single region of minicircle DNA [XHE+02]. When

the KAP1 gene is disrupted, kinetoplasts exhibit a visible change in internal structure under

thin- section TEM, although the shape and dimensions of the kinetoplast remain approxi-

mately the same [Lea02]. KAP2, 3, and 4 also condense kDNA in vitro [XHE+02]. Xu

and his colleagues showed that each of these proteins exhibited this condensation phenotype

independently of the other KAP proteins at a concentration of 1 µg / µL. These authors

also showed that all three proteins are present throughout the kinetoplast via immunofluo-

rescence.

Polymer flexibility can alter the linking behavior of minicircles.

Since kDNA minicircles are not rigid circles and their shapes are affected by factors like

polymer energetics [Vol06], nucleotide sequence [MLCE83], and by possible condensing (or

DNA binding) factors [AEKS99,HR98,ATS83] Arsuaga and his colleagues studied the case

in which rigid MC-kDNA minicircles are replaced by closed equilateral polygons called freely

jointed chains (FJCs), which have no bending penalty between edges [ADR14]. This entails

discretizing the continuous DNA backbone, representing it as a set of N equal-length edges

connecting pairs of vertices, which are contained in R3. FJCs capture entropic contributions

to minicircle linking (both between pairs of circles and throughout the grid), but do not

include energetic effects.

Arsuaga and his colleagues generated minicircle conformations using the generalized

hedgehog algorithm [VHAD09] as implemented in Knotplot [Sch]. The topological state of

each simulated freely jointed chain was computed using the Alexander polynomial evaluated

at -1, ∆(−1). Minicircles with ∆(−1) 6= 1 were rejected. The minicircle centers were assigned
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to lattice points and their normal vectors were chosen randomly. Once all of the d× d poly-

gons are positioned, the authors determined the conformation’s topology by calculating the

Gauss linking number (via Klenin and Langowski’s Gaussian integral formulation [KL00]).

Distribution of Minicircle Centers

Since the minicircle’ topology could be sensitive to the distribution of the circles’ centers,

members of our lab and our collaborators studied triangular, hexagonal, and random planar

lattices [DAH12, RDA13]. Sample conformations of each type are shown in Fig. 1.8.

Figure 1.8. The hexagonal, triangular, square and random lattices [DAH12]

The minicircle density is given by (
√

3/6)r−2 for a triangular lattice and (
√

3/9)r−2 for a

hexagonal lattice. Rodriguez and his colleagues generated random lattices by identifying

the edges of the lattice (i.e, generating a torus) and randomly displacing the vertices of the

square lattice uniformly around the position of the minicircle.
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1.2.3. Quantitative Descriptions of Minicircle Topology and Definitions.

Definition: Minicircle Linking in the MC-kDNA Model

We say that two minicircles are topologically linked if the circles cannot be separated

without breaking one of them. Two or more circles can create a linked cluster if each circle

is linked to at least one other circle in the cluster, and together they form a single object.

In other words, no single circle can be separated from the group without a breakage.

Let C1 and C2 be two disjoint simple closed and oriented curves in R3. We say that

C1 and C2 form an unsplittable link if no topological 2-sphere separates them. Let r1(t1)

and r2(t2) be parameterizations of C1 and C2, respectively, with t1, t2 ∈ [0, 2π]. The Gauss

linking number l(C1, C2) of C1 and C2 is defined by:

(1.1) l(C1, C2) =
1

4π

∫ 2π

0

∫ 2π

0

〈r2 − r1, r
′
1, r
′
2〉

|r2 − r1|3
dt1dt2,

where the fraction’s numerator contains a triple product [RN11]. It is well known that the

linking number is a topological invariant. In particular, if l(C1, C2) 6= 0, then C1 and C2 are

linked. In the case that C1 and C2 are both circles of the same radius r, the linking between

them can be determined geometrically—this algorithm is explained in section 3.1.

Definition: The Mean Valence Parameter

The mean minicircle valence was first identified by Chen and colleagues and is a param-

eter that can be measured experimentally. A minicircle’s valence is the number of minicir-

cles that are topologically linked to it directly. For a given minicircle conformation (with

fixed orientations and lattice constant), the mean valence is taken over all minicircles in

the conformation—and is not necessarily an integer. We are interested in the relationship
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between minicircle density and mean valence, since Chen and colleagues showed experi-

mentally that the valence of minicircle kDNA doubles after replication (i.e. the density

doubles) [CRW+95].

1.2.4. MC-kDNA and its Extensions—Results and Shortcomings. Chen and

his colleagues developed the first quantitative model for the topology of the C. fasciculata

network [CRW+95]. As we noted earlier, these authors determined experimentally that

each minicircle is linked on average to three of its neighbors through a Hopf link. In 2012,

Diao et al. introduced a more sophisticated model, but this model was unable to fully

capture the topological properties of the kinetoplast system [DHK+12]. Their minicircle

model demonstrated a linear relationship between mean valence and density. However, at

a physiologically relevant density, the model predicts a mean valence of approximately 400,

which is far higher than Chen’s experimental value of three.

Arsuaga and Diao and their colleagues extended this earlier model by restricting the range

of angles from which orientations were sampled [ADH12]. This extension was motivated

by the idea that, under high confinement in vivo, minicircles likely have less orientational

freedom. This study produced a better mean-valence prediction than the original work,

although the value still remained too high at physiological densities—approximately 11.

We will address this shortcoming—building on the work of Diao and his colleagues—by

proposing an energetics model intended to capture the relationship between orientational

and topological order. While Arsuaga and his colleagues established the connection between

minicircle orientation and the topological properties of the kinetoplast system, their sampling

method remained mathematical and uniform (within a restricted range of values). The

energetics model that we propose in the following section permits a better sampling method,

and it is designed to directly reflect the observed orientational order of minicircles under

physiological confinement.
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1.3. The Lebwohl-Lasher Model and Selections from Liquid-Crystal Theory

The minicircle normals determine the topological properties of each conformation, but

are also of intrinsic physical interest. In particular, their orientations tells us how order

emerges in the minicircle structure and how geometrical information is transmitted across

space. In this work we treat topological order as an emergent property that arises from local

(phenomenological/effective) interactions. More precisely, we propose an energy that couples

the principal symmetry axes of ringlike molecules to one another via a modified version of

a canonical liquid-crystal Hamiltonian. In the following section, we discuss the historical

development of the model class that our Hamiltonian fits into. We present the precise form

of this Hamiltonian in Chapter 2.

1.3.1. Introduction to the Lebwohl-Lasher Model. P. Lebwohl and G. Lasher

proposed their eponymous model [LL72] in 1972 to permit lattice-based computational

studies of Maier-Saupe’s continuum theory [MS59]. The earlier Maier-Saupe theory used a

mean-field analysis to predict a first-order nematic-isotropic phase transition in a system of

rod-like liquid crystals interacting via a long-range attractive potential.

In the Lebwohl-Lasher model, nearest neighbor particles i and j interact via an exchange

interaction

(1.2)
−H(ij)

LL

K
= 3 cos2 θij −

1

2
,

where K is a positive-definite parameter with units of energy, and the angle θij is defined

(for unit vectors) by

(1.3) θij
.
= cos−1(Si · Sj).

These authors performed Monte-Carlo simulations of cubic-lattice systems of sizes 10×10×10

and 20 × 20 × 20. They found the predicted first-order phase transition, and determined
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Figure 1.9. Lebwohl and Lasher plot average energy (normalized to −1 ≤<
E >≤ 0 and the P2 order parameter (“M”) versus inverse temperature [LL72].
Both plots exhibit a discontinuity at T ∗ = 1.12.

that it occurs at dimensionless temperature T ∗
.
= kBT/K = 1.12 (see Fig. 1.9), which differs

from Maier and Saupe’s mean-field based estimate of T ∗ = 1.30.

1.3.2. Phase-Transitions and Pseudo-Transitions in Systems with Continuous

Symmetries: the Mermin-Wagner Theorem and Kosterlitz-Thouless-like Behav-

ior. In the 1960s Pierre Hohenberg [Hoh67], David Mermin, and Herbert Wagner (the latter

two in a separate work [MW66]) built a rigorous and general proof for the absence of long-

range order (LRO) in a large group of systems with spatial dimension d ≤ 2. The Hohenberg-

Mermin-Wagner (HMW) theorem tells us that there are no spontaneous symmetry-breaking

phase transitions at finite temperatures for systems with continuous symmetries in dimension

d ≤ 2 [MW66].

Hohenberg studied continuum models of superfluids and superconductors, and found that

no LRO can exist at finite temperature for d ≤ 2. Mermin and Wagner established a similar
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result for classical lattice models of ferromagnets and anti-ferromagnets (Heisenberg models)

with SU(2) symmetry [Hal18]. While Hohenberg’s result permits long-range interactions,

Mermin and Wagner’s result requires that all interactions be finite, i.e, that

(1.4)
∑
r

rαrβJ(r) <∞,

where α, β ∈ {x, y} and J is the coupling constant between spins separated by the vector r.

In 1973 Kosterlitz and Thouless published a study [KT72] of the classical 2-D xy-model.

Here, spins, Si ∈ R2, occupy sites on a 2-D square lattice and nearest neighbors interact

with the potential:

(1.5)
Hxy

J
= cos(φi − φj),

where J > 0. The authors found that a sharp transition exists, above which the correlation

function decays exponentially, while below which the correlation follows a power-law decay,

which is now commonly referred to as “quasi-long-range order” [Hal18] Kosterlitz and Thou-

less study the system by focusing on two harmonic (quadratic) terms in the Hamiltonian’s

Taylor expansion about a local minimum, E0 (a “vortex” term and a spin-wave stiffness

term):

(1.6) H − E0 =
J

2

∑
〈i,j〉

(φi − φj)2 +O((φi − φj)4).

The authors treat the vortex and spin-wave terms independently. They calculated a

spin-spin correlation function, 〈Si · Sj〉 = 〈exp[(φi − φj)]〉, and they showed that it decays

exponentially in the case of spin-wave elasticity alone. Kosterlitz and Thouless also studied

the case of Heisenberg spins (Si ∈ R3) on the same 2-D square lattice, wherein they found

that correlations decay exponentially for all finite temperatures.
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1.3.3. Review of Previous Studies on the LL Model. Several versions of the

Lebwohl-Lasher model in two and three dimensions have been studied, mostly via Monte-

Carlo simulations. We present the key results below.

Luckhurst and colleagues determined the field-dependence of the order

parameter < P2 > in an anisotropic 3-D model.

The authors studied a system of spin-directors located on the points of a cubic lattice

[LSC81]. The spins interact with their nearest neighbors via the Lebwohl-Lasher potential

defined earlier. Spins are also coupled to an external field via a term

(1.7) H
(i)
field = −D cos2 θi,

where θi is the azimuthal angle for spin i (i.e, the angle spin i makes with the z-axis). Note

that this choice of field favors spin-directors parallel to the z-axis. The authors performed

Monte-Carlo importance sampling on systems of size 10× 10× 10.

The authors characterized the field dependence of the order parameter 〈P2〉 = 〈cos(θ)〉,

which measures the system’s order in the z-direction (see Fig. 1.10). They find a reasonably

good agreement between mean-field predictions and their MC results when they simulate

the system at T ∗ = 1.182.

Chiccoli and colleagues find power-law behavior in the correlation function for

a planar isotropic model.

This was the first study of a 2-D Lebwohl-Lasher model. The authors considered nearest

neighbor spins interacting via the potential defined in section 1.3.1 [CPC88]. They per-

formed Monte-Carlo simulations on square lattices of sizes 5 × 5, 10 × 10, 20 × 20, 60 × 60,

and 80 × 80. The authors observed an orientational pseudo-transition in the system at di-
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Figure 1.10. Luckhurst and colleagues determined the field dependence of
〈P2〉 in an anisotropic cubic-lattice Lebwohl-Lasher model [LSC81]. The two
lines show their mean-field predictions for T ∗ = 1.0 (solid) and T ∗ = 1.182
(dotted).

mensionless temperature T ∗ = 0.6 (see Fig. 1.11), which they confirmed with heat-capacity

measurements. The authors saw a sharp—but continuous and analytic—increase in the order

parameter starting from a low but nonzero value. This is consistent with the Mermin-Wagner

theorem.

The authors also observed a power-law decay in the orientational correlation function

below the pseudo-transition temperature (Kosterlitz-Thouless-like behavior), and an expo-

nential decay in the function above this temperature (see Fig.1.12).

1.4. SARS-CoV-2 and the Spike Protein

In this work we use structural modeling tools and molecular-dynamics (MD) simulations

to characterize two viral strains, S477N and S477N/D614G. We compare these results with

the empirical population dynamics of the strains, which we calculate using a pHMM. Our
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Figure 1.11. Chiccoli and colleagues calculate the dependence of the P2

order parameter on dimensionless temperature, T ∗ = kBT/K [CPC88]. The
symbols correspond to different lattice sizes: 5×5 (squares), 10×10 (triangles),
20 × 20 (circles—empty denote heating and filled denote cooling), 60 × 60
(pluses), and 80× 80 (stars).

dynamics study includes nearly 150,000 viral sequences, which were collected between early

January and the end of October in 2020. We identify several residues located in the spike

RBD that contribute substantially to changes in S-ACE2 binding affinities, some of which

are hydrogen-bonding residues. Finally, we perform MD binding simulations on five serum-

isolated antibodies from recovered individuals: 7CJF, 6XE1, 7KFX, 7KFV, and 7KFW.

The latter three proteins (the 7KF family) were isolated from a single individual. The 7KF

family binds directly to the RBD’s active site and its members differ by minor somatic

mutations [CCP+20]. 7CJF [GHZ+21] and 6XE1 [HSW+20] also bind to the RBD active

site and their their genomic compositions differ from the 7KF family.

1.4.1. SARS-CoV-2 and the Covid-19 Pandemic. SARS-CoV-2, the betacoron-

avirus that causes the COVID-19 illness, is an enveloped virus that contains a unique 29-kb
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Figure 1.12. Chiccoli and colleagues plot the correlation function for the
P2 order parameter as a function of spin separation, r, for the 80 × 80 lat-
tice [CPC88]. The authors find a power-law decay below the pseudo-transition
temperature ( T ∗a = 0.54) and an exponential decay above this critical tem-
perature ( T ∗b = 0.72).

single stranded (+)RNA genome [WZY+20]. The disease was first identified in Decem-

ber of 2019 as caused by a novel coronavirus, with an initial outbreak reported in Wuhan,

China. On March 11, 2020 the WHO declared the outbreak a pandemic The SARS-CoV-2

genome encodes for twenty proteins—the envelope (E), membrane (M), nucleocapsid (N),

and spike (S) proteins, as well as sixteen non-structural proteins (NSPs). Proteins E, M,

and S are expressed on the surface of the viral envelope, while the N-protein protects the

viral genome. The spike protein mediates cell infection by binding to angiotensin converting

enzyme-2 (ACE2), on the surfaces of human bronchial and lung epithelial cells [ZJM+].

1.4.2. The Spike Protein and the ACE2 Receptor. The S-protein is a trimeric

glycoprotein. The membrane-distal portion of each 1,208-residue protomer is called the

receptor-binding domain (RBD; residues 319-526), which contacts the “helix-turn-helix”

(HTH) motif of ACE2. Each protomer has two subunits, S1 and S2, with an “RRAR”
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furin cleavage site at their intersection. This is one of the few significant differences between

SARS-CoV-2 and RaTG13. The high-resolution cryo-EM structure determined by Wrapp

and his colleagues shows that typically only one of these RBDs is in the “up” or active

conformation in the pre-fusion (pre-binding) trimer; the other two are “down” and less

solvent-accessible [WWC+]. When the S-protein binds ACE-2, it undergoes significant

changes. The non-binding RBDs are flipped to the up position, which destabilizes the

structure, and then the S1 domains are shed and the protein rearranges itself.

Recent genomics studies have reported numerous amino-acids substitutions in the spike

protein [SGCR20,LWN+], and we report the population dynamics of two of those muta-

tions, S477N and D614G, here. S477N substitutes ASN for SER at locus 477 and D614G

substitutes GLY for ASP at site 614. We used a probabilistic method called a profile Hidden-

Markov Model (pHMM) to construct a time series for the population occupancies of indi-

vidual amino-acid substitutions in a viral-genome data set.

1.4.3. There are several reported mutations in the S-Protein. A subset of the

known mutations demonstrates fitness by attaining relatively large population fractions, and

some of these mutations have reported binding improvements. For example, molecular dy-

namics simulations predict that the RBD substitutions V367F, W436R, and N354D/D364Y

all improve ACE2 binding [OZD+20]. Strains characterized by the D614G substitution

quickly dominated the viral population [KFG+20], which we verfiy in our pHMM results.

In-vitro studies by Yurkovetskiy and others [YWP+20,ZJM+] indicate that S trimers con-

taining the D614G substitution alone bind 5.3x worse than wild-type (WT) trimers. Residue

614 is located far from the RBD and Yurkovetskiy and colleagues report that the substi-

tution disrupts an inter-protomer hydrogen bond between D614 and T859 in WT. These

authors propose that residue G614 acts as an open “latch,” increasing the probability that

each RBD will be in its binding-ready “up” conformation. However, this is inconsistent with
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their surface-plasmon resonance measurements at 37 degrees C, which show that the equi-

librium association constant, Ka, decreases relative to the WT value. Instead, it is possible

that G614Õ’s disruption of the inter-protomer interaction destabilizes the trimer, increasing

thermal fluctuations that cause the complexed proteins to disassociate.

There is not yet a consensus as to whether the S477N mutation produces a binding-driven

fitness advantage. Two molecular dynamics (MD) studies disagree on this point: Singh and

colleagues report that S477N improves ACE2 binding [SSK+], while Ou and colleagues find

that S477N does not increase affinity [OZD+20]. More stable binding between S and ACE2

can lead to higher cell infection rates [PLL+], which could correlate with worse epidemio-

logical outcomes, e.g: higher viral load, increased transmission efficiency, and more severe

clinical profiles. In a similar fashion, there is evidence that a small number of RBD mutations

(e.g, E484K in the “Brazilian strain,” P.1, and in the “South African strain,” B.1.351, and

L452R in the “CA strains,” B.1.427/429) decrease neutralizing antibody activity in individu-

als who have recovered from COVID-19 or who have received several of the vaccines [?]. This

means that individuals exposed to these strains are at somewhat increased risk of contracting

COVID-19, in spite of their status as either recovered or vaccinated individuals.
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CHAPTER 2

The 2-D Anisotropic LL Model: A Theoretical System Inspired

by Thin Films and Biological Nanostructures

2.1. Methods and Basic Definitions

2.1.1. The 2-D Anisotropic Lebwohl-Lasher Model. The kinetoplast minicircles

are known to exhibit an ordered geometry, in which the minicircles align parallel to one

another and perpendicular to the plane of the kinetoplast disk. We propose to model this

behavior via a Hamiltonian whose low-energy states mirror this biological geometry. Consider

a 2-D square lattice of spins Si ∈ R3, which are unit vectors centered at a lattice site i. We

define our Hamiltonian by

(2.1) H = −K
∑
<i,j>

(Si · Sj)2 +D
∑
i

S2
iz ,

where K is the ferroquadrupolar coupling strength, Siz is the z-component of spin i, and

D is a field parameter, which breaks the symmetry in the xy-plane and penalizes larger

z-components (K,D > 0). The first term in the Hamiltonian is a sum over nearest neighbors

in the lattice (i.e, short-range interactions).

Quadrupole moments capture director symmetry and provide physically

motivated order parameters.

Neither the topological nor the geometric properties that we are considering in this study

depend upon the chirality of the minicircles. Although rings of DNA have a well-defined

chirality, this property does not seem to play an important role in determining the structural
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characteristics nor the interesting topological behaviors of the minicircles. Chen and his

colleagues took the same approach when they chose to ignore the signs of topological crossings

in their network model [CRW+95].

Therefore, in this model we use spin directors—rather than spin vectors—which define

the axis normal to the disk bounded by the rigid minicircle. Spin directors are most expressed

naturally as quadrupole moments—principally, Q0, which is defined by

(2.2) Q0 = 3S2
z − 1

as well as the other four quadrupole moments:

(2.3) Q2 = S2
x − S2

y , Qxy = 2SxSy, Qyz = 2SySz, Qxz = 2SxSz,

These moments are the five independent elements of the quadrupole tensor, which is a 3× 3

traceless, symmetric matrix. Since we choose all of our spin-directors to have unit length,

the tensor is also subject to an additional, simple constraint:

(2.4) S2 = S2
x + S2

y + S2
z = 1

Since these are classical spins, the normalization for Q0 given in the previous definition

means that, for randomly oriented directors (in the high-T regime), we expect:

(2.5) 〈Q0〉 = 0.

Therefore, Q0 is a good choice for an orientational order parameter.
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We now rewrite the Hamiltonian terms of these five quadrupole moments with the help

of the following identities:

S2
z =

Q0 + 2

3
(2.6)

S2
x =

1

2
[S2 +Q2 −

1

3
(Q0 + 1)](2.7)

S2
y =

1

2
[Q2 − S2 +

1

3
(Q0 + 2)](2.8)

2SixSiySjxSiy =
1

2
Q(i)
xyQ

(j)
xy(2.9)

We begin by expanding the first term in the Hamiltonian in the spin components:

−K
∑
<i,j>

(Si · Sj)2 = −K
∑
<i,j>

[ S2
ixS

2
jx + S2

iyS
2
jy(2.10)

+ S2
izS

2
jz(2.11)

+ 2SixSiySjxSjy + 2SiySizSjySjz(2.12)

+ 2SixSizSjxSjz].(2.13)

Using the previous identities, we substitute in the quadrupole moments:

−K
∑
<i,j>

(Si · Sj)2 = −K
∑

<i,j> [
1

2
Q

(i)
2 Q

(j)
2 +

1

6
Q

(i)
0 Q

(j)
0(2.14)

+
1

2
Q(i)
xyQ

(j)
xy +

1

2
Q(i)
yzQ

(j)
yz(2.15)

+
1

2
Q(i)
xzQ

(j)
xz ],(2.16)

Here, the superscripted indices in parentheses indicate to which spin the moment belongs,

and we have neglected the constant terms.

Similarly, we re-express the Hamiltonian’s field term:

(2.17) D
∑
i

S2
iz =

D

3

∑
i

Q
(i)
0 ,
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again, neglecting the constant term. Together, these two terms comprise the quadrupolar

formulation of the Hamiltonian.

2.1.2. We augment our MF theory with Monte-Carlo simulations, which allow

us to study low-temperature phase behavior. We generated orientational conforma-

tions and took samples using the Metropolis-Hastings algorithm [PB11]. The underlying

Markov chain was defined by the following move: at each iteration we randomly select one

spin to “flip” by changing its orientation to a new, random direction. We then calculate the

change in energy due to this perturbation. The energy, E, is determined by the quadrupolar

Hamiltonian. In a square lattice all interior sites have coordination number four, but, in

order to take into account the finite-size effects of the real kinetoplast, we allow the sites

along the edges to have a coordination number of either two or three (when we are not

considering periodic boundary conditions).

Sampling: Convergence and Independence

After a warm-up period of Nwarmup, we sample the order parameters, q0 and q2 at intervals

of Nint steps. For each random variable, we choose Nwarmup by determining the number of

steps, N , at which its mean converges to a stable value. For the order parameter q0, we

determined that the warm-up period should be 400,000 steps. As shown in Fig. 2.1, q0

converges to a stable value after approximately 400,000 steps. In order to ensure independent

sampling, we test the time series’ auto-correlation using a method called batch-mean analysis,

or BMA, (explained in [Fis13]) to detect and correct for dependence in the sample variables.

Given a set of n samples for a parameter θ, we use BMA to determine the number of

independent samples. For a sampling interval of Nint time steps and a batch size b, the

correlation time τ is bounded according to:

(2.18) τ < Nintb.
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Figure 2.1. We generated many MCMC t-series to determine the conver-
gence period for the Q0 order parameter. Each data point gives the sample
mean from a t-series of the specified length.

Using the number of independent samples, m, for θ (from BMA), we can calculate its stan-

dard error:

(2.19) σm =
σn√
m
,

where σn is the standard deviation in the original set of samples.

2.2. A Mean-Field Theory for the Anisotropic Lebwohl-Lasher Model

In the mean-field approximation, we couple each spin moment to a corresponding molecular-

mean field for that moment. For example, the first term in equation 2.14 becomes

(2.20)
∑
<i,j>

Q
(i)
2 Q

(j)
2 ≈

∑
i

< Q2 > Q
(i)
2 =

∑
i

q2Q
(i)
2 ,

where we introduce the notation of Chen and Levy [?] in the last equality. In a mean-field

approximation, we consider the spins to be noninteracting. Therefore, we can express the
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partition function for the system as a product of one-particle partition functions:

(2.21) ZMF = ZN
1 .

The one-particle partition function depends on the single-particle Hamiltonian, which is

given by:

(2.22) H1 = −K
2

[q2Q2 +
1

3
q0Q0 + qxyQxy + qyzQyz + qxzQxz] +

D

3
Q0,

where we have divided by two to account for double counting. Since the Hamiltonian is

invariant under rotations about the z-axis, as well as under reflections across the xy-plane,

(2.23) qxy = 0 = qyz = qxz = q2.

We show this by expressing each of these moments in terms of spherical coordinates:

Qxy = SxSy = sin2 θ sinφ cosφ(2.24)

Qyz = SySz = sin θ cos θ sinφ(2.25)

Qxz = SxSz = sin θ cos θ cosφ(2.26)

Q2 = S2
x − S2

y = sin2 θ cos2 φ− sin2 θ sin2 φ,(2.27)

where we use:

Sx = sin θ cosφ(2.28)

Sy = sin θ sinφ(2.29)

Sz = cos θ.(2.30)

The expectation value of a variable α is calculated using the expression

(2.31) < α > =

∫
dΩ αe−βH[θ,φ]

Z
,
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where Z is the system’s partition function; where the Hamiltonian is written as a functional

of the two angles; and where the integral is carried out over the surface of the unit sphere.

The expectation value of the xy-moment is therefore:

(2.32) qxy =

∫ 2π

0
dφ sinφ cosφ

∫ π
0
dθ sin2 θ e−βH[θ,φ]

Z
.

In saying—as we did earlier in this section—that the Hamiltonian is invariant under rotations

about the z-axis, we were saying that, for a rotation of this sort taking

φ→ φ′,

(2.33) H[θ, φ] = H[θ, φ′].

This means that the Boltzmann factor is a constant with respect to the first integral (over

φ) in the numerator of the equation for qxy. If this integral over the azimuthal angle is zero

for each of these four moments, than all of their expectation values are zero.

For the first three moments, we verify this as follows:∫ 2π

0

dφ sinφ cosφ = 0 ⇒ qxy = 0(2.34) ∫ 2π

0

dφ sinφ = 0 ⇒ qyz = 0(2.35) ∫ 2π

0

dφ cosφ = 0 ⇒ qxz = 0.(2.36)

For Q2, we write:

q2 =

∫ 2π

0
dφ cos2 φ

∫ π
0
dθ sin3 θ e−βH[θ,φ] −

∫ 2π

0
dφ sin2 φ

∫ π
0
dθ sin3 θ e−βH[θ,φ]

Z
(2.37)

=

∫ π
0
dθ sin3 θ(

∫ 2π

0
dφ cos2 φ −

∫ 2π

0
dφ sin2 φ)e−βH[θ,φ]

Z
.(2.38)
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Therefore (again, taking the Boltzmann factor outside of the integral over φ):∫ 2π

0

dφ cos2 φ −
∫ 2π

0
dφ sin2 φ = 0(2.39)

⇒ q2 = 0.(2.40)

We now show that the first line of the previous statement is true.∫ 2π

0

dφ cos2 φ −
∫ 2π

0

dφ sin2 φ =

∫ 2π

0

dφ (
1 + cos 2φ

2
)−

∫ 2π

0

dφ (
1− cos 2φ

2
)(2.41)

= π +
1

4
[sin 2φ]2π0 − π +

1

4
[sin 2φ]2π0(2.42)

= 0(2.43)

∴ q2 = 0.(2.44)

Therefore, H1 can be written in terms of Q0 only:

(2.45) H1 = −K
6
q0Q0 +

D

3
Q0.

Even as q0 is the only nonzero expectation value (in general) in our theory, it is also

the appropriate choice for quantifying the observed orientations of in-vivo kDNA strands

parallel to the kinetoplast’s symmetry axis. We can write this expectation value via its

formal definition, and we call this equation the mean-field equation (MFE):

(2.46) q0 =

∫
dΩ Q0(θ) e

−H1(θ,q0)
T∫

dΩ e−
H1(θ,q0)

T

,

where the measure, dΩ, represents the solid angle. This is a self-consistency equation since

q0 appears on both of its sides. This equation allows us to study the orientational phase

behavior of the system with respect to the symmetry axis.

In order to write the MFE in full detail, we substitute H1 into both integrands. We

also use the fact that neither integrand depends on φ to cancel the solid-angle contribution
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from φ:

(2.47) q0 =

∫ π
0
dθ sin θ (3 cos2 θ − 1) exp[− (3 cos2 θ−1)

3T
(D − K

2
q0)]∫ π

0
dθ sin θ exp[− (3 cos2 θ−1)

3T
(D − K

2
q0)]

.

2.2.1. Entropy maximization leads to disorder in the high-temperature limit.

In the limit as T → ∞, the exponentials in the integrands of both integrals in the MF

equation go to one, because H1 remains finite. To evaluate the remaining terms in these

integrals, we perform a change of variables:

x = cos θ(2.48)

dx = − sin θ.(2.49)

Observe that under this transformation, the upper and lower limits of the integrals become,

respectively, -1 and 1. With this change of variables, we find that the MF equation evaluates

to zero:

q0 =

∫ 1

−1 dx (3x2 − 1)∫ 1

−1 dx
(2.50)

q0 = 0.(2.51)

This outcome agrees with our expectations: for large temperatures the free energy, F =

U − TS, will maximize the second, entropic by adopting a disordered state characterized by

q0 = 0.

2.2.2. Analytical Approaches to Studying the Low-Temperature Limit. In the

absence of the high-temperature simplification made in the previous section—but using the

same change of variables—the MF equation can be written in the expanded form:

(2.52) q0 =

∫ 1

−1 dx (3x2 − 1) exp[− (3x2−1)
3T

(D − K
2
q0)]∫ 1

−1 dx exp[− (3x2−1)
3T

(D − K
2
q0)]
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We observe that the numerator and the denominator of the right-hand side of this equation

contain, respectively, a pseudo-Gaussian and a Gaussian integral. However, both have finite

limits.

Since Gaussian integrals over the real line evaluate to closed-form values,

(2.53)

∫ +∞

−∞
dx e−Cx

2

= (
π

C
)
1
2

(for C ∈ R+), we consider first the case where the integrand constants in the MFE are suf-

ficiently large. Specifically, we require that the standard deviation of the Gaussian function

is small with respect to 1, i.e:

(2.54)
1

T
(D − K

2
q0) > 2.

The larger the left-hand side of this inequality, the more accurate the approximation. By

applying this approximation several times—along with integrations by parts—we find:

(2.55) q0 = −1 +
3√
π

(
T

D − K
2
q0

) 1
2
{

1

2

[
πT (D − K

2
q0)

] 1
2

− exp

[
− 1

T

(
D − K

2
q0

)]}

This equation does not have an analytical solution.
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2.2.3. Numerical Evaluation of the Mean-Field Equation. Since the MF equation

does not have an analytical solution in general, we employed a numerical solution method,

which is valid for all temperatures. We use a grid search algorithm to systematically find

MFE solutions in the plane K = 1 within the T-K-D parameter space. Grid search has

an advantage over standard root-finding algorithms (“numerical solvers”), which require an

initial guess based on physical intuition as to where the answer lies.

For a given small choice of ε > 0, our algorithm identifies an approximate solution to the

MF equation if the following inequality is satisfied for a given triplet (T,D, q0):

|〈Q0〉 − q0| < ε.

Since equation 2.52 contains a dependence on T−1, the equation is undefined for T = 0. To

avoid this issue, we limit our search to T ≥ 0.1. Evaluating a large number of integrals (i.e,

two per grid point) for the MFE introduces a computational challenge. We deal with this

by observing that we can express each of these integrals—which are Gaussian or pseudo-

Gaussian—in terms of the error function, which can be efficiently evaluated computationally

with standard libraries.

Our first result (see Fig. 2.2) is a phase portrait for the plane K = 1 with ε = 0.01. We

study values of D and T that are within one order of magnitude of K in either direction,

and we sample the plane in step sizes dT = 0.1 = dD. The colormap gives the order

parameter expectation value q0 that satisfies the MFE at each point. As expected, we

observe a crossover-type transition, where the order parameter decreases continuously and

monotonically from a disordered state as temperature decreases (see Fig. ??). As discussed

in section 2.2, a state with q0 = 0 is disordered with respect to the z-component of its spins.

At high temperature we see that states are expected to be disordered in Siz. As the

strength of our effective field decreases, states become more disordered. However, q0 > 0 for

all values of T , because we only study nonzero field conditions. Finally, at low temperatures
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Figure 2.2. We used the grid-search algorithm to construct a phase portrait
for q0, which consists of approximate solutions to the MF equation (2.52). For
fixed K = 1, our analysis predicts a crossover transition to an ordered phase
(blue), which is sharp (but continuous) when D and T are small.

the system is expected to enter a highly ordered state with q0 ≈ −1. This represents

conformation whose spin-directors are nearly parallel to the z-axis, and we note that this

order persists at T = 0.1 even as D becomes very small.

2.3. Numerical Results

2.3.1. The 2-D anisotropic Lebwohl-Lasher system exhibits a pseudo-transition

to field-parallel order in the MFT and in MC Simulations. Our Monte-Carlo simu-

lations demonstrate a pseudo-transition to field-parallel order at T ∗c = 0.55, which appears

as a sudden, continuous decrease in the order parameter q0 (see Fig. 2.3). At T ∗c,0, q0(T )

exhibits a change in concavity, matching the location of a finite peak in this function’s first

derivative (which plays the role of heat capacity; see Fig. 2.4).
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Figure 2.3. Field-parallel pseudo-transition in q0: Our MC results in-
dicate a pseudo-transition to field-parallel order. This behavior persists in
several studied lattice sizes, with transition temperatures of T ∗c,0(60 × 60) =
0.55;T ∗c,0(70× 70) = 0.60; and T ∗c,0(80× 80) = 0.65. Standard error is included
for the 60× 60 data.

-0.100

0.100

0.300

0.500

0.700

0.900

0 0.5 1 1.5 2 2.5 3

dq
0/
dT

T*

60x60
70x70
80x80

Figure 2.4. Location of q0 Pseudo-Transition The location of the peak
in the first derivative of q2 indicates the location of the pseudo-transition.
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At large temperatures (T ∗ & 2.5), q0 reflects a largely disordered phase, even as the

nonzero field maintains ẑ as a preferred direction (q0 < 0).

Note that Fig. 2.3 shows the intersection of the plane D = 1 with the 2-D surface

represented by the phase portrait shown in Fig. 2.2. This intersection is a curve. Our

Monte-Carlo samples for q0 match our theoretical predictions from the mean-field equation

within error for T > 0.6. At low temperatures, the MF approach slightly over-estimates

order, as we expect. We simulated lattices of various sizes: 60 × 60, 70 × 70, and 80 × 80,

and we plot these results together.
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q 2
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20x20

Figure 2.5. Symmetry-breaking pseudo-transition in q2: We calcu-
lated the q2 order parameter for several lattice sizes. The error bars (10× 10)
are standard error, as defined in the Methods.

2.3.2. A spontaneous symmetry-breaking pseudo-transition occurs in the xy-

plane. Our simulations for the 10×10 lattice show that the system undergoes a spontaneous

symmetry-breaking pseudo-transition at T ∗pc,2 = 0.43 (see Fig. 2.5). This transition breaks

the system’s rotational symmetry about the z-axis, creating a preferred direction in the xy-

plane. This MC result diverges from the MFT’s prediction; as discussed in section 2.2, the

mean-field expectation value for Q2 is 0.

41



2.3.3. The q2 phase transition coincides with an increase in planar correlation.

We calculated the second moment, ξ22 , of the q2 correlation function, G
(j)
2 according to:

(2.56) ξ22
.
=

∑N
j=1 r

2
jr〈G

(jr)
2 〉∑N

j=1〈G
(jr)
2 〉

,

where the correlation function’s expectation value is defined by:

(2.57) 〈G(j)
2 〉 = 〈G(jr)

2 〉 = 〈Q(j)
2 Q

(r)
2 〉.

In the definitions above, we select a reference spin r near the lattice’s center (without loss

of generalization due to the Hamiltonian’s translational invariance and our use of PBCs in

the simulations).

ξ22 increases sharply to a plateau at at T ∗ = 0.55 (see Fig. 2.6), which is close to the

location of the q2 pseudo-transition.
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Figure 2.6. Correlation function second moment for q2: We calculated
the second moment of the correlation in Q2, ξ

2
2 .
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CHAPTER 3

Topological Entanglement in Trypanosome kDNA: The

Relationship Between Orientational and Topological Order

3.1. Models and Methods

3.1.1. Determining if Two Rigid Circles Are Linked. When we model the mini-

circles as rigid geometrical circles, we can determine the linking between a pair of minicircles

using a straightforward geometrical condition. We prefer this method to the more computa-

tionally intensive task of calculating the Gauss integral for the pair of circles [DHK+12] In

this algorithm we define three planes—one plane to contain each of the two minicircles and

a third plane to be discussed shortly—and determine if the point at the intersection of these

three planes is within the radii of both circles. As we introduced in section 1.2, a minicircle,

C1, is fully described by the set C1 = (r,S1, P1), where we have fixed the radius at r = 1

and where S is the minicircle’s normal vector and P1 = (x1, y1, z1) is the minicircle’s center.

Let plane 1 be the plane containing C1 and plane 2 be that containing C2. These two

planes are defined by the familiar equations:

plane 1: 0 = S1x(x− x1) + S1y(y − y1) + S1z(z − z1)

plane 2: 0 = S2x(x− x2) + S2y(y − y2) + S2z(z − z2)

Now, let’s define a third plane, plane 3, which contains the midpoint of the line segment

connecting the centers of the two circles and which is perpendicular to this line segment.
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The line segment P1P2 is parallel to the vector
x2 − x1

y2 − y1

z2 − z1

 ,

so these are the three components of a normal vector to plane 3. This line segment’s midpoint

is:

O =
(

x2−x1
2

, y2−y1
2
, z2−z1

2

)
.

Therefore, we can define plane 3 by the equation:

0 = (x2 − x1)
(
x− x2 − x1

2

)
+ (y2 − y1)

(
y − y2 − y1

2

)
+ (z2 − z1)

(
z − z2 − z1

2

)
.

Our three planes are specified by three equations in three variables, so we know that

they intersect at a single point, Q. C1 and C2 form a Hopf link if and only if the distance

separating the points |P1Q| < r.

3.2. Survey of Results from the MC-kDNA Model and its Extensions

3.2.1. Pair-Linking Probability. Initial studies on the MC-kDNA model focused on

how the linking probability of minicircle pairs changes with their separations and how the

different assumptions of the model affect these probabilities. Diao and van Rensburg deter-

mined that the linking probability between two minicircles decreases linearly with separation

(proof in [DvR98]):

Theorem 3.2.1. For two geometrical minicircles of unit radius whose centers are at a

distance 2r (r > 0) apart and their orientations are uniformly distributed on the unit sphere,
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the probability, pr, for them to form an unsplittable link is given by:

(3.1) pr =

 1− r, 0 < r < 1,

0, r ≥ 1.

MC-kDNA with Angle Restrictions

A titling-angle restriction θ0 > 0 forces the minicircle system to adopt a more “vertical”

conformation (i.e, their normal vectors are close to the xy-plane). This restriction decreases

the linking probability between two minicircles as shown in Fig. 3.1. The relationship

Figure 3.1. The linking probability between two minicircles with centers
separated by a distance r for various values of θ0 (in degrees as indicated in
the legend). The data is from [ADH12].

between tilting-angle restriction and linking probability between two minicircles at fixed

separation becoming closer to P (r) = 1 − r when minicircles are very close or very far and

having a more pronounced difference when the distance is between 0.2 and 0.6.
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MC-kDNA with Steric Effects

Diao and his colleagues used the hard-cylinder model discussed in section 1.2 to estimate

the linking probability as a function of minicircle separation for various levels of volume

exclusion [DRKA15]. Interestingly, we observe that although the probability decreases

Figure 3.2. The linking probability (y-axis) is plotted against the separation
(x-axis) for pairs of minicircles with volume exclusion. Each panel shows one
curve for thin circles (no volume exclusion) and one curve for the indicated
value of cylinder thickness (“meridian radius”). The slopes of the linking-
probability functions increase as the degree of volume exclusion increases. Each
point corresponds to 10,000 samples. The data is from [DRKA15]

monotonically in separation, r, the slopes of the linear portions of the curves increase as the

thicknesses of the minicircles increase (see Fig. 3.2). In other words, as the extent of volume

exclusion increases, the linking probability becomes more sensitive to minicircle separation.

At very small separations, the function becomes nonlinear (and less steeply sloped) as fewer

volume-excluding conformations result in a topological link.
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MC-kDNA with Flexibile Minicircles

Klenin and colleagues computationally studied the linking probability of two closed,

freely jointed chains as a function of r, the separation between their respective centers of

mass [Kea88]:

# of segments estimated linking probability

20 segments P (r) = 0.682 exp(−0.214r2.61)

40 segments P (r) = 0.767 exp(−0.063r2.75)

80 segments P (r) = 0.871 exp(−0.048r2.24)

In a similar study, Arsuaga and his colleagues studied chain lengths in the range 16–

20 [ADR14]. The results are summarized in Figure 3.3, where an exponential decay phe-

Figure 3.3. Linking probability between two polygonal minicircles modeled
by closed freely jointed chains as a function of the distance between their
centers of mass (COM displacement). The data is from [ADR14].

nomenon is also apparent. In the case of flexible minicircles, it’s possible that topological

links more complicated than Hopf-type might form. However, given the relatively short

length minicircle arc length (with respect to the Kuhn length), it might be unlikely for links

other than the Hopf-type to form and they might only occur rarely.

47



Arsuaga and his colleagues addressed this question by studying the distribution of linking

numbers among pairs of FJCs [ADR14]. Their results indicate that for polygons with

n = 16, 18, and 20 segments, the majority of linked pairs have absolute linking numbers of

1. For example, in a grid dimension 100× 100 with n = 16 edges, these authors found that

less than 15% of linked pairs have absolute linking number larger than 1 with densities near

the mean percolation density. These percentages only increased slightly when the density

increased to values near the mean saturation density, indicating that most of the linked pairs

we encounter are indeed Hopf links.

3.2.2. Minicircle Mean Valence. Next, we describe how the mean valence changes as

we change the different parameters of the simulation. As before we first describe the behavior

of the mean valence for the initially proposed model and then present our results on how this

behavior changes. Unless otherwise noted, the numerical results presented in this chapter

were obtained using sample grids of dimensions ranging from 100× 100 to 1000× 1000 with

a sample size of 1000.

MC-kDNA with Angle Restrictions

In [ADH12] the authors considered values for the tilting angle restriction of θ0 =

0, 30, 60, 87 degrees with no azimuthal-angle restriction. The authors’ numerical results

demonstrate that there is a strong linear relationship between the mean valence and the

minicircle density as shown in Figure 3.4. The simulations show that the mean valence

decreases as tilting-angle restriction increases. However, for a fixed tilting-angle restriction,

the relationship between mean valence and density remains linear, with regression equations

given below (all with R2 > 0.9):
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Figure 3.4. Minicircle mean valence is linear in density for each value of
the tilting-angle restriction. These values are—from top to bottom—θ0 =
0, 30, 60, 87 degrees [ADH12].

angle restriction linear predictor

θ0 = 0 (std. MC-kDNA) y = 4.1732x− 0.8716

θ0 = 30 y = 3.604x− 0.847

θ0 = 60 y = 2.042x− 0.063

These results indicate that when minicircle orientations are unrestricted (i.e, sampled

uniformly from points on the unit sphere), the MC-kDNA model predicts a mean valence

much larger than the experimentally determined value from Chen et al. 1995 at physiological

densities [ADH12]. As noted previously, electron microscopy studies indicate that kDNA

minicircles adopt average orientations that are parallel to the plane of the kinetoplast disk

[DRKA15].
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MC-kDNA with Flexible Minicircles

In their 2014 work, Arsuaga and his colleagues studied the flexible-minicircle MC-kDNA

model [ADR14]. As shown in Fig. 3.5, the authors found a linear relationship between mean

Figure 3.5. Minicircle mean valence is linear in density for each value of
the tilting-angle restriction. These values are—from top to bottom—θ0 =
0, 30, 60, 87 degrees [ADR14].

valence and circle density. There are a few features present in Arsuaga’s results, however,

that are not present in the rigid-circle MC-kDNA model. First, there is a nonzero linking

probability for ρ < 0.5, while rigid minicircles cannot link above this density. Second, at

high densities the mean valence is higher that for rigid circles, which suggests that flexible

minicircles have a higher chance of linking with non-neighboring minicircles. Consistent with

this observation, longer chains have a higher mean valence than shorter ones.
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Minicircle mean valence increases linearly with density.

Diao and his colleagues showed analytically that the mean-valence of the square-lattice

MC-kDNA model increases linearly with increasing density [DHK+12]:

Theorem 3.2.2. For large values of the density, the mean valence, 〈V 〉, of any given

minicircle in the square-lattice MC-kDNA model is O(ρ). More specifically, we have:

(3.2) 0.9ρ < 〈V 〉 < 16

3
ρ.

This result is consistent with the experimental observation that when the number of

minicircles doubles during kDNA replication, the mean valence doubles from three to six

[DHK+12]. We discuss the theoremÕs proof in the following paragraphs.

We begin by observing that, since minicircles have radius 1, they must be separated

by a distance d ∈ (0, 2) for linking to be possible. For a square lattice, a particular site

Figure 3.6. A central minicircle is surrounded by a series of concentric
squares labelled by k (adapted from [DHK+12]).

is surrounded by nested squares, each identified by an integer k ∈ Z+ (where the square
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k = 1 contains the nearest and next-nearest neighbors of the center lattice site) (see Fig.

3.6). The sites contained in a particular square are separated from the center by a distance

d ∈ [2ak, 2
√

2ak], where a closest site is at the center of one of the squareÕs sides and a

farthest site is at one of the square’s corners. Note that the authors choose to make the

lattice constant 2a in this proof, rather than a.

The remainder of this proof consists of counting the number of lattice sites a distance

d < 2 from the center site, and then summing the linking probabilities between the center

minicircle and each of these others. For a pair of minicircles separated by d ∈ (0, 2), Diao

and his colleagues show in Corollary 1 that

Plink = 1− d.

Now, the reader can quickly verify by counting (again, see Fig. 3.6) that the square k has 8k

lattice sites (e.g, square k = 2 has 16 lattice sites). Therefore, we expect that the square k

contributes a quantity 8k(1− d) to the mean valence of the center circle. For a given lattice

constant 2a, k < 1/a. In other words, lattice sites outside this square correspond to circles

that are too far away to link with the center circle.

Given the maximum and minimum distances established in the second paragraph of this

proof for square k, we can sum over all of the squares surrounding the center lattice site to

find the bounds on mean valence:

(3.3)

1/a∑
k=1

8k(1−
√

2ak) ≤ 〈V 〉 ≤
1/a∑
k=1

8k(1− ak).

We evaluate these sums as follows:

(3.4) 8

1/a∑
k=1

k − 8
√

2a

1/a∑
k=1

k2 ≤ 〈V 〉 ≤ 8

1/a∑
k=1

k − 8a

1/a∑
k=1

k2.
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Now, we assume that a is small (ρ is large), which allows us to treat all values of k as

integers. Under this assumption, both of these series have well known closed-form values:

(3.5)

4

a

(
1

a
+ 1

)
− 4
√

2a

3

a

a

(
1

a
+ 1

)(
2

a
+ 1

)
≤ 〈V 〉 ≤ 4

a

(
1

a
+ 1

)
− 4

3

a

a

(
1

a
+ 1

)(
2

a
+ 1

)
,

which reduces to:

(3.6) 0.92
1

a2
+O

(
1

a

)
≤ 〈V 〉 ≤ 4

3

1

a2
− 4

3
.

For the left-hand side of this inequality, we observe that for small a the inverse-square term

dominates the O(1/a) terms. Therefore, we substitute ρ = 1/(4a2) and we find:

(3.7) 0.9ρ ≤ 〈V 〉 ≤ 16

3
ρ.

Importantly, this result tells us that mean valence is linear in density. Diao and his

colleagues computationally confirmed this behavior in the same work.

The mean valence has a low sensitivity to the distribution of minicircle centers.

Arsuaga and colleagues studied the relationship between the mean valence and the un-

derlying (regular) lattice [ADH12]. The following table summarizes their findings:

lattice type linear predictor

hexagonal y = 4.157x− 0.825

triangular y = 4.1451x− 0.8329

square y = 4.1732x− 0.8716

These results shows that, among the studied regular lattices, the spatial distribution of

minicircle centers has a rather small impact on this generally linear relationship as stated in

Theorem 2. In all cases, R2 > 0.9.
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3.3. Results

3.4. T. brucei Minicircle Topology

3.4.1. Experimental Determination of Minicircle Topology. Chen and his col-

leagues determined the mean valence of the Crithidia fasciculata minicircle network to be

three [CRW+95]. We propose to reproduce these results for C. fasciculata, and then to

extend them to determine the topology of the T. brucei kinetoplast. In Chen’s assay, the

authors partially digested isolated (purified) C. fasciculata kDNA networks with the restric-

tion enzyme XhoI, which cuts each minicircle at a single location. The authors carried out a

time-course assay, preparing mixtures containing a ratio of 1 µg of kDNA to 10 U of XhoI.

These reactions occurred at 37°C for 10-90 minutes, before XhoI was heat-deactivated for 10

minutes at 70°C.

Because of the sequence heterogeneity in T. brucei, we will use E. coli topo-IV, a type-

II topoisomerase, instead of XhoI (topo-IV is not site-specific). Topo-IV is commercially

available from TopoGEN. Type-II topoisomerases like topo-IV can perform strand passage to

unlink a pair of linked minicircles. Under this type of action, the valences of both minicircles

decrease by one. An important difference between using XhoI and a type-II topoisomerase

is that, in the former case, the enzyme linearizes a given minicircle, necessarily removing it

from the network. However, in the latter case, the enzyme will instead change the valence

by one—the minicircle may remain linked to other circles in the network.

In the case of XhoI, partial digestion means that only a subset of the minicircles are

cut by this restriction enzyme. As we just discussed, when XhoI acts on a C. fasciculata

minicircle, the minicircle is linearized—it is released from the network and the valences of

all of the circles to which it was previously linked are decreased by one. On the other hand,

topo-IV acts on a pair of linked minicircles, and only these two circles see a decrease in their

valences.
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Chen and colleagues proposed using linking graphs to mathematically model the topology

of the minicircle system. Linking graphs are objects containing a set of nodes, which each

represent a minicircle, and edges, which can connect two nodes, thereby signifying that these

two minicircles are linked. Therefore, XhoI partial digestion means that a subset of the nodes

in the linking graph are removed; topo-IV partial digestion, on the other hand, means that

a subset of the edges in the graph are removed, leaving the nodes alone.

3.4.2. Simulated T. brucei Unlinking Assay. We expect the distribution of mini-

circle monomers, dimers, and trimers released from the network to be different in the case of

topo-IV treatment than in the case of XhoI treatment. In the previous section, we explained

how the action of topo-IV can be modelled mathematically by the elimination of an edge in

the linking graph.

Simulation Methods

We carried out a preliminary study of the expected distribution of connected components

(i.e: monomers, dimers, etc.), extending software used in [ILK+18]. In these simulations, we

generate 70× 70 square lattices of randomly oriented minicircles using the method proposed

in [DHK+12], which is explained in section 1.2. We then simulate topo-IV unlinking action

by randomly unlinking each pair of linked minicircles with a specified probability. For each

value of the unlinking probability, we generated10 minicircle lattices.

Predicted Oligomer Distribuions

When we compare our distributions (see right panel of Figure 3.7) from simulated topo-

IV digestion to Ibrahim and colleagues’ results for XhoI digestion (left panel), we note first

that the fraction of minicircles that are released from the networks in oligomer form is much

higher for the simulated topo-IV results. For example, only 10% of the minicircles from the

XhoI simulation are released as intact monomers at p = 0.7, whereas more than 50% of those
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Figure 3.7. Left: Ibrahim and colleagues simulated minicircle linearization
via XhoI on a square lattice [ILK+18]. Right: Our simulations of minicircle
unlinking via topo-IV on a square lattice

in our topo-IV study are released as monomers. This is the result we expected. Because

XhoI is a restriction enzyme, it linearizes each minicircle that it acts on. Topo-IV, on the

other hand, simply unlinks pairs of linked minicircles. Since no minicircles are linearized,

we expect the fractions of each oligomer state to be higher than its counterpart in the XhoI

simulations.

Moreover, in the XhoI simulations, all three oligomer states begin to decrease as p exceeds

a certain value. Biologically, this also makes sense, because all three oligomers states become

less likely when XhoI linearizes a large fraction of the minicircles. On the other hand, the

fraction of monomers in the topo-IV simulations is monotonically increasing in p. This

simply means that, as more pairs of circles are unlinked, individual intact minicircles are

increasingly likely to be released from the network. Finally, we note that the vertical ordering

of the three states’ distributions is the same in both simulations, i.e, monomers are more

common than dimers, which in turn are more common than trimers.

56



Determing Mean Valence from Oligomer Distributions

Given the distributions of minicircle oligomers that Chen and colleagues observed in

their partial digestion assay, these authors used a formula that they derive in their study to

calculate the mean valence:

V =
logm− logN − log p

log q
.

In this formula, m is the average number of intact monomers released from the network, and

p is the fraction of monomers linearized. The authors work under the assumptions that every

minicircle in the network has an equal probability of encountering the enzyme Xhol (being

cut) and that the minicircles have homogeneous valence. The authors observe that the ratio

of released circles to total circles—m/N—is given by pqV . In other words, this ratio is equal

to the product of the probability for a circle to remain intact, p, and probability that the V

circles linked to it are all cut by the enzyme, qV .

In the case of T. brucei experiments, this formula (which was derived for the XhoI assay)

does not apply. Instead, we propose a simulation-based approach. We would generate confor-

mations of randomly oriented minicircles according to the method described in [DHK+12].

For a density greater than the critical percolation density, ρperc ≈ 0.637, (which ensures that

a relatively large number of minicircles will be linked) [DHK+12], we will calculate the

linking between each pair of minicircles using the algorithm proposed in [DHK+12], and

then determine the average valence for each conformation.

After this, we will group together conformations whose mean valences are close (within a

small range) to integer values—for simplicity—between one and twenty. This range is moti-

vated by the mean-valence predictions discussed in section 3.2. For each set of conformations

(associated with a particular integer mean valence), we will perform the simulated topo-IV

unlinking assay, and determine the corresponding distributions of monomers, dimers, and

trimers, similar to those shown in Figure 3.7. We will compare the oligomer distributions
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from our topo-IV experiment with these simulated distributions to determine the mean va-

lence that most closely matches our experimental results.
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CHAPTER 4

The S477N mutation confers a potential binding fitness advantage

consistent with global SARS-CoV-2 population dynamics.

4.1. Methods

Genomic Data Set and Sequence Pre-Processing. We obtained SARS-CoV-2 se-

quences for this study from the GISAID database on Nov 11, 2020 [SM17]. Our data set

contains FASTA files for every complete human SARS-CoV-2 nucleotide sequence (from

all geographical locations) available in GISAID. The sequences were then aligned using

ClustalOmega with the default parameters [SH18]. We found that ClustalOmega ran faster

on our data set than common alternatives like ClustalW [THG94] and MUSCLE [Edg04].

After aligning the sequences, we extracted the spike protein by comparing the aligned se-

quence with the NCBI’s SARS-CoV-2 reference sequence (NC 045512.2; “WT”) [WZY+20].

We then removed any sequences that contained missing nucleotides. We organized the re-

maining 149,354 spike-protein sequences chronologically by collection date and partitioned

them into 109 sets, with each set containing an average of 1,300 sequences. We chose to

prioritize data sets of relatively equal size rather than choosing equal-length time windows.

This choice scales the pHMM probabilities similarly for each data set.

A Profile Hidden-Markov Model Identifies Point Mutations. pHMM’s are prob-

ability models that identify the evolutionary changes of an input set of sequences [Dur13].

A particular model is a forward-feeding machine defined by three states (excluding the ar-

bitrary start and end): match, insert, and delete. Match is the model’s default state and

nucleotides are emitted from this state with a probability specified by the input data. The
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insert state represents a sequence insertion and has nucelotide emission probabilities deter-

mined by the occurrence of individual nucleotides in the input data set. Unlike match and

insert, the delete state does not emit any nucleotides. pHMM outputs are contained in three

matrices: match-state emission probabilities, insert-state emission probabilities, and trans-

mission probabilities. We built a pHMM and calculated the associated matrices for each of

the 109 sequence partitions. We used the match-state probabilities to determine the genomic

locations and frequencies of point mutations.

After building a pHMM for the full global data set, we sorted the data by the reporting

country. For the country-level results (see Figs. 4.2 and 4.3), we plot a three-bin moving

average, which accounts for the variability in day-to-day reporting for each country. In Fig.

4.3 we show the fraction of each country’s reported sequences in a given three-bin period.

Gaps in two of the time-series reflect time points with an undefined moving average (i.e,

zero denominator). France is the only country with reported double-mutant samples that

we omitted due to its small sample size.

Molecular modeling software predicts S-ACE2 binding affinity. We used the

molecular-modelling package YASARA [KV14] to substitute individual residues and to search

for minimum-energy conformations on the resulting modified structures of the S-ACE2 com-

plex. For all of the structures, we carried out an energy-minimizatio (EM) routine, which

include steepest descent and simulated annealing (until free energy stabilizes to within

50 J/mol) minimizations to remove clashes. For the WT and S477N complexes, we sub-

sequently performed molecular-dynamics (MD) simulations. Each simulation ran for 10

nanoseconds using the AMBER14 force field [MMK+15] for solute, GAFF2 [WWC+04]

and AM1BCC [JJB02] for ligands, and TIP3P for water. The cutoff was 8 Å for Van

der Waals forces (AMBER’s default value [HAO+06]) and no cutoff was applied for elec-

trostatic forces (using the Particle Mesh Ewald algorithm [EPB+95]). The equations of

motions were integrated with a multiple timestep of 1.25 fs for bonded interactions and 2.5
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fs for non-bonded interactions at T = 298 K and P = 1 atm (NPT ensemble) via algorithms

described in [KV15].

We used the 7A94 post-fusion S-ACE2 complex [BWX+20] for our WT and S477N cal-

culations. 7A94 is a 3.90-Å cryo-EM structure that consists of a glycosylated S homotrimer

bound to a single ACE2 protein (ACE2 residues 19-615). Yurkovetskiy and colleagues re-

port that the D614G substitution induces substantial structural changes, mediated by at-

tenuated inter-protomer interactions. For the two strains containing the D614G mutation,

we consturcted a hybrid PDB template. Specifically, we used the 7KDL structure—a 2.96-

Å cryo-EM glycosylated S homotrimer containing G614—to model the majority of the S

trimer [?]. In order to get a biologically plausible ACE2 binding mode (since there are no

published post-fusion complexes with D614G), we used YASARA’s superpose tool [KV14] to

structurally align, then replace, the single 7KDL “up” RBD with 7A94’s bound RBD. This

preserves the positioning of 7A94’s ACE2 chain with respect to the latter RBD, which also

contains a more complete set of atomic coordinates than the 7KDL RBD. We used the full

S-trimer in all of our simulations to account for the inter-protomer interactions and to be

consistent between experiments.

Prior to calculating the free energy, we carry out several pre-processing steps on the struc-

ture including an optimization of the hydrogen-bonding network [KDHK12] to increase the

solute stability and a pKa prediction to fine-tune the protonation states of protein residues

at the chosen pH of 7.4 [KV15]. We added NaCl ions with a physiological concentration of

0.9 We calculated binding free energy for the energy-minimized structure using the molec-

ular mechanics/generalized Born surface area (MM/GBSA) method [HWLW01,SLT+14,

CLS+16], which is implemented by the HawkDock server [WWW+19]. We observed in our

simulations that HawkDock consistently overestimates the magnitude of binding free energy

relative to in-vitro methods. To an analyze the residue-level changes in each mutant, we

used HawkDock to identify those S-protein residues that contribute most strongly to binding.
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Additionally, we used YASARA to predict those residues participating in hydrogen bonds for

each variant and to calculate the strengths and separations of each bond.

4.2. Results

4.3. Time stratification of sequence data shows frequent emergence of S477N

single- and double-mutant strains in multiple countries.

Figure 4.1. Global Population Fractions of 477, 614 Mutants We
show the fraction of sequences in each time window that contains the speci-
fied mutation(s) in our full global data set. (Figure kindly provided by Sofia
Jakovcevic [Pea])

The D614G substitution (a non-synonymous single-nucleotide substitution: A23364G)

appears in our first data set, with collection dates between 1/1 and 2/19 (see Fig. 4.1;

courtesy of Sofia Jakovcevic). The frequency of this strain increases roughly monotonically in

subsequent data sets until the 3/6 - 3/9 interval, at which point GLY becomes the consensus

residue in locus 614 (ie, GLY appears in > 50% of sequences). D614G rises to a stable plateau

above 90% until mid-June, when we detect a second substitution, S477N (G22992A), which

occurs as both a single-mutant (in Australia only—see Fig. 4.2) and a double-mutant strain,

S477N/D614G (in Australia and Europe–see Fig. 4.3).

Both S477N and S477N/D614G begin to gain population share in mid-June and in the

following two months, all four strains are present in Australia, with the two strains containing
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Figure 4.2. Population Fractions in Australia We show the number of
reported samples in Australia for each of the four strains. This data is shown
as a three-bin moving average. Samples from these four categories account for
nearly all reported samples from the country. (Figure kindly provided by Sofia
Jakovcevic [Pea])

Figure 4.3. Population Fractions in Europe We calculate the fraction of
each country’s reported sequences with the S477N/D614G substitutions. Gaps
in an individual time series indicate that no samples were reported during the
specified period. The data is shown as a three-bin moving average. (Figure
kindly provided by Sofia Jakovcevic [Pea])

N477 dominating reported samples. Between 7/4 and 7/7, ASN becomes the consensus

residue at locus 477 globally. Australian COVID-19 infections fell dramatically in earlier

August after the introduction of strict public-health measures, and SER regains majority

population share at site 477 globally after the 7/31 - 8/3 period.

We note that the S477N/D614G maintains a large population share in Australia even

as overall infections fall. In Europe this strain also maintains a substantial population
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share–approximately 20% of the viral population in Denmark and a higher percentage in

Switzerland after emerging simultaneously in these countries in early August. From mid-

August until the end of October, the viral population returns to a nearly bipartite state,

split between S477N/D614G and D614G, which dominates.

MD simulations suggest an advantage for S477N when added to either WT

or D614G. We calculated binding free energies for both substitutions individually and

for the combined variant. We found that S477N/D614G binds more strongly than does

D614G: ∆∆G = −9.18 kcal / mol; and that S477N’s affinity improves with respect to WT:

∆∆G = −1.62 kcal/mol (see Fig. 4.4). While ∆∆G for the former pair is significant

outside of error bars, the latter pair is not, due to relatively noisy MD simulations. Pairwise

binding improvements for the two strains containing S477N are consistent with their apparent

fitness advantages over WT and D614G, respectively, demonstrated by our pHMM results.

Specifically, S477N gains population share in mid-June even as WT is nearly eliminated

from the viral population, and D614G demonstrates a fitness advantage with respect to the

double mutant as it becomes the dominant strain in early August.

As we explain in the Introduction, two recent papers have provided in-vitro evidence

indicating that D614G’s infectivity improvement over WT is not explained by improvements

in binding affinity. Since locus 477 is unlikely to affect the structure-modifying effects of

the inter-protomer G614 interaction, we believe that binding effects should not substantially

diminish the previously noted competitive advantage of a strain containing the D614G sub-

stitution alone. Note that we should be cautious in comparing the WT and S477N pair with

the two D614G variants, since these two sets of simulations are based on partially different

PDB templates.

Our population-dynamics results in Australia (see Fig. 4.2) are consistent with a binding

fitness advantage for S477N with respect to WT. These country-level results also show an

example of S477N/D614G out-competing D614G, even as the double mutant strain emerges
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Figure 4.4. MD Binding Affinities We calculated binding free energies,
∆G, for all four strains using the MM/GBSA method. The two strains contain-
ing S477N bind more strongly than their respective counterparts. Calculations
for the left and right pairs involved partially different starting PDBs and we
are cautious about inter-pair comparisons.

later in several European countries, attaining a stable ∼ 20% population share in Denmark

and an increasing share above one-third in Switzerland.

The S477N mutation improves binding by influencing hydrogen bonding for

N501. We used YASARA to compare S-ACE2 hydrogen bonds between S and ACE2 in WT

and in S477N. We found that the S477N substitution induces more stable hydrogen bonding

involving RBD residue N501, which is found at the far end of the S-ACE2 interfacial region

(shown in Fig. 4.5) with respect to locus 477. We performed three separate WT MD

simulations and four S477N simulations. We observe a more persistent H-bond between

acceptor N501 and donor Y41 (in the ACE2 HTH) in the S477N strain (average duration is

2.8 ns) than in WT (average duration is 0.7 ns—see Fig. 4.6). This bond occurs between

two oxygen atoms—an N-terminal O connected to the N501 amide group (OD1.N501) and

an O connected to the hydroxyl group in Y41 (OE1.Y41). In the WT case, this bond is

present for less than 3-ns in trajectories B and C and is completely absent in trajectory A.
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Figure 4.5. S477N’s Effects on the Y41-N501 H-Bond S residue N501
forms hydrogen bonds with ACE2 residue Y41, both of which are found in the
interfacial region of the bound complex. This interaction persists longer in the
S477N simulations (see next figure) than in WT; an S477N snapshot is shown
here. In this image, the RBD is to the right and the HTH is to the left (with
the rest of the ACE2 residues removed for a cleaner view).

However, the interaction appears in all four mutant trajectories and is present throughout

nearly the entirety of trajectory G.

S477N contributes a possible antibody-escape advantage in a majority of

RBD-ab complexes. We performed MD simulations and GBSA binding calculations to

measure the effects of the S477N mutation on RBD binding to five neutralizing antibodies:

7CJF, 7KFX, 6XE1, 7KFV, and 7KFW. These antibodies were isolated in sera from recov-

ered individuals, and each one binds to the RBD in the same region that the RBD uses

for its primary ACE2 interactions. We found that the S477N substitution weakens RBD-ab

binding for a majority of the tested antibodies: 7CJF, 7XE1, and 7KFW (see Fig. 4.8). This
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Figure 4.6. Persistent Inter-complex H-Bond in Mutant RBD residue
N501 forms an inter-complex H-bond with ACE2 residue Y41, which persists
for longer durations in mutant MD simulations than in WT. Each point indi-
cates that the bond was detected at the specified time step (0.1-ns intervals)
in a given simulations. This interaction was never detected in WT trajectory
A.

indicates that S477N viral mutants could be less prone to antibody neutralization by anti-

bodies similar to these three molecules. For 7KFX and 7KFV, our simulations predict that

similar antibodies will bind more strongly to the mutant, which would decrease antibody

escape. In each WT-mutant pair, the magnitudes of the differences, ∆∆G, are relatively

large, even as the noisy MD simulations lead to large error bars. Increased antibody escape

is an additive fitness advantage for the S477N strain, on top of the binding advantage that

we report in an earlier section. This advantage is consistent with S477N’s empirical fitness

advantage in our pHMM analysis
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Figure 4.7. WT 7KFW-RBD Complex We show a simulation snapshot
of the 7KFW antibody bound (center, upper right) to a WT RBD (bottom
left). We’ve labeled the RBD substitution site 477 in the images bottom.

Figure 4.8. Predicted ab-RBD Binding Effects S477N weakens binding
in a majority of RBD-ab complexes, which provides a potential fitness advan-
tage by decreasing antibody neutrlization (i.e, in recovered individuals. We
report the means and standard deviations of individual 10-ns MD simulations
with 5 snapshots spaced by 2 ns.
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CHAPTER 5

Discussion

5.1. Models for Minicircle Topology

The three-dimensional organization of genomes has received significant attention in recent

years due to its connections to cell functions. Recent experimental techniques like chromo-

some conformation capture assays and advances in electron tomography have given insights

into chromatin architecture at unprecedented resolutions. Still, determining the topological

properties of any genome remains challenging. Topological considerations are important be-

cause they enable exploration of the downstream influence of the 3-D genome on a variety of

biological processes. Theoretical studies show that DNA molecules in confined volumes are

entangled through knots and links. In vitro assays, on the other hand, show that these knots

and links inhibit basic DNA processing functions such as replication and transcription. This

apparent paradox suggests that cells have evolved mechanisms to perform DNA processing

functions in topologically complex environments. kDNA is one of the few genomes to be

topologically characterized. Although it is known that kDNA’s elegant topological structure

is essential for the successful completion of the parasite’s life cycle, as well as independent

replication of minicircles and maxicircles and a coordinated regulation of transcription, im-

portant information for potential drug developments (including the origin, function, and

maintenance of the network) is still lacking. The studies and results presented in chapter

3 aim, in part, at developing models that can be used for modeling potential drug targets.

Specifically, we discussed several key topological quantities that describe minicircle, namely

the mean valence and pair-linking probability, and we explored how various bio-physical

parameters can affect these characteristics by studying various minicircle models that take
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into account of these parameters. A key finding among all of these studies is that minicircle

density appears to be an important driving force in minicircle network formation, with the

minicircle orientation restrictions also an important contributor. On the other hand, factors

like the spatial distribution of minicircles, their flexibility, and steric effects play a secondary

role. These modeling approaches and results can be refined if more information is available

about the specific shapes and orientations of the minicircles in the kinetoplast (even only in

the average sense), and can be potential research topics in the future.

5.2. The S477N Mutant in SARS-CoV-2

Our pHMM results show that the S477N substitution emerges in multiple regions at dif-

ferent points in time and maintains a substantial share of the viral population in each such

country. In Australia two strains emerge in the summer of 2020, single-mutant S477N and

double-mutant S477N/D614G, and both compete favorably there with the two background

strains, WT and D614G. Even as aggressive mitigation measures pushed the number of

reported samples down dramatically in early August, the double mutant continues to domi-

nate the Australian viral population for several months. In early August the double mutant

emerges in several European countries, including England, Denmark, and Switzerland, and

it demonstrates a stable or increasing population fraction in those countries through the end

of October as it competes with single-mutant D614G. Our results (Fig. 4.1) also confirm

that D614G dominates the viral population on long time scales.

we performed MD simulations to compare the binding affinity of S477N against WT and

that of S477N/D614G against S477N. Taken together, our two pairs of simulations suggest

that S477N introduces an additive binding advantage against either background, which is

consistent with the population dynamics that we report. In the case of the latter pair, the

double mutant demonstrates a statistically significant binding improvement over D614G.

S477N improves it’s binding affinity in part due to strengthened hydrogen bonding involving

residue N501, which is in a region distal to locus 477. Using several MD trajectories, we
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report that the hydrogen bond between oxygen atoms in N501 and the Y41 ACE2 residue

is more persistent in the mutant that in WT.

Our simulations demonstrate the important effects of mutations in the two “ends” of

the S-RBD region—those neighboring locus 477 or neighboring locus 498—which are the

closest points between S and ACE2. In particular, the hydrogen bonding results highlight

the importance of the interfacial region that includes RBD residues 501. Residue 501 is

believed to play a role in the increased transmissibility of the “UK strain” (B.1.1.7) [?],

and our simulations predict that the S477N substitution creates new H-bonding interactions

between N501 and partners on ACE2. Finally, our MD simulations of five antibodies isolated

in sera from COVID-19-recovered individuals show a possible binding effect for S477N, with

a majority of antibody-RBD complexes exhibiting weaker binding to the mutant, suggesting

diminished neutralizing activity.
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