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Abstract

Contemporary formal models aim to capture group polar-
ization as the result of deliberation between rational agents.
Paradigmatic models do, however, rely on rather limited
agents, casting doubt on the conclusion that group polariza-
tion can be rationally reconstructed. In this paper, we use a re-
cently developed Bayesian agent-based model of deliberation
to investigate this conclusion. This model avoids problems we
identify in a group of influential Bayesian polarization mod-
els. Our case study shows that a simple mechanism produces
realistic patterns of group polarization: limited exchange of ev-
idence across a sparse social network. We reflect on what our
results mean for our formal understanding of rational group
polarization.

Keywords: Agent-Based Model; Polarization; Bayesian In-
ference; Deliberation; Social Epistemology

Why do groups polarize?
It seems to be a ubiquitous fact that groups may fail to reach
consensus through deliberation. Rather, they may diverge and
polarize. A remarkably interdisciplinary field has emerged to
explain group polarization. This is unsurprising: reaching
consensus is the main goal of deliberation in early theories of
deliberative democracy (Landemore & Page, 2015), while ex-
treme polarization is seen as a danger to modern democracies
today (Sunstein, 2018).

Why would deliberation, the exchange of arguments and
evidence, lead to group polarization? Influential theories ex-
plain polarization as the result of epistemically irrational be-
havior, such as motivated reasoning, cognitive biases, and
the formation of secluded epistemic bubbles (Kahan, 2013;
Taber, Cann, & Kucsova, 2009; Anderson, 2021). Philoso-
phers and computational sociologists have, in the mean time,
attempted to develop rational reconstructions of polarization:
that is, understanding polarization without assuming irra-
tionality on the part of the group’s agents. To do so, computa-
tional (simulation) models have emerged, exploring artificial
groups of boundedly rational agents engaged in deliberation
about a target hypothesis.

It has, however, proven surprisingly hard to produce mod-
els in which ”simple and intuitive mechanisms produce pat-
terns that even roughly resemble familiar patterns of polar-
ization” (Bramson et al., 2017, p. 115). This naturally casts
doubt on the explanation of group polarization as a rational
phenomenon. Further, paradigmatic models resort to rather
limited agents to produce divergence, rendering questionable

whether they are truly rational (for a recent discussion, see
Kopecky, 2023).

This paper uses a recently developed simulation frame-
work, NormAN—short for Normative Argument Exchange
across Networks (Assaad et al., 2023)—to pursue a simple
reconstruction of group polarization as rational. This frame-
work circumvents important problems we identify in a group
of influential Bayesian polarization models. We conduct a
case study of the NormAN framework, exploring the roles
of social network structure and communication rules. We
find that groups in NormAN produce realistic belief disper-
sion patterns. Polarization emerges and increases as the net-
work structure becomes sparser, and (importantly) if agents
do not share the entirety of their evidence, but only what they
consider to be the best, most truth-conducive evidence. Con-
versely, if the network is dense and agents share their en-
tire evidence, polarization disappears. This result holds for
a range of plausible evidence distributions representing the
”topic” under discussion.

Our case study presents a simple and intuitive mechanism
for group polarization among rational agents: limited infor-
mation exchange across a sparse social network. We discuss
the implications of our findings on our formal understanding
of group polarization.

Models of group polarization
Consider the following generic situation: a group of agents
collect and exchange information (in the form of evidence,
arguments or testimony) to deliberate whether a certain hy-
pothesis H is true or false. Each forms a degree of belief
P(H) ∈ [0,1] about the hypothesis based on the received in-
formation. This scenario, so the modelling literature assumes,
captures the essential form of real group deliberation.

Following the formal literature, we understand polarization
as belief dispersion induced by deliberation (cf. Bramson et
al., 2017, p. 120). If the group converges on one degree of be-
lief, we speak of convergence on consensus. Any other belief
distribution can be expressed as belief dispersion of varying
degrees. For instance, perfect bi-polarization (i.e., one half
of the group believing 1, the other 0) is extreme polarization,
consensus means that there is no dispersion, and everything in
between we denote as polarization of varying degrees. How
do computational models reconstruct polarization among ra-
tional agents? There are a plethora of models (e.g., Axelrod,
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1997; Hegselmann & Krause, 2002; Singer et al., 2019), but
in this brief paper, we will focus on Bayesian agent-based
models in social epistemology. Bayesian reasoning has long
been developed as a standard of rational reasoning, and there-
fore provides a fitting theoretical framework for modelling ra-
tional agents (Hartmann, 2021). Two influential model fam-
ilies have emerged in the Bayesian literature: bandit models
and source reliability simulation models.

Bandit models, developed by economists Bala and Goyal
(1998) and popularized in philosophy by Zollman (2007), use
one or multi-armed bandits where each ”arm” represents a
theory. Agents test these theories’ success rates, aiming to
identify the arm with the highest expected payoff. They com-
pute beliefs about the best theory through Bayesian condi-
tionalization based on their own outcomes and those of their
neighbors. The standard two-armed bandit models used in
Zollman (2007, 2010) do not lead to polarization (correct
and incorrect consensus are the only stable states). How-
ever, Weatherall and O’Connor introduce modifications fa-
cilitating polarization. They include a conformity bias pa-
rameter (Weatherall & O’Connor, 2021); another extension
has agents perceive evidence from disagreeing neighbors as
increasingly uncertain (O’Connor & Weatherall, 2018). Nei-
ther extension seems particularly rational (cf. 2018, p. 857).

In bandit models, agents exchange evidence directly, while
another class of Bayesian models involves agents exchang-
ing testimony about their beliefs. Testimony’s impact is gov-
erned by source reliability models, which estimate a source’s
trustworthiness based on the receiving agent’s current belief.
If a source’s report aligns with the agent’s belief (i.e., their
expectation), trust increases; if they are contradicted, trust
decreases. Trusted sources have more influence on the re-
cipient’s degree of belief. This expectation-based updating
strategy is supported by empirical research (Collins, Hahn,
Von Gerber, & Olsson, 2018), and source reliability models,
simple Bayesian networks, implement this strategy. In Ols-
son and Angere’s Laputa simulation (2010; 2011), the first
of its kind, agents receive information in the form binary tes-
timony about the hypothesis (”yes”/”no” reports). Both so-
cial exchange and non-testimonial inquiry (regulated by self-
trust) are modeled using embedded source reliability models.
Many subsequent studies have explored this approach (Hahn,
Merdes, & von Sydow, 2024; Fränken & Pilditch, 2021;
Pallavicini, Hallsson, & Kappel, 2021; Merdes, Von Sydow,
& Hahn, 2021). A recently identified problem with these
models (and testimony in general) is the difficulty of recog-
nizing dependencies between related sources of information
(Hahn, 2023). Two trusted sources (e.g., peers) may both pro-
vide a positive report, leading the receiving agent to update
twice. However, these two sources’ reported beliefs might be
based on the same set of evidence, leading the receiving agent
to ”double-count” this evidence. Double counting is hard to
avoid when testimony, rather than evidence exchange carries
deliberation in a complex social world. In contrast, explicitly
shared evidence can be indexed and recognized, preventing

double-counting. In Laputa, double-counting of evidence is
aggravated by the dynamics of expectation-based updating:
agents begin to trust only agreeing peers, distrust disagree-
ing ones, and effectively build isolated communities. Within
those communities, they repeatedly reaffirm each other’s be-
liefs, losing track of the underlying evidence. This leads La-
puta’s agents to quickly move to maximal degrees of belief of
P(H)= 1 or P(H)= 0. As Pallavicini et al. (2021) show, pop-
ulations often escalate to bi-polarization. This is a problem,
since the model neither produces realistic polarization pat-
terns (no intermediate dispersion), nor accounts for the fact
that realistic agents differentiate between pieces of evidence.

In sum, the discussed Bayesian models have a hard time
capturing realistic polarization patterns while maintaining the
rationality of their agents. Polarization models from other tra-
ditions also typically rely on limiting the agents’ willingness
to engage with peers that they strongly disagree with (e.g.
Hegselmann & Krause, 2002). Of course, there are many
other models, some of which use different mechanisms, such
as limiting the agents’ memory (e.g. Singer et al., 2019).

The NormAN framework
The Bayesian models discussed suggest that polarization can
arise from deliberation among boundedly rational agents.
However, their reliance on limited agents raises doubts as
to whether they really reconstruct polarization rationally. To
attempt such a reconstruction, we use the NormAN frame-
work (short for Normative Argument Exchange across Net-
works, developed in Assaad et al. (2023)). NormAN follows
on from earlier models of argument exchange such as Mäs
and Flache (2013), taking inspiration from Olsson (2013) and
Zollman (2007). It addresses the previously discussed limita-
tions: agents exchange evidence directly, interpret evidence
uniformly (without trust updating), recognize indexed evi-
dence, avoid double-counting and have perfect memory.

NormAN 1.0 is a freely available1 agent-based simula-
tion environment based on three sub-models: a ground-truth
world model, individual agents, and a social network across
which these agents communicate. The world model specifies
the probabilistic relationship between the central hypothesis
and certain evidence propositions and determines the truth
values of all propositions (both evidence and hypothesis).
Agents become aware of the true values of these pieces of
evidence, either through individual inquiry, or through com-
munication. Communication is represented by choosing and
directly passing on specific pieces of evidence, i.e., argument
exchange. Based on the collected evidence, agents form a
degree of belief about the hypothesis, which determines how
they communicate with their link-neighbors. As an example:
if the hypothesis is that a patient has lung cancer, then she
probably suffers from shortness of breath, and receives a pos-
itive X-ray test (evidence). These propositions are actually
true or false in the world. Deliberating agents discover the
true values of the evidence propositions, inform each other

1https://github.com/NormAN-framework/base-model
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about them and use them to compute a belief in the hypothe-
sis.

The ground truth world model is represented by a Bayesian
belief network (BN), which specifies the probabilistic con-
nections between two-valued propositions. The modeler
chooses one such proposition as the hypothesis H, and a sub-
set as pieces of evidence E1, . . . ,En. In each given simula-
tion run, the world model initializes the hypothesis as true
or false (H,¬H), and uses the marginal conditional probabil-
ity of each piece of evidence to stochastically fix their truth
values. The result is a string of evidence pieces that are in-
dividually true or false, which are (in principle) available to
agents and constrain deliberation (e.g., E1,¬E2, . . . ,¬En).

Agents collect pieces of evidence by adding the respective
truth values to their memory. They form beliefs by aggregat-
ing these received pieces of evidence via Bayes’ rule (e.g.,
P(H|E1,¬E4)). To do so, they draw on a BN, which, in ver-
sion 1.0 of NormAN, is a veridical copy of the world model’s
BN. Hence, agents are not only calibrated to the world model,
they all interpret each piece of evidence in the same way: if
two agents receive the same set of evidence, they will form
the same belief. Each agent starts with the same prior degree
of belief P(H). This simple setup can be interpreted as the
agents meeting the uniqueness standard of rationality, the po-
sition that any body of evidence justifies at most one doxastic
attitude toward the target claim (White, 2019).

NormAN agents receive evidence in two ways: through
individual inquiry or communication with link-neighbors.
Upon receiving new evidence, agents compute a new poste-
rior belief based on their entire evidence set, avoiding order
effects. Agents have no memory limitations and never forget
evidence; they only add indexed pieces of evidence they have
not received before, avoiding any double counting.

Communication is modeled by agents directly passing on
a piece of evidence, making the receiver aware of the evi-
dence node’s truth value. Which piece of evidence the agent
chooses to communicate varies according to the used commu-
nication rule. NormAN 1.0 allows the user to explore three
different sharing rules: the ”random” rule has agents pass on
a randomly chosen piece among the previously collected evi-
dence. The ”recency” rule makes agents choose recently en-
countered pieces with a heightened probability. In particular,
they share the most recently encountered piece with a proba-
bility of x (which in the base model is 0.9), or choose another
random piece from their memory (probability of 1− x = 0.1)
(this rule is inspired by Mäs and Flache (2013)).

Finally, the ”impact” rule has agents choose what they con-
sider to be their most impactful evidence in favor of their cur-
rent position. An agent’s position is determined by whether
their current belief is greater or smaller than the initial belief
(i.e., when P(H|Ei, . . . ,Ek) > P(H), they support H). They
assess the impact of their collected pieces of evidence by how
much they will sway an agent from their prior belief. Hence,
evidence Ei’s impact is P(H|Ei)−P(H). If an agent’s current
position is that the hypothesis is true, they share the piece of

evidence with the highest positive impact, if their position is
that the hypothesis is false, they share the piece of evidence
with the greatest negative impact value (and if their belief
is equal to their prior, they do not share). This simple im-
pact rule was designed to reflect the idea that speakers seek
to communicate what they consider to be the most relevant
(and truth-conducive) piece of information.

Lastly, agents can only communicate with one another
across symmetrical links determined by a social network.
NormAN 1.0 incorporates paradigmatic, modifiable network
structures (Watts & Strogatz, 1998), which we will use in our
case study.

Polarization case study
Assaad et al. (2023) merely hint at a polarization study in
NormAN. This paper presents a comprehensive study of po-
larization in the NormAN framework, investigating the ef-
fects of different social network connectivities and communi-
cation rules based on different sets of evidence. NormAN 1.0
already provides the tools to modify connectivity and differ-
ent sharing styles; we add a new modifiable world model to
create a range of plausible evidence distributions.2

The generic network

Certain hypotheses are harder to investigate than others: some
provide a very conclusive set of evidence, others inconclusive
or even misleading evidence. In this case study, we explore
how communication rules and social connectivity interact
with evidence sets of varying conclusiveness to produce po-
larization. To this end, we embed a modifiable Bayesian net-
work into NormAN 1.0, which captures the following generic
situation (Figure 1): a hypothesis H has ten pieces of (con-
ditionally independent) evidence E1, . . . ,E10. This Bayesian
network will serve as the world model and as the agents’
representation thereof. The ten pieces will constitute argu-
ments in favor or against the hypothesis (varying in strength),
which determine the set’s overall conclusiveness. To mea-
sure conclusiveness, we use NormAN’s ”optimal posterior”,
op := P(H|E1, . . . ,E10). This is the posterior degree of be-
lief agents would compute if they knew the entire evidence.
Hence, given H is true, sets with op = 0.5 are maximally in-
conclusive, and they become gradually more conclusive as
their op approaches 1.

Figure 1: Generic network

2Our model code, simulation data and analysis scripts to repli-
cate our results are publicly available on The Open Science Frame-
work (OSF) at https://osf.io/8qz9c/?
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Using this generic network, we will assume that the hy-
pothesis is true. Further, we fix P(H) = 0.5 (that is, agents
are initially completely undecided) and initialize all pieces of
evidence as true in the world. To change whether a piece of
evidence is interpreted as an argument against/in favor of H,
we modify its conditional probabilities. This gives us perfect
control of the set’s conclusiveness.3 Generally, whether or not
a piece of evidence Ei confirms H will (in Bayesian terms)
depend on its likelihood ratio xi := P(Ei|H)/P(Ei|¬H). If
xi > 1, then Ei confirms the hypothesis, i.e., P(H|Ei)> P(H);
if xi < 1, then Ei disconfirms H, and if xi = 1, then Ei is not
diagnostic of H.4 For instance, if xk = 4 and P(H) = 0.5,
then Ek produces P(H|Ek) = 0.8, and is therefore a stronger
piece of evidence than one which would only raise an agent’s
posterior to 0.7.

To create sets of different op (i.e., conclusiveness) we start
with a maximally inconclusive set: five evidence nodes con-
firm the hypothesis, five disconfirm it, and both sides per-
fectly offset one another, i.e., op = 0.5. In particular, the in-
dividual posteriors induced by each piece of evidence range
from P(H|E1) = 0.1 to P(H|E10) = 0.9. This makes for a di-
verse set of evidence: there are arguments of varying strength
both in favor and against H. Building on this baseline, by in-
creasing each piece of evidence’s likelihood ratio by a factor
γ, we create five more sets of evidence ranging from incon-
clusive (op = 0.5) to very conclusive (op of 0.6, 0.7, 0.8, 0.9
and 0.990). Raising γ makes arguments against the hypothe-
sis less disconfirmatory and those in favor more confirmatory,
and as a result, the body evidence becomes more conclusive
(Figure 2).5

Setup
To investigate polarization in NormAN, we tweak three cru-
cial aspects of deliberation: communication styles, social net-
works and the topic (evidence). The model population con-
sists of 50 agents linked in small-world Watts and Strogatz
(1998) networks. By adjusting the mean neighborhood size
through varying k (and setting the rewiring-probability to 0),
we transition from a disconnected ”null” network to nearly

3This also breaks with NormAN 1.0’s calibration of agent beliefs
and the world model: the likelihoods that the evidence/hypothesis
are actually true do not match the agent’s perceived likelihoods. As
a robustness check, we ran all of our following simulations with per-
fectly calibrated agents: the agents’ beliefs matched the base rate of
the hypothesis and the true conditional rates of the pieces of evi-
dence. In these runs, we did not assume H and Ei to be true in each
round. This did not change our qualitative findings. The data can be
found on OSF (https://osf.io/8qz9c/?).

4Where disconfirmation is P(H|Ei) < P(H), and lack of diag-
nosticity is P(H|Ei) = P(H).

5On Fig. 2: Generally, if P(H)= 0.5, then P(H|Ei)= xi/(xi+1).
Adding a value γ to x has a smaller effect on the posterior when x
is larger. Therefore, adding γ to evidence against H (where x < 1)
increases the respective posterior more than posteriors created by
evidence in favor. E.g., for Ek having xk = 4, P(H|Ek) =

4
4+1 = 0.8.

Add γ = 0.1, then P′(H|Ek) =
4.1

4.1+1 ≈ 0.804. On the other hand,
E j having x j = 0.25 creates P(H|E j) =

0.25
0.25+1 = 0.2. Add γ = 0.1:

P′(H|E j) =
0.35

0.35+1 ≈ 0.259.

Figure 2: The posteriors induced by single pieces of evidence,
P(H|Ei) for Ei. The above graph (blue) shows the perfectly
balanced ”baseline” evidence set. Below is the most conclu-
sive set (red). Cf. Footnote 5.

complete connectivity (from k = 0 to k = 24, where every
agent has 2 · k neighbors). The conclusiveness of evidence is
modeled using the six distributions based on the generic net-
work introduced above. Lastly, we explore all sharing styles
from NormAN 1.0: random, recency, and impact.

At the beginning of each run, the 10 pieces of evidence
are distributed to 10 random agents in the network, while the
rest begin with empty memories and the uniform prior belief
P(H) = 0.5. This setup ensures that each piece of evidence is
in principle accessible to the group, and helps track evidence
dissemination. Agents are restricted from inquiry, access-
ing only the initially distributed evidence. Every round, each
agent will consider communicating one piece of evidence.

Results
We repeated each parameter configuration 100 times, letting
the simulation run until beliefs had stabilized (which hap-
pened within 1000 sharing rounds). Polarization was gauged
using the Laputa model’s measure, the root mean square of
the deviation of individual credence from the mean (RMS),
which ranges from 0, indicating consensus, to 0.5, indicating
perfect bipolarization, i.e., when half of the agents entertain
P(H) = 0 and the other P(H) = 1 (Angere & Olsson, 2017).
We also monitored belief spread (i.e., the distance between
the highest and lowest belief) and the absolute average devi-
ation from the mean credence (as per Bramson et al. (2017)).
The following results are the mean final RMS values of sim-
ulation runs (alternative measures are available on OSF).

First, we find that the recency and random sharing rules
lead to convergence on the op in every single run: the ten
pieces of evidence travel through the entire network, no mat-
ter how sparse it is and no matter how conclusive the evidence
is, causing the agents to converge on the optimal posterior.
Both rules result in the agents fully sharing their entire evi-
dence over the course of the simulation. And since receiving
agents neither refuse to communicate due to distrust or dis-
agreement, nor change the interpretation of the evidence, ev-
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Figure 3: Mean RMS for recency and random share. Polar-
ization disappears through connectivity/communication.

Figure 4: Stable final beliefs in a run using op = 0.8, k = 2
and the impact sharing rule.

ery agent eventually receives all available evidence and com-
putes the same belief. This result is reminiscent of the con-
vergence observed in the classical bandit model: if the agents
exchange the evidence directly and unaltered, they will con-
verge. The resulting consensus belief being determined by
the op means that although the agents will converge, the veri-
tistic value of the consensus (i.e., how close this belief is to
the truth of H, cf. Goldman (1999)) depends on the evidence.
Figure 3 shows this: As long as there is a network connecting
all agents (k > 0), the RMS drops to 0 via to deliberation.

Polarization merely emerges once agents use impact share:
they only communicate the piece of evidence they currently
hold to best support their belief. The mechanism is simple:
meaningful exchange between two neighbors ceases once the
sender has shared what they consider their most impactful ev-
idence. Even if the sender repeats their message, the receiver,
having already absorbed the information, disregards it. Com-
munication only resumes if the sender obtains stronger evi-
dence or alters their position—an event that becomes increas-
ingly unlikely: as agents find themselves amidst like-minded
peers, the likelihood of encountering transformative evidence
diminishes, leading to stagnant communication and stable be-
lief clusters.

Figure 5: Mean RMS for impact share. Impact sharing pro-
duces polarization when the network is sparse and the ev-
idence is inconclusive. To contextualize: with an RMS of
0.32 (highest value), beliefs span a 0.9 interval (using the be-
lief spread measure). With an RMS of 0.01, beliefs cover a
narrow 0.09 interval around the optimal posterior.

The emergent polarization stands in contrast to mod-
els based on trust dynamics, where agents—perhaps
unwittingly—self-select into subpar, closed-off epistemic
communities such as filter bubbles or echo chambers (e.g.,
Fränken & Pilditch, 2021). NormAN simulations uncover a
different dynamic: divergence arises from genuine commu-
nication efforts, where agents share what they perceive as
their most compelling evidence, without further intentional
filtering. This goes for both senders and receivers, who never
refuse or discount any novel, unexpected information. Fur-
thermore, these simulations produce nuanced, realistic polar-
ization patterns. Rather than splitting into two extreme fac-
tions, NormAN agents settle on stable, scattered sets of inter-
mediate beliefs across the unit interval (Figure 4).

As can be seen in Figure 5, impact sharing interacts with
network density and evidence conclusiveness. The greatest
polarization emerges when each agent has only two neighbors
(k = 1) and evidence is maximally inconclusive (op = 0.5).
In these scenarios, there is strong evidence for either position
(H and ¬H), creating polarization potential: agents exposed
to different sets of evidence encompassing strong arguments
pulling in opposite directions will draw significantly different
conclusions. Sparse networks increase the likelihood of frag-
mented access to evidence: when all one’s neighbors have
shared their most impactful evidence, communication halts,
blocking the social pathways. With fewer paths, complete
blockage becomes more likely for agents, leading different
parts of the social network to settle on distinct sets of evi-
dence.

Conversely, when agents are highly connected (k = 24) and
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the evidence approaches perfect conclusiveness (op= 0.990),
polarization almost vanishes: Even if agents do not per-
fectly converge on the optimal posterior due to imperfect
exposure to the evidence (through incomplete impact shar-
ing), they will on average obtain more evidence via more
link-neighbors. Such growing evidence sets will increasingly
overlap and generate similar beliefs. This belief convergence
is further facilitated if the available evidence is not strongly
divisive, which is the case for very conclusive sets.

Conclusion: Is this rational polarization?

This case study highlights that little is needed to produce
realistic group polarization patterns. But are the discussed
NormAN agents rational, and can we therefore conclude that
group polarization can be rationally reconstructed? We be-
lieve that NormAN agents are at least more rational than the
discussed Bayesian model agents from the literature: they
have perfect memory, do not discount any evidence, never lie
or pass on subpar information (cf. Douven & Hegselmann,
2021), and interpret the evidence in the same, unique way,
using strict Bayesian updating.

However, the Bayesian framework leaves open completely
the rationality of communication rules: should agents always
fully share their information? In this case, then, our Nor-
mAN simulation suggests that group polarization is not ratio-
nally reconstructible (at least not in this framework). As other
models, our model, too, relied on limiting agents: they will
not share their entire evidence.

We believe, however, that this limitation is reasonable: es-
pecially as we increase the size of the evidence set, and navi-
gate a complex topic, it will not be possible for realistic agents
to share all they know with all their neighbors. The explored
type of impact sharing does not necessarily denote a bad-faith
communication strategy. Employing the impact rule implies
curating what one shares, prioritizing the communication of
what one perceives as the most valuable, truth-conducive evi-
dence. Considering the costliness of both communicating and
processing arguments, such a strategy may be pragmatically
suitable in many contexts.

Another limitation we have imposed on our agents is that
they will not, on their own, collect all pieces of evidence.
This, we believe, is also a reasonable limitation: in realistic
contexts, different agents will have access to different subests
of evidence, both due to practical and cognitive reasons.

Though more model exploration (in NormAN and other
frameworks) is necessary to cement the following conjecture,
our case study strongly suggests that any type of limited infor-
mation sharing will, on sparse networks, prevent convergence
on a perfectly shared set of information. It is then natural (and
rational) for agents to come to different beliefs and polarize—
especially if the evidence is inconclusive. This simple mech-
anism is enough to model realistic polarization, and it is per-
fectly compatible with standard theories of rationality.
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