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Abstract

Obsessive-compulsive disorder (OCD) is a highly heritable complex phenotype that demonstrates 

sex differences in age of onset and clinical presentation, suggesting a possible sex difference in 

underlying genetic architecture. We present the first genome-wide characterization of the sex-

specific genetic architecture of OCD, utilizing the largest set of OCD cases and controls available 

from the Psychiatric Genomics Consortium. We assessed evidence for several mechanisms that 

may contribute to sex differences including a sex-dependent liability threshold, the presence of 

individual sex-specific risk variants on the autosomes and the X chromosome, and sex-specific 

pleiotropic effects. Furthermore, we tested the hypothesis that genetic heterogeneity between the 

sexes may obscure associations in a sex-combined genome-wide association study. We observed a 

strong genetic correlation between male and female OCD and no evidence for a sex-dependent 

liability threshold model, suggesting that sex-combined analysis does not suffer from widespread 

loss of power due to genetic heterogeneity between the sexes. While we did not detect any 

significant sex-specific genome-wide SNP associations, we did identify two significant gene-based 

associations in females: GRID2 and GRP135, which showed no association in males. We observed 

that the SNPs with sexually differentiated effects showed an enrichment of regulatory variants 

influencing expression of genes in brain and immune tissues. These findings suggest that future 

studies with larger sample sizes hold great promise for the identification of sex-specific genetic 

risk factors for OCD.

Introduction

Obsessive-compulsive disorder (OCD) displays sex differences in age of onset, progression, 

and symptomatology, however, the genetic basis of sex differences in OCD has not yet been 

comprehensively explored (Flament et al. 1990; Swedo et al. 1989; Bellodi et al. 1992; 

Boileau 2011). Epidemiological studies indicate a worldwide lifetime prevalence of OCD 

between 1 and 3% (Kessler et al. 2005; Ruscio et al. 2010; Torres and Lima 2005; Weissman 

et al. 1994) and while boys comprise approximately two thirds of the childhood cases of 

OCD, typically defined as onset before age 15 (Flament et al. 1990; Swedo et al. 1989; 

Bellodi et al. 1992; Boileau 2011), females predominate the late-onset cases of OCD. In 

addition to demonstrating a later age of onset, females with OCD have higher rates of 
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precipitating events which include pregnancy and childbirth (Lochner et al. 2004/3; Gerald 

Nestadt, Grados, and Samuels 2010). Compared to females, males with OCD report more 

religious, sexual, and symmetry symptoms, more alcohol dependence, and lower rates of 

marriage and employment. Females with OCD are more likely to be married, report more 

sexual abuse during childhood, often report exacerbation of symptoms in the premenstrual/

menstrual period, during/shortly after pregnancy, with menopause, and tend to have more 

contamination and cleaning compulsions, as well as eating disorders, reviewed in Mathis et 

al (Mathis et al. 2011).

Although the recently-published genome-wide association studies of OCD (Mattheisen et al. 

2015; Stewart et al. 2013; International Obsessive Compulsive Disorder Foundation 

Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies 

(OCGAS) 2017) found no genome-wide significant associations, these studies demonstrated 

that common variants account for a significant proportion of OCD heritability (24–32%) 

(Davis et al. 2013; International Obsessive Compulsive Disorder Foundation Genetics 

Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS) 

2017). They also indicate that the strongest associated variants in OCD genome-wide 

association study (GWAS) are enriched for expression quantitative trait loci (eQTLs) and 

methylation QTLs derived from frontal lobe, cerebellum, and parietal lobe tissue (Stewart et 

al. 2013), demonstrating that biologically meaningful associations exist within the top 

ranked SNPs and that increasing sample sizes will likely identify significant common variant 

associations for OCD risk. In addition to increasing sample size, another approach to 

improve power for GWAS is to reduce genetic heterogeneity. For example, if sex 

significantly modifies the effect of genetic variation on the risk of OCD, then combining 

males and females with OCD may weaken or obscure sex-specific effects. For example, 

previous studies have discovered novel loci which were previously undetected due to 

heterogeneity between sexes (Mitra et al. 2016; Martin, Walters, Demontis, Mattheisen, 

Hong Lee, et al. 2017; Taylor et al. 2013; Randall et al. 2013; Liu et al. 2012; Winkler et al. 

2015; Hartiala et al. 2016; Orozco et al. 2012; Zhuang and Morris 2009; Singh et al. 2016). 

Motivated by the sex differences in OCD, we tested the hypothesis that the genetic 

architecture of OCD varies between the sexes.

We first performed a sex-stratified genome-wide association meta-analysis and genotype-sex 

interaction meta-analysis including autosomes and the X chromosome. We then developed 

an approach to identify SNPs with Sexually Differentiated Effects (SDEs), and assessed 

whether the SDEs regulate gene expression and are enriched for associations with sexually-

differentiated anthropometric traits (i.e. height, weight, body mass index, hip and waist 

circumference) as observed in autism spectrum disorders (Mitra et al. 2016). Third, we 

performed SNP-based heritability analysis to (a) assess the proportion of overall OCD 

heritability explained by the X chromosome, and (b) test for evidence of sexually-dependent 

liability threshold for OCD between males and females. An important correlate of the sex-

dependent liability threshold is that the sex with the lower prevalence/milder presentation 

requires a higher genetic burden to become affected and therefore is more likely to have 

affected children, also known as the Carter effect. This has been reported for several 

complex traits (Kruse et al. 2012; Kantarci et al. 2006). Fourth, we performed a sex-

stratified genetic correlation analysis with other traits which may play a role in OCD 
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development (e.g. brain volumes), are sexually-differentiated (e.g. autism, Tourette 

syndrome, attention deficit hyperactivity disorder, etc.), or are known to show differences in 

comorbidity between males and females with OCD (e.g. smoking, eating disorders, and 

reproductive behavior). Here, we present the first genome-wide assessment of the sex-

specific genetic architecture of OCD utilizing the largest OCD dataset currently available. 

We also provide best practices for sex-stratified analysis which can be adopted in future 

studies of OCD and other phenotypes.

Methods

Datasets

The datasets (Supplementary Figure 1) used in this study comprise the OCD Psychiatric 

Genomics Consortium sample and are fully described in primary publications (Stewart et al. 

2013; Mattheisen et al. 2015; International Obsessive Compulsive Disorder Foundation 

Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies 

(OCGAS) 2017). All participants over 18 and the parents of participants under 18 gave 

written informed consent and this work was approved by the relevant institutional review 

boards at all participating sites. Participants of European ancestry were selected for this 

study and include cases and controls from Dutch, South African, European, and Ashkenazi 

Jewish ancestries. Additionally, trio samples were included in the meta-analysis and 

consisted of proband cases and pseudo-controls. The pseudo-controls were derived from the 

non-transmitted parental chromosomes.

Sample and genotype level quality control and imputation

Autosomes—Genotype level data from all studies were pre-phased with SHAPEIT2 

(Delaneau, Zagury, and Marchini 2013), and imputed to the 1000 Genomes Project reference 

panel (Phase I integrated variant set release; NCBI build 37 (hg19)) using IMPUTE2 

(Howie, Marchini, and Stephens 2011), using the Ricopili pipeline (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium 2014). Prior to imputation, SNPs with call 

rate<0.98, minor allele frequency (MAF)<0.01, case-control differential missingness>0.02, 

Hardy–Weinberg equilibrium (HWE) p-values <1e-6 for controls and <1e-10 for cases were 

removed using PLINK (Purcell et al. 2007). After imputation, any SNPs with IMPUTE2 

info score <0.6 and certainty <0.8 were removed. After splitting the datasets by sex, SNPs 

with MAF <0.05 were removed from each sex, because the number of subjects carrying the 

minor allele was too small and could give rise to false positive association results.

At the individual level, samples were removed if the genotyping call rate was <0.98, the 

absolute value of the heterozygosity F statistic was >0.20, or there was an inconsistency 

between genetic sex and reported sex. Furthermore, pairwise identity by descent (IBD) 

analysis was used to identify cryptic relatedness between individuals, and one individual was 

removed at random from any pair related at the approximate level of first cousins (pi-

hat>0.2). Principal component analyses were performed using EIGENSOFT (Price et al. 

2006) separately for each sub-population, (Supplementary Methods; Supplementary Figure 

2 and 3) and PC plots were inspected to ensure that for every cluster of cases there was a 

cluster of controls in the same PC space. PCs are visualized separately by sex in order to 
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ensure no subpopulation structure within each sex. After quality control, the total sample 

comprised 4,038 males and 5,832 females. The numbers of post-QC SNPs and individuals 

are listed in Supplementary Table 1.

X chromosome—X chromosome genotypes were processed separately from autosomal 

genotypes as additional care is required for pre-phasing, imputation, and post-imputation 

QC. At the genotype level, the pre-imputation QC steps for the X chromosome SNPs were 

the same as for the autosomes. An additional flag of -chrX was added when running 

SHAPEIT2 and IMPUTE2 software. Post-imputation, we employed the XWAS QC pipeline 

to remove variants in the pseudoautosomal regions (PARs), variants that were not in Hardy-

Weinberg equilibrium in females, or variants with significantly different MAF (p<0.05/

#SNPs) and differential missingness (P<10−7) between males and female controls (Gao et al. 

2015).

For imputation, we included those samples that passed both autosomal QC, and had a call 

rate >0.98 on the X chromosome. Furthermore, because we could not use the same case/

pseudo-control design for the trio data (i.e. due to lack of a non-transmitted X chromosome 

from the fathers of affected females), we included only the affected individuals from the trio 

data, ancestry-matched them to controls from the case/control dataset, and analyzed them 

with the case/control data. We performed PCA using EIGENSOFT and removed any trio 

cases without matched controls.

Genome-wide association meta-analysis

For each individual dataset, we performed sex-stratified and combined GWAS on imputed 

dosage files for autosomes and the X chromosome. In the sex-stratified analysis, dosages 

(i.e. number of chromosome copies) for the X chromosome in cases are equivalent to 

controls within each sex. However, in the sex-combined analysis, differences in dosage 

compensation between males (with one ChrX) and females (with two ChrX) should be 

considered. Thus, we verified that performing association analysis on ChrX dosage files 

produced consistent results compared with analysis of best-guess data in which ChrX was 

coded as 0/2 for males instead of 0/1 (--xchr-model 2 in PLINK).

In all association analyses, principal components correlated with OCD (association p-value 

< 0.2) were included as covariates. We used the inverse variance method implemented in 

METAL (Willer, Li, and Abecasis 2010) to meta-analyze summary statistics from each 

subpopulation and trios for sex-stratified analysis. We performed GWAS and meta-analysis 

on the combined male/female sample for each subpopulation to ensure that our sex-specific 

QC yielded results consistent with the recently reported OCD meta-GWAS using the same 

data (International Obsessive Compulsive Disorder Foundation Genetics Collaborative 

(IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS) 2017). The 

correlation calculated using LD score regression (B. K. Bulik-Sullivan et al. 2015) between 

our meta-analysis and the previously published meta-analysis (International Obsessive 

Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD 

Collaborative Genetics Association Studies (OCGAS) 2017) was not significantly different 
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from 1 (rg = 1.052, se=0.014). Manhattan and quantile-quantile plots (Khramtsova and 

Stranger 2016) were used to visualize results.

Genotype-sex interaction analysis

We used PLINK to perform a genotype-sex (GxS) interaction analysis, with principal 

components as covariates, in each of the individual datasets. We then used METAL to meta-

analyze the interaction results. A sex-stratified analysis followed by difference test (Z-score, 

see below) is equivalent to a formal test for genotype-sex interaction when there is no 

interaction between covariates and the strata, and the trait variance are equivalent in the two 

strata. However, different information can be gained from both types of analyses. An 

interaction test on a combined sample is powered to detect a difference between the sexes in 

genetic risk and needed to determine whether differences in effect sizes are statistically 

different between the sexes. On the other hand, a stratified analysis is required in order to 

characterize the effect size itself, and the direction of effect within each sex.

Assessment of heterogeneity from sex-stratified GWAS

We used Z-scores (correlated with Cochran’s Q statistic but provides directionality of the 

effect, Supplementary Methods) to assess heterogeneity between males and females. To 

obtain a Z-score, and corresponding p-values, for each tested variant, we calculated the 

differences in effect sizes (beta) between the sexes weighted by the square root of the sum of 

beta standard errors squared (equation 1).

Z − score =
Beta f emale − Betamale

SE f emale
2 + SEmale

2 Equation 1

We define SNPs with Sexually Differentiated Effect (SDEs) as those variants at the extreme 

ends of the distribution with an absolute value of the Z-score greater than 3 (∣Z-score∣>3), 

which is roughly equivalent to p<10−3, and represents 0.3% of all tested SNPs.

Gene-based analysis, functional mapping and annotation of genome-wide association 
studies

We used Functional Mapping and Annotation of Genome-Wide Association Studies 

(FUMA) SNP2GENE web tool (Watanabe et al. 2017), to perform annotation of the male- 

and female-specific genome-wide associations. We used the default settings with minor 

modifications: the minimum p-value of the lead SNP was set at 1.0E-5, the r2 threshold to 

define the LD structure of the lead SNPs greater or equal to 0.6, the maximum p-value cutoff 

at 0.5, MAF>0.01, 250 kb as the maximum distance between LD blocks to merge into a 

locus, 1000 Genomes Project Phase 3 European population as the reference panel, and 

variants from the reference panel were included for identification of functional variants in 

LD with the lead SNP. For the gene-based analysis implemented via generalized-gene set 

analysis of GWAS data (MAGMA) (de Leeuw et al. 2015) in FUMA, SNPs are mapped to 

genes if they fall within the gene start and end sites. In this analysis the mean of the chi2-

statistic for the SNPs in a gene is calculated and the p-value is obtained from a known 
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approximation of the sampling distribution (Brown 1975; Hou 2005). The genome-wide 

significance threshold is defined as 0.05 / number of genes to which the SNPs are mapped.

Heritability estimates and genetic correlation

To calculate the sex-specific narrow-sense SNP-based heritability (h2), (i.e., the proportion 

of phenotypic variation attributable to the additive effect of all SNP variants in each sex), we 

used two methods: 1) LD score regression (LDSC) as implemented in LDSC v1.0.0 (B. K. 

Bulik-Sullivan et al. 2015) and 2) restricted maximum likelihood analysis (REML) 

implemented in GCTA v1.24.4 (Yang et al. 2011). LDSC analysis was performed on the sex-

stratified meta-analysis summary statistics from all study datasets. Meta-analyzed imputed 

SNPs which overlapped with a panel of high confidence HapMap SNPs were used for the 

LD score regression. Because our dataset is composed of European individuals, we 

downloaded precomputed LD scores (B. K. Bulik-Sullivan et al. 2015; B. Bulik-Sullivan et 

al. 2015). Using all individuals, we calculated the total and sex-stratified heritability, 

checked for residual population stratification (based on the LDSC intercept (B. K. Bulik-

Sullivan et al. 2015)), and calculated the genetic correlation between males and females. A 

range of 1–3% OCD population prevalence was used to transform from the observed 

heritability scale to the liability scale.

For REML analysis, we used a combination of the IOCDF-GC and OCGAS European 

datasets plus the cases from the IOCDF-GC and OCGAS trio dataset and performed an 

additional PCA analysis on this combined sample to remove any outliers. Genetic 

relationship matrices (GRM) for autosomes and chromosome X were generated for 

combined and sex-stratified datasets, removing any individuals who are closely related 

(IBD>0.05). All pruned imputed SNPs were used to determine the top 20 principal 

components using smartpca in EIGENSOFT (Price et al. 2006). Genomic-relatedness-based 

restricted maximum-likelihood (GREML) analysis was performed on the autosomes and the 

X chromosome (taking into account dosage compensation, Supplementary Methods) using 

GRMs and the top 20 ancestry covariates. The same range of prevalence estimates, as in the 

LDSC analysis, were used to transform heritability to the liability scale. Bivariate GREML 

analysis was performed to assess the genetic correlation between the sexes. To determine the 

proportion of the total heritability contributed by each chromosome (including the X 

chromosome), a separate GRM was generated for each of the 23 chromosomes. Then, all 

chromosomes were analyzed jointly in a single GREML analysis with 20 PCs to account for 

population substructure.

Enrichment of expression quantitative trait loci in brain and immune tissues among OCD-
associated variants and SDEs

To assess eQTL enrichment, specifically to test for an enrichment for a gene regulatory role 

among top GWAS associations and SDEs, we quantified the enrichment of the number of 

eQTL target genes (eGenes) associated with OCD-associated SNPs. Expression quantitative 

trait loci (eQTL) enrichment analysis was performed on (a) SNPs nominally associated with 

OCD (p<10–3) in the combined and sex-stratified GWAS analysis, and (b) SDEs. This 

analysis is specifically testing the hypothesis that SNPs modestly associated with OCD 

(within each sex, and within the combined sample) are enriched for immune or brain eQTLs 
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in comparison to null sets of SNPs that are not associated with OCD. Thus, the comparison 

is only between SNPs associated with OCD and those not associated with OCD (but 

matched on genomic features).

Prior to clumping (r2=0.2, 500kb window), each set of SNPs was filtered for variants with 

fewer than five hundred individuals present in the meta-analysis. We also report results of 

analyses of unfiltered SNPs (Supplementary Figure 8). eQTL annotation was performed 

using previously published eQTL results (Supplementary Table 2), including eQTLs derived 

from 10 regions of the brain and whole blood from GTEx v7 (GTEx Consortium et al. 

2017), a meta-eQTL analysis of brain cortex tissue (Kim et al. 2014), as well as CD4+ T 

cells and CD14+ monocytes (Raj et al. 2014). To assess eQTL enrichment, 1000 randomly 

ascertained SNPs sets were generated using SNPsnap (Pers, Timshel, and Hirschhorn 2015), 

sampled without replacement (replacement is allowed only when not enough matched SNPs 

are available) from the European catalogue of 1000 Genomes SNPs, and matched for minor 

allele frequency (± 5%), gene density (± 50%), distance to nearest gene (within a 1000kb 

window), and LD buddies (± 50%) at r2=0.8.

SNPs in the OCD-associated set and the null matched SNP sets were annotated both with 

cis-eQTL status and with the genes they regulate (i.e., eGenes) in brain and immune tissues. 

The enrichment p-value was calculated as the proportion of randomized sets in which the 

number of eGenes matched or exceeded the observed count among trait-associated SNPs. If 

multiple variants implicated the same eGene in a tissue or cell type, the eGene was counted 

only once. This strategy is different from counting individual eQTLs variants, as was done 

for the previous OCD GWAS (Stewart et al. 2013), where multiple SNPs may be regulating 

the same gene, while here all eQTLs targeting the same gene are counted only once. We also 

performed “pan-tissue” eQTL eGene analysis by combining the eQTL results from all the 

brain tissue subtypes and all the immune tissue and cell subtypes. If an eGene was present in 

more than one tissue, it was counted only once. To exclude the possibility of eQTL 

enrichment overestimation due to the gene-rich MHC region, we performed eQTL 

enrichment analysis both including and excluding SNPs in the HLA region. The enrichment 

was considered significant if the empirical p-value exceeded Bonferroni multiple testing 

correction threshold p<0.0036 (i.e. 0.05/14 tissues).

Enrichment of OCD-associated SNPs among anthropometric trait SDEs

We tested for enrichment of anthropometric trait SDEs (ASDEs) among SNPs nominally 

associated with OCD (p<10−3) in (a) the combined male/female analysis, (b) the sex-

stratified analyses, and (c) the OCD SDEs. ASDEs were defined using the approach 

described in (Mitra et al. 2016) (Z-score p<=10−3) for several anthropomorphic traits from 

the GIANT consortium (Randall et al. 2013): weight, height, body mass index (BMI), hip 

circumference (HIP), HIP adjusted for BMI (HIPadjBMI), waist circumference (WC), WC 

adjusted for BMI (WCadjBMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI 

(WHRadjBMI) resulting in a total of 12,006 unique ASDEs identified across GIANT 

phenotypes. We determined the overlap of ASDEs with each OCD subset (Supplementary 

Figure 9), as well as with 1000 matching SNP sets for each of the OCD subsets. An 

empirical enrichment p-value was calculated as the proportion of null randomized sets in 
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which the overlap matched or exceeded the observed overlap using the OCD associated 

SNPs.

Sex-stratified genetic correlation analyses

Genetic correlation analysis of OCD with thirty-one phenotypes of interest was performed 

for the combined OCD sample and sex-stratified OCD samples using LD score regression 

(B. K. Bulik-Sullivan et al. 2015). Sex-stratified summary statistics for the following eight 

phenotypes were obtained (Supplementary Table 6): attention-deficit hyperactivity disorder 

(Martin, Walters, Demontis, Mattheisen, Lee, et al. 2017), post-traumatic stress disorder 

(Duncan et al. 2017), reproductive behavior (Barban et al. 2016), insomnia (Hammerschlag 

et al. 2017), educational attainment (Okbay, Beauchamp, et al. 2016), and alcohol 

consumption (Clarke et al. 2017; Schumann et al. 2016). In the absence of available sex-

stratified summary statistics, sex-combined results were obtained for thirty-one phenotypes 

(Supplementary Table 7): Tourette Syndrome (Scharf et al. 2013; Yu et al. 2015), obsessive-

compulsive symptoms (den Braber et al. 2016), post-traumatic stress disorder (Duncan et al. 

2017), attention deficit hyperactivity disorder (Neale et al. 2010), autism (unpublished, 

available via Psychiatric Genomics Consortium), bipolar disorder (Psychiatric GWAS 

Consortium Bipolar Disorder Working Group 2011), major depressive disorder (Major 

Depressive Disorder Working Group of the Psychiatric GWAS Consortium et al. 2013), 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium 

2014), anxiety disorders (Otowa et al. 2016), depressive symptoms, neuroticism, subjective 

well-being (Okbay, Baselmans, et al. 2016), anorexia (Boraska et al. 2014), body mass index 

(Locke et al. 2015), tobacco usage (Tobacco and Genetics Consortium 2010), reproductive 

behavior (Barban et al. 2016) and structural brain measures (accumbens, amygdala, 

pallidum, caudate, thalamus, putamen volumes) (Hibar et al. 2015), hippocampal volume 

(Hibar et al. 2017), intracranial volume (Adams et al. 2016), insomnia (Hammerschlag et al. 

2017), educational attainment (Okbay, Beauchamp, et al. 2016), and alcohol consumption 

(Clarke et al. 2017; Schumann et al. 2016). We identified high confidence HapMap SNPs 

(for which the LD scores have been precomputed) present in the OCD summary statistics 

and each of the other summary statistics. For continuous traits (e.g. cognitive performance, 

brain structure volumes) no sample or population prevalence was specified. For binary traits 

the sample prevalence was calculated based on the reported number of cases in the sample, 

while the population prevalence was obtained from the literature (Supplementary Table 7).

Results

Sex-stratified genome-wide association and genotype-sex interaction analyses

Genomic control lambda (λGC) revealed no significant evidence of population stratification 

in the male-specific (λGC=1.019), the female-specific (λGC=1.026), or the combined 

(λGC=1.051) meta-analyses. The intercepts estimated by LD score regression of 1.002, 

0.991, 1.005 for sex-combined, female-only, and male-only, respectively, suggested that the 

mild inflation observed on the quantile-quantile plots (λGC) was not due to population 

stratification but rather to polygenic effects. The Manhattan and quantile-quantile plots 

(Figure 1 A-B) demonstrated no genome-wide significant associations in either males or 

females. There was little overlap in the top signals across sexes as illustrated by the lack of 
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points along a diagonal line from the left bottom corner to the right upper corner of Figure 

1C (top ten associations, Table 1). This visualization indicates that there are no variants 

which strongly associate (-log10(p-value)>3) with OCD in both sexes. In fact, the strongest 

associations in one sex, have very low -log10(p-value) in the opposite sex. Gene-based tests 

computed by MAGMA revealed two genome-wide significant genes in the female analysis: 

GRID2 (pFEMALE = 1.07E-07, pMALE = 7.23E-01) and GPR135 (pFEMALE = 1.55E-06, 

pMALE = 7.04E-01) which were not significant in males (Supplementary Figure 4). All 

other tests implemented in FUMA, including MAGMA gene-set analysis, and tissue 

expression analysis did not result in any significant findings for either sex.

The QQ plots (Supplementary Figure 5 A-B) of Z-score p-values indicated no significant 

SDEs (top ten SDEs, Table 2), and that the difference in effect size for SDEs was not driven 

by minor allele frequency (MAF) differences between sexes (Supplementary Figure 6). The 

MAF distributions for SDEs and all tested SNPs were identical, and sexually-differentiated 

loci were distributed across the genome proportional to chromosome length (Supplementary 

Figure 6D). P-values from a genotype-sex interaction test (Supplementary Figure 5 C-D) 

were highly correlated with Z-score p-values from the sex-stratified analysis (autosomal 

SNPs Pearson’s r=0.65, p<2.2e-16, X chromosome SNPs Pearson’s r=0.71, p<2.2e-16). 

Furthermore, GWAS results in the combined sample with or without sex as a covariate were 

highly correlated (LDSC rg=0.999, se=0.001).

Genetic correlation for OCD is high between males and females

For highly polygenic traits, individual genetic variants, including the most significantly 

associated variants, typically explain only a small fraction of a trait’s phenotypic variance. 

To characterize the sex-specific genetic architecture of OCD, we explored sub-threshold 

associations and their contribution to OCD heritability (h2).

The difference in heritability estimates (Table 3) between males (h2
M=0.131, SE = 0.097) 

and females (h2
F=0.296, SE = 0.079), as determined by LDSC regression, was not 

statistically significant, and the genetic correlation between the sexes was substantial (rg = 

1.043, SE = 0.509, p=0.041). The restricted maximum likelihood analysis (REML) estimates 

of heritability were almost identical between males (h2
M=0.232, se=0.072, p=0.001) and 

females (h2
F=0.240, se=0.057, p=1.07e-05), and to the combined estimate (h2=0.238, 

se=0.033, p=8.621e-14). The REML genetic correlation between males and females was 

1.00 (se=0.27). The observed patterns were also robust across population prevalence rates 

(Supplementary Table 3).

X chromosome contributes to the polygenic architecture of OCD in both sexes

One of the mechanisms by which sex differences in OCD could arise is through genetic risk 

deriving from the sex chromosomes. We observed no significant associations on the X 

chromosome in either the combined or sex-stratified analyses. A QQ-plot indicated that 

there was no significant SDEs on the X chromosome (Supplementary Figure 5). Using 

REML, we estimated the X chromosome (1.6% of total SNPs) heritability as h2
X=0.010 

(se=0.005, p=0.006), which comprised 3.8% of total OCD heritability, and was consistent 

with expectation (Supplementary Figure 7). When analyzed in each sex separately, X 
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chromosome heritability was not statistically different between females (h2
FX=0.014, 

se=0.008, p=0.027) and males (h2
MX=0.028, se=0.013, p=0.010) at 2.5% OCD prevalence. 

Results were again robust to estimates derived using a range of OCD prevalence 

(Supplementary Table 3).

eQTL enrichment observed among SDEs and strongest associations from sex-stratified 
GWAS

To investigate the functional effects of top associations (p<10−3) from the sex-stratified 

GWAS analysis and SDEs, we annotated each SNP as to whether it was an expression 

quantitative trait locus (eQTL) in brain or immune tissues. We tested for enrichment of 

eQTLs derived from brain tissues because brain is the primary tissue of interest, but also 

eQTLs derived from immune cells because the immune system has been previously 

implicated in several neuropsychiatric and neurodegenerative traits (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium 2014; Marsh et al. 2016; Heneka, 

Golenbock, and Latz 2015; Furtado and Katzman 2015a), including OCD (Furtado and 

Katzman 2015b; Murphy, Sajid, and Goodman 2006)

SDEs showed a significant enrichment for eQTLs from CD4+ T cells (p<0.001), the 

combination of immune tissues (p<0.002), and combined brain tissues excluding the 

functionally distinct cerebellum (p=0.001) (Figure 2, Supplementary Table 4). 188 eGenes 

were implicated by brain eQTLs and 198 by immune eQTLs, with 48 eGenes deriving from 

both tissues (Supplementary Table 5). Including HLA SNPs did not significantly affect the 

results. Consistent with the FUMA results presented above, we did not detect significant 

enrichments in the combined or sex-stratified analysis.

Little overlap of OCD SDEs and anthropometric traits SDEs

Previous work has revealed enrichment of anthropometric traits SDEs (ASDEs) among top 

autism (ASD), bipolar disorder (BIP) (Mitra et al. 2016), and endometriosis (Rahmioglu et 

al. 2015) associated genetic variants, suggesting that the same mechanisms acting on 

secondary sex characteristic differences later in life may also contribute to sex differences in 

other complex traits, including neuropsychiatric phenotypes, via pleiotropic effects. There 

was little overlap and no significant enrichment (p=0.14) for ASDEs among the clumped top 

combined, female-specific, male-specific GWAS associations, or OCD SDEs 

(Supplementary Figure 9).

Males and females demonstrate similar levels of genetic correlation between OCD and 
other complex traits

As the lower bounds on the genetic correlation estimate of OCD between sexes ranged from 

0.49–0.73, we explored whether males and females demonstrate differential genetic 

correlations between OCD and 30 traits (Supplementary Table 7) which may play a role in 

OCD development. Our analysis was limited by availability of combined male and female 

summary statistics for the majority of the traits we tested in the correlation. When available, 

we have used sex-stratified summary statistics to perform genetic correlation analysis 

between traits within each sex and assessed differences between sexes. The traits chosen for 

analysis included (1) neuropsychiatric phenotypes and behavioral traits (many of which 
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exhibit sexually-differentiated characteristics), (2) traits which overlap with known sexually-

differentiated clinical symptoms in OCD (e.g. smoking, eating disorders-anorexia, and body 

mass index), (3) brain structure volumes, and (4) reproductive behavior (age at first birth and 

number of children ever born).

Using sex-stratified summary statistics for OCD and traits listed in Supplementary Table 6, 

we performed cross-trait genetic correlations within each sex (i.e. Rg between male OCD 

with male ADHD and female OCD with female ADHD). There were no significant cross-

trait genetic correlations in either sex after multiple testing correction nor did the cross-trait 

correlations differ significantly between males and females (Supplementary Table 6), 

suggesting that sex stratified analyses are likely still underpowered. To increase the power of 

this analysis, next, we used sex-combined summary statistics for several complex traits 

(Supplementary Table 7) and performed cross-trait correlation analysis with sex-stratified 

OCD summary statistics. Several traits (bipolar disorder, schizophrenia, and neuroticism) 

exhibited a significant genetic correlation with female OCD, but not male OCD, again, 

possibly influenced by sample size (Supplementary Table 7). Again, the genetic correlations 

for OCD with other traits did not differ significantly between males and females.

A genetic correlation analysis using sex-combined summary statistics for OCD and other 

traits, revealed several significant cross-trait correlations, indicating that a larger sample size 

results in more precise estimates of the genetic correlation. We observed novel significant 

genetic correlations between the sex-combined OCD sample and the sex-combined summary 

statistics from age at first birth (rg=0.37, se=0.07, 4.83e-07), number of children ever born 

(rg=−0.35, se=0.09, p=6.66e-05), and replicated previously published results (Brainstorm 

Consortium et al. 2018; Davis et al. 2013; Yu et al. 2015).

Discussion

Obsessive-compulsive disorder is one of many neuropsychiatric traits exhibiting sex 

differences in both age of onset and presentation of symptoms. Gene-based analysis 

identified two genes (GRID2 and GPR135) with female-specific associations that were not 

present in males, however, at the level of individual loci, no genome-wide significant 

associations were detected in either the sex-stratified GWAS or the genotype-sex interaction 

analysis. The genome-wide genetic correlation for OCD between males and females was not 

significantly different from 1 and OCD heritability estimates were not significantly different 

between the sexes. Additionally, we observed no significant differences in the cross-trait 

genetic correlations between males and females which is currently best explained by the 

absence of ubiquitous genetic architecture differences between male and female OCD, as 

well as small sample sizes which negatively impact on the ability to detect smaller 

differences between the sexes. Finally, partitioned heritability analysis indicated that the X 

chromosome contributed to the polygenic liability of OCD, underscoring the importance of 

including the X chromosome in GWAS of OCD.

The GRID2 gene is part of the glutamatergic signaling system (Pittenger, Bloch, and 

Williams 2011) which is thought to be important in OCD and is expressed in the brain 

regions which have been implicated in OCD (cerebellum, caudate, putamen, nucleus 
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accumbens, and the anterior cingulate cortex) (Graybiel and Rauch 2000). Less is known 

about GPR135, however, results from the GTEx portal (https://gtexportal.org) indicate that it 

is also expressed in brain. Taken together, these results indicate that significant sex-specific 

effects for OCD likely exist but will be challenging to detect given their modest effect sizes 

and the sample size required to detect statistically robust genotype-sex interactions. 

Encouragingly, significant sex-stratified associations have been identified in studies of ASD 

and ADHD, demonstrating the value of increasing sample size for the study of sexually-

differentiated genetic effects (Mitra et al. 2016; Martin, Walters, Demontis, Mattheisen, Lee, 

et al. 2017).

Furthermore, we observed that SDEs, SNPs with the greatest heterogeneity in effect size 

between males and females were enriched for gene regulatory function (eQTLs) in brain and 

immune tissues, implicating these tissues in sexual-differentiation of OCD. The enrichment 

of immune eQTLs among SDEs is consistent with both the known role of the immune 

system in several neuropsychiatric traits (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014; Furtado and Katzman 2015a, [b] 2015; Murphy, Sajid, and 

Goodman 2006), and the observed sex differences in immune function (Klein and Flanagan 

2016). Moreover, a recent whole-exome sequencing study found that OCD probands have a 

higher rate of de novo nonsynonymous single-nucleotide variants in genes enriched for 

neurodevelopmental and immunological processes (Cappi et al. 2016). Though specific 

mechanisms remain unknown, these studies provide new evidence for an old hypothesis 

linking the immune system with compulsive behavior and OCD (Marazziti et al. 1999; 

Kawikova et al. 2007; Murphy, Sajid, and Goodman 2006; Slattery et al. 2004; Miguel et al. 

1995; Swedo et al. 1998; Murphy et al. 2012; Snider and Swedo 2004; Swedo et al. 2012; 

Leonard et al. 1992; Carapetis and Currie 1999).

Limitations for this study include sample size, and ascertainment strategies that may bias 

towards earlier age of onset which could result in uneven representation of disease 

subclasses among males and females. For example, early-onset OCD is reportedly slightly 

more heritable than adult-onset (Davis et al. 2013; G. Nestadt et al. 2000; van Grootheest et 

al. 2005). Thus, uneven representation of males and females in the early- and adult-onset 

OCD groups could confound heritability if estimates are influenced by both sex and age-at-

onset. Age-of-onset information is incomplete in many of the historical sample collections 

that have been included in this meta-analysis. The lack of detailed clinical data limits our 

ability to address many important questions related to symptom type, symptom severity, and 

age of onset. These limitations underscore the need for larger OCD datasets phenotyped in 

greater detail to delve deeper into both genetic and clinical sex differences observed in OCD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan and quantile-quantile plots for sex-stratified meta-GWAS. Meta-GWAS was run 

separately for females (1525 cases and 4307 controls) and males (1249 cases and 2789 

controls) on ~5.5 million imputed SNPs (MAF>5%). (A) The peaks pointing up on the plot 

are the results for female analysis and the peaks pointing down are the results for male 

analysis. Although not genome-wide significant, several suggestive peaks can be observed in 

one sex and not observed in the other. (B) Quantile-quantile plot for sex-stratified and 

combined meta-GWAS. (C) Scatter plot of -log10(p-value) for female OCD assications (x-

axis) versus male OCD associations (y-axis). Contour lines colored from red to blue indicate 

decreasing data density.
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Figure 2. 
eQTL enrichment in the brain and immune tissues for combined, female-specific, male-

specific top associations (10−3) and SNPs with Sexually Differentiated Effect SNPs (SDEs), 

excluding and including SNPs in the HLA region. Only variants with more than 500 

individuals in the GWAS are included here. Light green bars represent each immune tissue 

or cell type: whole blood, monocytes, and cd4+ T cells, while the dark green represents 

enrichment in a combination of the three immune tissues. Light blue bars represent each 

brain tissue, while the dark blue represents enrichment in a combination of ten brain tissues, 

or all ten brain tissues minus cerebellum. The black dashed line represents a p-value of 0.05. 

The red dashed line represents the significant p-value threshold (0.00357) after accounting 

for 14 eQTL datasets tested.
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