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Cytokines and cytokine networks target neurons to modulate 
long-term potentiation

G. Aleph Prieto* and Carl W. Cotman
Institute for Memory Impairments and Neurological Disorders., University of California-Irvine, 
Irvine, CA 92697, USA

Abstract

Cytokines play crucial roles in the communication between brain cells including neurons and glia, 

as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term 

potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct 

effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly 

understood. Elucidating neuron-specific effects of cytokines has been challenging because most 

brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of 

multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks 

even after single-cytokine challenges. Here, we review evidence on both direct and indirect-

mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- 

and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by 

targeting neurons and synapses. These approaches can test multiple samples in parallel, thus 

allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective 

coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of 

LTP by cytokines.
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1. Introduction

Brain plasticity underlies our ability to learn and modify our behavior, and can be 

compromised in neuropsychiatric and neurodegenerative diseases. Brain plasticity relies on 

synaptic plasticity, which strengthens or weakens synapses. One of the most widely used 

models for studying molecular mechanisms of synaptic plasticity is long-term potentiation 

(LTP), a cellular correlate of memory characterized by a rapid and remarkably persistent 

increase in synaptic transmission elicited by brief patterns of afferent activity (1). 
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Experimental support that LTP is causally linked to synaptic processes underlying memory 

continues to build (2, 3). Notably, a recent study demonstrated that fear conditioning (a type 

of associative memory) can be inactivated and reactivated by long-term depression (LTD) 

and LTP respectively (4), supporting a causal link between these synaptic processes and 

memory. The critical elements for establishing LTP involve membrane depolarization and 

NMDA receptors (NMDAR) activation (2), which allows calcium influx (5), activation of 

intracellular pathways (e.g., calcium/calmodulin kinases, PKA, and the Rac/Pak/LIMK 

cascade), and morphological adaptations in spines that are essential for stable LTP (6). LTP 

can be modulated by soluble messengers of the brain, such as cytokines and classic 

neuromodulators (e.g., norepinephrine, dopamine and acetylcholine). While the role of 

classic neuromodulators on LTP has been extensively studied, the effects of cytokines on 

LTP are relatively unexplored. Importantly, a growing body of evidence indicates that 

cytokine networks modulate LTP under both physiological and pathological conditions (7). 

In this review, we illustrate examples of direct vs indirect modulation of synaptic 

transmission and LTP by cytokines. We show that cytokines can directly target synapses, and 

present a novel approach using isolated synaptosomes which allows the study of LTP 

directly at the synapse. We conclude with a perspective on strategies for dissecting the 

identity of cytokines able to modulate LTP directly in neurons. The information provided by 

these novel approaches may reveal key nodes on the topology of brain cytokine-cell 

networks.

Cytokines constitute an extremely elaborated network of peptide signaling molecules (~5–20 

kDa) that are fundamental in cell signaling. Cytokines act through receptors, and are 

especially important for immune cells, which synthesize and release cytokines in response to 

infections or tissue damage. Notably, the pattern of released cytokines depends on the nature 

of the antigenic stimulus, and the cell source that is being stimulated (8). A number of 

factors further contribute to the high complexity of cytokine-cell networks. A prominent 

factor is the cytokine’s pleiotropy nature, by which a given cytokine can induce differential, 

even opposite cell responses (9, 10). In addition, cytokines can cross-talk with signaling 

from other soluble factors; a cross-talk that is time, concentration and tissue-specific (10). 

When acting on the brain, cytokines can induce fever, sleep and sickness behavior; they can 

also modify the mood, memory consolidation and cognition, as well as regulate 

neuroendocrine stress responses (8). Indeed, a large number of cytokines can be released 

under multiple physiological and pathological contexts including learning, arousal, stress 

and neurodegeneration (7). Brain cytokine levels are generally low at physiological-basal 

conditions but dramatically increase in response to infection, pathology (e.g., Aβ, α-

synuclein) or damage (e.g., damage-associated molecular patterns, PAMP’s). Based on the 

emerging understanding that inflammation-mediated signaling leads to cognitive deficits 

(11, 12), it is commonly believed that neuronal functions can be impaired by high 

concentrations of inflammatory cytokines (e.g., IL-1β, IL-6, IL-18, tumor necrosis factor-α 
(TNFα), interferon (IFN)-α and IFNγ), whereas anti-inflammatory cytokines (e.g., IL-4, 

and IL-10) could have a protective role (13).

Inflammatory cytokines impair neuronal function in the adult brain by their direct effect on 

neurons or by indirect mechanisms mediated by non-neuronal cells (e.g., microglia and 

astrocytes). The effects of inflammatory cytokines on brain mechanisms have been studied 
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in vitro using brain slices (14, 15), as well as in vivo by systemic treatment (16), direct 

infusion in the brain (17, 18), and by transgenic cytokine overexpression (19, 20). In these 

experimental systems, elucidating neuron-specific effects of cytokines has been challenging 

because both neurons and non-neuronal brain cells commonly express cytokine receptors 

(21). Moreover, cytokines can induce the expression and release of multiple cytokines in 

their target cells (20–24), thus increasing the complexity of the stimuli sensed by neurons 

after a challenge with a single cytokine (Fig. 1). Clarification of the brain cytokine networks 

and how their final effectors impact neuronal activity directly during both physiological and 

pathological contexts may help to identify specific therapeutic targets for inflammation-

related cognitive decline.

2. Modulation of synaptic transmission by cytokine-cell networks

Cytokine networks are composed of the cytokine themselves, their receptors and their 

regulators. In the brain, cytokine networks are fundamental for the dynamic interaction 

between neurons, glia, endothelial cells, and immune cells including monocytes and 

lymphocytes (Fig. 1). Immune cells reach the CNS via blood (10) and, potentially, via the 

recently discovered meningeal lymphatic vessels (25). At the synapse, the central element of 

neural connectivity, pre- and post-synaptic elements interact with processes of neighboring 

astrocyte and microglia via hormones, neurotransmitters and cytokines; these interactions 

have led to the concept of tri, tetra, and multipartite synapses (26). Importantly, cytokines 

networks can locally modulate synaptic transmission via glia-neuron signaling. For instance, 

a recent report has demonstrated that TNFα (600 pM but not 60 pM) increases presynaptic 

activity as measured by the frequency of miniature postsynaptic excitatory currents 

(mEPSCs), in mouse hippocampal slices (27). Using elegant genetic models, the authors 

demonstrated that TNFα activates TNFR1 at astrocytes, which then signal to the neurons via 

glutamate/NMDAR to increase presynaptic activity. Relevant for neuroinflammation, this 

TNFα-mediated modulation of astrocyte-neuron communication contributes to memory 

impairments in a model of multiple sclerosis (experimental autoimmune encephalomyelitis, 

EAE) (27). Similar to the TNFα/TNFR1-astrocyte-glutamate/NMDAR-synapse network, 

neurons and glia also interact via fractalkine (CX3CL1), a chemokine that is expressed by 

neurons and acts through a receptor (CX3CR1) that is present on microglia. Microglial 

CX3CR1 activation by fractalkine induces the release of adenosine, which activates A2AR 

receptors on microglia (and possibly astrocytes) causing the release of D-serine which acts 

as a co-agonist at the NMDA receptor, thus potentiating NMDA-mediated excitatory 

postsynaptic potentials (fEPSPs) (28). Overall, these data illustrate that cytokines/

chemokines impact synaptic transmission via glia-released NMDAR-activating factors (e.g., 
glutamate and D-serine). Still incompletely defined, however, is which cytokines, if any, 

modulate synaptic transmission and plasticity as final effectors, acting directly on neuronal 

elements (soma, dendrites and synapses) without the glia as intermediary.

3. Suppression of LTP by cytokines

Recent reports have shown that the Nlrp3 inflammasome controls systemic inflammation in 

both brain and periphery (29, 30). Following Nlrp3 inflammasome activation, caspase-1 can 

cleave the precursors of IL-1β and IL-18, thus converting these cytokines into mature forms 
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that can be secreted from the cell. In rodents, in vivo (31, 32) and in vitro (14, 15) 

electrophysiological recordings have shown that IL-1β suppresses LTP in the hippocampus, 

a brain region containing key neuronal circuitries for memory formation. While IL-18 also 

impairs LTP in the hippocampus, the naturally occurring IL-1 receptor antagonist (IL-1RA) 

blocks the suppression of LTP by IL-18 (33), thus indicating that IL-18 impairs LTP 

indirectly, via an IL-1-dependent mechanism. Similarly, it has been shown that the 

suppression of hippocampal LTP by IFNγ is associated with an increased IL-1β signaling 

following IFNγ-dependent microglia activation (34, 35). Overall, these data indicate that, in 

the hippocampus, IL-18 and IFNγ activate cellular-molecular cascades that increase the 

levels of IL-1β, which may impair LTP directly in neurons. It is noteworthy that 

hippocampal neurons express high levels of IL-1 receptor type-1 (IL-1R1, the ligand binding 

subunit) (23, 36) and its accessory receptor subunits (37). Thus, the hippocampus is well 

positioned to be modulated by IL-1.

A principle concept that has evolved in the field is that IL-1β is the final common effector 

for many cytokine networks modulating LTP and memory. Although IL-1β may also act as 

an intermediate factor further amplifying inflammation by stimulating the synthesis of 

TNFα, IL-6 and GM-CSF (Granulocyte-macrophage colony-stimulating factor) in glia (38), 

several reports strongly suggest that IL-1β is a main final effector for the inflammation-

induced deficits in both LTP and memory. For instance, age-related cognitive impairments 

by low-grade inflammation are attenuated in the IL-1 receptor deficient mouse (29), while 

brain infusion of IL-1RA blocks the suppression of LTP and memory following peripheral 

inflammatory challenges in aged rats (39–41). Similarly, pre-incubation of hippocampal 

slices with IL-1RA prevented the sepsis-induced impairments of LTP in mice (42). 

Consistent with these data, two experimental strategies to reduce brain IL-1 signaling in vivo 
(infusion of either an IL-1 receptor blocking antibody or IL-1RA) block the impairment on 

LTP and memory following amyloid-beta (Aβ)-induced inflammation (43, 44). Further 

supporting the idea that IL-1β is one of the final effectors for the impairment of LTP, some 

reports suggest that the anti-inflammatory cytokines IL-4 and IL-10 rescue LTP by reducing 

IL-1β signaling in models of age- and LPS-driven inflammation (45, 46). However, all the 

evidence described above does not conclusively establish that IL-1β impairs LTP and 

memory by acting directly on neurons as a final effector during the activation of cascades of 

inflammatory cytokines (e.g., IL-18 and IFNγ). Thus, a timely question is how to dissect 

neuron-targeting effectors directly impairing LTP?

4. Facilitation of LTP by cytokines

In apparent contradiction with clinical studies showing that cytokine-driven 

neuroinflammation contributes to Alzheimer’s disease and other neurodegenerative diseases 

(11, 12, 47), there is evidence that inflammatory cytokines may play physiological roles in 

the healthy brain (i.e., in the absence of immune challenges or age-related inflammation). 

For instance, TNFα has been involved in AMPA receptor scaling, a homeostatic (non-

Hebbian) form of plasticity that regulates neuronal firing rate by altering the quantity of 

postsynaptic AMPA receptors (48). Also, knockout mice for IL-1R1 (49), IL-6 (50) and 

TNF receptor-2 (TNFR2) (51) exhibit memory impairments, thus indicating that endogenous 

signaling by these cytokines contributes to synaptic plasticity and memory. The critical role 
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of physiological levels of IL-1β on memory and LTP has been further demonstrated by 

genetic (e.g., IL-1RA transgenic overexpression (18, 52)) and pharmacological 

manipulations (e.g., the maintenance of LTP in the hippocampus is blocked by the IL-1 

receptor antagonist, IL-1RA (53)). IFNγ, a molecule crucial for the immune response 

against viruses, is another inflammatory cytokine that can facilitate LTP and memory (54, 

55). According to a recent report using IFNγ-deficient mice, endogenous IFNγ signaling 

can facilitate LTP by blocking GABA-mediated inhibition in the hippocampus (55). IFNγ 
could reduce GABA release/production directly on interneurons or indirectly via glia-

dependent mechanisms. Alternatively, IFNγ could increase the sensitivity to GABA on 

excitatory neurons. At present however, none of these possible mechanisms has been tested.

Many factors may contribute to the dual (physiological-pathological) effects of 

inflammatory cytokines in the brain, such as the sensitivity of different cell types to a given 

cytokine concentration, and the selective activation of receptor isoforms. For instance, recent 

reports indicate that IL-1β activates inflammatory signaling via the IL-1 receptor accessory 

protein (AcP), whereas the IL-1β-mediated neuronal survival depends on AcPb, an AcP 

splice variant (37, 56). Similarly, the two TNFα receptors, TNFR-1 and TNFR2, have been 

proposed to differentially impact the CNS, with TNFR-1 contributing to neuronal damage, 

whereas TNFR-2 is neuroprotective and facilitates memory (51, 57). In addition to these 

receptor-dependent mechanisms, a main factor underlying the dual effects of cytokines in 

the CNS might be the cytokine’s concentration itself. Low IL-1β concentrations (1–3 pM 

(58)), for instance, enhance LTP in hippocampal slices and facilitate hippocampal-dependent 

memory (18); whereas pathological-high concentrations suppress both LTP (1–3 nM (15, 

58)) and memory (18). Interestingly, there is evidence suggesting that at physiological-low 

levels IL-1β may specifically target neurons for many reasons: first, neurons but not glia 

expresses IL-1R1 under basal conditions (23) and, second, neurons but not astrocytes are 

responsive to low IL-1β concentrations (59). However, whether low IL-1β concentrations 

support LTP by acting directly on neurons is still unknown.

5. Experimental systems to study LTP modulation by neuron-targeting 

cytokines

LTP has been studied for decades both in vivo and in vitro, primarily in the hippocampus 

(60). A number of induction protocols can be used to generate hippocampal LTP; most 

commonly, a train of electrical stimulation bursts separated by the period of the theta wave is 

used to initiate LTP in vivo or in brain slices. Although electrophysiological recordings in 
vivo and in brain slices might better reflect LTP responses found in intact brain circuitries, 

these approaches are not appropriate for analyzing neurons in the absence of glia, and thus 

cannot be used to study neuron-specific mechanisms. In contrast, the in vitro culture of 

primary neurons, an experimental system devoid of glia, opens up the opportunity to test the 

direct modulation of LTP by neuron-targeting cytokines.

Primary neuronal cultures have shown that neurons are responsive to cytokines and, even 

more, that inflammatory cytokines such as IL-1β (61, 62) and TNFα (63) can impair 

activity-dependent signaling and survival in neurons. However, the effect of cytokines on 
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LTP in neuronal cultures has not been reported. Multi-electrode array (MEA) systems, 

which allow delivery of various patterns of stimulated activity in visually identified neurons, 

might be an option to study LTP in neuronal cultures (64). Alternatively, electrically-

stimulated LTP can be modeled in neuronal cultures by chemical stimulation (chemical-LTP, 

cLTP), a major technical advance based on the activation of the NMDAR with the NMDAR 

co-agonist glycine (65, 66). Several studies have demonstrated that cLTP induces a 

potentiated state that parallels the essential features of electrically-induced LTP. Like 

electrically-stimulated LTP, cLTP induces insertion of AMPA receptors into the postsynaptic 

surface (the critical process associated with LTP at excitatory hippocampal synapses (67)) in 

an NMDAR-, calcium- and calcium/calmodulin kinase (CaMK)-dependent manner (65, 68–

70, 71, 72). In addition, paralleling electrically-stimulated LTP, cLTP drives morphological 

adaptations in spines that are essential for stable LTP, including protein synthesis, and the 

formation of filamentous actin (F-actin) in spines via Rac/Pak/LIMK signaling (69, 70, 73, 

74). Importantly, cLTP is occluded in hippocampal slice cultures by prior induction of LTP 

by electrical (theta-burts) stimulation, indicating that cLTP and electrophysiological-LTP 

approaches share underlying cellular processes (66). Thus, cLTP in neuronal cultures offers 

a simple, robust and neuron-enriched system to test the modulation of LTP by cytokines.

6. Synaptosomes provide an approach to study LTP modulation directly at 

the synapse

In spite of the advantages of primary neuronal cultures, this experimental system has some 

limitations. The main disadvantage is that cultured neurons develop in an artificial 

environment and may not embody all the properties of mature neurons including activity-

dependent responses (75). An alternative to neuronal cultures may be to use synaptosomal 

preparations (presynaptic terminals attached to postsynaptic structures), which can be 

isolated from adult and even aged animals, thus offering the possibility of modeling mature 

synapses. Indeed, synaptosomes have been widely used to study synaptic mechanisms by 

biochemical, structural and functional analysis (76–79). To focus on synapse-specific 

mechanisms, we have recently developed a novel flow-cytometry-based approach to study 

LTP in isolated synaptosomes, termed Fluorescence Analysis of Single-Synapse Long-Term 

Potentiation (FASS-LTP) (56, 80). FASS-LTP focuses on the insertion of AMPA receptors 

into the post-synaptic surface after cLTP. Specifically, following cLTP, the activity-

dependent increase in surface GluA1-containing AMPA receptors is tracked by flow 

cytometry in isolated synaptosomes. Overall, the technique consists of cLTP stimulation 

directly in synaptosomal fractions, immunofluorescence labeling for surface GluA1 and 

flow cytometry analysis (Fig. 2). Alternatively, surface levels of AMPA receptors after cLTP 

can be quantified by [3H]-AMPA binding (81). Importantly, cLTP response in synaptosomes 

mechanistically parallels the facilitation of synaptic transmission following electrically-

induced LTP in brain slices (e.g., dependence on CaMKII and BDNF signaling) (80). 

Moreover, cLTP increases GluA1-PSD95 physical interaction in size-sorted synaptosomes 

(80). Importantly, FASS-LTP can test multiple samples in parallel (~40) using a minimal 

amount of tissue (milligrams) for each assay, thus opening the opportunity of studying 

multiple cytokines in parallel in brain samples from rats, mice and humans (postmortem) 
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(80). The use of synaptosomes from cryopreserved postmortem tissue provides a unique 

opportunity to study LTP modulation in the human brain.

FASS-LTP-derived data have demonstrated that IL-1β suppresses cLTP directly at the 

synapse in mice, thus providing unequivocal proof that IL-1β can impair synaptic plasticity 

via neuron-specific mechanisms (56). Interestingly, data also showed that a low IL-1β 
concentration (3 pM) suppresses cLTP in synaptosomes from middle-aged but not from 

young mice, thus indicating that the neuron-specific IL-1β signaling is potentiated in aging 

(56). This age-related potentiation of IL-1β signaling is associated with increased levels of 

the IL-1R1-AcP receptor in synaptosomes from the aged hippocampus (56). Whether other 

cytokines can impair LTP by directly acting on synapses remains an open question. 

However, the possibility that the signaling from multiple cytokines converges on neurons 

and contributes to LTP modulation might reflect a more realistic scenario as, for example, 

brain levels of IL-1β as well as other cytokines (e.g., IL-6 and TNFα) and cytokine 

receptors increase in parallel during immune responses (8, 82). In addition to inflammatory 

cytokines (IL-1β, IL-6 and TNFα), anti-inflammatory cytokines such as IL-4 and IL-10 are 

also dynamically expressed across multiple brain regions as part of positive and negative 

immune feedback loops (82, 83). Further adding complexity to the brain cytokine’s profile, 

recent reports show that LTP itself is accompanied by synthesis and release of cytokines in a 

NMDA-dependent manner (84), suggesting that the interaction between cytokines and LTP 

is bidirectional. Thus, in vivo, the final effect on LTP and memory may likely reflect the 

cumulative effects of all neuron-specific cytokines locally released during either 

physiological or inflammatory processes. Cytokines’ effects on neurons may be additive, 

synergistic or even opposite. Given the complexity of cytokine signaling in the brain, 

understanding their overall actions including neuron-specific effects requires a shift in focus 

from single cytokines to a network of cytokine interactions (83).

Overall, a main advantage of in vitro neuron- and synapse-enriched systems is their 

simplicity. For the study of cytokines, the possibility of testing multiple samples at once 

could accelerate the construction of concentration-response (C-R) curves; while the 

information provided by C-R curves may provide significant information for understanding 

concentration-dependent dual effects of inflammatory cytokines on LTP. In addition, C-R 

analysis may guide future studies on LTP modulation to identify cytokine interactions (e.g., 
additive, synergy, crosstalk or redundancy), by using suboptimal concentrations of multiple 

cytokines at once. A better understanding of cytokine interactions at the cellular (neuronal) 

level is fundamental to study the influence of cytokine networks on synaptic plasticity.

7. Concluding remarks

Along with classical neuromodulators, cytokines modulate synaptic plasticity via complex 

cytokine-cell networks. The complexity of brain cytokine networks reflects cytokines’ 

feedback loops, pleiotropy and cross-talk; and that most, if not all, brain cells are responsive 

to cytokines.

It is commonly believed that inflammatory cytokines facilitate and impair neuronal functions 

at physiological-low and pathological-high concentrations, respectively. However, the timing 
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and sequence of cytokine actions are poorly understood. Final effectors directly facilitating 

or impairing neuronal functions are also mostly unidentified. We propose that dissecting the 

identity of cytokines/factors able to modulate LTP directly at the synapse may add a point of 

reference on brain cytokine-cell networks, in both physiological and pathological conditions. 

Beyond establishing crucial endpoints in the map of cytokine networks (e.g., IL-1β via 

IL-1R1-AcP at the synapse), dissecting neuron-specific cytokines may significantly 

contribute to the discovery of therapeutics to prevent LTP suppression. Notably, these 

therapeutics would selectively target the side-effects of inflammation on synaptic plasticity, 

while preserving the benefits of brain immune responses (e.g., Aβ clearance by microglia 

(85)).

In summary, recent advances in the field provide state-of-the-art tools for high-throughput 

dissection of neuron-specific effectors. Specifically, FASS-LTP may allow scaling up LTP 

analysis, thus facilitating the characterization (e.g., accurate concentrations and timing) of 

cytokines able to modulate LTP directly at the synapse. The analysis of multiple cytokine at 

once and the evaluation of cytokine interactions may further help to reveal key nodes on the 

topology of cytokine networks in the brain. Hence, a perspective based on cytokine networks 

coupled with neuron-specific analysis may significantly contribute to elucidate the impact of 

immune-nervous systems communication on synaptic plasticity.
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Highlights

Cytokines can affect learning and memory by modulating LTP

Cytokines modulate LTP directly in neurons, and indirectly via cell-cytokine 

networks

Direct cytokine’s effect on LTP can be tested in cultured neurons and in 

synaptosomes

Synaptosomes allow testing LTP modulation by cytokines directly at the synapse
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Fig. 1. 
Cytokines and cytokine networks modulate LTP by targeting synapses. This simplified 

model illustrates LTP, which relies on the NMDAR-dependent insertion of GluA1-

containing AMPA receptors at the postsynaptic surface. In this model communication via 

cytokines is depicted by arrows, which can bi-directionally connect multiple cell 

populations. Cytokine networks enable local interactions between neuronal and non-

neuronal cells (e.g., astrocytes, microglia, vascular endothelial cells) in the brain, as well as 

brain-periphery communication via the brain-blood barrier (BBB) and the choroid plexus 

(CP). The BBB releases cytokines and regulates the flux of cytokines from the blood; the CP 

produces cerebrospinal fluid (CSF) and cytokines, and regulates the transport of cytokines 

and immune cells from blood vessels. LTP modulation by cytokines has been widely 

studied, however, for most cytokines, is unclear if they modulate LTP by directly targeting 

synapses (one-direction arrows) or by indirect mechanisms relying on cytokine networks 

maintained by non-neuronal cells interactions. Cytokines can induce the expression and 

release of multiple cytokines in their target cells, thus activating cytokine networks, which 

could modulate synaptic transmission by targeting synapses via both cytokine-dependent 

and -independent mechanisms (dotted arrows).
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Fig. 2. 
Multiplex analysis of cytokine-mediated modulation of LTP directly at the synapse using 

FASS-LTP. The synaptosome-enriched fraction (P2 fraction) can be rapidly isolated to study 

synapse-specific effects of cytokines. After isolation, synaptosomes can be treated with 

cytokines (1) before cLTP (2), which is induced by NMDAR activation using glycine (white 

triangle) and KCl depolarization. Cytokine treatment and cLTP is followed by 

immunolabeling for surface (no permeabilization) GluA1 (3) to identify potentiated 

synapses. Finally, flow cytometry identifies potentiated synapses by size and GluA1 labeling 

(4) (see details in (56)). A key advantage of this approach is the possibility of testing 

multiple agents in parallel (~ 40, (80)).
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