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Abstract
Purpose Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this 
review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the auto-
nomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure.
Methods Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. 
The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical 
practice are summarized.
Results A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. 
This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, 
from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimen-
tal cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to 
ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology 
of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory 
approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors 
that mediate progressive sympathoexcitation and parasympathetic dysfunction remain.
Conclusions Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, 
specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and 
neuromodulatory therapies are still lagging.
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Introduction

The autonomic nerves that innervate the heart—in a healthy 
condition—fine-tune every heartbeat, altering cardiac output 
to meet the underlying physiological demands of the organ-
ism. The beat-to-beat feedback is initiated by afferent nerves 
traveling from the heart to central and peripheral autonomic 
integration centers. Upon integration, efferent signals are 
generated in these relay centers and transmitted to the heart 

via the cardiomotor neurons of the sympathetic and/or para-
sympathetic nervous system [1]. As a result, almost all facets 
of cardiac function (e.g., chronotropy, dromotropy, inotropy, 
and lusitropy) are continuously regulated. This multitiered 
arrangement plays a pivotal role in homeostatic cardiac con-
trol under healthy circumstances, but is disrupted in car-
diovascular diseases, establishing a cycle in which cardiac 
deterioration and autonomic dysfunction are reciprocally 
perpetuated.

Afferent innervation

Cardiac autonomic modulation relies on mechano- and 
chemosensory information transmitted by cardiac afferent 
neurons. The sensory neurites of these neurons travel with 
the vagal and sympathetic nerves and relay information to 
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(1) the cardiac ganglionated plexi and possibly the stellate 
ganglia and (2) via the dorsal root ganglia and vagal ganglia 
to the central nervous system (Fig. 1) [1]. The majority of 
cardiac sensory neurons seem to have the capability to trans-
mit both mechanical and chemosensory information, though 
some neurons are selective for one or the other [2, 3]. Trans-
mission occurs via different neurotransmitters, including 
gamma-aminobutyric acid (GABA) and glutamate. GABA, 
through depolarizing second-order neurons, inhibits sensory 
transmission, whereas glutamate is the primary excitatory 
neurotransmitter of cardiac afferent neurons [4–7].

A set of cardiac afferent fibers travel to the central nerv-
ous system via the vagus nerve. The cell bodies of these 
pseudounipolar neurons, which are also named “vagal affer-
ents,” lie in the left and right inferior vagal (nodose) ganglia 

[1]. In the medulla, these afferents synapse upon second-
order neurons in the nucleus tractus solitarius (NTS), some 
of which activate vagal efferent outflow via synapses onto 
the vagal nuclei in the brain stem [2, 8]. No laterality in the 
territory sensed by vagal afferents has been reported [9].

Conversely, another subset of centrally projecting affer-
ent neurons have their somata in the cervical (C6) to high 
thoracic (T6) dorsal root ganglia. These pseudounipolar 
neurons synapse onto second-order neurons in the dorsal 
horn of the spinal cord, and ultimately communicate with 
higher brain nuclei via the spinothalamic tract (Fig. 1) [10]. 
Activation of these “spinal afferents” and subsequent inte-
gration of the chemo- and/or mechanosensory information 
in the thalamus, parabrachial gray, and other brain stem and 
hypothalamic centers results in a predominantly sympathetic 

Fig. 1  Cardiac autonomic innervation. Autonomic innervation of the 
heart is regulated through multiple intrathoracic and extrathoracic 
reflex loops that consist of afferent (sensory) and efferent (motor) 
neurons and nerves. Sympathetic afferent activation increases sym-
pathetic outflow to the heart, and vagal afferent activation increases 
cardiac vagal tone. Cardiac injury, such as a myocardial infarction, 
increases sympathetic afferent activation, further enhancing sympa-
thoexcitation. Novel data on vagal afferents suggest that remodeling 
in the vagal ganglia results in reduced neurotransmission, hence 
decreasing vagal outflow. Myocardial infarction also causes cardiac 

denervation followed by localized nerve sprouting in the scar and bor-
der zone regions. At the level of the nerve–myocyte interface, sympa-
thetic and parasympathetic neurons release different neurotransmitters 
that establish opposing effects on the heart and inhibit each other’s 
downstream actions. With sympathoexcitation, acetylcholine (ACh) 
release appears to be inhibited, and specific remodeling of chan-
nels and downstream signaling occurs, further enhancing the effects 
of sympathetic activation on calcium  (Ca2+) and cyclic adenosine 
monophosphate (cAMP) signaling
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motor response. This is also known as the cardiac sympa-
thetic afferent response (CSAR) [11, 12].

Other cardiac afferent nerves appear to synapse onto 
neurons of the intrathoracic ganglia, including the intrinsic 
cardiac nervous system, and possibly those of the stellate 
ganglia and thoracic chain, evoking local reflex loops to 
modulate cardiac function (Fig. 1) [2, 13].

Lastly, cardiac function is also modulated based on sen-
sory information transmitted by extracardiac afferent nerves. 
Mechanoreceptors in the aortic arch and carotid arteries 
sense blood pressure and transmit this information to the 
brain stem. This in turn induces reflexive changes in auto-
nomic efferent tone to preserve cardiac output [8, 14, 15]. 
Chemosensory neurites in these same peripheral vessels as 
well as central chemoreceptors in the ventral medulla and 
retrotrapezoid nucleus sense and transmit information on 
hypoxemia and hypercapnia, respectively. The integration of 
these stimuli affects autonomic efferent outflow to properly 
match ventilation with perfusion [16–18].

Cardiac efferent neurons

Sympathetic and parasympathetic motor neurons modu-
late cardiac function, often in a “yin-yang” manner [13]. 
Myelinated preganglionic neurons release acetylcholine 
(ACh), which binds to nicotinic receptors of postganglionic 
neurons, depolarizing these neurons, which innervate the 
myocardium.

Sympathetic efferents

Sympathetic preganglionic neurons receive central input 
from the rostral ventromedial and ventrolateral medulla, the 
A5 area of the pons, and the paraventricular nucleus of the 
hypothalamus (Fig. 1) [1, 13]. Preganglionic sympathetic 
neurons, which house their cell bodies in the intermediolat-
eral cell column of the spinal cord, synapse onto postgangli-
onic neurons in the left and right sympathetic chain. Cardiac 
sympathetic postganglionic nerves travel from the stellate 
ganglia (a fusion of the inferior cervical ganglion and the 
first thoracic ganglion), T2 to T4, middle cervical, and to a 
lesser extent, the superior ganglia, to the heart. In addition 
to central efferent outflow, cardiac afferents synapsing in the 
stellate ganglia can provoke local intrathoracic extracardiac 
reflex loops (Fig. 1) [1, 19].

Adrenergic signaling

At cardiac sympathetic nerve varicosities, norepinephrine 
(NE) is the primary neurotransmitter. Briefly, NE binds to 
beta-adrenergic receptors, stimulating adenylyl cyclase to 
increase production of cyclic adenosine monophosphate 

(cAMP), a key second messenger in the cardiomyocyte 
signaling cascade. cAMP can activate protein kinase 
A (PKA) to phosphorylate many downstream targets 
involved in intracellular  Ca2+ handling, including phos-
pholamban (PLB), ryanodine receptors (RyR), and L-type 
 Ca2+ channels. This leads to an increase in the amount of 
intracellular  Ca2+ available for contraction, and therefore, 
enhances inotropy [20–23]. cAMP also directly activates 
the funny current  (If) in pacemaker cells, which acceler-
ates diastolic depolarization, leading to positive chronot-
ropy [24]. The same PKA-mediated changes to intracel-
lular  Ca2+ handling that contribute to positive inotropy 
also lead to increased diastolic  Ca2+ leak from the sar-
coplasmic reticulum (SR), which activates the  Na+–Ca2+ 
exchanger (NCX) to remove the excess  Ca2+, leading to a 
net depolarizing current (NCX exchanges 3  Na+ ions for 
1  Ca2+ ion). This mechanism, termed the “Ca2+ clock,” 
further contributes to diastolic depolarization and posi-
tive chronotropy upon beta-adrenergic activation [25–27]. 
Positive lusitropy (faster relaxation) is aided by PKA phos-
phorylation of PLB, which relieves inhibition of the SR 
 Ca2+-ATPase (SERCA) pump to increase the rate of  Ca2+ 
reuptake into the SR, increasing the rate of relaxation [28]. 
PKA phosphorylation of troponin I decreases the myofila-
ment’s affinity for  Ca2+, which also allows for faster  Ca2+ 
dissociation and positive lusitropy [29]. Beta-adrenergic 
activity leads to a PKA-mediated increase in the slow 
delayed rectifier  K+  (IKs) current [30]. This repolarizing 
current opposes increases in depolarizing  ICaL, resulting in 
shortening of the cardiac action potential, and contributes 
to sympathetic-mediated changes in repolarization (Fig. 1) 
[31].

In addition to NE-mediated beta-adrenergic effects, sym-
pathetic responses are enhanced by the release of sympa-
thetic co-transmitters, such as neuropeptide Y (NPY) and 
galanin (Fig. 1). NPY is believed to be released during 
higher levels of sympathetic activation, and binds Y1-recep-
tors on the myocardium [32, 33]. Y1-receptor stimulation 
has been shown to impact SR  Ca2+ handling (in a cAMP-
independent manner) and further increases the amount of 
 Ca2+ available for contraction [34]. In this way, NPY aug-
ments the sympathoexcitatory effects of NE, as sympathetic 
stimulation is capable of inducing cardiac electrophysiologi-
cal effects and positive inotropy in the presence of com-
plete beta-blockade [35]. In addition, binding of NPY to 
Y2-receptors on parasympathetic nerve terminals appears 
to inhibit cardiac parasympathetic acetylcholine release 
[36], which could further augment the relative effects of the 
sympathetic nervous system. Galanin is also co-released by 
sympathetic nerves, although at lower levels than NPY [33]. 
Galanin’s effects appear to be similar to NPY, as it can also 
inhibit acetylcholine release by binding to galanin receptors 
(GalR1) on parasympathetic neurons [33].
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Interestingly, even though the postganglionic sympa-
thetic nerves from both the right and the left stellate ganglia 
release the same neurotransmitters, different cardiac effects 
are observed by left versus right stellate ganglion stimula-
tion [37, 38]. In part, this difference is due to variability in 
the areas of innervation; although both sides innervate all 
aspects of the ventricular myocardium, sympathetic nerves 
from the right sympathetic chain have more robust innerva-
tion of the atria, including the sinoatrial node and the AV-
node [39, 40], whereas sympathetic nerves coming from the 
left sympathetic chain may have more pronounced effects 
on ventricular contraction [41], though interspecies differ-
ences may exist. Furthermore, while stellate ganglia inner-
vate the left ventricular anterior wall, they induce differing 
electrophysiological effects; left stellate ganglion stimulation 
enhances electrophysiological heterogeneities to a greater 
extent than right stellate ganglion stimulation [42], an effect 
that may be driven by greater heart rate effects of right stel-
late stimulation, somewhat limiting the extent of regional 
variability in action potential durations.

Parasympathetic efferents

Parasympathetic preganglionic neurons have their cell bod-
ies in the dorsal motor nucleus and nucleus ambiguus of 
the medulla (Fig. 1) [1, 13]. These neurons transmit signals 
via the vagus nerve and synapse onto postganglionic neu-
rons in the cardiac ganglionated plexus, which is part of the 
intrinsic cardiac nervous system [43]. Thus, in contrast to 
the sympathetic nervous system, the postganglionic nerves 
of the parasympathetic nervous system are found near the 
end organ, and most of the distance is traversed by the myeli-
nated preganglionic fibers (Fig. 1).

Muscarinic signaling

The postganglionic parasympathetic nerves release ACh, 
which binds to muscarinic (M2) ACh receptors on cardio-
myocytes of the atria, sinoatrial and atrioventricular node, 
and to a lesser extent, ventricles. In contrast to sympathetic 
innervation, no laterality in cervical vagal cardiac innerva-
tion has been reported [44–46]. This observation may be 
related to the fact that experimentally induced stimulation of 
preganglionic neurons may allow the postganglionic neurons 
and close connections within the intrinsic cardiac nervous 
system (ICNS) to establish a more global and homogeneous 
response [46].

Binding of ACh to M2 receptors on cardiomyocytes 
inhibits adenylyl cyclase production of cAMP, thereby 
opposing the effects of sympathetic-mediated beta-adren-
ergic receptor stimulation. These opposing effects typically 
cause negative inotropy, chronotropy, dromotropy, and lusi-
tropy (Fig. 1). ACh (via M2 receptor binding) also increases 

the ACh-sensitive  K+ current  (IKACh), which hyperpolarizes 
the membrane potential of pacemaker cells, thereby slow-
ing diastolic depolarization and decreasing heart rate [47, 
48]. Moreover, the interactions between the sympathetic 
and parasympathetic nervous system are beyond simply 
antagonizing myocardial effects. At the level of the nerve 
terminals, presynaptic receptors modulate sympathetic and 
parasympathetic neurotransmitter release (Fig. 1) [49]; ACh, 
released from the parasympathetic nerve terminals, binds to 
muscarinic receptors on postganglionic sympathetic nerve 
terminals and inhibits the release of NE [50]. Similarly, 
activation of alpha-1 receptors and NPY-2 receptors on 
parasympathetic nerve terminals by NE and NPY has been 
suggested to decrease release of ACh, though these effects 
have only been studied in vitro [36, 49, 51].

Finally, the postganglionic parasympathetic nerves 
also release vasoactive intestinal peptide (VIP), which is 
released at higher levels of vagal nerve stimulation (Fig. 1). 
VIP binds to VIP receptors on cardiomyocytes (VPAC1 
and VPAC2). These G-protein-coupled receptors stimulate 
adenylyl cyclase to produce cAMP and have been shown 
to cause tachycardia via mechanisms similar to those of 
beta-adrenergic activation [52–54]. VIP may also act at the 
parasympathetic preganglionic–postganglionic synapses. 
For example, there is evidence that VIP receptor inhibition 
enhances the bradycardic response to vagal nerve stimula-
tion, but that VIP receptor inhibition has no effect on result-
ing bradycardia if postganglionic parasympathetic fibers are 
activated with nicotine, suggesting a role for VIP in para-
sympathetic preganglionic–postganglionic signaling [55].

Autonomic remodeling after myocardial 
infarction and in heart failure with reduced 
ejection fraction

Cardiovascular disease, such as a myocardial injury, myocar-
dial infarction, or long-standing volume or pressure overload 
resulting in heart failure, induce autonomic remodeling and 
progressive sympathovagal imbalance. This process is ini-
tially prompted by decreased cardiac output, which increases 
sympathetic outflow for hemodynamic compensation. Para-
doxically, long-standing sympathoexcitation and subsequent 
autonomic and cardiac remodeling induce pathological myo-
cardial changes that result in a cycle of autonomic dysfunc-
tion and cardiac deterioration.

Afferent remodeling

Diminished cardiac function is continuously sensed by car-
diac afferents, initiating changes that affect not only afferent 
neurotransmission but also (central) efferent control.
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Vagal afferent remodeling in the nodose (vagal) ganglia 
was studied by Salavatian et al. [9] in a porcine model of 
chronic myocardial infarction. An increase in the number of 
nociceptive, but not mechanosensitive, afferents neurons was 
observed [9]. Paradoxically, the functional output of these 
afferent neurons was decreased, and this was associated 
with an increased expression of the inhibitory neurotrans-
mitter GABA and a decrease in neuronal nitric oxide syn-
thase (nNOS), an afferent neuromodulator with homeostatic 
properties [56]. In addition, glial fibrillary acidic protein 
(GFAP) expression by satellite glial cells, a marker of glial 
activation, was increased [9]. Collectively, these results indi-
cated extensive structural and functional remodeling of vagal 
afferent neurons after myocardial infarction that resulted in 
decreased vagal nociceptive afferent neurotransmission.

Spinal afferents, on the other hand, become tonically 
activated in the setting of cardiovascular disease, result-
ing in an enhanced CSAR [57], and continuous stimulation 
of the sympathoexcitatory efferent reflex. This is reflected 
by increased expression of angiotensin 1 receptors in the 
nucleus of the solitary tract (NTS), paraventricular nucleus 
(PVN), and rostral ventrolateral medulla (RVLM), and 
altered availability of signaling molecules, including reduced 
nitric oxide [58, 59]. In the dorsal root ganglia, the number 
of afferent neurons thought to be involved in nociception 
[characterized by the expression of calcitonin gene-related 
peptide (CGRP)] was increased after myocardial infarction, 
and the size of these neurons was also increased [60].

Accordingly, experimental studies have also demon-
strated that ablation of transient receptor potential vanilloid 
1 (TRPV1)-expressing cardiac nociceptive afferents through 
the injection of the neurotoxin, resiniferatoxin, in the peri-
cardial space (which ablates both vagal and spinal cardiac 
afferents) decreased susceptibility for ventricular arrhyth-
mias and improved cardiac function [61, 62].

Lastly, afferent nerve activity in the ICNS is also altered 
in cardiovascular diseases. This local remodeling includes 
upregulation of VIP in the ICNS, which might enhance local 
nociceptive signaling [63].

Sympathetic efferent remodeling

Increased sympathetic efferent outflow is the main outcome 
of autonomic remodeling in cardiovascular disease, though 
it may result from multiple pathological adaptations at the 
level of the central nervous system, the sympathetic chain, 
and the heart.

As mentioned above, increased spinal afferent signal-
ing promotes central efferent sympathetic outflow to the 
heart [12, 57]. In the stellate ganglia, postganglionic sym-
pathetic neurons hypertrophy and demonstrate increased 
synaptic density [64, 65]. Functionally, neurons increase 
their firing rates and amplitude, while also expressing less 

nNOS [66–68]. As nNOS normally inhibits NE release 
from the sympathetic nerves [68, 69] and dampens car-
diac effects by inhibition of the L-type  Ca2+ channels 
[70], sympathetic activity as well as cardiac effects of 
sympathetic stimulation become compounded. Interest-
ingly, another hallmark of stellate ganglia remodeling 
is cholinergic transdifferentiation [71, 72]. Though the 
exact mechanisms behind this process remains unclear, 
it is possible that this transdifferentiation may enhance 
sympathetic outflow through mimicking pre- to postgan-
glionic nerve transmission due to collateral projections 
from neighboring stellate ganglia neurons [73], as it has 
now been demonstrated that stellate neurons can activate 
their neighboring neurons through release of ACh [74]. 
Moreover, satellite glial cells, which envelope the sym-
pathetic neurons and can modulate their function and 
activity, also show signs of hyperactivity as indicated by 
increased expression of GFAP [64].

At the cardiac sympathetic nerve terminals, neural 
remodeling induces various molecular changes, including a 
decreased expression of the NE transporter [75] and a para-
doxical decrease in NE and tyrosine hydroxylase (TH), the 
rate-limiting enzyme in NE production [76]. Nevertheless, 
the increased NE and NPY release due to increased firing 
rates combined with reduced NE reuptake result in incom-
plete binding of these neurotransmitters and neuropeptides 
by their respective cardiac receptors, culminating in their 
spillover into systemic circulation. Correspondingly, higher 
plasma levels of NE and NPY have been reported in patients 
with cardiovascular diseases [77–79]. Increased NE levels 
may be related to both increased neuronal release of NE 
and relatively decreased NE reuptake [80]. Increased NE 
and NPY levels are associated with a poorer survival and 
increased ventricular arrhythmias after acute myocardial 
infarction and in heart failure [81–83].

At the level of the heart, autonomic remodeling also alters 
the distribution and function of sympathetic nerve termi-
nals and their corresponding adrenergic receptors; regions 
of sympathetic hyperinnervation coexist with patches of 
sympathetic denervation. For example, nerve growth fac-
tor (NGF) becomes acutely upregulated after myocardial 
infarction and in cardiac hypertrophy, as it tries to promote 
nerve regeneration (Fig. 1) [84, 85]. However, after chronic 
myocardial injury, NGF becomes downregulated by con-
tinuously increased levels of NE [86, 87]. Even in the set-
ting of elevated NGF, however, many regions of the injured 
myocardium remain denervated following myocardial infarc-
tion, due to the presence of chondroitin sulfate proteoglycans 
(CSPGs), which can inhibit sympathetic axonal outgrowth 
[88, 89]. This spatial and temporal variation in neuronal 
regeneration further enhances heterogeneity in myocardial 
innervation, predisposing to ventricular arrhythmias [84, 
85].
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Chronic sympathetic hyperactivity in heart failure results 
in an overall decrease in beta-1-adrenergic receptor density 
by approximately 50%, changing the beta-1 to beta-2 recep-
tor ratio (Table 1) [90]. Furthermore, beta-2 receptors, which 
are normally located within the t-tubules of cardiomyocytes, 
redistribute to the plasma membrane, resulting in a loss of 
the normally compartmentalized downstream cAMP signal-
ing [91]. This redistribution may explain the arrhythmogenic 
consequences of beta-2 stimulation in heart failure [92]. In 
addition, there is upregulation of the G-protein-coupled 
receptor kinase 2 (GRK2) [90, 93], which desensitizes the 
beta-adrenergic receptors on the myocyte and impairs the 
ability of the heart to respond to sympathoexcitation [94, 
95], causing a form of functional denervation, which can 
exacerbate electrical heterogeneities in response to sympa-
thetic activation. Recently, another kinase in the GRK fam-
ily, GRK5, has been found to be responsible for switching 
of the beta-1 signaling from physiological cAMP-PKA to 
pathological calmodulin-dependent kinase II (CaMKII) 
activity that contributes to the progression of heart failure 
[96]. Increased levels of NPY can also cause a downregu-
lation of cardiac NPY-1 receptors in heart failure patients 
[97], though a paradoxical increase in NPY-2 receptors 
has been reported in a rat model of heart failure (Table 1) 

[98]. The functional effects of this upregulation remain to 
be elucidated. Lastly, density of alpha-1-receptors remains 
unchanged in the setting of heart failure (Table 1). These 
receptors seem to exert an important cardioprotective role 
[99, 100], and blockade of these receptors increases cardiac 
morbidity and mortality [101, 102]. Heart-failure-induced 
changes in cardiac receptors and neurotransmitters, coupled 
with previously described remodeling of ion channels and 
currents, [103, 104] (Table 1) collectively destabilize cardiac 
electrophysiology and increase susceptibility to both atrial 
and ventricular arrhythmias.

Despite the well-known pathological effects of chronic 
sympathetic hyperactivity in heart failure, loss of sympa-
thetic nerves following myocardial infarction (MI) can also 
alter signaling and arrhythmia susceptibility. In this respect, 
the degree of sympathetic nerve loss post-myocardial infarc-
tion is an important predictor of arrhythmias and sudden 
cardiac death [105–107]. Sympathetic denervation can 
result in areas of beta-adrenergic supersensitivity, observed 
in patients and large animal models after MI [108, 109]. 
Denervation is also associated with a downregulation of the 
transient outward  K+ current  (Ito) [110], which is responsible 
for the early phase of repolarization. Therefore, in patho-
logical conditions wherein sympathetic hyperactivity occurs 
along with regional denervation, the combined effects of 
elevated catecholamines and regional adrenergic supersen-
sitivity may be particularly arrhythmogenic. Indeed, beta-
adrenergic supersensitivity has been experimentally shown 
to be an important contributor to arrhythmias in the setting 
of sympathetic hypoinnervation and myocardial infarction 
[89, 111].

Parasympathetic efferent remodeling

The central and peripheral remodeling processes that under-
lie parasympathetic withdrawal in the setting of heart failure 
have been studied to a much lesser extent than sympathetic 
alterations.

With regard to central parasympathetic function, it was 
shown that central vagal drive, as reflected by inputs to post-
ganglionic parasympathetic neurons, is reduced after myo-
cardial infarction. Basal activity of neurons in the intrinsic 
cardiac ganglia that respond to vagal nerve stimulation was 
decreased, while those that decrease their firing rates with 
vagus nerve stimulation showed higher baseline activity 
[112], suggesting reduced central vagal inputs to these neu-
rons. Novel data suggests that vagal afferent neurotransmis-
sion is reduced after myocardial infarction, as a result of 
remodeling that occurs in the vagal (nodose) sensory neu-
rons, reducing efferent vagal tone [9, 113].

In addition, postganglionic neurons in the ICNS express 
less choline acetyltransferase, whereas muscarinic receptors 
and VIP expression are upregulated [63, 114, 115]. ICNS 

Table 1  Changes in expression of cardiac ion currents, channels, and 
receptors in heart failure

↑: upregulated,  ↓: downregulated, =: expression unchanged

Up/downregulation

Ion currents and channels
ICaL ↓ in severe heart failure, ↑ 

in moderate heart failure
ICaT ↑
If ↓ in SA node, ↑ in ventricle
IK1 ↓
IK,ATP ↑
IKr ↓
INa ↓
INa-K ↓
INCX ↑
Ito ↓↓
CAMKII ↑
Cx43 ↓
Phospholamban ↓
SERCA ↓
Receptors
β1-receptor ↓
β2-receptor  = 
α1-receptor ↑
NPY-1 receptor ↓
NPY-2 receptor (↑, rat model)
RYR2 ↓
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neurons of patients with cardiovascular disease demonstrate 
hypertrophy, while also exhibiting cytoplasmic inclusions 
and lipofuscins, markers of degeneration. Nevertheless, 
myocardial ACh levels and the ICNS neuronal patterns and 
machinery appear to remain intact. When vagal output is 
increased with electrical vagal nerve stimulation, myocardial 
responses remain and are even enhanced in animals after 
chronic myocardial infarction compared with animals with 
normal hearts [112].

Lastly, sympathovagal imbalance is further promoted 
by the antagonizing effects of sympathetic activation on 
parasympathetic function. As mentioned, release of NPY 
at the sympathetic nerve terminals has been demonstrated 
to impede parasympathetic release of ACh in vitro [36]. 
Moreover, increased spinal afferent signaling might simi-
larly affect parasympathetic withdrawal and dysfunction. 
However, the precise mechanisms through which sympatho-
vagal imbalance is perpetuated after cardiovascular injury 
and how these processes could be targeted clinically require 
additional (in vivo) investigations.

Autonomic imbalance in other ventricular 
pathologies

While this review is focused on ventricular autonomic 
control, it is important to note that the autonomic nervous 
system plays a role in a vast array of other cardiovascular 
pathologies, including postural orthostatic tachycardia syn-
drome (POTS), syncope, atrial fibrillation, baroreflex failure, 
and more recently, long coronavirus (COVID-19). Moreover, 
ventricular autonomic instability can also be iatrogenic, for 
example, ablation of epicardial ganglionated plexi as a treat-
ment for atrial fibrillation paradoxically increased suscep-
tibility for ventricular arrhythmias in large animal models 
and patients that have previously suffered from a myocardial 
infarction [116–118]. Finally, given its global impact, much 
of the research and data on ventricular autonomic control 
has focused on changes that occur in heart failure and sud-
den cardiac death related to myocardial injury/infarction. 
However, the role of the autonomic nervous system in sev-
eral pathologies that can affect the ventricles, including 
hypertension, amyloidosis, Takotsubo cardiomyopathy, and 
autonomically mediated ventricular arrhythmias in specific 
channelopathies, deserve special mention.

Essential hypertension

Essential hypertension, also known as idiopathic hyper-
tension, affects up to 45% of the adult population world-
wide [119]. Neurohumoral dysregulation and conse-
quent sympathetic activation appears to be central to the 

etiology of hypertension [120–123], and hypertensive ani-
mal models and patients exhibit increased plasma norepi-
nephrine spillover compared with normotensive controls 
[124, 125]. Moreover, autonomic imbalance appears to 
develop prior to the onset of overt hypertension [126], 
as reflected by reduced heart rate variability (HRV) with 
an increased in low-frequency (LF) power and increased 
NE plasma levels in adults with new-onset hypertension 
[127].

Sympathetic dysfunction in hypertension has been 
associated with altered brain stem control of sympathetic 
outflow from the central nervous system to the periphery 
[128, 129], as well as increased sympathetic activation via 
the stellate ganglia [130, 131] and the kidneys [132–134]. 
Increased renal sympathetic nerve activity results in renal 
vasoconstriction, thereby decreasing glomerular filtration 
rate, increasing renal reabsorption of sodium and water, 
and increasing renal release of renin and norepinephrine, 
thus promoting increases in arterial pressure and further 
augmenting sympathoexcitation [132].

In the spontaneously hypertensive rat (SHR), stellate 
ganglion neurons exhibit greater depolarization-induced 
calcium transients compared with wild-type control ani-
mals [131, 135], which could lead to greater release of 
NE. At the level of the heart, reductions in presynaptic 
alpha-2 receptors on sympathetic nerves alleviate presyn-
aptic negative feedback, resulting in greater release of NE 
from these nerve terminals [136]. Lastly a reduction in NE 
reuptake by the presynaptic NE transporters in the SHR 
model has been observed (similar to heart failure), further 
increasing the amount of NE that is available to bind to 
postsynaptic receptors [137] and further increasing cardiac 
sympathoexcitation [131].

Chronic uncontrolled hypertension eventually results 
in left ventricular hypertrophy in both animal models 
and patients, which predisposes to heart failure [138, 
139]. The chronic state of sympathoexcitation can also 
lead to desensitization of adenylyl cyclase, resulting in 
contractile dysfunction and further exacerbation of heart 
failure [138]. Desensitization of adenylyl cyclase could 
result from downregulation of beta-adrenergic receptors 
and/or an increase in Gi protein α-subunits; the latter has 
been observed in hypertrophied human myocardium from 
hypertensive patients [140].

Although calcium channel blockers, angiotensin-con-
verting enzyme inhibitors (ACEI), and aldosterone recep-
tor blockers (ARBs) have been demonstrated to be more 
effective pharmacological therapies in reducing blood 
pressure [141], beta-blocker therapy has been shown to 
reduce renin and angiotensin II levels [142], highlighting 
a beneficial adjuvant role for beta-blockers in pharmaco-
logical treatment of hypertension.
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Cardiac amyloidosis

Cardiac amyloidosis is a progressive disease that results in a 
restrictive cardiomyopathy and heart failure. The continuous 
extracellular deposition of either amyloid light chains (AL) 
or amyloid transthyretin (ATTR) can result from different 
etiologies, including genetic mutations, multiple myeloma, 
or age [143]. Regardless of the etiology, cardiac interstitial 
infiltration results in ventricular wall thickening, stiffness, 
and diastolic dysfunction [144]. In addition, amyloid depos-
its in nerves, leading to neuronal death throughout the body, 
including in the sympathetic ganglia and vagus nerve [145, 
146]. Consequently, cardiac autonomic balance becomes 
disrupted due to cardiac denervation of both sympathetic 
and parasympathetic fibers, resulting in depressed heart rate 
variability and impaired baroreflex sensitivity [147, 148]. 
Clinically, Holter monitoring, HRV, and heart rate turbu-
lence (HRT) have demonstrated that the degree of autonomic 
dysfunction in these patients negatively correlates with sur-
vival [149–151]. Treatment of cardiac amyloidosis relies on 
treating the underlying cause (e.g., chemotherapy in case 
of multiple myeloma, and/or pharmacological treatment 
with transthyretin stabilizers). Currently, tafamidis is the 
only Food and Drug Administration-approved transthyretin 
stabilizer for AATR cardiac amyloidosis [152]. Compared 
with placebo, treatment with tafamidis has been associ-
ated with reductions in all-cause mortality, cardiovascular-
related hospitalizations, and reduced decline in quality of 
life [153]. However, the effects of tafamidis on cardiac auto-
nomic remodeling are yet to be determined. Novel therapies 
that might become implemented in clinical practice in the 
near future include transthyretin gene silencing agents and 
anti-transthyretin antibodies [154]. The efficacy of these 
drugs on restoring cardiac autonomic balance has yet to be 
established.

Patients suffering from cardiac amyloidosis should 
also receive pharmacological treatment for heart failure 
symptoms. Notably, beta-blockers and inhibitors of the 
renin–angiotensin–aldosterone system, though standard of 
care for other etiologies of heart failure, are generally poorly 
tolerated in this setting, and calcium channel blockers are 
contraindicated [148]. Moreover, even though the incidence 
of sudden cardiac death in patients with cardiac amyloidosis 
is high, internal cardiac defibrillators have failed to show a 
benefit in this patient population [148, 155, 156].

Takotsubo cardiomyopathy

Takotsubo cardiomyopathy is an acute cardiac syndrome, 
most frequently seen in postmenopausal women [157]. Its 
clinical presentation is similar to that of an acute myocar-
dial infarction, often presenting with chest pain, ST-segment 
deviations on the surface electrogram, and elevated plasma 

troponins [158, 159]. However, rather than coronary artery 
disease, acute heart failure resulting from left ventricular 
apical and/or mid-ventricular wall motion abnormalities 
underlie this acute presentation [158, 159]. Central to the 
pathophysiology of Takotsubo cardiomyopathy are elevated 
catecholamines [160, 161], triggered by either emotional 
(primary Takotsubo cardiomyopathy) or physical illness/
trauma (secondary Takotsubo cardiomyopathy) [158, 159, 
162]. These elevated catecholamine levels, subsequently, 
induce myocardial stunning, resulting in the characteristic 
apical ballooning during systole that is observed by echo-
cardiography [159].

Several processes are likely to underlie this pathophysi-
ology, including catecholamine induced microvascular 
dysfunction and coronary artery spasm [163, 164], as well 
as direct cardiac effects of catecholamines on ventricular 
myocytes [165, 166], inducing calcium overload, mitochon-
drial dysfunction, and reactive oxygen species production, 
among other effects. Moreover, using an induced pluripotent 
stem-cell cardiomyocyte model, the myocytes from Takot-
subo cardiomyopathy patients were found to have increased 
sensitivity to beta-1 receptor stimulation compared with 
healthy age-matched controls [167]. Correspondingly, Vac-
caro et al. [168] observed an increase in spontaneous sym-
pathetic nerve activity (as measured via microneurography) 
and decreased spontaneous baroreflex control in patients 
suffering from with Takotsubo cardiomyopathy. Finally, 
HRV measurements are significantly depressed (i.e., repre-
sentative of greater sympathetic tone) in patients with acute 
Takotsubo syndrome [169, 170].

In approximately 95% of Takotsubo cardiomyopathy 
patients, left ventricular ejection fraction makes a full 
recovery within several weeks. However, a few studies have 
suggested that long-term mortality and morbidity rates may 
be similar to patients that suffer from an acute myocardial 
infarction [171, 172]. Correspondingly, Norcliffe-Kaufmann 
et al. [173] found that patients who had a history of Takot-
subo cardiomyopathy had exaggerated sympathetic and 
decreased parasympathetic responses during baroreflex test-
ing (Valsalva maneuver and tilt testing, respectively) [173]. 
This data suggests that, even after functional hemodynamic 
recovery of Takotsubo cardiomyopathy, autonomic dysfunc-
tion persists.

There are no randomized clinical trials that have evalu-
ated optimal medical therapies in patients suffering from 
either acute or long-term Takotsubo cardiomyopathy. The 
major objective for treatment of Takotsubo cardiomyopathy 
in the acute phase appears to be hemodynamic support, in 
which mechanical support can be considered in patients with 
progressive circulatory failure and cardiogenic shock [174]. 
In patients with a left ventricular ejection fraction of < 40%, 
ACEI, ARBs, and beta-blockers should be administered, 
though in case of left ventricular outflow tract obstruction, 
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inotropes should not be used [174]. There appears to be 
no clear consensus on the usage of these drugs long-term. 
Whereas some studies suggest that ACEI and ARBs reduce 
the risk of Takotsubo cardiomyopathy recurrence (while 
beta-blockers do not), other studies suggest that none of 
these therapies reduce the risk of recurrence [175–177]. 
Additional studies are, therefore, needed to better under-
stand the role of these medications in the chronic treatment 
of Takotsubo cardiomyopathy.

Long QT syndrome

Various congenital mutations have been identified to result 
in long QT syndromes (LQTS), generally characterized by 
prolonged repolarization duration and increased susceptibil-
ity to sudden cardiac death [178–180]. LQTS1, LQTS2, and 
LQTS3, with their respective mutations in KCNQ1, HERG 
and SCN5A, account for the large majority of LQTS cases 
[181].

Sympathoexcitation, induced by physiological or physi-
cal stress, is a notorious cause of ventricular arrhythmias in 
patients with LQTS1 and LQTS2 [182]. Whereas sustained 
sympathetic activation promotes ventricular arrhythmias in 
LQTS1, ventricular arrhythmias in LQTS2 are induced by a 
sudden increase in sympathetic tone [183, 184]. In contrast 
to LQTS1 and LQTS2, ventricular arrhythmias in LQTS3 
occur in the setting of decreased sympathetic activity (e.g., 
during sleep) [184].

In a background of prolonged repolarization, an increase 
in sympathetic tone predisposes to early afterdepolariza-
tions, whilst also increasing repolarization heterogeneity 
and, thereby, reinforcing the arrhythmogenic substrate [182]. 
In LQTS1, sympathetically induced increases in depolariza-
tion current are insufficiently counterbalanced by repolariza-
tion currents, resulting in a paradoxical increase in action 
potential duration [184]. This effect is clinically replicated 
through exercise or epinephrine infusion, both resulting in 
a prolonged QT interval as well as increased spatial disper-
sion of repolarization (reflected in greater T-peak to T-end 
intervals) [185–189]. In LQTS2 repolarization is similarly 
hampered during sympathoexcitation. However, the sub-
sequent prolongation of repolarization is only transient, as 
intact  IKs counterbalances the increased depolarization cur-
rents [184]. Similar to LQTS1, sympathetic stimulation will 
also increase spatial dispersion of repolarization, but this 
effect is also temporary [184]. Clinically, exercise testing 
and epinephrine infusion corroborate this transient effect 
of sympathetic activation in LQTS2 [185, 188, 190, 191].

In addition to the increased susceptibility to arrhyth-
mias in the setting of sympathoexcitation, Rizzo et al. 
[192] observed inflammatory changes in the stellate gan-
glia of LQTS patients (including LQTS1 and LQTS2), 
who required cardiac sympathetic denervation for control 

of refractory ventricular arrhythmias. It is possible that 
this T-cell mediated neurotoxicity in the stellate ganglia 
disrupts cardiac sympathetic innervation and tone, which 
can further augment electrical instabilities during sympa-
thetic stimulation. Correspondingly, metaiodobenzylguan-
idine (MIBG) studies on LQTS patients show an overall 
decrease in sympathetic nerve terminals, combined with 
heterogeneous patterns of cardiac sympathetic innervation, 
which could further augment the arrhythmogenic substrate 
[193, 194].

Due to the clear role of the sympathetic nervous system 
in ventricular arrhythmogenesis in LQTS1 and LQTS2, 
sympathetic blockade with beta-blocker therapy (i.e., nad-
olol or propranolol) remains the cornerstone of treatment 
in these patients [195–200]. However, in patients in which 
beta-blockers are contraindicated or who suffer from a high 
arrhythmia burden despite optimal pharmacological treat-
ment, left cardiac sympathetic denervation (CSD) has been 
proven to be an effective anti-arrhythmic treatment [180, 
199, 201–205].

Catecholaminergic polymorphic ventricular 
arrhythmia

Catecholaminergic polymorphic ventricular arrhythmia 
(CPVT) is inherited arrhythmia syndrome that results 
most commonly from mutations in RYR2 or CASQ2 genes 
[206–209], causing cellular calcium mishandling. The con-
sequent calcium overload in the sarcoplasmic reticulum and 
spontaneous calcium release predispose to delayed afterde-
polarizations, which can trigger arrhythmias [210–212]. 
Hence, in a background of sympathoexcitation (e.g., dur-
ing episodes of physical or physiological stress), calcium 
handling becomes further disturbed, increasing the suscep-
tibility for both the arrhythmic triggers and the arrhythmic 
substrate [213, 214]. Moreover, similar to the aforemen-
tioned phenotype of chronic ganglionitis in LQTS patients, 
similar T-cell infiltration has been observed in the stellate 
ganglia of CPVT patients [192]. Beta-blockers (preferably 
nadolol) are the first line of therapy for CPVT treatment, 
possibly in combination with flecainide [215, 216]. The 
anti-arrhythmic mechanism of flecainide has been studied in 
CPVT mouse models and shown to inhibit RYR2-mediated 
calcium release and/or reduce sodium channel availability, 
thereby increasing the threshold for triggered activity [217, 
218]. Similarly, CPVT patients experienced less exercise-
induced ventricular arrhythmias while using flecainide, and 
combined beta-blocker and flecainide therapy were proven to 
be superior to treatment with beta-blockers alone [216, 219]. 
In patients in whom pharmacological treatment is not toler-
ated or insufficiently suppresses arrhythmia episodes, left 
CSD is a recommended therapeutic option [213, 220, 221].
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Clinical parameters of autonomic 
dysfunction and evidence 
for neuromodulatory therapies 
for ventricular arrhythmias and heart failure

Despite the rapid increase in our understanding of cardiac 
autonomic function in health and disease, much of these 
potential prognostic parameters are yet to be used consist-
ently at the bedside, and many neuromodulatory therapies 
have yet to reach patients. Therefore, the remainder of this 
review will focus on parameters and treatment modalities 
that are available for clinical implementation.

Clinical parameters of autonomic (dys)function

Plasma levels of norepinephrine and neuropeptide Y

An accessible method for assessing autonomic dysfunction 
and sympathoexcitation is measurement of plasma NE and 
NPY levels. Greater NE levels are associated with increased 
cardiac symptoms and mortality in heart failure and after 
myocardial infarction, though not LV dysfunction [78, 79, 
222]. It is important to note that plasma NE levels reflect 
not only NE released by the sympathetic nerve terminals but 
also renal NE spillover.

Similarly, elevated NPY levels are associated with 
increased severity and mortality in [223] as well as greater 
susceptibility to ventricular arrhythmias following myocar-
dial infarction [81, 82]. Though easily accessible and rela-
tively noninvasive, a major drawback of NE and NPY level 
measurement is that they can be influenced by acute and 
relatively minor changes in autonomic tone.

Heart rate variability

Heart rate variability (HRV) is a noninvasive measure of car-
diac autonomic tone that quantifies the beat-to-beat changes 
in RR intervals, thereby reflecting the relative sympathetic 
and parasympathetic tone at the level of the sinus node 
[224]. It can be measured from recordings spanning from 
minutes to 24 h, though physiological interpretations of the 
results vary with different recording lengths [225].

Currently, 24-h recordings are often regarded as the “gold 
standard,” since they were demonstrated to have better pre-
dictive power than short-term recordings [226, 227].

HRV can be measured in the time or frequency domain. 
Temporal indices quantify the extent of beat-to-beat RR 
interval variability. Of the various measures, the standard 
deviation of consecutive RR interval [excluding premature 
ventricular contractions (PVCs); the standard deviation of 
NN intervals (SDNN)] is most often measured (Fig. 2). 

Lower SDNN corresponds with increased cardiac morbidity 
and mortality in heart failure patients [228, 229], and is cur-
rently considered the “gold standard” HRV parameter [224].

Heart rate fluctuates at different frequencies. Frequency 
domain indices result from a power spectral analysis of con-
secutive RR intervals [225, 230], and quantify the extent to 
which different frequencies are present in heart rate fluctua-
tions (Fig. 2). In general, oscillations are divided into differ-
ent frequency ranges: high frequency (HF: 0.15–0.4 Hz), low 
frequency (LF: 0.05–0.15 Hz), very low frequency (VLF: 
0.0033–0.04 Hz), or ultra-low frequency (ULF: ≤ 0.0033 Hz) 
[225, 230].

Of these frequencies, VLF is most strongly associated 
with all-cause mortality and incidence of arrhythmias [231, 
232]. Interestingly, rather than reflecting efferent innerva-
tion, VLF appears to reflect the frequency at which cardiac 
afferent nerves are stimulated. This, therefore, suggests that 
VLF more closely reflects the cardiac state, rather than the 
provoked response [233, 234]. Nevertheless, out of the dif-
ferent spectral measurements, LF, HF, and LF:HF ratio are 
most often reported. While LF is often considered a reflec-
tion of sympathetic tone, it predominantly reflects baroreflex 
modulation of cardiac autonomic outflow [230, 235, 236]. 
HF oscillations, on the other hand, reflect respiration-driven 
vagal control of heart rate, also known as the respiratory 
sinus arrhythmia [230, 237]. LF:HF power/ratio is therefore 
not a pure reflection of sympathovagal balance and should 
be interpreted with caution [230, 238].

Baroreflex sensitivity

The baroreflex serves to regulate mean arterial pressure, and 
therefore, safeguards proper perfusion of vital organs. Car-
diovascular baroreceptors are primarily found in the carotid 
artery sinuses and aortic arch and relay information about 
vascular stretch to the CNS [239]. Higher arterial pressures, 
which cause more stretch of the vascular wall, increase fir-
ing rate of these sensory afferent neurons, which activate 
glutamatergic neurons in the NTS [239, 240]. These neu-
rons excite second-order neurons in the caudal ventrolateral 
medulla, which in turn release GABA, thereby inhibiting 
neurons in the RVLM. As central sympathetic outflow is 
partially derived from the RVLM, this inhibition decreases 
sympathetic outflow and, as a result, decreases heart rate, 
contractility, and blood pressure. In the setting of low blood 
pressures, inhibition of the neurons in the RVLM is relieved, 
allowing for higher central sympathetic outflow, resulting in 
a reflexive increase in heart rate [239, 240].

Quantification of this change in heart rate in response 
to an increase or decrease in blood pressure may be reflec-
tive of autonomic (dys)function. Baroreflex sensitivity 
(BRS), measured as the change in the RR interval per 
mmHg change in blood pressure, is often assessed using 
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pharmacologic interventions with phenylephrine (vasocon-
strictor) or sodium nitroprusside (vasodilator). As such, 
depending on the type of drug used, the sympathetic or 
parasympathetic baroreflex is tested [241]. Baroreflex 
can also be measured noninvasively, using finger arterial 
pressure measurements combined with an ECG. However, 
these spontaneous measurements do not correspond well 
with invasive measurements of BRS and have been found 
to be significantly inferior [241]. Alternative noninvasive 
methods to quantify BRS utilize neck suction/pressure or 

the Valsalva maneuver for activation of baroreceptors. The 
various methods of BRS assessment and their respective 
advantages and disadvantages are described in detail by 
La Rovere et al. [241].

Autonomic dysfunction, especially parasympathetic with-
drawal in cardiovascular diseases, decreases BRS. Corre-
spondingly, a lower BRS correlates with higher cardiovas-
cular mortality and an increased susceptibility to ventricular 
arrhythmias after myocardial infarction [242] and in heart 
failure patients [243–245].

Fig. 2  Heart rate variability measures in the time and frequency 
domain. Heart rate variability is a measure of the beat-to-beat vari-
ability in the RR interval. Temporal domain indices, such as SDNN, 
quantify the extent of beat-to-beat RR-interval variability over time. 
SDNN reflects the standard deviation of consecutive RR intervals. 

Frequency domain analyses quantify the extent to which different fre-
quencies are present in RR-interval oscillations as the power of a fre-
quency. The different frequencies are reflective of sympathetic, para-
sympathetic, and/or autonomic reflex loops and, therefore, represent 
cardiac autonomic input
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Heart rate turbulence

Heart rate turbulence (HRT) assesses the sequence of auto-
nomic responses to a PVC [246]. During a PVC and the sub-
sequent compensatory pause, less blood is ejected from the 
heart, causing a decrease in blood pressure. This is sensed 
via autonomic neurons mediating the baroreflex, which then 
increase their firing (early acceleration phase). This causes 
the blood pressure to “overshoot” and reach a higher level 
than before the PVC, which is subsequently sensed by the 
autonomic nervous system, inducing a deceleration in heart 
rate (late deceleration phase). This consecutive acceleration 
and deceleration of heart rate is quantified as the turbulence 
onset (TO) and the turbulence slope (TS). TO quantifies the 
percentage change in heart rate directly after the compensa-
tory pause versus before the PVC. TS, on the other hand, 
is the maximum regression slope of the late deceleration 
phase (quantified using at least five consecutive RR inter-
vals) [246]. Clinically, this measure can be extracted from 
Holter recordings, or be obtained through pacing-induced 
PVCs at 60–70% of sinus rate cycle length.

HRT has been demonstrated to be an independent predic-
tor of cardiovascular death after myocardial infarction, as 
well as in congestive heart failure and idiopathic dilated car-
diomyopathy [246–248]. Unfortunately, it has low sensitivity 
(approximately 30%), and its reliability is highly influenced 
by the baseline heart rate (worse with higher heart rates) 
[246].

Imaging modalities

Neuroimaging is a diagnostic tool that visualizes cardiac 
innervation. The most commonly used compound is metaio-
dobenzylguanidine (MIBG), a guanethidine derivative, that, 
upon intravenous administration, is taken up into the sym-
pathetic nerve terminals through similar mechanisms as NE 
[249]. Following its endocytosis, MIBG is neither metabo-
lized nor catabolized, and thus, accumulates intracellularly. 
Leveraging these properties, MIBG can be radiolabeled with 
a marker such as 123I, thereby allowing for visualization and 
quantification of cardiac sympathetic nerve density and neu-
rotransmitter reuptake. As autonomic remodeling results in 
less NE reuptake, more MIBG will be washed out over time. 
This phenomenon is quantified as the heart:mediastinum 
ratio (H:M). The AdreView Myocardial Imaging for Risk 
Evaluation in Heart Failure (ADMIRE-HF) trial assessed 
the utility of MIBG scintigraphy in identifying heart failure 
patients at increased risk for sudden cardiac death (SCD). 
It demonstrated that a lower H/M ratio (< 1.6) significantly 
correlated with a higher risk of SCD [250]. Similarly, a 
higher H:M ratio corresponded to higher survival rates in 
heart failure patients [251–253]. Major limitations of this 
method, however, include the low spatial resolution and the 

dependency of the image quality on the collimator that is 
being used [254].

Alternative imaging compounds using positron emission 
tomography with NE analogs have been developed, includ-
ing 11C-hydroxyephedrine. In comparison to 123I-mIBG, 
the affinity of 11C-hydroxyephedrine for the norepineph-
rine transporter is higher, allowing for better differentia-
tion between innervated and denervated myocardium [107, 
255]. Correspondingly, positron emission photography using 
11C-hydroxyephedrine has been proven to adequately assess 
the extent of cardiac sympathetic denervation and identify 
patients that may be at increased risk of ventricular arrhyth-
mias and sudden cardiac death [107]. A major difference 
between MIBG and 11C-hydroxyephedrine is the imaging 
technique employed to visualize the compound. Whereas 
MIBG uses single photon emission computed tomography 
(SPECT), 11C-hydroxyephedrine relies on positron emission 
tomography, which is less widely available.

Treatment strategies targeting the autonomic nervous 
system in heart failure with reduced ejection fraction 
and ventricular arrhythmias

Beta‑blockers Beta-blockers remain the corner stone of 
cardiovascular treatment after myocardial injury, as they 
improve cardiac function in heart failure, reduce ventricu-
lar arrhythmia susceptibility, and decrease mortality [256, 
257]. In the setting of heart failure, bisoprolol, metoprolol, 
and carvedilol have been best evaluated, reducing mortality 
on average by 35% [257–260].

Even though all beta-blockers impede sympathetic activ-
ity via blockade of beta-adrenergic receptors on the heart, 
understanding the characteristics of different beta-blockers 
can aid in selecting the best one in a specific situation. One 
of the major differences between different types of beta-
blockers is their specificity for the beta-1 receptor. The first 
generation of beta-blockers was in general nonselective for 
beta-1 or beta-2 receptors, whereas second generation beta-
blockers are specific for beta-1 receptors (Table 2).

Third generation beta-blockers have additional vasodila-
tory effects through alpha-receptor blockade or nitric oxide 
release (Table 2) [261]. These drugs, therefore, also lower 
peripheral vascular resistance and systemic blood pressure. 
Moreover, some beta-blockers have intrinsic sympatho-
mimetic properties. These drugs can lower systemic blood 
pressure, without affecting heart rate and cardiac output. 
Therefore, these maybe more suitable in situations such as 
sinus bradycardia and/or sick sinus syndrome [262].

Beta-blockers are known to cause several adverse effects 
due to off-target binding in the CNS, which reduces patient 
compliance. These included fatigue, reduced ability to con-
centrate, nightmares, and/or depression [263]. Lipophilic-
ity of a drug (which corresponds to its ability to cross the 
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blood–brain barrier) should be considered when deciding an 
appropriate alternative (Table 2).

Renin–angiotensin–aldosterone system inhibitors Decreased 
cardiac output also stimulates the release of renin by the kid-
neys, which subsequently leads to increases in angiotensin I 
and II as well as aldosterone. This systemic activation of the 
renin–angiotensin–aldosterone system (RAAS) further exac-
erbates heart failure and sympathovagal balance, but may also 
have direct effects on autonomic dysfunction.

Angiotensin II heightens sympathetic tone by binding to 
presynaptic angiotensin I receptors on sympathetic neurons, 
facilitating NE release [264] and inhibiting norepinephrine 
reuptake [265]. Moreover, angiotensin II blunts the barore-
flex, most likely via reducing cardiac vagal tone [266, 267]. 
Additionally, CSAR is increased by increases in central 
angiotensin II receptors [268, 269], which can be inhibited 
by angiotensin I receptor antagonist losartan [270]. Hence, 
angiotensin-converting enzyme inhibitors, angiotensin 
receptor blockers, and mineralocorticoid receptor antago-
nists have been demonstrated to decrease plasma NE levels, 
improve cardiac autonomic tone as measured by 123I-mIBG, 
and improve BRS [271–274].

Similarly, angiotensin receptor–neprilysin inhibitors 
(ARNIs) improve outcomes in heart failure patients, reverse 
cardiac remodeling, and decrease the incidence of ventricu-
lar arrhythmias and sudden cardiac death [275]. Interest-
ingly, a more recent study has linked these effects in part 
to restoration of parasympathetic tone and sympathovagal 

balance [276], though additional studies are needed to dis-
sect the effects of ARNIs on vagal function.

Sodium–glucose cotransporter 2 inhibitors A more novel 
group of drugs for patients with heart failure and a reduced 
ejection fraction are the sodium–glucose cotransporter 2 
(SGLT2) inhibitors [257]. Their principal mechanism of 
action is through increasing glucose excretion in urine, 
thereby, causing natriuresis and osmotic diuresis, which 
reduces plasma volume and blood pressure. Reducing vol-
ume overload on the heart might very well improve auto-
nomic tone, though additional mechanisms may also be 
present. Various studies have shown the beneficial effects of 
SGLT2 inhibitors on autonomic tone [277, 278], including 
the EMBODY trial, which reported improved autonomic 
parameters measured by HRV (e.g., LF:HF ratio) in patients 
with type 2 diabetes on SGLT2 inhibitors, 4  weeks after 
acute myocardial infarction [279].

Cardiac resynchronization therapy Cardiac resynchroniza-
tion therapy (CRT) has become an established non-pharma-
cological therapy in heart failure patients with reduced ejec-
tion fraction and ventricular dyssynchrony (predominantly 
in the setting of left bundle branch block), reducing mortal-
ity. Reversed autonomic remodeling has been observed after 
CRT [257]. Cha et al. [280] reported improved H:M ratio 
on MIBG in CRT responders after 6 months of treatment 
[280]. In addition, other studies have reported improved 

Table 2  Commonly used 
beta-blockers and their 
characteristics

NO: vasodilatory effect through increased nitric oxide. ISA: intrinsic sympathomimetic activity
+: Moderate;  ++: High

Beta-blocker Generation β1-selective α-block ISA Half-life (hours) Lipophilic

Carteolol 1 No  + 6–8
Nadolol 1 No 12–24
Penbutolol 1 No  + 18–27  +  + 
Pindolol 1 No  +  + 3–4  +  + 
Propranolol 1 No 3–4  +  + 
Sotalol 1 No 12
Timolol 1 No 4–5  +  + 
Acebutolol 2 Yes  + 3–4  + 
Atenolol 2 Yes 6–9
Betaxolol 2 Yes 14–22  + 
Bisoprolol 2 Yes 9–12  + 
Esmolol 2 Yes 9 min
Metoprolol 2 Yes 3–4  + 
Carvedilol 3 No  + 7–10  + 
Celiprolol 3 Yes  +  + 4–5
Labetalol 3 No  + 3–4
Nebivolol 3 Yes  + (NO) 8–27  + 
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HRV, HRT, and BRS in CRT responders compared with 
nonresponders or control groups [281–284].

Cardiac sympathetic denervation Cardiac sympathetic 
denervation (CSD) is a permanent therapeutic approach to 
interrupt cardiac sympathetic efferent and afferent neuro-
transmission at the level of the stellate and thoracic sympa-
thetic ganglia. In most cases, CSD is performed by surgical 
excision of the lower half or third of the left or bilateral stel-
late and T2–T4 thoracic ganglia.

Thus far, CSD has been primarily performed and evalu-
ated as a treatment option for recurrent and refractory 
ventricular arrhythmias, including in patients with chan-
nelopathies (long QT syndrome and catecholaminergic 
polymorphic VT) and cardiomyopathy/structural heart 
disease [204, 285–287]. Multiple preclinical and clinical 
studies as well as case series have demonstrated a robust 
anti-arrhythmic effect for both polymorphic and monomor-
phic VT [288]. Additionally, a small, randomized pilot study 
by Conceicao-Souza et al.  [289] reported improvement in 
LVEF and decreased cardiac morbidity in patients with New 
York Heart Association (NYHA) Class II or III heart failure 
that underwent left CSD compared with optimal medical 
therapy alone.

Side effects of CSD are uncommon, but include (partial) 
Horner’s syndrome, compensatory hyperhidrosis, and neu-
ropathy/neuropathic pain [290, 291].

Stellate ganglion block Stellate ganglion block (SGB) also 
aims to interrupt cardiac sympathetic outflow at the level of 
the stellate ganglia with the use of anesthetic agents. Hence, 
its effects are temporary and reversible. The block can either 
be achieved as a single injection or through continuous infu-
sion upon placement of a catheter [292, 293]. The duration 
of the block also depends on the half-life of the local anes-
thetic used, such as bupivacaine or lidocaine. SGB has been 
described in case series as a treatment modality for elec-
trical storm [294, 295], allowing for acute stabilization of 
these patients. Its applicability to other settings has not been 
described.

Thoracic epidural anesthesia Thoracic epidural anesthe-
sia (TEA) has also emerged as a promising and relatively 
noninvasive neuromodulatory approach that was reported to 
decrease ventricular arrhythmia burden in small case series 
of patients with structural heart disease and in animal mod-
els of myocardial infarction [296–298]. Administration of 
an anesthetic agent in the epidural space can block both spi-
nal afferent and sympathetic efferent signals in a reversible 
fashion. TEA can acutely stabilize patients with recurrent 
VA, allowing these patients to be bridged to more perma-
nent therapies such as CSD, catheter ablation, or cardiac 
transplantation [296, 297, 299]. Its broader applicability 

has been limited by the need for interruption of blood thin-
ners and its potentially unknown effects on hemodynamic 
parameters, as cardiac sympathetic outflow becomes signifi-
cantly decreased. Additional preclinical and clinical studies 
are needed to shed light on the hemodynamic and electro-
physiological effects of TEA in the setting of heart disease.

Renal artery denervation Both renal efferent and affer-
ent nerves are involved in enhancing systemic sympathetic 
responses [300, 301]. Whereas the efferent nerves promote 
renal sodium reabsorption and activate the renin–angioten-
sin–aldosterone system, renal afferents relay their sensory 
information through dorsal root ganglia, increasing cardio-
vascular sympathetic tone [300, 301]. Disrupting this cycle 
by renal denervation and ablation of the renal nerves was 
first explored as a treatment for hypertension. Despite the 
promising results of the SYMPLICITY HTN-1 and -2 trials 
[302, 303], the SYMPLICITY HTN-3 clinical trial failed 
to show benefit in blood pressure regulation in the treat-
ment arm compared with the control arm [304]. Since then, 
various randomized sham-controlled studies have demon-
strated an overall benefit for renal nerve denervation as an 
antihypertensive treatment, though individual responses can 
still vary [305–307]. Recently, renal nerve stimulation has 
received increasing attention as a method of guiding ade-
quate renal denervation [308, 309]. Renal nerve stimulation 
prior to ablation can help localize renal plexus; a mitigated 
increase in blood pressure response to stimulation post-den-
ervation has been reported to positively correlate with long-
term benefit of renal denervation [308, 309].

As autonomic dysfunction and increased sympathetic 
tone are cornerstones in the pathogenesis of ventricular 
arrhythmias, renal denervation has also been explored as 
an adjunctive therapeutic option for ventricular tachycardia 
[310]. In a canine study, bilateral renal denervation (both 
chemical and mechanical) after creation of myocardial 
infarction reduced ventricular fibrillation burden by stabi-
lizing the electrical properties of infarct border zone [311]. 
Moreover, multiple case series have collectively suggested 
a benefit for renal denervation in patients with refractory 
ventricular arrhythmias [310], though randomized trials are 
lacking.

Baroreflex stimulation Baroreflex stimulation (BAT) involves 
implantation of a baroreflex stimulator in the carotid sinus, 
mimicking afferent signaling of increased vascular stretch and 
resulting in reduced central sympathetic and increased vagal 
outflow to the heart. Chronic bilateral baroreflex stimula-
tion improved survival and restored autonomic tone in ani-
mal models of both ischemic and nonischemic heart failure 
[312, 313]. Since then, various studies have demonstrated 
improved morbidity and mortality in patients with advanced 
heart failure implanted with BAT. More specifically, BAT 
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improved NYHA class, quality of life, baroreflex sensitivity, 
and reversed left ventricular remodeling [314–317]. Notably, 
right-sided stimulation has been shown to cause more pro-
nounced effects on blood pressure than left-sided stimulation 
or bilateral stimulation [318]. Baroreflex stimulation has been 
approved by the FDA in the treatment of heart failure patients 
(NYHA II or III) who remain symptomatic, have a left ven-
tricular ejection fraction of 35% or lower and NT-proBNP lev-
els below 1600 pg/mL despite optimal medical therapy, and 
are not eligible for CRT implantation [257].

Vagal nerve stimulation Vagal nerve stimulation (VNS) is 
another treatment modality currently under investigation for 
heart failure to increase parasympathetic outflow to the heart. 
Animal studies employing chronic VNS in canine models of 
heart failure demonstrated efficacy in improving left ventricu-
lar systolic function, decreasing plasma levels of heart fail-
ure biomarkers, and decreasing mortality [319–321]. Moreo-
ver, the first clinical trials in humans showed similar results, 
including improved left ventricular ejection fraction, quality 
of life, and NYHA class [322, 323]. However, subsequent 
larger, randomized, clinical trials failed to replicate these 
results and found no significant improvement in heart failure 
patients with or without VNS [324, 325]. The contradicting 
results in clinical benefit from VNS are largely attributed to 
differing stimulation parameters [326, 327], warranting fur-
ther preclinical and clinical studies. Although heart failure has 
been the primary focus of VNS clinical trials, preclinical stud-
ies have also suggested benefit in reducing ventricular arrhyth-
mia inducibility after chronic myocardial infarction [153].

Conclusion

Autonomic dysfunction, characterized by excessive and del-
eterious activation of the sympathetic nervous system accom-
panied by parasympathetic withdrawal and dysfunction, is 
inherent to the pathophysiology of many cardiovascular dis-
eases. Mechanistic gaps, especially related to causes of vagal 
dysfunction and specific mediators of chronic sympathetic 
activation, require further investigation. Improved diagnosis 
of the degree of autonomic dysfunction and assessment of the 
extent of sympathovagal imbalance can lead to initiation and 
implementation of better targeted, more personalized thera-
pies and development of novel treatments that restore cardiac 
autonomic tone and improve survival for patients with cardio-
vascular disease.

Funding National Institute of Health, R01 HL148190, Marmar 
Vaseghi.
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