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‘REACTIVITY LIFETIME AND BURNUP IN NUCLEAR FUELS
Jean Robert Lefebvre de Ladonchamps
Lawrence Radiation Laboratory

University of California
.Berkeley, California

January 7, 1963
ABSTRACT

We develop analytical methods for the prediction of the reactivity .
lifetime and burnup of nuclear fuels, »

The analysis applies to those nuclear fuels whose changes iq com-
position with time are due solely to neutron-absorption processes, so
that the composition of any fuel species is a function only of the inte-
grated flux time of its irradiation exposure. Reactivity lifetime can
then be expressed as a function of the appropriate average flux time of
‘the fuel at the end of the irradiation. We can then calculate local and
average burnup of the irradiated fuel without necessarily specifying the
magnitude of the irradiation flux or the power program of irradiation.

A generalized perturbation method is developed which allows us
to calculate the above results, and which takes into account the spatial
variation in neutron flux within the reactor and changes in this spatial
variation during irradiation resulting from changes in fuel composition.
Tabulated functions allow hand computations for the batch irradiation of
- fixed fuel in cylindrical or spherical reactors that have a uniform initial
fuel loading., Such functions also-apply to radial mixing and graded irradi-
-ation.

The perturbation method.is most easily applied to the one-group
diffusion model, but the method is extended to the multigroup model with
only slight modification for reactors with energy-independent boundary

conditions,
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An exact analytical solution for the reactivity lifetime and fuel
burnu'p has been develdped for continuous fueling s‘chemes, if the one-
group model applies and if the characteristic excess neutron production
of the fuel varies.as.a quadratic function of the flux time of irradiation
exposure. A comparative study of various continuous fueling schemes
has been made for a fuel with typical p.ro'pel"ties (see Sec, III-6).
| The validity of the approximate solutions is determined by com-
paring results of the second-order perturbation method with the exact
solutions of the samie equations. Numerical computations on high-speed
digital computers have been used to obtain exact solutions of those equa-
tions which could not be solved analytically by means of elliptic functions.

The computational proceduré here '(iev*elo'ped allows survey studies
comparing the performances of various fuels and va'rious' reactor designs.
Also, it predicts the r'nagnitude of the errors to be expected when we use
various neutron behavior model's‘(o'ne—group, two-group, continuous
slowing down) in more elaborate computations on high-speed digital com-
puters,

Alth‘ough attention Has been focused mainly on the properties re-
lated to the variations of the flux in the equivalent homogeneous fuel-

moderator cell, corrections for lumped fuel havé also beeen investigated.



I. INTRODUCTION

1. Statement of the Problem

The rapid deveiopment of power reactors during the last decade
has focused considerable attention on the changes that occur in the prop-
erties of nuclear fuel and nuclear reactors during long-te’rm irradiation.

The variation and the control of the excess reactivity of the reactor,
and the burnup (quantity of power released per unit weight) 'o_f the fuel at
end of life, have been given special consideration. The comprehensive
study by Benedict and. P‘igfordB1 is a useful tool for qualitative and quan-
titative estimates of these properties; they madé a straight forward
hand-computation method possible by using a simple model tvo describe

the neutron behavior; such a model heglects the changes in the spatial

.and energy distribution of the neutrons which occur during irradiation.

The effects of these changes have been included in many numerical
studies which the development of high-speed digital computers has made
possible on a large scale. Such detailed analyses are of prime value for
design studies of specific reactor systems. However, general investi-
gations involve scores of parameters and require.the use of computation
techniques which represent a compromise between simplicity and accuracy.

Our purpose in this thesis is to develop a method of fuel-cycle
analysis that accounts for the changes of the spatial distribution of the
neutron flux, yet remains simple enough to be hand computed. Thus,
we make available a set of formulae for further studies of power density
distribution, of heat exchange problems, and of optimization of fuel-

cycle parameters,
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2. Review of Previous Works

Fuel-cycle computations rely on the reactor statics theory; i.e.,
they rely on the solution of equations describing the equilibrium behavior
of the neufrons in a reactor of giveh composition., Knowing the cross. -
sections of the various nuclides present in the reactor, we can compute
changes in fuél composition, at least during a differential increment of
the irradiation time. Thus, the refinement of a f\iel-cy;le computation
depends on the adequacy of the model used to describe the spatial and
energy distribution of the neutrons and on the accura.by of the extrapo-
lation of the time- dependent propertles V

While numerical studies can nowadays be performed on high-

‘Speed digital computers for extremely sophisticated models}\Il methods
seeking an analytical approximation of the characteristics of fuel cycles

- have been developed for the simpler models which follow.

2,1 Zero-Dimensional Model

Many of the fundamental characteristics of fuel cycles can be
determined by calculation of the composition changes that occur in a
local section of fuel as it is irradiated, This method, usually referred
to as the constant-flux or zero-dimensional approximation, was used in
basic papers presented at the First Geneva Conference on the Peaceful
Uses of Atomic Energy by Dunworth, D1 Lewis, L1 Spinrad, 51 and
Weinberg. wi They have assumed that the flux energy spectrum does
not vary with the irradiation and with the position in the reactor, in
which case the zero-dimensional model would exactly describe the be-
havior during irradiation of a well mixed fuel (e. g., a solution of

02504 in DZO),,

This model describes also the irradiation of a fuel in a uniform

flux (i.e., a constant flux, or zero-dimensional flux with respect to

spatial coordinate). Some useful results are developed below. «
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2.1.1. Changes of fuel composition during irradiation. Consider a local

section of a fuel of given initial composition which is irradiated in a
thermal flux ¢(t). By assuming that the radioactive decay of a nuclide
either takes place without delay or is negligible, Bl the atomic concen-
trations N of the various nuclides are the solution of a set of linear

first-order differential equations where the independent variable is the

flux time

t
6 = dt . 1
j04><t>t | (1)

This neglects the changes of the neutron—flux. energy spectrum
in the reactor and assumes that we have chosen suitable effective ther-
mal cross sections; such cross sections may be determined according
to the method of Westcotth or according to the summaries of cross
sections averaged over a Wigner- Wilkins spec:trum;Al they can take : .
into account epithermal absorptions that depend very much on concentra-
tion, like those occurring in Pu240. cl |

The most comprehensive studies of the fuel-composition changes
have been completed for U235-=U2'38 and UZ35-thorium fuels;Bl we
refer to these studies for the detailed analytical solution of the cor-
responding sets of linear first-order equations for nuclide concentrations
as a.function of flux time. As an example, the simpler fuel, pure U235,

would be treated as follows.

2.1.2. Highly enriched uranium fuel. The U235 undergoes the reaction

fission products 4 Vv nl, probability: —_

0 l1+a
25

U235+ nl
92 0 \ : a

y?36 robability: ——0 —

92 ’ probability: T ¥ a
25

- oy is the capture-to-fission ratio in U235,

where a5 FICYEIN

The reaction rate is the product of the concentration N, the

microscopic absorption cross section o, and the flux ¢(t).



. The concentration of U2'35 then obeys the equation
dNZS_. N 2)
@ = " Nas 925 ¢
. . 0 .
The solution subject to N25 = N25 at t =0 s
-0,.0
_ O 25 ,
N,y = Nyg e . ' (3)

The cencentration of UZ36 is determined by the equation

26 _ %25
| dt l+a25

Nyg 05~ Nyp 02 ¢ - : (4)

The solution subject to N26 =0 at t=0 is

' fo v -0,,0 -0,:0
N26 = Ngs © sis )2(5 ¥a,7) (e e B ) (%)
‘ 257V 26147925

The neutron burnout of U230 is usually negligible, and Eq. (5)

is replaced by
a

-0,.0

0 25 . 25 '

N =N —_— 1l - e . (6)

26 25 1 4 ass < ) ’
The fission products are classed into two groups:

(a) Low cross-section fission products whose neutron burnout and

decay are negligible:

-0,.0
) 1 25
Np = N25_1+0.25 (1=e ) (7)

. . .. 3 14
(b) High cross-section fission products {e. g., Xe1 > and Sm 9)

that build up rapidly to steady-state concentrations. Their macroscopic

cross section is taken as equal to a constant fraction r of the macroscopic

> .
cross section of U 35:

Nxe "xe ¥ Nom Tsm = ¥ Nas 925 - (8)
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In a reactor loaded with pure U 5, and with no burnable poison
present, the concentration of all nuclides but the above mentioned re-
mains constant, The subscript P will refer to all permanent absorbers;

their macroscopic cross section is NP 0 pe

2.1.3. Complex fuels. For low-enrichment fuels containing fertile

materials, Benedict and PigfordB1 have shown that the variation of the
concentration N, of each nuclide can be represented by a sum of ex-

ponentials plus a linear function of the flux time:

-g.0 . (9)
- J
Ni-ci,0+ci,le+;cije

The above equation is clearly valid for highly enriched uranium

fuel. For reactors loaded with U235-U238 or U2'35-Th fuels, formulae

giving the coefficients Ci,j have been derived, _

- For our present purposes, it will be assumed that the variation
of the nuclide concentrations are given functions of the flux time to which
the fuel has been irradiated. In order to develop a hand computation
procedure, it is most convenient to use Eq. (9) directly. The function
Ni(9) could also be expanded in power series of the flux time,. M1 Poly-

nomial fits of the functions Ni(G) are usually used for machine com-

putations,

2,1.4. Changes of the flux energy spectrum. The flux energy spectrum

changes as the irradiation proceeds. These changes of the flux energy
spectrum can be studied by evaluating the change of the neutron temper-
ature (for a Maxwell-Boltzmann energy spectrum) or by solving the
equations of Wilkins or of Wigner-Wilkins for various isotopic com-
positions, A simple procedure for solving the nuclide-concentration
equations is as follows: _

(2) Given an initial composition of the mixture, one computes the
flux energy spectrum. One can then compute an effective cross section
for each nuclide by taking the average of its energy-dependent cross

section over the flux energy spectrum.



(b) One uses the just computed effective cross sections in the equations
for the nuclide concentrations, and solves for the concentration changes
during a small time increment.

(c) One repeats steps 1 and 2, using the latest composition of the mix-
ture for the determination of a new flux energy spectrum.

The above procedure is used, for instance, in FUELCYC, a
program for computations on high-speed digital computers. S3 The de-
pression of the ﬂﬁx (see Appendix C) in cylindrical fuel elements has also

been taken into account by KushneriukKl and Greebler. Gl

2.2, One-Group Diffusion Equation
L4, Pl, G2

Papers that were presented at the Second Geneva Con-
ference on the Peaceful Uses of Atomic Energy used the one-group dif-
fusion equation in order to describe the spatial dependence of the neutron
distributipn. While Crottoc’r2 used high-speed digital computers to re-
peatedly solve this equation while irradiation proceeds, most

studieslA’ M2, P1, 21

sought an approximation to the values of reactivity
lifetime and burnup by using first-order perturbation theory. In the
following paragraphs we present the one-group diffusion equation and
the first-order perturbation with the notations used in this thesis.
Besides finite-differences methods, G2 synthesis methods have
recently been used in numerical computations on high-speed digital
computers;B4 another method, which represents the flux changes as a
power series in the irradiation time, has been developed by Chambré. c3
However, prior to the present work, only first-order perturbation com-
putations have been used in hand computations of reactivity lifetime and

burnup.

2,2.1, The modified one-group diffusion equation. The neutron balance

in the reactor is described locally by the diffusion equation written in

terms of the thermal flux:

DAY + (v, B~ Z) 6= Bgo, (10)
where: -



(1) D is the diffusion coefficient, It is assumed constant, for its
value is determined mainly by the properties of the reactor that do not
change on irradiation.

(2) EE is the positive macroscopic cross section of the control ab-
sorber adjusted in order to keep the reactor just critical.

(3) Yih is the average number of thermal neutrons produced per fis-
sion, It takes into account the fast fission effect and the losses of neu-
trdns (by leakage and absorption) during the slowing-down process,.
When the Fermi age slowing-down model is used in order to obtain the

expression of V Eq. (10) is known as the modified one-group age-

th’
diffusion equation.
(4) Zf is the macroécopic thermal-fission cross section.
(5) z;aq) is the thermal neutron-absorption rate per unit volume, ex-
cluding the absorption in the control absorber.
One defines

Z. -z =DB2 s (11)
m

v
th = f a

where Bfn will be referred to as the material bucklingw3 of the reactor
without control absorber. It is a function of the nuclide concentrations
N,.

The irradiation to which the fuel has been exposed in the reactor,
according to a given fuel schedﬁling scheme, is to be characterized by a
parameter T. If the flux ¢ were known, the concentrations Ni could
be determined as a function of the position X in the reactor and of this
parameter T which describes the extent of the irradiation.

The material buckling is then the result of an operation on the

flux ¢; this operation will be described later for various fuel scheduling

schemes.

2.2.2. Boundary conditions. The flux ¢, a function of the position x

and of the irradiation parameter T, is the solution of Eq. (10). It is

subject to either of the following boundary conditions:



(1 ¢=0 (12)
at the extrapolated boundary of the reactor.
a¢ _
(2) ¢+ 8y 5, =0 (13)

at the physical boundary of the core.

The linear extrapolation distance 62 is constant if the properties
of the reflector are independent of the irradiation, The condition that
6£ be much smaller than the physical dimension of thve reactor éore is
prescribed in order to have a good representation of the diffusion of the
neutron with a oné-group (thermal flux) diffusion equation. Furthermore,
ﬂuﬁ: changes are zn-uchb smaller in a well-reflected reactor than in a bare
reactor, since the reflector tends to flatten the distribution of the neutrons

in the core and thus diminishes nonuniformity of the fuel composition.

2.2.3. Unperturbed reactor equation. The unperturbed equation is the

equation for the thermal flux in a reactor of uniform composition, be-

. . . . S
cause its solutions are well known for various geometries; we have

Ad + BZ¢ =0, (18)

With the linear homogeneous boundary conditions [ Eq. (12) or
(13)],. Eq. (18) possesses a éomplete set.of orthogonal eigenfunctions
corresponding to eigenvalues Bl?; all positive {the operator (-A) is posi-
tive-definite). The physical restriction that ¢ should be positive over
the volume of the reactor requires the choice of the smallest eigenvalue
BS;C2 BO is known as the geometrical buckling of the reactor core.

The unperturbed equation then is

Ad +B(2)¢0=00 , (19)

0

2.2.4, Excess neutron production. Equations (10) and (11) are combined
into '
D(Aé + B ¢) = (DB> - DB® - Z_) (20)
= ( ¢‘ + 0 4)) = m = 0 = E ¢
in order to distinguish between the perturbation term on the right side

and the:unperturbed expression on the left side. Equation (20) would be



exactly equivalent to the unperturbed equation, Eq. (19), if the control

absorber were locally adjusted according to

2 2
EE = DBm - DB0 (21)
to compensate for the local excess reactivity of the fuel.
One defines
2 2
V¢ ..:DBm - DBO . _ (22)

which has the dimension of a macroscopic cross .section and will be re-

fered to as the excess neutron production, Bl, Pl

The subscript ¢ indicates that V¢ is the result of an operation

on the flux ¢ in the sense that, if the flux were known, one could write

explicitly :

V" F(x,T) . (23)

where T is a parameter characteristic of the extent of the irradiation
of the fuel.

Equations (20) and (22} finally yield

-D(A¢ + BL 0) = (v, - Bp) ¢ (24)

¢

2,25, First-order perturbation, As long as the perturbation term in

the right side of Eq. (24) is small compared to DB(Z)cp in the left side,
one would introduce a smaller error by replacing in the right side of
Eq. (24) the actual flux ¢ by its approximate value $o- A Dbetter approxi-

mation to the flux will then be the solution of the equation

-D(A¢ + BL ¢) = (v, - Bp) &g - (25)

The solution ¢ of this equation is the first corrective term in
the perturbation-theory series expansion of the solution of Eq. (24), as
well as the first term of a suite of iterations (cf. Eq. (1I-22) ).

In general, Eq. (25) could be used to obtain approximate solutions
for the thermal flux in a reactor with nonuniform fuel loading and control
absorption, when this nonhomogeneity does not induce important varia-

tions of the diffusion coefficient D,
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However, Eq. (25) is mostly suitable for the study of the changes
with irradiation of a flux which would satisfy exactly the unperturbed

equation, at least at zero irradiation.

2,2,6. Criticality condition; reactivity lifetime. KEquation (25) is a

linear nonhomogeneous differential equation and the corresponding
homogeneous equation has a nontrivial solution ¢o Eq. (25) has a
solution only if its right side is orthogonal to this nontrivial solution

*
¢0, This yields the criticality condition
<(v¢0- Zp) 9o 9g) = O (26)

In the case of batch irradiation of the fuel, EE is set equal to
zero at the end of the reactivity lifetime, For steady-state fuel sched-

uling schemes, ZE is always zero. The corresponding equation
= 2
<(v¢o) bgr 99) =0 (27)

which has been widely used after Pigford, Pl is the result of a first
order perturbation‘.theory (also called a statistical weighting procedure
by LewisL4)., In the present approximation, no assumption needs to be
made concerning the distribution of the control absorber in the reactor.
For a reactor with a uniformly distributed control absorber we have

<(V¢O) o ¢0>
Z. = . (28)

- (89 40)

According to Eq. (9), the excess neutron production in a reactor

cell irradiated to a uniform flux time 6 1is the following function of this

flux time:
-g.0

_ j
v(6) = dg +d,6 4 ?dje . | (29)

. When the extent of the irradiation of the fuel in the reactor, in
accordance with a given fuel scheduling scheme, is characterized by a

parameter T, Eq. (28) can be written

3k '
See Appendix A for definition of the following scalar product notation.
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EE = d0 + dleT +% d.j.E2 (UjT) o | - (30)
The coefficient. fz and the function Ez(w) have been tabulated
for various fuel scheduling schemes in spherical, cylindrical, -and par-

allelopiped reactors. B1, S2, M1

. The coefficients d’l, dO’ and 'dj are linear,-functi.ons'of the initial
nuclide concentrations; by setting EE. = 0 in Eq. (30), a straightfor-
ward hand computation determines the enrichment of the fuel which must

be loaded in a given reactor in order to obtain an irradiation T.

2.2.7. Burnup of the fuel. The burnup is defined here as that fraction

of the original fuel which has been converted into fisvsvion"products. It
is.a function of the nuclide concentrations and, _li‘k-e_the excess neutron
production V¢, it is thbe_'res_ult of an oper'ation'o‘nvthe. flux. The burnup
__of the fuel, B ,, is a function_of the position x in the reactor and of the
irradiation T. The average tburnup <1, [3¢> » is a function of the irradi-
ation T only. v :

According to Eq. (9), the burnup in a reactor celi,_ irradiated to
a uniform flux time 0, is a function of the flux time, and we have
' ' -0.0

B(6) = b, + b6 +ij e . (31)
J :

A first approkimation to the burnup is obtained by replacing in
the expression for {34) the actual value of the flux ¢ by its approxi-
mate value bg- In the fuel-cycle study of Benedict and PigfordB1 this
approximation is used in calculating local and average burnup of fuel

irradiated according to a given fuel scheduling scheme in a reactor of

simple geomefrical shape; this averége is
(v 5¢0> =by +b T + gbon(ojT) . (32)

where T characterizes the extent of the irradiation, and is usually the
maximum flux time, and the coefficient fo and the function EO(W) have

been tabulated, .
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The final burnup is evaluated when the fuel has been irradiated

to such an extent that the 'reac'tor;his jﬁét critical with all control ab-

...sorbers removed. This burnup is determined by Eq. (32), where from

. Eq. (30) one takes for. ‘T the-root of _ZE(T) =0. . ,
_The above results give only a first-order approximation; in the
present thesis, we seek a better approximation by adding a second-

order. term to correct for the flux changes that occur during irradiation.

2.3, Multigroup Diffusion Equations.

It 1s dnly in a ba.r.e, uniforrﬁly loavde:d reactor that .the spdtial
distribution of the neutron can be described separately ffqm the energy
distribution. However, in fuel-cycle ahalysis we are often concerned

~with reactors where'nonuniformity in composition arises because of the

' ﬁo‘minifornﬁ burnup of the fuel.” The nonuniformity may also be caused
by a reflector, by a breeding blanket, or by control rods. The problems
of the spatial variatioh of the flux-spectrum are then usually studied by
breaking up the energy range from fission to thermal into several groups
" of equivalent monoenergetic neutrons. ‘

' ' For example, the two-group diffusion equations have been widely
used to study the characteristics of fuel cycles. An approximate solution
has been.derived by Mur’ra.yM‘3 and studies of the reactivity lifetime have
been performed by‘.‘Wolfe'W4 who compared the results of the first-order

. perturbation theory with those of exact computations. . Wolfe points out

.that the thermal flux shape does not change significantly if the effect of

.. burnup on neutron balance in a small core region is small compared to

.the neutron leakage from this region. The perturbation method is then

appropriate for the study of highly enriched reactors which have a large

leakage of neutrons. However, the analytical study of flux changes by
the perturbation method is greatly complicated because the operator that
acts on the two-dimensional vector flux (fé.st and thermal fluxes) is not

" self-adjoint. Thtié, most numerical studies have used the finite-dif-

" ferences method in order to solve the multigroup diffusion equations.

A great improvement in speed of calculations has been achieved by the

pseudomultigroup treatment used by the FUELCYC computer progr'a.m.S3
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2.4. Fuel Scheduling Schemes = et

In early studies, the irradiation of thoroughly mixed fuel (zero-

dimensional model) was primarily considered. The incentive to produce
nuclear power at competitive costs has since focused ‘considerable at-
tention on various fuel and control managemeént SCheme.s.that might
yield large burnups of the fuel. The following describes some of these
fuel scheduling schemes, which have been intensively studied:since
Lewis!' early investigation.on batch irradiation of fixed fuelLZ.-as well

. . L3
as on continuous refueling schemes. ™

2.4.1. Batch irradiation of the fuel, Fuel is initially loaded in the re-

actor and remains fixed iﬁ‘position‘ throughout the 6peré.tidh of the re- v
actor.. Control-poison is adjusted in order to.kéep the reactor just criti-
cal at all times. The fuel is discharged batchwise when the reactivity
_of thé_,fuel has decreased to such an extenf tlhat}the reactor becomes sub-
critical with all _conti'ol poison removed. _ | _ _

The results of the first-order 'pérturbation method do not take
into account the distribution o.f thé control absorber in the reactor. This
distribution has been assumed uniform in earlier studiés; Numerical
analyses‘relating to specific reactor systems have shown that a better
neutron economy can be achieved with nonuniform distribution of the‘
.control, 55 of the fuel, I or of both, J1 | _

‘The b_ﬁrnui:: of the fuel can also be inlci'eased by_interchénging
the fuel rods throughout the irfadiétion,in ‘va‘,cylin_drica.l reactof with

sufficient frequenéy to”keep the composition ﬁniform radiaily (radial

.o Pl,
mixing ).

2.4.2. Steady-state fuel scheduling schemes. The fuel is continuously

- fed to and discharged from the reactor at the frequency at which the re-
actor remains just critical without control poison. With a reactor shaped
-as a right cylinder of arbitrary cross section loaded with fuel contained
in elements (rods or channels) parallel to.the axis, one can consider

graded irradiation or steady axial movements of the fuel.
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(1) Graded irradiation. The fuel rods, fixed in place in the reactor,
are discharged individually when burned up‘ to a specified extent, and
replaced by fresh rods. , o

(2) Unidirectional. The fuel is moved steadily in channels through
the reactor; it is fed at one end of the reactor and discharged at the

_other. v - ) e

. (3) Bidirectional. ' The fuel is moved.in opposite directions in ad-
jacent channels, half of the fuel being charged and half of it being dis-
charged at each end plane.: ‘

(4) Out-in. The fugl is loaded at the outer surface‘ of the reactor and

moved steadily toward the center‘,‘ where it is discharged.

3. Method of Perturbation Analysis to be Used

-~ The first-order perturbation theory has been widely used to ob-
tain an approximation to the eigenvalue of various eigenvalue problems
of the reactor theory, but Vefy' few studies have also attempted to ob-
tain éﬁ’approximation to the eigenfunction itself and to determine higher-
" order perturbation corrections. v " '

’ - In generall, perturbation theory can give a series expansion of
all the quantities of interest, such as reactivity and neutron distribution.
" It has been pointed out (see Ref. W3, Chapter XVI) that the perturbation
series may converge very poorly and that its first few terms may be
‘misleading; however, for linear problems, modified perturbation
methdd’sM5 have been developed with which the convergence of the suc-
cessive approximations can be realized in all cases.

‘The application of these modified perturbation methods to non-
linear problems is so complex analytically as to be unwieldy for the
" purposes of this thesis, Therefofe, after a development of an approxi-
mate calculational procedure with the help of conventional perturbation

W4.’ Bl to check the validity of the results

methods, it:will be necessary
- thus obtained by:comparing them with those given by more accurate

methods.
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In the present the31s, a perturbatlon method of solution of the
irradiation-dependent one- group diffusion equation is developed. The
solution (eigenfunction) of the first-order perturbation theory describes
the flux changes through_out the irradiation.. The, ‘._Asg__c‘ion_d'aorder 'pertur-=
batioﬁ yields then a corresponding correction .:t::q,fche reactivity:lifetime.
The successive terms of the perturbation series can:be obta‘ined’,accord-
ing to the general scheme developed in Sec. II.2. ‘The main character-
istics of the method as applied to the study of the flux chéngé_s and of the

corresponding correction of the reactivity life-time are .6utiine_d below.

3.1, Flux Changes

The flux can always be written as the product of a normahzed

flux-shape u(x, t) by a magnitude f£(t), where
- CeEY =i ey . (33)

The magnitude factor varies according to the Ftim.e'-de»pe,nvdent
power program of the reactor and is chosen so that u(;; t) éatisfies
some given normalizatioh co.nditidno »

In the present study, it 1s .és‘sumed that the nuclide concentrations
are functions of the local flux time only; at a given time, V¢- in Eq. (24)
is a function only of the irradiation T to which the fuel has been pre-
viously exposed and is independent ofvthe magnitude of the flux at this
‘given time. The magnitude of the flux ¢()_<D, t) [ the solution of Eq. (24)]
is not determine.d by this equation.

The operation V"b on ¢ can then be replaced by a corresponding
_operation 'Vu on u, with a .sui_t_able definition of the irradiation parameter

T. Then Eq. (24) reads
E) u. : (34)

Since we seek the departure of the flux-shape u from its un-

2 . T
-D(du + Bgu) = (v, - Z

perturbed value Uy the flux-shape change

1 T4 ® Y

is conveniently chosen to be orthogonal to the unperturbed flux shape uy-

u » (35)
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This is equivalent to a normalization of the flux-shape

The first approximation to the flux-shape change u is then

defined as the solution of Eq. (25)

(37)

* 2 % -
-D(Au] +Blu)) = (v -~ Zg)u,

0

»wh’ich satisfies the normalization éondition ‘
b3
(u] u0> =0. (38)

The left side of Eq. -(37) is a linear differential operator with.con-
stant coefficients acting on the unknown function ulk and the right side
is a known function. The criticality condition, Eq. (26), ensures that
Eq. (37) has a solution and then,. thé solutioh satisfying the normalization
condition, Eq. (38), is unique.

Ait‘hough‘ 'Eq. (37) is rather simple, its solution will not usually
be expressible in a closed analytical form, but, in general, it could be
"easily expanded in an infinite series of the eigenfunctions of the operator
in the left side of Eq. (37). This operator is self-adjoint, positive-def-
inite, ‘and the equation
2

2
k- Bo) vk (39)

-{(Av, + Bzv

kT Bovi) = (B

defines a complete set of orthogonal eigenfunctions Vi corresponding to
‘positive eigenvalues Bli - Bg'. These are well known in the usual ge-
ometries of cylinder, sphere, and parallelopiped, where one obtains
Bessel functions or trigonometric functions.

%)
Replacing uy by its expansion
5k -

u, = kz ak(’_I‘) Vk(x.) , where k # 0, (40)
and taking the scalar product of the both sides of Eq. (37) with an eigen-
<_(Vu0 - Zg)ug vy )

2

D(B - Bg)< Vi Vi) |

function Vi yields

ak(T) = (41)
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When the excess neutron production is represented by Eq. (29),

we will show that the coefficients ak(T) are determined by

D(Bli - Bg) 2, (T) =df,  T+) 4 E, ((0T) . (42)
J :

The coefficients fZ,I; and the functions EZ, k(w) will be tabu-
lated for various fuel scheduling schemes and reactors of different
shapes. The hand computation of the flux changes is similar to that of
the reactivity changes, Eq..(30), and requires little additional effort,
since only the first few coefficients a, are significant in most cases
(least-squares approximation).

The smaller the coefficient ak(T), the smaller the flux-changes.
Thus, in Eq. (41), the magnitude of the change in the excess -neutron
production Vug, shall be compared to the term D(B 0) For bare
reactors,, D(B‘2 B ) is proportional to the initial 1eakage DB(Z)', for
reflected reactors, 1t can still be compared to the leakage from a bare
reactor of the same dimension as the core. To illustrate the later state-
ment, compare the following results for two reactor cores shaped as

infinite slabs of thickness 2Z(see Sec. 110303):
i g L 2 2,
(a) Bare: By = (k'+) w/Z, D(B] - B = (Z)

. _ 2
(b) Perfectly reflected: B, = k /2, D(Bl - BO) = D(3)

3.2, Reactivity Changes

Consider the‘equation for the flux shape, Eq. (34), and the cor-

responding unperturbed equation

2
= 43
Auo + Bgu, 0. (43)

The scalar product of the left side of Eq. (34) with the solution:
u, of Eq. (43) vanishes because the Lapiacian operator A is self-ad-
joint. Thus the condition

<(vu ) _MZ:E) wug Y= 0 (44)
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must be satisfied by any function u solution of Eq. (34). For a given
u, the value of Z:E is defined by Eq. (44) and this value is unique, since

u, is unique except for a multiplicative constant which does not modify

E(::_[ (44). This property has been usele in order to justify Eq. (26):
assuming that the flux shape is very close to the initial flux shape, one
o in Eq. (44).

. When the initial flux shape Uy is added to the ﬂ'1\1x—shape change
u; , Eq. (44) defines a corresponding approximation ZE

replaces u by u

for the control

)
absorber; Then EE is determined by

1 sk
((vuo *’u;k - Zg) (g +up), u0>‘ =0. (45)

3.3. Normalization Condition

The first approximation of the flux-shape changes has been defined
in the preceeding section as the particular- solution uy of the first-order
' “perturbation equation, Eq. (37).

However, if a_. is an arbitrary constant, Eq. (37) has a general

_— 0
solution

*

u1 = aouo + ul s (46)

where U is the solution of the homogeneous equation, Eq. (43).

The function u, is then defined uniquely only if an additional

1
condition (normalization condition) uniquely determines the coefficient

o a

0 Equation (38) is such a normalizgation condition, which is widely
used in quantum mecha.nics;56 it has been applied to fuel-cycle computations
b S Hl

y Hinman.

When others were in need of a normalization condition, they made
the assumption that the thermal power of the reactor is constant in time.
With the present notations, this is

<Z£, $ >= constant,

The above equation is an additional condition on the flux equivalent
to a normalizatioﬁ condition on the flux shape.

For generality's sake, Chambréc2 has considered subsequently
that the thermal power is an arbitrary function of the time, defined by a

given power program.
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However, such a specification of the power program is not nec-
essary for our present purposes. If the local nuclide concentrations are
functions only of the flux time to which fhe.fﬁel has been irradiated and
are independent of the magnitude of the actual flux, then the burnup of .
the fuel is a function only of the total power which has been produced by
a fuel element; this burnup is independent of the program according to
which this power has been produced. | |

Thus, the normalization condition is arbitrary, but the values
of the control absorber. and the flux shape are always related by Eq. (44).

 In the present thesis, the use of conveniently chosen normalization

conditions (to be specified in . Sec. II.2.2.) has greatly simplified the com-

putations.

4. Summary of Studies to be Made

4.1. Batch Irradiation of Unmixed Fuel

The perturbation theory is applied.fi;rst to the study of the batch
irradiation of unmixed fuel. ' The sbatial distribution of the neutron.is
described by the solution of the .dne-group diffusion equation. The

“changes of the properties of a lo_ca‘1. éectibn of the fuel, given by the zero-
dimensional model, are assumed to be a known function of the irradi-
ation. _

The perturbation theory replaces the reactor equa'.t‘ion by an infi-
 nite set of simpler (linear) partial differential equations; the solution
to each of these linear equations is obtained by using eigenfunction tech-
niques and is properly normalized, '

' The“ method is then applied specifically to the flux and reactivity
.changes in a reactor where the control absorber and the initial fuel are
uniformly loaded. = A calculation procedure is developed, which yields
an. approximation of the flux changés and of the corresponding correction
to the burnup of the fueia

Calculations are made amenable to hand computations by tabu-

lating sets of auxiliary functions,



-20-

A parametric study of the fuel-cycle characteristics in bare
reactors locaded with highly enriched uranium is then performed accord-
ing to this computation procedure. The results are comparéd with those

-obtained by solving the one-group diffusion equatibn by the finite-differ-

ences method using high-speed digital computers,

4,2, Cbritinuous"Fﬁeiin‘g

The perturbation theory is. also applied tofthe study of Qarious
fuel scheduling schemes which are described by an ordinary differential
équation (one-dimensional). The solution of the corresponding linear
equations defined by perturbation theory can now be obtained by using
(Besides the. eigenfunction expansion technique) the Fourier series or
Green's function techniques. |

The fo'llbwing fuel s'chédﬁling schemes are considered:

(2) Radial mixing of the fuel, with uniformly distributed control or
with control absorber localized in the midplane of the reactor.
(b) Graded iraddiation of the fuel. |
(c) . Stea.dy axial movements of the fuel.
The equatlons descrlbmg all these fuel scheduling schemes (except the
f1rst) can be put in the form of a differential equation which does not
| explicitiy contain the variable. They can be solved by two quadratures,
and have a solution in terms of known functions (ellipt_ic functions) if the
. nuclide concentrations vary as a quadraticv function of the flux time to-
which a local éection of fuel has been irradiated.
iT'hus exact solutions of the one-group diffusion equation are ob-
tained. They give a basis for a comparison of the various fuel scheduling
Sc:hemes as wéll as a basis _»for a test of the accuracy of the calculation

procedure developed by perturbation methods.
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II. BATCH IRRADIATION

1.  Description and Equations

The fuel is initially loaded in the reactor, ahd,fhe control ab-
sorber is adjusted to make the reactor just-c_riticg,l; In general, the
initial fuel and the control absorber are not uhifdrmly distributed over
the volume of the reactor. | ‘ | v

The fuel remains unmixed during its irradiation in the -reac.tor ‘
and, at a.time t after startup, it has been irradiated to a flux-time

6 defined by .

O(x,t) = fcb(x,t)dt., : - '. (1)
0 ' g

Given the physical properties of an homogenized cell containing
the fuel, the moderator, the coolant, and the structural materials, we
find that the excess neutron production, V¢, .va.ri_es with.the irradiation
as a known function V(6) of the flux time 6. If the initial composition
‘of the reactor is nonuniform, the excess neutron production is further-
more an explicit function of the position. v (x, 0).

The thermal flux ¢, a functién of the position x and of the time
t, is giveri at every instant by the solution of the one-group diffusion
equation

-D(&¢ + BLO) = [v(0) - Bl o, (2)

The boundary condition for the thermal flux is"

52%%3+¢-=.0‘. ' (3)

In the above equation, g-% is the normal derivative of the flux
and §, is the linear extrapolation distance. We evaluate ¢ and %—Iﬂ;—
at the physical boundary of the reactor core.

The Laplacian operator A, acting on the linear manifold of the
functions which safisfy such a linear homogenelous boundary condition,

is self-adjoint with respect to the scalar product

(f,8)= < |t gy av. (4)
v
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The macroscopic cross section of the control absorber required
to keep the reactor just critical 1s Zg- ‘It varies with time, and is also
a function of the pos1t1on, EE(x,.'t), in case of nonuniform distribution
of the control absorber

Let v0 be the solution of the equatlon

! } - | s 5
Av Vo * BO Vo = 0. _ (5)

The scalar product of the left side of Eq. (2) by v, vanishes, since
the Laplacian operator is self-adjoint. A condition for Eq. :(2) to have

a solution is then

v{o) - EE
T b, VO = 0. | (6)

Given the function ¢, the above equatién determines the magnitude
of the control absorber required to keep the reactor just critical; the
- spatial distribution of the control absorber, however, must be“specified
- by a given control .management. procedure. : :
If we know the flux time 6(x,t) to which the. fuel has been. irradiated,
.at any given time, then'Eq. (2) as well as the boundary condition, Eq. (3),
is linear and homogeneous with respect to the flux ¢; any multiple of the
flux is -still a solution, i.e., the magnitude of the flux is arbitrary. It will
be convenient to select a normalized solution u(x,t).
The normalization.condition will be represented by the symbol
Nfu) =0 . ' (7)
The flux time can still be represented by a simple integral of
the flux shape u with a suitable definition of the variable which defines
the irradiation.
The flux can be written .-
d(x,t) = £(t) ulx,t) . (8)
If £(t) is chosen at every instant so that u(x,t) satisfies the normaliza-
tion condition, .the flux time is
. t
6(x,t) = j £(t) u(x,t)dt . (9)
0
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 Now,, instead of characterizing the irradiation by the time .t

after startup, a new variable T is defined by
t -

T:f £(t) dt . | o - (10)
o

Thus, Eq. (9) beéorr;es
T o .
6 (x, T) =f u(x, T)dT. ' (11) .
/0

For instance, if one wishes to normalize the flux shape to unity

at the center of the reactor one uses
N(u) = u(0,t) -1 =0 ; : (12)

then Eq. (8) shows that f(t) is the magnitude of the flux at.the center of

.the reactor, since one can always write

¢(x,t) = ¢(0,t) u(x,t) . (13)
Therefore, the irradiation is characterized by the central flux time
: . |
T =f ${0,t) dt (14)
o |

instead of the time t.

In fact, the time t is just a *dummy variable! since, for the
present purposes,, the extent of the irradiation fin__the reactor would be
best defined by the amount of control absorber which is still required to
m_ake,the reactor critical. The end-of-life condition is that the reactor
be just critical when. all the control absorber has been removed: that is,

we have

ZEE 0 (15)

or, according to Eq. (6),
{v16) $: vy Y=0. (16)

The ﬁna.l'burnup of the fuel, and the end-of-life properties must '
be evaluated for the value Tf of the variable T for which Eq. (15)is

satisfied.
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For poorly reflected reactors (see the discussion at the end of

Sec. 1.3.3.), the problem can be stated in dimensionless form by di-
2

viding both sides of Eq. (2) by ~DB0; we have
1 vio) - Zg
— At |14 ——5—) $=0. (17)
B0 DBO

In the perturbation method, as presented in the following section,
we consider that the term l:v(@) - ZE ] /,DBS is a perturbation term
which is small compared to 1.

We define the following dimensionless quantities

g(oy = 29 (18)

= . ' (19)

The above quantities will still be ¥eferredto as the neutron-excess
production and the control absorption, respectively.
The problem is te find the function u(x, T) and the magnitude of
the function c(x, T) that satisfy
: T .
1_2 Au(x, T) + ulx, T)| = {g u(x, T)dT| - c(x, T)} ulx, T),
- B0 0

(20)
where u is the function of position x and of irradiation T normalized
- by-a condition, Eq. (7), and where u satisfies a linear homogeneous

boundary condition.



2, Perturbation Theory

2.1. Perturbation Method

The purpose of the, perturbation method is to replace the equation
of the problem, Eq. (20), by a set of simpler equations which determine
the successive approximations fo‘the function u and to the control c;

these are expanded in a power series of a perturbation parameter €:

o

N s

2 : S

c=ci{x,T) = co(x, T) + ecl(x,T) 4+ € CZ(X’ T) + = L c ¢ (21)
s=0
@

u=ul{x,T)= uO(x, T) + eul(x, T) + ezuz(x, T)+°°° = E upep (22)

The perturbation parameter is chosen in such a way that the

equation

_Qif.au+¢§ =elglf) -clu (23)

Bo

reproduces the given equation, Eq. (20), when € =1, and reduces, when

¢ = 0, to the simple equation

Au+3@=o. (24)

The above 'unperturbed equation' has a known nontrivial solution uo(x),
and the first approximation of the flux time is
T

60 =f uo(x)dT =T qo(x) . (25)
0

The introduction of the perturbation parameter € is simply a
device to trace the order of magnitude of the various terms. In Egs. (21)
and (22), it is assumed that the solution of Eq. (23) can be expanded in
power series of e. The smaller ¢ becomes, that is;the smaller the
magnitude of [ g(0) - c], the faster the convergence of the perturbation

series,



We find that c can be a function of the position x, as well as of
the irradiation T, and the function g{f) can depend explicitly upon x;
this is the general case, where the control absorption, the initial fuel
loading, and/or the diffusion coefficient D are,functiens of position;
the initial flux itself is then expr.essed by means of va:’.perturbatzi'on series,
However, the perturbation method is best suited to stu&y the
changes occurringina reactor whose initial composition is uniform,
since the initial flux is then the solution of the unperturbed equation,
. Eq'° (24), and this ensures a fast Convergence of the perturbation series,
at least for small irradiations. »
CorreSpo.nding‘to the expansion for the flux, Eq. (22), the power-

series expansion for the flux time is

9 :i Gpep, ‘ (26)

p=0

where, according to the Eqgs., (11) and {22),

T
ep = ep(x, T) = [ up(x, T)dT. (27)
/0
The expansion in power series of g(f) is obtained by expanding

g(0) in a Taylor series in the neighborhood of 90; thus, we have

L:4] o

NI n
g(0) = g(90) + 2’ 9pep g“(eo) 4 o0 4 % Zepep_ g(n)(eo)+ ‘e
\ - p=

p=1
(28)
Replacing the various quantities in Eq. (23) by their expansions
(in powers of €, one equates to zero the coefficients of the successive

powers of ¢, thus obtaining the following equations:



—<;3é— Au +uO>=O . : e o (29)
o ' , o |
- <_.%_ Au'i +-u1>= [g(@o) —‘co] ug o . (30)
3 L _— -
0 8 ‘ o N
- <gl-; Au_2v+u2)= [g(6,) - col uy +16,8 (85) = c)lug, - (31)
0 . .

- <g12" Aug +uy ): [&By) - cglu;

6?_

+10,8 (0g) - c ] u, +10,8 (6) + ——g 6 -l ug,  (32)

etc.

Defining the self-adjoint linear operator L by

Lu = -(—a— Au + u), ' v (33)
B
O .
the equation for the general term u, of the perturbation series has the
form .
Lu, = F (g, 0, cup,0pcy oo uy 150, poep ) (34)

_ The above equation is a nonhomogeneous linear differential
equation for u_ it has a solution satisfying the boundary condition if
and only if its right side F_ is orthogonal to the nontrivial solution of

‘the self-adjoint homogeneous equation
Lu, = 0. - (35)

Then,  one chooses <. to satisfy the condition

-1

<Fn,u0>=_ .0 . _ (36)
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The procedure for solving the system of equations, Egs. (29) through
(32), is as follows:
Having determined up and Gp upto p=n-1, and c_ up to

s = n-2, then ¢ is determined uniquely by Eq. (36). The right side

of Eq. (34) is nélv;la, known function of x and. T, and since Eq. (36) is
satisfied, Eq. (34) has a solution that can be obtained'by standard tech-
niques for the Helmholtz equations. However, the solution u is not
unique; if u: ‘is a particular solution of Eq.. (34), any function u de-

fined by

" .
u =u, + a’O,nuO (37)

is still a solution for any arbitrary value of the coefficient 2y since

u, satisfies the homogeneous equation, Eq. (35).

0
*
- In the following, the particular solution noted u_ is defined as

the unique solution of Eq. ‘(34) which is orthogdnal to u. Thus, by

definition we have .
s
C{ulugy=o0. (38)

%
One notes that u, is the particular solution which has the mini-
mum norm in a Hilbert space where the norm of a function is defined by

ul = /(). (39)

The solution u of Eq. (34) is determined uniquely if and only
“if an additional equation allows a unique determination of the coefficient

a

0 ) this is the purpose of the normalization condition.

If one is, given a normalization condition for the function u,
. Eq. (7), the perturbation method then replaces u by i_’_cs expansion,
Eq. (22), and requires that the normalization condition be satisfied for
every order of ¢. This yields a normalization condition for every func-
tion u_. |
In

For-instance, if one were to choose the normalization given by

Eq. (12) and replace u by its expansion, then if one requires that the

coefficient of every power of e  vanish, Eq. (12) yields
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ug(0) - 1=0, - (40)
and

un(O, T) = 0, where n =1, (41)
and, in the present notations; the unique solution u would be

u_(x,T) = u(x, T) - u (0, T)uy(x) . (42)

2.2, Normalization Condition

The perturbation method ensures that, for an arbitrarily chosen
normalization condition on the furiction u, the magnifude of the corrections
u_ and c, A are of the order ¢". However, an appropriate choice of
the normalization condition can improve the accuracy of an approxi-
mation which uses only a few terms of the perturbation series.

The following investigates the effect of the normalization con-
dition, that is, the dependence of the successive approximations of u
and c¢ upon the coefficients ag,

An asterisk will denote that a function is orthogonal to uy; 2
particular solution u with n asterisks denotes the Eth—order correc-
tion to the flux shape determined uniquely by the normalization condition
"<uvo,u>‘=0; ie., ag =0,j=1,2 ", n |

As long as a normalization condition has not been fixed, a,

3

is an arbitrary function of T. Its integral is noted A0 n,i° e.,
T

Ao’n(T) ""’j_ao,n(T)dT . (43)
0

The first approximation to the flux shape and to the flux time are

ugy = uo(x) and 90 = uoT, respectively,

2.2,1. First-order perturbation. The following equation

.k
Lu) =lg T) - cjl ug = Fy(ug, 0g.¢0) (44)
| has a unique solution ui< if and only if <o satisfies
| <Fl(q0,90,co), uo>ﬁ 0. (45)

i

The effect is similar to considering 1/(l+¢) instead of 1l-e.
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The general solution of the first-order perturbation equation,
Eq. (30), isthen
(46)

The corresponding correction to the flux time is given, accord-

ing to Eqs. (27) and (43), by

=9 4
91 91+A0’1u (47)
2,2.2, Second-order perturbation. Given Cor %y and 91, the follow-
ing equation
Luz F (u09 Oﬂcoﬂulﬂe ’Cl) 3
or, more explicitly,
sk ]
= X - . - 48
Lu, [g(uOT) co] u, 4 [91g (uOT) Cl] s (48)
has a unique solution u2 if and only if S satisfies
= 4
(Fylug, 0y ey 0,,¢) vy ) =0. (49)

Replacing, on the right side of Eq. (48), the functions uy and

61 by uik and 6 1’ there results the following ei;kliation whose parti-
cular solution orthogonal to u, is denoted by u,

Lu*;— F (uo, O”CO’ul’Gl’Cl) (50)
where c? satisfies . % u

<F2(uo,90,c09u1,01,c1), Ufo> =0. (51)

sk
Then a function u ., exists, and it is unique and independent of ag 1

2 ’ )
(and of AO, 1),
The general solution u, of the second-order perturbation

equat1on, Eq. (31) and the control absorption c, can now be obtained

from uZ and clp . Equation (52) is obtained below by substracting

Eq. (50) from Eq. (48) and by using Eqgs. (44) through (47):
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Sk Sk 5k L 3k
L(uz - uz ) = (ul“‘ul) [g(uoT)'Co] + (el'el)g (uOT)uO-(Cl-Cl)uO,

] #k * A 3
L(uz-uz)_ao’lLul-f O,IET[Lu +c uo]—(c °1)“0’

and finally

* 6c0

¥ *% g *
L{‘z‘uz'a—'r[Ao,l‘ll]} "[°1°C1‘Ao,1_a'r]“o' (52)

Equation (52) has a solution if its right side is orthogonal to

that is, if c1 satisfies the condition

<1’“o o> <1’“o’“o> A, 1< aT 0> (53)

ac
. * 0
When the expression (c1 A AO, 1 3T) is independent of

the spatial variable x, (for instance, when the control absorber is
uniformly distributed), the condition that the right side of Eq. (52) be

orthogonal to Uy requires that it vanish; then Eq. (53) becomes simply,
dc
S 0
= - s 54
<, C1+Ao,1TT (54)

uo;

and the second-order perturbations of the flux shape and of the flux time

are now given by Eq. (52) as

skok
u, =u 2+8T[A0111+a020’ (55)
and
sk *
6,=0, + Ay jup +Aj yug. : (56)

2.2.3, ird- i i
Third-order perturbation. Given °0’“1’91’C1'u2’ and 02,

the following equation

Lu 3 =F (uo, 0’Co’“1’91’c Py 2,CZ) (57)

or, more explicitly,
3% 62

s ‘ ¥ { 1 1"
Lu, = [g(uOT)-co] u, + [Glg tuyT)-c ] u; + [6,g (wyT) +—>— g (uoT)-cz]u0

has a unique solution u, if and only if c, satisfies
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(F3(u0, Bg» Corays 05 C 1ot 0505, uy ) =0. (58)

Replacing, on the right side of Eq. (57), the functions uys 61,

% %k ok ksk ok ) .
Cl’uZ’ and 92 by u Gl,cl,u‘2 , and 92 , one defines a function

19
u3' 'g*, orthogonal to Ug, as the solution of the equation
Hedkok sk ok ok sk ki
Lu, =F (u.o, O,CO,,ul,E)l,,cl,u2 ,92 1Co )s (59)
where c, satisifies
k% ok ok ok
<F3(u0,90,c0,u1,91,c1,u2,cZ ) ug)=0. (60)

Sk
Then a function u g exists, and it is unique and independent of

a and a 2 (and of A and AO 2) .

0,1 0, 0,1
.The general solution uj of the third-order perturbation equation,

Eq. (3*2;); and the control absorption c,, can now be obtained from uz* N
and ¢ 5 e Equation :(61) is obtained below by subtracting Eq. (59) from
Eq. (57) and by using Eqs. (54) through (56), as well as the equations
which yielded Eq. (52). One has assumed the control absorber to be
uniformly distributed. We have obtained

2

A du
* sk g e 0,1 1 e
L{“B:‘ua “a_T[Ao,luz*—Z" 3T *Ao,zull}
‘ (61)
* 2
| o bey  Ag 8¢ o<y
= -c2+cz+A09‘1 5T + > aTz +A0’2 BT u.o,

By assuming the control absorber to be uniformly distributed,
Eq. (61) has a solution if the right side is orthogonal to Uy, i, e,, if it
vanishes; this yields
dc* A2 dzc dc
_ ek 1 0,1 0 0
©27% *tHhoy ATt T2 7zt P2 AT (62)

and the third-order perturbation of the flux shape and of the flux time are

given by
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, A.Z 3 ke
_ w9 ¥ 0,1 9% *
u3—u3 +———-aT [Ao’luz +—T- ——a +A0’2u1]+ a0,3u0 y (63)
and
2
A -gu
Rk ek 0,1 %71 %

(and then A ) is of the order e, one will
O,n O,n

obtain equations for u o, Gn and s such that each term of the equation

In general, if a

is of the order ¢,

In the above equations, Eqs. (43) through (64), the symbol T
represents a ”dunimy variable, " which would be defined uniquely,
according to Eqsu (8) and (10), by choosing a normalization condition.
In each of the two following paragraphs, the variable T is defined
accor‘ding to normalization conditions which are of interest for solving

Eq. (20) by the perturbation method.

2,2.4. Eigenfunction normalization, Given the first approximation to the

flux-shape, g and the corresponding approximation to the flux-time,

6, = u,T, one defines the variable T by the condition that uyT is the

0 0 o
best approximation to the actual flux-time 6. Defining the norm of a
function according to Eq. (39), the best approximation can be defined
by the condition that the norm of the correction term (6 - uOT) be a mini-

mum. . This requires that (6 - uoT) be orthogonal to Uy i.e,, that

| (16 - uyT), vy ) = 0. (65)
., The flux time 6 will then be
6=Tuy+6", (66)
and Eq. (65) becomes
%
(o ,u0>=0° (67)

The variable T is the scalar quantity defined uniquely as a
function of the irradiation (i.e., of the flux time to which the fuel has

been irradiated) by
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0,u
T =<<u0’fz>. (68)

Replacing 0 by its expansion in the perturbation series given in

Eq. (26), Eq. (65) yields
g@ ,u >
n 0) _
(Fo%)
The successive terms of the perturbation series are then the

. . k sk s ko dkk kol skskok
functions which have been noted uys 01, cl,u2 05,¢5 5u, , etc,

Ao’n= 0, n=1. (69)

2.2,5, Eigenvalue normalization. Given the first approximation to the

control absorber, cyr one defines the variable T by the condition that

c, is the best approximation to the actual value of the control absorption

0
c. Usually, it is even possible to define T so that <y is the exact value

of the control absorption. This means that one seeks the solution of the
‘reactor equation, Eq. (20), when the fuel has been irradiated to such an
extent that the reactor is just critical with a given amount, c, of control
absorber. Therefore, for a specified value of c, the auxiliary variable

T is defined by
c= CO(T)’ (70)

where the function cO(T) is given by Eq. (45).
Replacing ¢ by its expansion, Eq. (21), Eq. (70) yields

c, = 0, where n =1. (71)

This determines, in general, a unique value for each of the co-

efficients AO 0 For instance, Eqs. (54) and (62) yield
dc
3 0
. 2
40,17 "¢ at_ (72)
and -
. ac¥ A% | a% dc
A =l a 1, 20,1 0 0
0,2 2 0,1 dT 2 de dT

(73)
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However, the normalization condition, Eq. (71), cannot be used
when the variable T takes a.value Tm for which the function co_(T) is
stationary, i.e., when

dc0
a7 ¢ 0. (74)

One must then add to the first approximation, ¢ (T _‘)A, at least a
first corrective term c, (T ‘)c

The next correctmn to the control absorption, qz(Tm), is given

by Eq. (62). If the discriminant of the quadratic equation for A

0,1’

*
- wE dey 'Ag,l dch‘o'_o 75
cpfTh=c, + Ay | g7 + — prrad (75)

is positive {case 1), there exist two real values of A that satisfy the

0,1
equation

cz(Tm) = 0. (76)

If the discriminant is negative {case 2), it is impossible to satisfy
the above equation, Eq. (76), but it is possible to minimize the absolute

value of c, by choosing the following value for A
dc'l'< dzcO
A, .= - . (77)

0,1 dT dTZ

0,1

The physical meaning of the above results can be understoocd as
follows: One assumes that the control absorption varies with the irradi-
ation parameter as a function c(T) which has a maximum C . The cor-
‘responding function cO_(T), which has a maximum cO(Tm), has been plotted
in Fig. II-=1° I c (T ) >c o ‘the reactor containing an amount of con-
trol absorber correspondlng to CO(T ) could not be made critical at any
irradiation. When one adds the correction term c (T ) to CO(Tm)‘*
there exist either (a) two values of the irradiation T, each of which cor-
‘responds to a just critical reactor containing an amount of control ab-
sorber cO(Tm) + c?(Tm), (case 1), or (b) no value of T for which

criticality can be achieved (case 2),
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MU.29363

Fig. II-1. Variation of the control absorber with irradiation.
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2,3, Eigenfunction Expansion

The solution of the nonhomogeneous linear differential equation,
Eq. (34), can be obtained by using the eigenfunction expansion technique.
This technique is developéd below and the expansion of the solution of the
first-order pérturbation,:to the flux shape is obtained.

The first-order perturbation equation is given by Eqs. (25) and

(30). It reads

Bo

1 :
_<__2 Au, + u1> = [g(uOT) - ol vy - (78)
This equation has a solution uy if, and only if, the right side is
orthogonal to the solution U, of the corresponding homogeneous equation,
Eq. (24). Accordingto Eq. (45), the magnitude of the first approxima-

tion to the control term c0 is then determined by

<[g(n0T) - <] uo,u0> =0, (79)
or by , ,
| <°,o“‘ib’“o>:<g(uoT) u_0’u0>" (80)
This ensures that Eq. (78‘) has a solution; however, itiis only
possible to obtain this solution in a closed analytical form for one-di-
mensional problems with very simple expressions for the function g(6).
In general,. the solution u, can always be expanded in an infinite
series of the eigenfunctions of the eigenvalue equation
Av +B% =0 , - (81)
since this equation possesses a complete set of eigenfunctions satisfying
the linear homogeneous boundary condition, Eq. (3). These eigenfunctions

are the functions Vi which satisfy
2 )
= 2
Avk + B v, =0. (82)
Because the Laplacian operator A is self-adjoint (Green's

theorem), these eigenfunctions are orthogonal, i.e.,

<Vk’vl>=0 if k1. (83)
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The eigenvalues Bi are all positives; Uy the honnegative so-
lution of the unperturbed equation, Eq. (24), is a multiple of the éigen-

. . . 2
function v, -corresponding to the smallest eigenvalue B0 .

0
For plane, cylindrical, and spherical geometries, the functions

v, are trigonometric functions, Bessel functions, or products of these

functions. They are then normalized to unity at the center of the volume,

by the condition

vk(O) =1, (84)
The solution u, of Eq. (78) is then sought as an expansion of
the form
an:
Uy (x, T) = L“ ak’ 1(T)vk‘(x) . (85)
k=0

The property of orthogonality of the eigenfunctions Vi yields a
simple technique for evaluating the coefficients ap 1
In Eq. (78), one replaces uy by its expansion, Eq. (85); making

use of Eq. (82), one obtains

BZ . p
=0 g1 Vg =letegT) = col vy . (8e)

The coefficient a is then obtained by taking the scalar product

k, 1
of both sides of Eq. (86) by the eigenfunction vy because of the ortho-

gonality of the functions v, , Eq. (83), one is left with

k,

LBg_O e 1 (Ve iy (L8lagT) - ol ug, vy ).

BZ
(87)

The criticality condition, which determines o by Eq. (80), en-
sures that Eq. (87) is satisfied for k = 0 .

The coefficient a.o’ 1 is left undetermined, and the coefficients
a1 where k £ 0, are the functions of the irradiation parameter T
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defined by Eq. (87) as

2
By (lelagT) - cplug. vy ) (88)
, :

T T (o)

. % '
The particular solution Uy which is orthogonal to the unperturbed

flux shape ugs. is then determined uniquely by the expansion

o0

ul(x, T) = E ak, l(T)vk(x) . (89)
k=1 ' _
The general solution u;, of the first-order perturbation equation,
Eq. (78), is given by Eq. (46) where the coefficient a, | must be de-

fined by a normalization condition. For instance, if one were to require
that the flux shape be normalized to unity at the center of the reactor,
i.e., that according to Eq. (41) the function u be normalized to zero
at the center, then the corresponding first-order perturbation of the flux

shape would have the expansion

ot

u b, T) = Zak’lm v () = vl (90
=T

where the functions v, satisfy the condition expressed by Eq. (84).

If we are givenk.the analytic expression of the function g(6), and
once we know the eigenfynctions Vi .and the eigenvalues Bk’ then each
coefficient a.k’ 1 (where K # 0) can be evaluated as a function of the
irradiation T if we perform the integrations indicated by the scalar
products in Eq. (88). The numerical computations are developed in the
following sections. One will note the important simplifications resulting
from the fact that the first-order pérturbation of the flux shape, U is
- a linear function of g(8).

The first-order perturbation of the flux ti-me is obtained by inte-
gration of the first-order perturbation of the flux shape according to

Eq. (27). Thus, the expansion of 91 in the eigenfunctions Vi is given by
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R
l(xv T) = // Ak, I(T) Vk(x): (91)
k=0

with T

Ak, 1(T) = [ a.k’ 1(T)dt . (92)
0

The second-order perturbation equation, Eq. (48), has a solution

v

if 4 satisfies Eq. (49). Given uf and 6; by their eigenfunction ex-

pansions, ¢y is determined according to Eq. (53), where <c>1'<u0,u0>

is obtained as follows: Eqgs. (48) and (51) yield .

sk 5k f sk
<[g(uoT) - co] ul,u0> + <[91g (uyT) - ¢ ]uo,u0>=_0 . (93)
Using Eq. (27), the above equation can be rewritten as

CT“O’“0>"= %[ <9Tg(“_‘oT)'“o>] ‘<C0“'1*"_10>' : (94)

Finally, using the eigenfunction expansions, Eds. (89) and (91), one

obtains

s

{":_T [A (T <"kg(“oT)’“o>]"ak, 1 (T)

<C0Vk’ u0>}° (95)

The second-order perturbation equation, Eq. (48), can now be

<CT“0’“0> =

k=1

solved by the eigenfunction expansion technique used to solve the first-
order perturbation equation. More generally, the nth-order correction
to the flux shape, u:;,, solution of the general Eq. (34), can be expanded

in an infinite series of the eigenfunctions Vi given by

u:'= zg:ak n(T)kad, ‘ - (96)

-
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where the coefficients a are defined by

k,n
B2 F ,v
%, n -Bif)B(z)' : gvlil’ v:>> . (97)

The normalization condition given by Eqgs. (70) and (71) will be
used in the computations which are developed in the following sections.
This best fits the problem of finding the properties of the reactor at the
end of reactivity lifetime (end of life) since the final value Tf of the ir-

radiation parameter is then the root of

co(x, Tf)—=— 0. : ‘ (98)

It has been shown in the preceding section that Eq. (71) is a valid
normalization condition, except when the parameter T takes a value Tm
which satisfies Eq. {74). At T = Tm, the removal of control poison
needed to continue the irradiation of the fuel in a critical reactor is
stationary to a first approximation. It is then very unlikely that
Tf = ng since one would miss an extremely favorable opportunity to

increase the life time of the reactor.

3. Application: Uniform Fuel Loading, Uniform Control

3.1. Calculation Procedure

The following study is limited to the approximation afforded by

a second-order perturbation method.

' The control absorber needed to keep the reactor just critical will
be assumed uniformly distributed over the volume of the reactor through-
- out the irradiation. Since c¢ is now a function of the irradiation variable
T only, ¢ can be taken out of the brackets that represent the scalar
products in the preceding equations; when the brackets enclose only two
different eigenfunctions, the result vanishes according to Eq. (83). Also,
u, will be replaced everywhere by Vo since u, and vy are the solutions

of the same equation, Eq. (5) or (29), and can be taken to be equal.
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To simplify the notation, we have written a and Ak instead
of a1 and A'k, |’ Since these are the only coefficients which are con-
sidered hereafter.

Under these assumptions, one obtains the following results.

Equation (80) becomes

gvg T)v,,v
¢y(T) = ¢ 7o °> (100)

(7570

and Eq. (88) becomes

2
B g(v T) va, v
ak(T)z 20 vi < = O‘ k> , where k# 0.
BkDBO < k’
' (101)

Besides using A.k(T), defined by Eq. {(92), one will also use the di-
mensionless coefficient o.k(T) defined by
T

0, (T) = A, (T)/T = fak(T)dt ., (102)
0

Equation (95) becomes

CT(T) Zd_ T ay (T) (v 8(vyT) v vo) - (103)
k=1

The normalization condition, Eq. (72), then determines AO(T)

uniquely; we have

ay(T) = AO(T)/T , . (104)
and dA4(T)
ag(T) = —35— - (105)

One of the most important characteristics of the fuel irradiated
in a reactor is its burnup. For the present purposes, we are given the
variation of the local burnup of the fuel with the irradiation; i.e., we are
given a function f(0) which will be referred to as the local burnup. Its

]
derivative is noted B (8).
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The perturbation method expands the function ((8) in an infinite
series as it has been done for the function g(8), Eq. (28).

To the present approximation, the variation of the burnup with

position and irradiation is given by

Bx, T) = B(6) = B(vyT) + 6,8 (v T) . (106)

The central burnup is B(0, T), obtained by evaluating the right
side of the above equation for x =0 .

The average burnup will be noted <B> , since it is the scalar
product of the function P by the function unity, according to the definition
.of the scalar product in Appendix A.

The first approximation of the average burnup <B>O is given by

(B)g = (BlvoT) ). | (107)

The correction term corresponding to the correction 91 of the

flux time is defined according to Eq. (106) by

(), =(6,,8 vy . (108)

The calculation proceeds as follows:

To a reactor of given geometry, there corresponds a given set
of eigenfunctions Vi of eigenvalues Bi, and of coefficients hk defined
by <vk,vk

hk = v - (109)
0’ 0>

For a given fuel irradiated in such a reactor, i.e., for given

functions g(f) and B(6), one first computes the following dimensionless

functions of the irradiation parameter T:

51(T) :<g<(:1(i:r::0>’vk> ’ (110)
T .
T <[f0 g(VOT)dT] vo,vk>

1 1
s (T) = L fs (T)dT = X , (11
k T k T s
. <Vk Vk>_
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(B)g =By, (112)

T (v B'(VOT)>. (113)

and

where, as a first approximation, v,T has been set equal to 6. Then,

0
the first approximation of the flux shape is uo(x) = vo(x), and Eqgs. (100)

and (110) give the first approximation of the control absorption as
colT) = 8,4(T) . (114)

The first approximation of the flux shape change is

o
*

ul(x, T) = , ak(T)Vk(x), (115)

k=1

and Egs. (101) and (110) yield
Bg

ak(T) = iy sk(T) , where k # 1. (116)

Bk=B0

The corresponding correction.of the control absorption is given by
Eqs. (103), (109) and (110) as

o

c1(T) =Z hy -ag‘?,r[Tak(T)sk('r)] . (117)
=1

At end of life, the irradiation parameter is the root of the equation
sO(T) =0, (118)

The first approximation of the flux time is 6,(x, T) = v,(x)T and

the corrective term is

6,(x,T)=T ZJ uk(T)vk(x) . (119)
=0 .
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Equations (72) and (104) yield

“ dsO(T)
O.O(T) = - Cl(T) T ——a-T—— 3 (120)
and Eqgs. (91), (102), and (111) yield
. B
Aak(T) = 57_:1-37— Sk(T), where k # 0 . (121)

0
The first approximation of the average burnup is<[3>0 =<[3(VOT)>, and
‘Eqgs. (108) and (119) give the corrective term as '

(B, = ; 0y (T) [ T{v,. B (vgTH] - (122)

The summations over the countable infinite sequence of subscripts
k will.be restricted to a sum of the terms corresponding to the first
few values of k.,

. The functions given by Eqs.(110) through (113) must be evaluated
for each fuel-cycle analysis, However, the next section defines some
auxiliary functions which, once tabulated, will make this evaluation
available to hand computations for any given fuel irradiated in reactors
of simple geometrical shapes.

For hand-computation purposes, it is convenient to evaluate the

 derivative of a function £(T) by the formula

ar _ f(T)) - £(T

dT TI»TZ

Accordingly, the computation of the right side of Egs. (117) and

)
2 . , (123)

(120) requires the determination of only the functions sk(T) and Sk(T)°
For instance, the coefficient o.O(T), defined by Eqs. (120),(117),

and (121), will be computed according to

= B T.S, {T,)s, (T,)-T,S, (T.)s, (T.)
Z B2 OBZ' by e 1;0('11‘1)_201(}2)2 ~f. (24
k=1 k ~ 0 :

_ 1
aO(T) == 7
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Equation (124) is exactly satisfied when T and T, tend simul-
taneously toward T, if we assume that aO(T) is a continuous function of

T and that the derivative of sO(T) is nonzero,

3.2, Definition of the Auxiliary Functions

Bl
The fuel-cycle analysis developed by Benedict and Pigford
shows how the neutron excess production and the burnup of the fuel can
be represented by a sum of exponential functions of the flux time and an

additional linear term; i.e.,

-g.6
gl0) =g, + g0+ = ge ), (125)
-
and -G.0
BO) =By + b6+ b e I, (126)
]

v In the case of a uniform initial fuel loading, the case which will
be considered here, the coefficients g and b are constants determined
by the pfopertie.s of the equivalent homogeneous mixture which is initially
loaded in the reactor; they are given by standard formulae, Bl

Auxiliary functions and coefficients are defined below and will
be tabulated in the‘followiﬁg sections, The functions defined by Egs. (110)
through (113) are then evaluated according to Eqs. (132), (133), (135),
and (141), respectively,

Equations (110) and (125) yield the following representation of

the functions sk(T) as linear functions of the coefficients g:

<v0,v < Ve <e J O,Vk
g Vk’vk> ]Z’Vk +?Jgj <k:Vk> > (127)

5, (T) =

Then we define a function of a variable w, E2 k(w), by

-WVv

0
E, (%)= (e <v;’°v:§> (128)
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and a coefficient f, K by
’ 2
V.,V
Y (129)

k <Vk’ Vk>
Because of the orthogonality of the eigenfunctions, Eq. (83), one

can write

'z
%%1-‘9 (130)

where 6i j is the Kronecker symbol defined by the property

2

1, if i=j

=

5. .
B, i i f . (131)

With these definitions, Eq. (127) becomes

s, (T) T +; g, 1 (0;T) - (13;)

=8 %,k * 81%2,k
The function S (T) is then obtained by integration and division
by T, according to Eq (111), and one obtains
fZ k

with the corresponding definition of a function E, k_(w) by

M (l-e = ),
E; (W) = %vazyk(w)dw = < l<ik,vk>Vk> (134)
. |

Equations (122) and (126) give the first approximation to the

average burnup by

<f3(vT)> by + By £,T +3 b, Eg(0,T) o (35)
j S
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where one has defined the coefficient fo by

£, = <1,V0>, (136)
and the function Eo(w) by
. -WV ’
_ 0
E w) = (1,e  ©). | (137)

Tables of the coefficient f

by Benedict and Pigford. Bl

Using Eq. (126), the functions defined by Eq. (113) become

0 and of the function Eo(w)' are given

; -0.Tv
4 _ ) j 0
T <vk, B (VOT)>- b1<19vk>T ijj o'J.T<vk, e > (138)
One defines a coefficient fl K by
fl,k:<l’vk>’ (139)
and a function El k(w) by
’ - WV
0 .
B w=wle O v, (140)
and obtains
i \
= T - 4
T<vk,[3 (voT)) =byfy T~ Z b E | (0.T). (141)

The above defined auxiliary functions E| W) E; ((w), Eg (W),
and coefficients f1 K’ and f, i Will be tabulated for given sets of eigen-
functions v, corresponding to bare and reflected reactors of simple

geometricalkshapeso The numerical study of the irradiation-dependent
characteristics of a reactor which has been initially uniformly loaded
with any fuel [i.e., for any set of coefficients g and b in Egs. (125)
and (126)] will then become amenable to hand computations.

The three following sections will be concerned with reactor cores

shaped as slabs, spheres, or finite circular cylinders.

The quantity My denotes ’che coefficient defined as

P = <Vk’vk>’ (142)

-



-49.

and Eq. (109) then yields _
‘The functions E, k(W) from Eq. (140), and E; (w) from
Eq. (134), are related by the equation

wiy By (w) = £ | - El’k(w)/w . (144)

The function E (w) and .the coefficient fo fl o’ a8 well as
the function E2 olw) and the coefficient £, [tha.t Sola denotes by’
E,(w) and fZ] , have already been computed SZ

The following approximations hold for small w:

W) = 5w
2, kW) =8¢ o - £, W (145)
.and 1 ‘
E3 W =8y - 75 -

3.3. The Slab Reactor

v The reactor core is a slab of thickness 2Z, and is symmetrical

- about its midplane xy, It is infinite, or perfectly reflected, along the
directions x and y. The composition of the core, and then the flux, is
a function of the time and of the axial coordinate z only. The eigen-

function equation, Eq. (82), becomes

2
d Vi 2. 6
dz ]
with the boundary condition -
dv _ -
v+b, 7-=0at z2=2, : (147)
and the symmetry condition
dv

a;zo at z =0,

Equation (146) has an infinite number of eigenfunctions

vk(z) = cos B,z . (148)
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The corresponding eigenvalues, Blz(,_ are such that the boundary con-

dition, Eq. (147), is satisfied; they are given by the positive roots of

cos BkZ - ESZBk sin BkZ =0, (149)

These results will be expressed in dimensionless form as follows:

The change of variable,

t=2/Z , 0<¢{ <1, (150)
yields
v (L) = cos v, L , (151)
with
2 2,,2
BZ = v /2% . (152)

The ratio of the linear extrapolation distance 62 to the half
thickness of the slab Z 1is noted as
€Z= 6Z/Z., _ (153)
The eigenvalue Vi is then defined according to Eq. (149), as the
(k. + l)th root of the equation

cos Yy, - €,Y, siny =0. | (154)

For a bare reactor with negligible extrapolation distance, where

€, = 0, one obtains
Vi = (2k + 1) /2 . (156)

For a given positive value of € the roots of Eq. (1954) can be
obtained from tabulations or graphical representations of the function
Y tan vy, e There is an infinite number of roots which satisfy the in-
equality
k'n<yk<(2k+ 1) /2. (157)

For very large values of k and for positive ‘EZ’ Yy tends
toward kw .
The scalar product of two functions £f({) and g(¢{), Eq. (4), is

1
(t. g>=j £(2) g(t) at (158)
0

now:
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The auxiliary functions and coefficients can be evaluated as

follows: 1

pk:j cos ka dg = 2—(-1 + W) ) (159)
. 0 .
: _ sin ZYk' sin Zyo .
hk=Hk/Ho=<1+ —z—yk—>/<1+—7§0—> (160)
1 .
- osiny

f) x =j» cos ybdt = Tl (161)

and 0 '

st

1 2
fZ,k = Fk_ cos YOQ cos yk.éd.g
0

0 feew [Sin(zyowk) sin(z\/o-*’k)”, e

- + - —
T T B T A P

The latter result can be simplfied by using Eq. (154) to yield

2 .
) 4 Yo sin Yk/Yk
£, = : (163)
2,k 7 2.2 S
Yo~ Ve sin 2y,

1'+_T

The functions E, ,(w), E, ,(w) and E; | (w) defined respec-
tively by Egs. (140), (128), and (134) become:

-WcoSs Ynb
El,k(w) = w e _ cos ch’ dg (164)
0
, l 1 ! -wcos Y, &
E, . (w) = — e cosy.Lcosy, Ldl
2,k P 0 k (165)
0
1
- ] -wcos yof,
E3,k(w) = W}-{— (1-e ) cos Yk’t" at (166)
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- In order to establish a table of these functions, one has to evalu-
ate numerically the integrals on the right side of the abév_e equations.
This has been done for the.case of a bare reactor with €, = 0. The
integrals on the right side of Eqs. (164) and (165) are evaluated by Gauss
quadratures. The derivatives of the functions to be integrated increase
with Yy and if one uses a .Gausé quadrature formula with a fixed num-
ber of points, the accuracy decreases when k increases, The computa-
tions have been performed on a high-speed digital computer according
to a Fortran program which uses a 4,6, 8,_ 6r 10-point Gauss quadrature
formula. The 10-point formula gi&es the values of the auxiliary functions
up to k.= 5, accurate to the fourth decimal place (Tables II-1 through
II-3). '

For this case (where €, = 0) the various coeffici?nts required

for the computation of the flux shape, flux time and burnup have the fol-

lowing expressions:

Y, = (2k + 1)n/2, (167)
BZ Yiz ‘
70_2= 20-2= , 12 ) (168)
B.-By  Yo-Vo (2k+ D)7 -1
1
b= 7 and h, =1, forany k, (169)
K2
STl VRN ey s (170)
and
k4l 8
8 " S B vy y ¢ gy v e SR
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Table II-1. Bare slab reactor: functions E1 k(w).

W k=0 k=1 k=2 k=3 k=4 k=5
0.10 ©€.0589 =0.{2127 €.Cl27 <076661 0.0071 -0.0058
0.20 0.1089 —C.C421 (.C254 -C.01E82 0.0141 -0.Gll6
0e30 0.1512 -0.0627 (.C380 -C.0272 C€.0212 -0.0173
0.40 0.1868 —-C.0G826 (.C5C5 -C.(362 €.0282 ~0.C231
0.50. 0.21€63 -0.1019 C(C.0629 -0.0452 0.0353 -0.0289
0.60 0.2407 =C.1204 C.C751 -C.G541 0.0422 -0.0346
0.70 0.2605 -C.1381 (0.C871 -C.0630 C.0492 -0.0403
0.80 (0.2764 —C.1549 (.0989 -C.C717 0.0561 -0.GC460
0.90 0.2888 -0.1707 C.1105 -C.0BC4 ©.0630 -0.0517
1.00 0.2982 -0.1856 (€.1217 -G.C8SC 0.0698 -0.0574
1.10 0.3051 =-C.1996 (.1327 -C.C974 C€.0766 =0.C630
1.20 0.3087 -0.2126 C.1434 —-C.1058 C.0833 -0.0686
1.30 0.3124 -0.2247 (.1538 =-0.1140 (.0900 -0.C742
1.40 C.3125 =0.2359 0.1638 =0.1221 0.0966 -C.C797
1.50 0.3122 ~-0.2462 €.1735 -C.13C0 0.1031 -0.C852
1.60 0.3117 -0.2556 (.1828 -C.1378__C.1096 -0.09C6
1.70 0.3093 =0.2642 C€.1919 -C.1454 0.1159 -C.C960
1.80 0.3060.-0.2720 C€.20C5 -G.1529 0.1222 -¢.1014
1.90 0.3020 -0.2791 C.2088 -C.16C2 0.1284 -0.1067
2.00 0.2975 —-0.2854 (.2167 -C.1674 ©.1345 ~0.1119
2.10 0.2925 =(C.2911 'C.2243 -0.1743 0.1406 -0.1171
2.20 0.2872 -C.2960 C€.2315 -0.1811 0.1465 -C.1223
2.30 0.2816 -0.3004 C(.2384 -0.1877 C.1523 -0.1274
2.40 0.2758 -0.3042 C€.2450 -C.1942 0.1581 -0.1324
2.50 0.2698 -C.3074 (€.2512 -0.20C4 0.1637 -0.1374
2.60 042638 =C.3102 (.2570 -C.2065 0.1692 -0.1423
2.70 0.2577 -C.3124 G0.2625 -C.2124 Q.1747 -6.1471
2.80 0.2516 -G.3143 C€.2677 -C.2180 0.1800 -0.1519
2.90 0.2456 -0.3157 (€.2726 -0.2236 0.1852 -0.1567
3,00 0.2396 —=0.3167 C(.2772 -C.2289 0.1903 -0.1613
3.10 0.2337 -C.3173 C.2815 -0.2340 0.1953 -0.1659
3.20 0.2278 —=C.3177 (.2855 -0.2390 0.2002 ~0.1704
3.30 0.2221 -C.3177 (€.2892 -C.2438 0.2050 -0.1749
3.40 0.2165 —-0.3174 0.2926 -C.2484 (.2096 -0.1792
3,50 0.2110 —-C.3169 .(€.2958 —-(.2528 (.2142 -0.1835
3.60 $.2057 -C.2161 (.2987 -C.2570 0.2186 -0.1878
3.70 0.20C5 -6.3152 C.3014 -0.2611 0.2229 -0.1919
3,80 0.1954 -0.3140 €.2039 -0.2650 0.2271 —-0.1960
3.90 0.19C5 -C.2127 (€.3061 -C.2687 0.2312 -0.20C0
4.00 0.1857 -0.3112 C.3081 -C.2723 0£.2352 -0.2039
4.10. 0.1811 -C.3095 (.3099 -C.2757 0.2391 -0.2078
4.20 0.1767 -G.3077 C.3115 =C.2789 (.2429 -0.2116
4.30 0.1723 -0.3058 (.3129 -(.2820 0.2465 -C.2153
4.40 0.1682 -0.3038 0.3141 -0.2849 0.2501 -0.2189
4.50 0.1641 -C.3017 C.3151 -C.2877 0.2535 -0.2225
4.60 0.1602 =0.2995 C.3160 ~C.29C3 C.2568 —-0.2259
4470 01565 —(C+2972 (.3167 ~C.2928 (.2600 -C.2293
4.80 0.1528 -0.2949 C.3173 -(.2951 0.2631 -0.2327
4.90 0.1493 -C.2925 0.3177 -C.2973 0.2661 -0.235%9
5.00 0.1460 -0.2901 C.3180 -0.29%54 0.2690 -0.2391

L
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Table 1I-2. Bare slab reactor: functions E2 k(w).

w k=0 k=1 k=2 k=3 k=4 k=5
0.10 0.5188 —0.0158 C.C02%& —-C.C0C8 Q0.0004 -0.€002
0.20 C.8444 —CuaC293 (.C048 —C.CO016 0.5007 -0.G004
0.30 0.7762 -C.C409 C.C071 -C.C024 0.00Gl1 -0.C006
0.40 0.7128 -C.C507 C.CC94 -C.(ND22 0.0015 -0.£008
0.50. 0.6567 —C.(590 (.C116 —-C.C040 G.0018 -C.i01C
060 C.6343 -0.0658 C.Gl37 -C.C047 0.0622 -0.6012
0.70 C.5563 —-0.C715 C.0156 -C.C055 0.0025 -C.CO01l4
0.80 C©.5122 -0.C761 C.C175 -G.C0€2 0.0029 -0.2016
0.90 0.4719 =G.C797 (.C162 —-C.C069 C.0032 -0.0018
1.60 0.4349 —-0.C825 (.C2C9 -C.C076 0.0036 -0.0019
1.10 0.40069 -0.C846 C.0224 —C.CO83 0.0039 ~0.C021
1.20 C€.36G7 —=C.0861 (.0237 —C.C089 0.0042 -0.0023
1.30 0.3411 -C.C870 ©.C250 -C.C0S6 C.004% —-0.0025
1.40 0.3148 —0.C874 C.C261 —-G.ClC2 0D.0049 -0.0027
1.50 0.29C7 —-C.C874 (€.0272 -C.GIC7T 0.0052 -0.0028
1.60 0.2685 -0.(870 (.3281 -C.Cl13  ($.0055 —0.€030
1.70 C.2482 -C.(0864 (.C289 -C.C118 0.0657 -0.C032
1.80 €.229% -0.(854 (.2296 -(.0123 0.0060 -0.L034
1.90 0.2123 -0.(843 (.0302 -0.C127 0.0G063 -0.C035
2.00 0.19€4 -C.C83C C.C3C8 -C.0131 G5.006% ~C.C037
2.10 G.1819 —-C.CB815 (.{312 -C.C135 0.0068 -C.C038
2.20 C.1685 —0.C799 (.0316 -C.0139 0.0070 -C.C0040
2.30 0.15&1 ~C.C781 C.C318 —-C.Cl43 G GG73 -C.(041
2.40 0.1448 -0.L763 C€.C321 -0.0l46 0.0075 -C.C043
2.50 041343 -C.C745 (.0322 —-C.Cl49 0.0077 —C.C044
2.60 G.1247 =0.C726 (.0323 -0.C151 0.0079 -0.(046
2.70 0.1158 —C.C707 C€C.C323 —-C.C154 QC.0081 —-C.C047
2.80 0.1076 —C.C687 C(.C323 -0.Cl156 (.0083 —0..048
2.50 0.10C0 —-C.C668 (£.0322 —C.C158 0.0G85 —-0.C049
3.00 C.C930 —0.0648 0.8321 -0.C160 €.0086 —-0.0051
3.10 0.08¢6 —-C.C629 C€.0319 -C.Clé1  0.0G88 -C.C052
3.20 G.08C7 -C.U0610 C€.C317 -C o1€3 (.0089 -C.CO0S53
3.30 G.0752 ~-0.(591 C.C314 -C.Clé4 C.0091 —-0.C054
3.40 0.07C1 =6.01572 (.(312 -0.0165 0.06092 ~0.C055
3.50 0.0654 —CeL554 C.03C9 -C.0165 0.0G093 -0.0056
3.60 (.0610 -0.C536 (€.0305 -C.01é6 G.%094 -0.C057
3.70 €.0570 -G.C518 (.C3C2 -C.Clé6 C.C095 —C.C058
3.80 (.2533 -0.C501 C.C298 -C.0lE6 0.0096 -0.C059
3.90 0.0468 -(C.C484 (.C294 —C.Clé7T C.5697 —C.G059
4.00 0.04€6 —-C.L468 C.C260 -C.Clé6 C.0298 -0.C060
4,10 €.0437 -0.0452 (.0286 -C.01l€6 €.0098 -GL(0n61
4420 0.040C9 —-C.C437 (.0282 -0.Clé6 0.GGC99 —-C.C062
4,30 0.0384 —-C.C422 C(.C278 —C.Clé5 C.G099 -0.C062
4,40 0.0360 -C.C4083 €.0273 -C.C0l¢65 C.0100 -0.06063
4,50 C.0328 -G.0394 £.C269 -C.Clé4 C.O100 -0.C063
4.60 0.0318 -C.0380 C.C264 -C.0l€3 €.0101 —-0.0064
4.70 C.0299 -0.{367 C.C260 —-0.01€62 C.9101 -C.C064
4.80 C.0281 -0.C354 0.C255 -G.Clél  G.0101 -0.(065
4.90 0.0265 -C.%342 C(.C250 —-G.C1l€d 0.0101 -0.L065
5.00 C.7249 -0.0330 €.0246 ~-G.0159 0.0101 -0.C066
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Table II-3. Bare slab reactor: functions E3 k(w)._

w k=0 k=1 k=2 k=3 . k=4 . k=5 _
0.10 0.9588 —-0.0081 C.0012 -0.00C% 0.0C002 =6.¢001
0.20 0.9199 -C.C154 C.0024 ~0.00C8 C.0004 -0.C002
0.30 0.8832 -0.0220 (.C036 —-G.C012. 0.0006 -0.¢003
0.40 0.8485 -0.0280 (C.0048 -0,C016 0.0007 -G.(004
0.50 0.8158 -0.6334 C(.0059 -C.0020 0.0009 -0.0005
0.60 C.7849 -0.(382 C(.C070 -0.0024 -0.0011 —-0.0006
0.70 0.7556 ~0.C426 €.C081 —-0.G028__0.0013 -0.£007
0.80 0.7279 -0.0465 C€.{092 -0.0032 0.0015 -0.0008
0.90 0.7016 -C.G500 (.C102 =0.0036 (.0016 -0.C009
1.00 0.6768 -0.(531 (€.0112 -0.C039 0.0018 -0.0010
1.10 '0.6522 =0.C559 (.Cl21 -C.CO043 (.0020 -0.0011
1.20 0.6309 -0.0584 (.C131 -0.0047 0.0022 -G.C012
1.30 0.6057 —0.0605 C.C139 -C.0050 0.0023 -0.0013
1.40 0.5895 ~0.0624 (.0148 -0.0054 0.002% —-0.0014
1.56 G.57C4 —-0.0641 (.C156 —-C.COS7 0.0027 -0.6015%
1.60 0.5%22 -0.C656 C.0163 -C.C060  0.0028 -0.C015
1.70° 0.5349 -0.0668 C.0170 -C.G0&3 0.0030 -0.0016
1.80 0.5185 -0.0679 C.0l177 -C.C067 0.0032 ~0.€017
1.90 0.5C28 -C.C688 (.C183 -C.CC70 0.0033 -0.0018
2.00 0.4879 —G.C695 C.G190 -0.0073 0.0035 -0.G019
2.10 0.4736 -0.C701 C€.0195 —-C.0076 0.0036 -0.¢020
2.20 0.4601 =C.C706 C.G2Cl -C40078  0.0038 -0.€021
2.30 0.4471 —-C.C710 C.C2C6 ~C.COE1  A.0039 -0.0022
240 0.4348 -0.C712 (€.0210 -0.0084 J.0041 -0.0023
2.50 0.4229 -0.06714 C€.C215 -0.00€6 0.0042 -0.0023
2460 0.4117 -0.071% €.C219 -C.0089 C.0043 -0.0024
2.70 0.40C9 -C.C715 (.0223 -0.C0S1 0.0045 —-0.C025
2.80 0.3905 -C.C714 (.0226 -0.00$3  0.0046 -0.0026
2.90 0.38C6 —0.6713 C.0230 -0.C0S6 C.0047 -0.0027
3,00 0.3712 -0.0711 €.0233 -C.00S8 0.0049 -0.0027
3.10 0.3621 -C.C709 (.5236 —-0.C1C0 0.0050 -0.0028°
3.20 0.3534 -0.C706 (.0238 -0.0102 0.0051 -0.0029
3.30 0.3450 -0.C703 (.0241 -0.Cl04 0.0052 -0.0030
3.40 0.3370 -0.C699 (.(C243 -0.C1C5 0.0053 -0.C030
3.50 0.3293 ~0.0695 C.0245 —~0.C01C7 0.0055 <0.G031
3.60 0.3219 -0.0691 (.0246 -0.01C9 0.0056 —-0.0032
3.70 0.3148 —-0.G68B7 C€.0248 -0.0110 0.0057 -0.C0032
3.80 0.3080 -0.0682 (.C249 -0.0112 0.0058 -0.C033
3.90 0.3014 —-0.0677 (€.0250 -0.0113 0.0059 -0.0034
4.00 0.2951 —-0.0672 C(.0252 -0.0114 0.0060 —0.0034
4.10 0.2890 -0.0667 (.0252 -0.0116 0.0061 -0.0035
4.20 0.2831 -0.0662 C.C253 -0.C117 0.0061 -0.0036
4.30 0.2775 -0.0656 (.0254 -C.0118 0.0062 -0.0036
4.40 0.2720 -0.C651 C.0254 -0.0119 0.0063 -0.0037
4.50 0.2667 -C.0645 C.C255 -0.C120 0.0064 -0.0038
4,60 0.2616 -0.0640 (.C255 -C.Cl21 0.0065 ~0.C038
4.70 0.2567 -0.0634 (.0255 -0.0122 7 (.0066 —-0.C039
4.80 0.2520 -0.0628 €.0255 —-C.0123 0.0066 ~0.5039
4.90 0.2474 —-G.0622 €.0255 -0.0G124 0.0067 -0.0040
5.00 0.2430 -0.0617 (.C255 =C.C1l24 0.0068 -0.C040
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3.4, The Spherical Reactor

The reactor core is a sphere of radius 'R. The flux and the
composition of the fuel are symmetrical about the center of the sphere.
They are functions of the time and of the radial coordinate r only.

The eigenfunction equation, Eq. (82), becomes

2
dv dv
k 2 'k .2

r_2,+; ot By Vi = 0. (172)

d
Each eigenfunction must be spherically symmetric and satisfy
the following boundary condition on the external surface
dvk : :
»Vk.+ 6R. -ar =0, at r -"--_R.. ‘ (173)
- The spherically symmetric solution normalized to 1.at the center,
is

) sin _Bkr _
Vilt) = s {174)
k
and the eigenvalue B]i must be such that the boundary condition, Eq. (173),
: is satisfied; Bk' is th'_env a root of
sin B, R

. ' , Ky,

The results are expressed in dimensionless form as follows:

. The change of variable

p=r/R, where 0<p <1, (176)
y1e1d§ sinwkp :
Vk(P) = —Tk-a— ’ . A177).
"~ with ’ '
2 2,52
B = wk_/R . (178)

The ratio of the linear extrapolation distance 6R to the radius

-of the sphere R is

eg = 9x/R. (179)
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The eigenvalue W is defined, according to Eq. (175), as the
k + 1)th root of
(L - eR) sin wk*eR wkcoswk=0. (180)

For any positive value of e this equation has an infinite num-

R’
ber of roots, which can be obtained from tabulations or graphical repre-
sentations of the function w cot w, 2 For very large k, these roots
tend toward (k. + %) 7w, which are the roots of the equation cos w, = 0.

For €R = 0, the eigem}alues are simply

o = (k4 1)m, (181)

The scalar product of two functions £(p) and g(p), Eq. (4), is

now 1
2
<f’g>=f (o) glo) 30 do . (182)
0
The auxiliary coefficients can be evaluated as follows:
: sin w 2 sin 2
b = B 3p% e 2|1 - % , (183)
k @ P 26° 2oy
0 v k
sinw, p sin w
k 2 3 k
fl’k_-»j '—Q)-l'(-r 39 dP = -wT - COSOJk + wk s (184)
0 k
and 1 sin w_p 2 sinw, p
f2 K = El- = g = k 3p2dp . (185)
’ k 0 Kk
O\

Letting the symbol Si denote the sine integral function which is

tabulated by Jahnke and Emde, Je the above equation becomes

. 1 . .
) W Sl(wk) - ?[Sl(wk + Zwo) + Sl(wk - Zwo)]
2,k 2 sin 2
5 i “i

ot 1
2wy

f (186)
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The functions E (w), E2 k.(vv) -and E, .'(w) defined respectively

1,k 3,k
by Egs.. (140), (128), and (134) become: -
1 -W sin.‘wop/.wop sin.wkp 2
b . kp ~ - i
0 |
1 . . .
S - -W Sin w p/w p sin w.p sinw p . 4
E, () =—] (e T o K 3,
" Py o . 0 wep ;
’ (188)
and
1 . .
- ~-w sin w p/w p sin.w p
-1 0"/ "0 k 2
k 0 k :
(189)

. These integrals have been evaluated by numerical computations
using a 10-point Gauss quadrature formula, as in the case of the slab

‘reactor. The results for ¢, = 0 are given in Tables II.4 through IL.6.

R

For this case, where ¢ = 0, the various coefficients required

R
for the computations of the flux shape, flux time and burnup have the

following expressions:

W =(k+ 1)m, (190)
2
By “o0 1 1
vy ey 73 = : (191)
B -By w-w (k+1)7-1 Kkik+2)
My = > , (192)
2k + 1) w
, N S 193)
(k + 1)
ok 3
£t —2, (194)
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Table II-4. Bare spherical reactor: functions E1 k(w).

W k=0 k=1 k=2 k=3 k=4

0.10 0.0289 -0.CO76 C.003% -C.C019 0.0012
0.20 0.0551 -C.C151 C.G0&8 -0.C028 C.C024
0.30 0.C787 -C.C226 (C.C101 -C.COS7 C.0G36
0.40 C€.10C0 -C.C300 (.C135 -0.CO076 0.0049,
0.50 C.1162 -C.C372 C(.Clé8 -C.C0S5 0.0061
0.60 0.1365 -C.C442 C.C2Cl -C.Cll4 G.0073
0.70 €.1521 -0.C511 (€.C234 -C.C122 G.0C85
0.80 0.1661 —G.C577 (.C267 -C.C151 €.0097
0.90 0.1786 —-0.C642 (.C259 -C.C170 0.0109
1.00 0.1898 -0.C704 C(.C331 -C.Cl188 G.0121
1.10 0.1968 -0.C764 C€.C363 -C.C2C7 0.0133
1.20 0.2087 -C.(822 C(.G394 -G.C225 0.0145
1.30 0.21€7 -0.C878 (.C425 —-C.C243 0.0157
1.40 0.2237 -0.C931 C.C455 -C.C262 0.0169
1.50 0.22$9 -C.C982 (.C485 ~C.C2E0 C.0180
1.60 0.2353 -C.1031 C(.0514 —=C.C267 . 0.0192
1.70 0.24C1 -C.1078 C.C543 -C.C315 (.0204
1.80 0.2442 -0.1122 C€.0571 -C.C323 0.0215
1.90 C.2478 -C.1164 C(.C558 -C.C350 0.0227
2.00 0.25C8 -0.1205 C(.0625 -C.C367 0.0238
2.10 0.2534 -C.1243 (.0651 -C.C384 0.0250
2.20 0.2556 -0.1279 (.C677 =C.C4Cl 0.0261
2.30 0.2574 -0.1313 (.C7C2 -C.C417 0.0272
2.40 0.2588 -0.1345 €.0726 -0.C434 0.0284
2.50 0.2559 ~C.1375 (.C750 -C.C450 0.0295
2.60 0.26G7 -C.1404 C.C773 -C.C4¢6 C.0306
2.70 0.2613 -C.1431 C.C7$6 -C.C48l1 0.0317
. 2.80 0.2617 -0.1456 C.C817.-C.0457 . 0.0327
2.90° 0.2618 -C.1480 (.C839 -C.C512 0.0338
3.00 0.2617 -0.1502 C.G859 -C.C527 0.0349 -
3.10 0.2615 -C.1523 (.C879 -C.C541 0.0359
3.20 0.2611 -C.1542 C€.0858 -C.C556 0.0370
3.30 0.26C5 -C.1560 (.0917 -C.0570 0.0380
0 3.40 0.2599 -C.1577 C€.C935 -C.C584  0.0390
3.50 0.25$1 -0.1593 (.C952 -C.C5$8 G.0400
3.60 0.2582 —C.1607 C.C969 -C.C611 0.0410
3.70 0.2573 -C.1620 C.C985 -0.0624 0.0420
3.80 0.2562 -C.1632 C€.1001 -C.C637 G.0430
3.90 0.2551 -C.1644 C(C.1016 -C.C650 0.0439
_ 4.00 0.2529 -C.1654 C.1030 -C.C6E2 0.0449
4.10 0.2527 -C.1663 (.1044 -0.G674 C.0458
4.20 0.2514 -C.1672 C.1058 -C.G686 C.0467
4.30 C.25C1 -C.1679 C(.1070 -C.C657 0.0476
4.40 0.2487 -0.1686 (.1083 -0.G7C9 0.0485
4.50 0.2473 -C.1692 C€.1094 -C.C720 0.0494
4,60 0.2459 -0.1697 £.1106 -0.C730_ C.0503
4.70 C.2445 -0.1702 C.1117 -C.CT41 0.0511
4.80 0.2430 -0.1706 (€.1127 -0.G751 0.0520
4.90 0.2415 -0.1709 C.1127 -C.C7é1 0.0528
5.00 0.24C0 -0.1712 C.1146 -C.C771 0.0536
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Table II-5. Bare spherical reactor: functions E2 k(w).

w k=0 k=1 k=2 k=3 k=4

0.10 C.$4C3'=C.C403 "0.CCe8 -C.CC3L1 7 C.0018
020 C.8846 ~C.CT60 C.Cl42 -C.L0€3  G.0037
0.30 C.8326 —-C.1075 (.C219 —C.C0S$% C.0056
0.40 C.7840 -C.1353 C€.(269 —-C.(129 0.0C75
C.50 C.7386 —-C.1595 (.C380 -C.Cl€3 C.0C94
0.60 C.6962 -G.18C7 (.C462 -C.CLS7 C.0L13
0.70 C+6565 =C.1991 (.C543 -C.02322 (.(133
0.80 C.61%4 —C.2149 C.C623 -C.(268 (€.0153
0.0 C.5846 -C.2285 (.C7C2 -C.C3C4 C.Cl73
1.C0 C.5521 —-C.2400 (.C779 -C.C340 C.0193
1.10 0.5216 -C.2496 (.C8B53 -C.C376 (C.0213
1.20 C.4931 -C.2575 (.C925 -(.(412 0.0233
1.30 C.4663 -C..2640 C(.£964 ~C.i448 C.02%4
1.40 0.4412 -C.2691 (.10€60 -C.C4€3 C.0274
1.50 0.4177 -C.2730 (.1122 -C.C519 C(C.0294
1.60 0.3956 -C.2758 (.1181 -C.(5%4 C.0315
1.70 C€.3749 -C.2777 C.1237 -C.C588 (.0335
1.80 €.3554 —(.2767 C(C.1289 -C.C622 (.0355
1.90 C.3372 -C.2789 (.1328 -C.(655% <(.0376
2.00 C€.32C0 -0.2785 (.1384 -C.C6E8 0.0396
2.10 C.3C28 —C.2774 (.1426 —-C.CT720 0.0416
220 (€.2886 —C.2759 (.14¢5 ~C 0751 C.0435
2.30 0.2743 —C.2738 C(.1500 -C.C7€1 C(C.J45%
2.40 G0.26(C8 —-C.2714 C(C.1533 -C.C811 C.0474
2.50 C.2481 —C.2686 (.15€62 -C.(829 (0.0493
2.60 C.23€]1 —Co2655 (.1589 -C.0866 (.0512
270 - £a2249 -G.20622 (C.1613 -C.(8S3 0.0531
2.80 C.2142 -C.2586 (.1634 -C.0918 C.0%49
- 2.90 C.2C42 -(C.2548 (.1652 =C.C943 (.0567
3.00 C.1947 —-C.2509 C(.16£8 -C.(9¢6 0.0585
3.10 0.1858 -0.2468 C(.1682 —-C.(C988. (€.0603
3.20 C.1774 -C.2426 (€.16%3 -C.10C9 GC.0620
3.30 C.16S4 —0.2384 (.17C2 -C.1020 .C.0636
3.40 C.1618 -0.2341 (.17C9 -C.1049 G.0653
3.50 C.1547 =0.2297 (C.1714 -C.10&7 U.0668
3.60 C.1479 -C.2254 (.1718 -C.1084 GC.0684
3,70 0.1415 =C.2210 (.1719 -C.11C0 ©G.C69Y9
3.80 O0.1355% -0.2166 C(.1719 -C.1115 @0.0714
3.90 0.1267 -C.2122 (.1718 -C.1129 (C.0728
4,00 0.1243 -C.2078 (.1715 —-C.1142 G.G742
4.10 0.1161 -G.2035 C.1710 -C.1154 0.0755
4.20 0.1142 -C.1992 C.1705 -C.1165 C.0768
4.30 C.1056 -G.1949 (.16%8 -C.1176 C.0781
4.40 0.1052 -0.1907 (.1660 -C.1185 <C.0793
4.50 C.1010 -C.1866 C.1682 -C.1153 C.0804
4.60 C.0970 ~0.182% (.1672 -C.12C1 C.0815
4.70 C.0922 ~(.1785 (.16€1 -C.12C8 0.0826
4.80 G.08S6 -C.1745 (.1€50 -C.1214 C(Q.CE36
4.90 0.0862 -C.1706 (.1638 -C.1219 (.0846
5.00 C.0829 -0.1668 (.1625 -C.1223 C.G856
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‘Table II-6, Bare spherical reactor: functions E; k(w).
w k=0 k=1 k=2 k=3 k=4
0.10 0.9698 -0.0206 C.003% -0.00I5 0€.0009
0.20 0.9410 -C.C396 (.00¢69 -C.C021 0.0018
0.30 0.9134 -0.C571 (.ClC6 -C.C047 0.0028
0.40 0.8871 -0.C732 (.Cl44. -0.C0€3..0.0037. .
0.50 0.8619 -0.C881 (.0183 -C.0080 0.0C46
0.60 0.8377 -0.1018 (.0223 ~-C.C057 (©.0056
0.70 0.8147 -0.1144 0.0263 -0.C1l13 0.0066
0.80 0.7925 -0.1260 (€.0303 -C.C130 0.0075
0.90 0.7713 -0.1367 0.0343 -C.0148 0.0085
100 0.7510 -0.1465. C.C383 =-C.C1lE5 ._.0.0095 ..
1.100 0.7315 -0.1554 (C.0422 -C.C1€3 0.0105
1.20 0.7128 -0.1636 (.C461 ~-0.02C0 0.0ll4
1.30 0.6949 —-C.1711 (.C499 -0.C218 (C.0124
1l.40 0.6777 —-0.1779 (.C537 -0.C226 0.0134
1.50 0.6611 -C.1841 C.0574 -0.C253 0.0144
le60 0.6452 -0.1898..0,0610 =0.0271 _0.0154 .
1.70 0.6299 -0.1949 0.C645 -0.C2€89. 0.0164
1.80 0.6152 -C.1995 (C.(0680 -C0.C3C6 0.0174
1.90 0.6010 -0.2037 (C.0713 -0.0324 0.0184,
2.00 0.5874 -0.2075 (€.C745 -C.C341 0.0195
2.10 0.5743 -0.2108 C.G777 -0.C358 0.0205
.2420 0.5616 -0.2138 __ 0,087 =0.03715 C.0215. .
2.30 0.5495 -0.2165 C.0837 -C.0362 0.0225
2.40 0.5377 -0.2188 (.0865 -C.C4C9 0.0235
2.50 0.5264 -0.2209 (0.0892 -0.0426 0.0245
2.60 0.5154 -0.2226 (.C0919 -C.C442 (0.0255
2.70 0.5049 -0.2242 C(C.0944 -C.G459 C.0264
2280 04947 -0,2255. (.0968 -C.C474. 0.02174... .
2.90 0.4848 -0.2265 (€.0961 -C.C490 (.0284
3.00 0.4753 ~0.2274 (.1014 -C.(05C6 0.0294
3.10 0.4661 -0.2281 (C.1035 -0.0521 0.0304
3.20 0.4572 -C0.2286 (.1055 -0.6536 0.0313
3.30 0.4486 -0.2290 (.1075 -C.C550 0.0323
3240  €.44C3 -C,2292 €.1093 =C.C565 0.0332
3.50 0.4323 -0.2293 (C,1111 -C.C579 0.0342
3.60 0.4244 -C.2292 (C.1128 -0.C593 0.0351
3.70 0.41€69 -C.2291 (C.l144 -0.06C6 0.0360
3.80 0.4096 -0.2288 (.1159 ~-0.C619 0.0369
3.90 0.4025 -0.2284 (C.1173 -0.0632 0.0378
4400 043956 -0.2280..C.1187 =0.0645 Q,0387
4.10 0.3889 -0.2274 (.1200 -0.0657 0.0396
4.20 0.3824 -0.2268 (.1212 -C.06€69 G.0405
4.30 0.37€1 -0.2261 0.1223 -0.0681 0.0413
4.40 0.37C0 -0.2253 (C.1234 -0.0652 0.0422.
4,50 0.3641 -0.2245 C(C.1244 -0.07C3 0.0430
4260, 003583 -0,2237 . C.1253 =C,0714 Q.0438
4,70 0.3527 ~0.2227 (C.1262 -C.C724 0.0446
4.80 0.3473 -0.2218 (C.1270 -C.0735 0.0454
4,90 0.3420 -0.2208 C(C.1278 -C.0T44 0.0462
5.00 0.3368 -0.,2197 (.1285 -C.C754 0.0470
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and

1}

. Q‘-*-T'T_l)_{sl (k+ 1)m - > [Si (k4 3)7 4+ Si (k - 1)11]} . (195)

3.5. The Cylindrical Reactor

The reactor core is a cylinder of radius R and of height 2Z. It
is symmetrical about the axis and about the midplane of the cylinder.

- The corresponding Helmholtz equation is

2 2
2
8y x4 28 B0, (201)
r . oz

The origin of the coordinate system'is taken at the center of the
cylinder. By using the technique of separation of the variables, the gen-
eral solution of Eq.. (201), which satisfies the symmetry condition, is
.obtained as the following product of a Bessel function of the first kind

and of zero order by a cosine function:

v.= JO(BRr) cos (Bzz), (202)
with |
2 L2 -2
i} 203
B BR + BZ . ( )

Letting the linear extrapolation distance be a constant -6R on the outer
radius of the cylinder and a constant SZ on the end plane, the boundary

condition, . Eq. (3), becomes

L g OV _ - 204
v+62—-——8z-0 at Z',—Z’ (204)
and
v _ ‘ - 205
v+ S E at r=R. ( )

The function v satisfies the boundary condition at the outer
. radius of the core if BR is a root of

; _ & -0 - 206
J,(BRR) = 65 Bp J (BpR) =0 ; (206)
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v also satisfies the boundary condition at the end plane if B, is a
_root of Eq. (149). . v

The change of variables,

n=r/R where 0 <n<l, (207)
and

¢ =z/Z where 0.<{ <1, : (208)
yields

vy = JO(‘]Z 1) cos (ymé), . (209)
with

2 .2 2 2 2
B =j, /R +y_/2". (210)

The ratio of the linear extrapolation distance to the corresponding

dimension of the reactor core will be noted ¢, thus obtaining

g = 6p/R S (211)

R
-and

eZ=6Z/Z., (212)
According to Eq. (206), j

tive root of

¢ is now defined as the (£ + l)th posi-

Tolig) - €g iy 3 G =0, _ (213)

and 'y is the (m + l)th positive root of
m

cos y - eZsinym =0. (214)
The above equations, Eqs. (213) and (214), have an infinite number of
solutions, which are studied, for instance, in reference (C5).
In the following, the subscript k stands for the pair of non-
negative intege‘rs { and m, :
The scalar product of two functions £(n,{) and g(n,{), Eq.. (4),

is now
1

‘ . |
<f, g>,=f«2ndnfd§ f(n,t)g(n. L) . (215)
0 0 -

This is, in genera’l,. a double integral, but becomes the product
of two simple integrals if the function fg can be expressed as the prod-

uct of a function of 7m only by a function of { only. For instance, the
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céefﬁcients .fl. K’ Eq. (139), and Hye o Eq. (143), are given‘By

1 1
fl,k =fJO(J£ n)annj cos ymédg , (216)
0 0
and 1 1
2 . 2
b = Jg Gym2ndn| cos”y_tadt. (217)
0 0
The above integrations aré readily performed, thus obtaining
ZJI'(JI) sin Yo,
fl K = — - , (218)
, Jy ‘Ym .
and
in 2
2. 2,. 1 Sin & Ym
Hk-—[Jl(Jg)'l’Jof(Jl)] (’z‘* _—Z_Y_r;— . (219)
Given the set of the functions Vi corresponding to given values
of R and € the auxiliary functions El,k(w)’ Ez’k(w), and E3’k(w)

can be computed according to the following procedure:

First, one defines the functions

S, =(e vy, (220)

and
WV

W
»Sl,k(W) = <(1 -e 0)’Vk> = jsz’k(W) dw . (221)
0

Then, using Eqgs. (139), (142), (220), ‘and (221), the auxiliary
-functions, defined by Eqgs. (140), (128), and (134) respectively, are given
by
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El,k(w) =W [fl,k - Sl,k(w)] s (222)

E, (W) =8, (/b (223)
and .

Ej (W) = 8] L (w)/(uew) . (224)

To evaluate Sl,k(w) and SZ, k(w), .one must evaluate numerically
the double integrals represented by the bracketing operations in Eqs. (220)
and (221);" Sl,k(w) could also be evaluated simply by integrating SZ,k(W)
with respect to w, once having set up a table of the latter function.

However, the direct computation of S2 k(w) requires the evalua-
t1on of a double integral for each value of w. We have therefore pre-
ferred to expand the function SZ,k(W) in powers of w, because the com-
- putation of the coefficients of the power series requires only the evalua-
tion of simple integrals.

The function _e-WVO is represented as follows by the uniformly

convergent series

-WvV = n '
R - v P (225)

nl!

o

n=

.and the functions S1 k(w) and S, k(w) are represented by

w. =1 ‘ .
N =W n
Sz,k‘w°“§E: o Yo Vi) (226)
. n=1
and = n
Sy, kW) = - = & iey- (22
n=1

The coefficients which appear in the above equations are defined
as
1

1
_/.n B n,. . n
. Dk,n = <v0, Vk>-—/JO(JOT])J0(J£T]) an'rf cos YO‘:’ cos ymg dt . (228)
0 20
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The first integral in the right side of the above equation is
| 1
¢n= [Jg oIy, M 2ndn, (229)
/0
and it will be evaluated by using a p-point Gauss quadrature formula
(p=4,6,8, or 10).
The integrals

B

1 .
: _ SR : RN :
Cm,n'"[COS {yyt) cos (v £)dL (230)
O .
. _ G3
are given by standard formulae,
Since the functions JOUZ n) [or cos (ym?;)] are eigenfunctions of
a self-édjoint one-dimensional Helmholtz equation (Sturm-Liouville

equation), the corresponding orthogonality property reads

BJZ 1 =.O,Where !#0 {(231)
and ' ‘
| =0, ., 232
Cm,l 0,where m % 0 (232)
With the above notations, the coefficients fz Kk defined by Eq. (129)
become
e - By 2%m,2 (233)
2,k T o

The computations outlined above, Egs. (220) through (233), have
been performed on a high-speed digital computer for the case of a bare

reactor with negligible extrapolation distances, i.e., where

€, =¢, =0, | (234)

Equation (213) then defines j, asthe (£ + l)th root of the Bessel
function of the first kind and zeroth order; the corresponding numerical
.values are given to ten decimal places by Watson. w5 The following table

gives jl for the first few values of {:
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0 1 2 ‘ 3 4 5

2.405 5,520 - 8.654 11.692 14,931 18.071

In general, ji can be représented by the following series:

A . 1. . 0,051 0.053
ig 1 =7 [ -2) +g— - + o0 ] (235)
2-1 T T )
Equation (214), where ¢, =0, yields
Yo, = (2m + 1)17/2 . (236)

The eigenvalues B]i_are given by Eq. (210), the subscript k

corresponding to a given pair of values of the integers £ and m, and

the value k = 0 correspondingto £ =0 and m=0. . One obtains:

2,2 2,2
JO/R + Yo/z
_ , (237)

L2
k

B

2 2,2 2 2, VAP 2,2,
o U /RT 4y /27) - (5/RT +v,/27)

This is a function of the ratio R/Z only; one sets
R/Z =\ : (238)

and obtains

- 2.2
BO J(2)+Y0>\
= 7T 2 2 Z 2 (239)

Equations (219), (143), and (218), respectively, now yield

1.2 ,.
sz -Z—Jl (JZ) s for any m, (240)

200 20y
hy = Jl_(Jl)/Jl(JO) for any m, (241)
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- and

23,G,)

£ =|— (17 (242)
Lk |75, |TZm+ D72 .
The coefficients C_ . Eq. (230), are now defined by
| n/2 ‘
2 n
Cm,n = = [ cos (2m 4 1)x cos xdx . (243)
0

The standard formula®” yields first

I (54 1)
Co = - f+ —Z (244)
’ ,/_ F(——-z-—) .

where the symbol T' denotes the factorial function

. All the coefficients C

m.n 2P then be easily evaluated by the
recurrence formula, Eq. (245)

, which is derived as follows:

n/2

N n+l
(Cm,n + Cm,n+l) ._f 2cos (2m + 2)x cos x dx,
0

o A

%(Cm n - Cm n+1) =j 2 sin{Z2m+4 2)x sinx cos’ x dx.
0 .

After integrating by parts, the later-integral yields

2
cC_ _-c - m¢t2

m,n m,n+l = T n+1 (Cm,n+cm+l,n_)’

and then we get the recurrence formula

C _n+l-2m+1
m+l,n n+1+ 2(m

—
L DN

(245)

The coefficients Bl ‘n’ Eq. (229), have been computed by evalua-

ting numerically the corresponding integrals by means of a 10-point Gauss
quadrature formula.
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The power series, Eqs. (226) and (227), then give the values of

. the functions Sl, k(w) and. SZ,k(w) for any value of w, and the tables of
‘the functions El,k(w)’ EZ, k(w) and .E3"k(w_) have been set up accord-
. ing to Eqgs. (222), (223), and. (224).. Besides Tables II-7 through II-9,
the following values of the coefficients hk’ fl,k .and fZ, kha,ve been

obtained for bare cylindrical reactors.

P
5
n
rh

k 1,k 2,k
£=0, m=0 1.0000 0.2749 - 0.6139
£ =0, m=1 1.0000 -0.0916 0.1228
£=0, m=2 1.0000 : 0.0550 -0.0175
L=1, m=0 0.4296 -0.0785 0.2646
L=1, m=1 0.4296 0.0262 0.0529
£=1, m=2 0.4296 -0.0157 -0.0076
£=2,, m=0 0.2734 0.0399 -0.0405
£=2, m=1 0.2734 -0.0133 - -0.0081
L=2,, m=2 0.2734 0.0080 0.0012

4. Parametric Study of U235‘ Fueled Reactor

The calculation procedure developed in the preceding sections
is now applied to the study of the flux changes which take place in a bare
-reactor where fuel consisting of substantially pure U235 is irradiated
batchwise.

The local excess neutron production and the burnup of the fuel
(fraction of initial U235 atoms aestroyed) are represented by the fol-

lowing dimensionless functions of the local flux time 0:

g(0).= g+ g5 © ; (250)
‘and " 0
B(O)=1-e . (251)
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functions El, k(w).

£=0,m=0 1=0,m-=1

w £=0,m=2 £=1,m=0 f=1,m=2 £=2,m=0
0.10 0.02618 -0.00915 0.00550 -0.00784 0.00262 -0.00399"
0.20 0.04990 -0.01826 0.01099 -0.01564 0.00524 0.00798
0.30 . 0.07137 -0.02729 0.01646 ~0.02336 - 0.00788 0.01196:
0.40 0.09080 -0.03619 0.02191 -0.03097 0.01054 0.01593
0.50 0.10837 -0.04495 0.02734 -0.03845 '0.01322° 0.01987
0.60 0.12423 -0.05354 0.03273 -0.04577 0.01592 0.02380
0.70 0.13854 -0.06195 0.03809 -0.05292 0.01864 0.02769
0.80 0.15144 -0.07015 0.04339 -0.05988 0.02139 0.03155
0.90 0.16304 -0.07813 0.04865 —-0.06665 0.02416 0.03538
1.00 0.17347 -0.08589 0.05385 -0.07321 0.02695 0.03916
1.10 0.18283 -0.09341 0.05899 -0.07955 0.02976 0.04290
1.20 0.19120 -0.10070 0.06407 —0.08568 0.03258 0.04659
1.30 0.19869 -0.10774 0.06908 -0.09159 0.03542 0.05024
1.40 0.20536 -0.11455 0.07401 -0.09728 0.03826 0.05382
1.50 0.21130 -0.12111 0.07887 -0.10275 0.04112 0.05735
1.60 0.21656 -0.12743 0.08366 -0.10800 0.04398 0.06083
1.70 0.22120 -0.13351 0.08836 -0.11303 0.04684 0.06424
1.80 0.22528 -0.13935 0.09298 -0.11786 0.04970 0.06759
1.90 0.22886 -0.14496 0.09751 -0.12247 0.05255 0.07087.
2.00 0.23197 -0.15034 0.10196 -0.12687 0.05540 0.07409 -
2.10 0.23465 -0.15550 0.10633 ~-0.13108 0.05824 0.07724
2.20 0.23696 -0.16044 0.11060 -0.13509 0.06106 0.08032
2.30 0.23891 -0.16517 0.11478 -0.13891 0.06387 0.08333
240 0424055 -0.16969 0.11888 —-0.14254 0.06666 0.08628
2.50 0.24190 -0.17401 0.12289 ~-0.14600 0.06943 0.08915
2.60 0.24298 -0.17813 0.12680 —0.14928 0.07217 0.09196
2.70 0.24383 -0.18206 0.13063 -0.15239 0.07490 0.09469
2.80 0.24446 -0.18581 0.13436 -0.15535 0.07759 0.09736
2.90 0.24489 ~0.18939 0.13801 -0.15814 0.08026 0.09995

3.00° 0424515 -0.19279 0.14156 -0.16078 0.08290 . 0.10248
3.10 (0.24524 -0.19602 0.14503 -0.16328 0.08550: 0.10493
3.20 0.24519 -0.19910 0.14841 -0.16564 0.08808 0.10732
3.30 0.24501 -0.20202 0.15171 -0.16787 0.09062 0.10964
3.40 0.2447)1 -0.20480 0.15491 -0.16996 0.09312 0.11189
3.50 0.24431 -0.20743 0.15804 -0.17194 0.09559 0.11408
3.60 0.24380 -0.20992 0.16108 -0.17379 0.09802 0.11620
3.70 0.24322 -0.21229 0.16403 -0.17553 0.10041 0.11826
‘3.80 0.24255 -0.21453 0.16691 -0.17717 0.10277 0.12025
3.90 0.24181 -0.21665 0.16970 -0.17870 0.10508 0.12218
4.00 0.24101 -0.21865 0.17242 -0.18012 0.10736 0.12405
4.10 0.24016 -0.22054 0.17506 -0.18146 0.10960 0.12586
4.20 0423925 -0.22233 0.17762 -0.18270 0.11179 0.1276Y
%.30 0.23831 -0.2240I 0.1I80I1 -0.18386 0.I1335 0.12930
4.40 0.23732 -0.22559 0.18252 -0.18493 0.11607 0.13093
4.50 0.23630 -0.,22708 0.18486 -0.18593 0.11814 0.13251
4.60 0.23525 -0.22849 0.18714 -0.18685 0.12018 0.13403
470 0.23417 -0.22980 0.18934 -0.18770 0.12217. . 0.13550
4,80 0.23307 -0.23103 0.19148 -0.18848 0.12413 0.13692

4,90 0.23196 -0.23219 0.19355 -0.18919 0.1260% 0.13829

5.00

0.23082 -0. 23327

0.19555 =0. 18984

0. 12792

0.13961
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Table II-8. Bare cylindrical reactor: functions EZ k(w).

w 2=O,m=0 1=0,m=l l=0,m=2 l:l’m:O l:l,mz]_ £=Z,m=o
0.20 0.88530 -0.02190 0.00349 -0.04711 -0.00868 0.00837
0.30 0.83358 -0.03104 0.00520 -0.06671 -0.01176 0.01267
0.40 0.78526 -0.03912 0.00688 -0.08399 -0.01414 0.01700
0.50 0.74010 -0.04624 0.00851 -0.09917 -0.01590 0.02131
0.60 0.69787 -0.05248 0.01010 -0.11245 -0.01713 0.02556
D.70 0.65838 -0.05794 0.01163 -0.12402 ~-0.01788 0.02973
0.80 0.62143 -0.06268 0.01310 -0.13403 -0.01823. 0.03380
0.90 0.58684 -0.06677 0.01451 -0.14263 -0.01823 0.03775
1.00 0.55445 -0.07027 0.01585 -0.14996 —-0.01793 0.04155
l1.10 0.52411 -0.07325 0.01713 -0.15615 -0.01738 0.04521
1.20 0.49568 -0.07575 0.01834 -0.16131 -0.01662 0.04871
1.30 0.46902 -0.07781 0.01949 -0.16554 -0.01567 0.05205
1.40 0.44402 -0.07949 0.02056 —-0.16894 -0.01458. 0.05521
1.50 0.42056 -0.08082 0.02158 -0.17158 -0.01336: 0.05820
1.60 0.39855 -0.08184 0.02252 -0.17356 -0.01205: 0.06102
1.70 0.37787 -0.08258 (0.02340 -0.17493 -0.01067 0.06367
1.80 0.35845 -0.08306 0.02422 -0.17577 -0.00923: 0.06614%
1.90 0.34019 ~-0.08332 0.02498 -0.17612 -0.00775 0.06844
2.00 0.32303 -0.08338 0.02568 ~0.17606 ~0.00624 0.07057
2.10 0.30689 -0.08326 0.02632 -0.17561 —0.00473; 0.07254
2.20 0.29170 -0.08298 0.02690 -0.17483 -0.00321! 0.07436
230 0.27740 -0.08256 0.02743 -0.17376 -0.00170. 0.07601
2.40 0.26393 -0.08202 0.02791 -0.17242 -0.00020 0.07752
2.50 0.25124 -0.08136 0.02835 -0.17086 0.00127 0.07888
2.60 0.23928 -0.08062 0.02873 -0.16910 0.00272 0.08010
2.7T0 0.22800 -0.07979 0.02907 -0.16718 0.00413 0.08119
2.80 0.21736 -0.07889 0.02937 -0.16510 0.00550 0.08215
2.90 0.20732 ~0.07792 0.02962 -0.16290 0.00684 0.08299
3.00 0.19783 -0.07691 0.02984 -0.16059 0.00813 0.08371
3.10 0.18888 -0.07585 0.03002 -0.15820 0.00938 0.,08432
3.20 0.18041 ~-0.07475 0.03017 -0.15573 0.01058 0.08482
3.30 0.17241 -0.07362 0.03028 -0.15321 0.01173 0.08522
3.40 0.16484 -0.07247 0.03036 -0.15064 0.01283 0.08553
3.50 0.15767 -0.07130 0.03042 -0.14803 0.01389. 0.08575
3.60 0.15089 -0.07011 0.,03044 ~-0.14540 0.01490° 0.08589
3.70 0.14447 -0.06892 0.03044 —-0.14276 0.01585 0.08595
3,80 0.13838 -0.06771 0.03042 -0.14011 0.01677 0.08593
3.90 0.13261 -0.06651 0.03037 -0.13746 0.01763 0.08584
4.00 0.12714 -0.06531 0.03030 -0.13481 0.01845 0.08568
4.10 0.12195 -0.06411 0.03022 -0.13218 0.01922 0.08547
4.20 0.11702 -0.06291 0.03011 -0.12957 0.01994 0.08519
4.30 0.11235 -0.06172 0.02999 -0.12698 0.02063 0.08487
4.40 0.10790 -0.06055 0.02985 —0.12441 0.02127 0.08449
4,50 0.10368 -0.05938 0.02970 -0.12187 0.02187 0.08407
4.60 0.09966 -0.05823 0.02953 -0.11936 0.02242 0.08360
4,70 0.09584 -0.05709 0.02935 -0.11689 0.02294 0.08310
4.80 0.09221 -0.05596 0.02916 —-0.11446 0.02343 0.08256
%.90 0.0B8B75 -0.0%5485 0.02896 -0.11206 0.0Z2387 U0.08198
'5.00 0.08545 -0.05376 0.02875 -0.10970 0.02429 0.08138

e =




Table II-9. Bare cylindrical reactor: functions E3 k(W).

w £=0,m=0 £=0,m=1 {£=0,m=2 £=1,m=0 £=1,m=1 £=2,m=0
0.10 0.97000 -0.00591 0.00088 -0.01273 -0.00248 0.00205
0.20 0.94134 -0.01138 0.00175 -0.02449 -0.00464 0.00414
0.30 0.91394 -0.01644 0.00262 -0.03537 -0.00653 0.00627
0.40 0.88774 -0.02112 0.00347 -0.04541 -0.00815 0.00841
0.50 0.86268 -0.02545 0.00432 ~0.05467 -0.00953 0.01056
0.60 0.83869 -0.02944 0.00515 -0.06322 -0.01070 0.01271
0.70 0.81572 <0.03313 0.00597 -0.07110 -0.01168 0.01484
0.80 0.79372 -0.03654 0.00677 -0.07836 -0.01248 0.01696
0.90 0.77263 -0.03968 0.00755 -0.08503 -0.01312 0.01905
1.00 0.75241 -0.04256 0.00831 -0.09117 -0.01362 0.02111
1.10 0.73302 -0.04522 0.00906 -0.09680 -0.01399 0.02314
1.20 0.71442 -0.04766 0.00978 -0.10197 -0.01424 0.02512
1.30 0.69655 -0.04991 0.01048 -0.10670 -0.01439 0.02707
1.40 0.67940 -0.05196 0.01117 ~0.11103 -0.01444 0.02897
1.50 0.66292 -0.05384 0.01183 -0.11498 -0.01441 0.03082
1.60 0.64707 -0.05556 0.01247 -0.11859 -0.01431 0.03262
1.70 0.63184 -0.05713 0.01308 -0.12186 -0.01413 0.03437
1.80 0.61719 -0.05856 0.01368 -0.12484 -0.01390 0.03606
1.90 0.60308 -0.05986 0.01425 -0.12753 -0.01362 0.03771
2.00 0.58951 -0.06103 0.01481 -0.12996 -0.01328 0.03930
2.10 0.57643 -0.06209 0.01534 -0.13215 -0.01291 0.04084
2.20 0.56383 -0.06305 0.01%85 -0.13410 -0.01251 0.04232
2.30 0.55%168 -0.06391 0.01635 —-0.1358% -0.01207 0.04375
2.40 0.53997 -0.06467 0.01682 -0.13740 -0.01161 0.04512
2.50 0.52867 -0.06536 0.01727 -0.13878 -0.01112 0.04645
2.60 0.51777 -0.06596 0.01770 -0.13998 -0.01062 0.04772
2.70 0.50724 -0.06649 0.01812 -0.14102 -0.01010 0.04894%
2.80 0.49708 -0.06694 0.01852 -0.14192 -0.0095%6 0.05011
2.90 0.48726 -0.06734 0.01889 -0.14268 -0.00902 0.05123
3.00 0.47777 -0.06768 0.01926, ~0.14331 —-0.00847 0.05230
3.10  0.46859 -0.06796 0.01960 -0.14383 -0.00791L 0.05332
3.20 0.45972 ~0.06819 0.01993 -0.14424 —-0.00735 0.05430
3.30 0.45113 -0.06837 0.02024 -0.14455 —-0.00679 0.05523
3,40 0.44282 -0.06851 0.02054 -0.14477 ~-0.00623 0.05612
3.50 0.43478 -0.06860 0.02082 -0.14490 -0.00567 0.05696
3.60 0.42698 —0.06866 0.02109 -0.14495 -0.00512 0.05776
3.70  0.419%37-0.06868 0.0213%4 -0.14493 -0.00456 0.05852
3.80 0.41212 -0.06867 0.02158 -0.14484 -0.00401 0.05924
3.90 0.40502 -0.06863 0.02180 ~-0.14468 -0.00347 0.05993
4.00 0.39814 -0.06857 0.02202 -0.14447 —0.00293 0.06057
4,10 0.39147 -0.06847 0.02222 -0.14420 -0.00240 0.06118
4.20 0.38499 -0.06835 0.02241 -0.14388 -0.00188 0.06176
4,307 0.37871 =0.06621 0.02259 -0.14352 -0.00136 0.06230
4.40 0.37260 -0.06805 0.02275 -0.14311 -0.00085 0.06281
4.50 0.36667 —-0.06787  0.02291 -0.14267 —0.00036 0.06329
4.60 0.36091 -0.06767 0.02305 -0.14219 0.00013 0.06373
4.70 0.35531 -0.06746 0.02319 ~0.14168 0.00061 0.06415
4.80 0.34987 -0.06723 0.02332 -0.14114 0.00108 0.06454
4,90 0.34457 =0.06699  0.02343 =0.14057 0.00154 U.06490
5.00 0.33942 -0.06674 0.02354 -0.13997 0.00200 0.06524
— -
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Bare reactors of the same initial (uniform) composition and the
same geometrical buckling correspond to the same parameters gy and
825 .whatever the shape of the reactor. The excess neutron production
is a monotonically decreasing function of the irradiation, i.e.,

g25>0 , and g'o <0. -

4.1. Zero-Dimensional Model

If the fuel were thoroughly mixed throughout the irradiation, or
if it were fixed in position and irradiated in a spatially uniform flux, the
local flux time 6 would be independent of the position,

The flux time at the end of life is then determined by use of the
vanishing control condition to be the root of the equation g(8) = 0;i.e.,

“025%  Bg * 85
1 -e = —
825

The corresponding (average and also réxaximum) burnup p is the

(252)

value of the function B(6); eliminating e between Eqs. (251) and
(252) yields o
8g T 8
= _O_é (253)
825

A In the following sections, the burnup obtainable at the end of
batch irradiation of the unmixed fuel is studied as a function of the two
parameters (go + g25)/g25 and 8,5 by rewriting Eq. (250) as

8o * 825 -0 ;59
g(e) = g25[———"" 825 -(1-e ) s

the parameter (go. + gZS)/g25 is the value of the burnup obtained by
using the zero-dimensional model, and the parameter 825 characterizes
the magnitude of the function g(6), which is proportional to the initial

~ excess reactivity and inversely proportional to the initial leakage.

The first-order perturbation neglects the changes of the flux shape
throughout the irradiation. It yields an approximation of the final burnup
which is a function of the parameter (g0.+ gzs)/gzglonly. The computation
method is that developed in Benedict and Pigford.
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The second-order perturbation gives a first approximation of the
flux-changes a;nd.ai corresponding correction to the final burnup, which
are computed according to the method developed in the preceding sections.
The parameter g5 determines the magnitude of the flux change.

The results thus obtained apply quantitatively to any fuel, the
properties of which vary with the irradiation according to-Eqgs. (250) and
(251); the results apply qualitatively to any fuel for which the excess
neutron production is a monotonically decreasing function of the irradi-
ation.

- 4,2, First Order Perturbation

For the more realistic model of an unmixed fuel irradiated in a
.spatially varying flux, the first approximation of the control absorption

is given by Eqs. (114) and (132) as

cO(T) = sO(T) = g0+g25vE2’0 (oéST)" (254)

Instead of T, it is here convenient to define a dimensionless

irradiation variable w by
W = OZST p (255)

where T is the first approximation of the flux time at the center of the

reactor,
The value of the irradiation variable at end of life satisfies the

vanishing control condition, Setting Co = 0 in Eq. (254), one obtains

(256)
825

1 - EZ,O(W) =

Since the flux shape is assumed equal to vo(x) throughout the
irradiation, the flux time to which the fuel has been irradiated at end of
life is

0,5 Go(x,w) = wvo(x) . (257)
The average burnup of the fuel is then given by Eqs. (107) and (135) as

(B)g=1-Eyw . (258)
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and the central (maximum) burnup is simply

Blw)=1-e™"; (259)

<ﬁ>0 and B(w) are. then the functions of (go + gzs)/g25 determined by
‘Eqs. (256), (258) and (259); they are shown in Fig. II-2 for reactors
of various geometries, Tabulated values of the functions 'EZI, 0(w) and
Eo(w) hav_e- been used which can be found in various sources with the fol- _

lowing notations:

‘Geometr'y Reference EO(W) EZ, 0(w)
san (B1) Eg (w)

: Table 11-2 E, ;)
(s2) E)(w, 0) ES) (w, 0)
Sphere Table 11-5 E, o)
(s2) E(®)(w, 0) EZ) (w,0)
Cylinder (B1) ED (w, 0) E> (w,0)
Table II-8 Ez, O(w)

. ' =(3) (3)
Parallelopiped (S2) LO (w, 0) E > (w, 0)

Figure II-2 shows that the maximum and average burnup are
respectively larger and smaller than the corresponding value for mixed
fuel (zero-dimensional model). The flatter the initial flux, i.e., the
smaller the ratio of the ma‘.xirﬁum to the average flux, the better the
zero-dimensional approximation.

The average burnup is smaller for unmixed fuel since the fuel is

more depleted at the center where it has a larger importance.
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S0 — I T

Maximum burnup

- wmem = Average burnup

Burnup (%)

MU.29364

Fig. II-2. Burnup as gr‘edicted by first-order perturbation
method for U235 fueled reactors.
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4.3, Second-QOrder Perturbation

Using Eqgs. (250), (251), and (255), we find that Eqs. (132), (133),
and (141) become

sk(w)_z g5 EZ,k(W)’ where k 21, S (260)
S (W) = g, By 1 (W), where k=1, o (261)
and .
T (vk,;s (VOT)>= E) (W), where k 20 (262)
The flux changes are then given by Eqs. (115) and (116)
as . . v @ Bé
k=1 \"k 0

where a value of w corresponds to an amount of control absorber

3%
c, tCyicy is given by Eq. (254); and Eqs. (121) and (117) yield

0 2
% 2 - By a ., .
c1w) = g5 ——7 b g (W Ey (W E3 (Wi}
=T Bx"Po
= » (264)

Tables II-2, II-5 and II-8 giving the functions EZ,k(W) show that,
for g25> 0, the coefficients of the lowest eigenfunctions (k = 1, or 4 = 1,
m=0 and £ =0, m = 1) in Eq. (263) are negative; this is easily seen
to correspond to a flattening of the flux; on the other hand, cf(w) is
positive. ,

Thus, since the fuel is more depleted at the center, the flux flat-
tens. However, this flattening of the flux has let the fuel be slightly less
depleted at the center than if it had been irradiated in a flux of constant
shape. The importance of the fuel is then slightly increased, and this
results in a higher overall reactivity than predicted by the first-order
perturbation, that is, more control absorber is needed to keep the reactor
critical (c}k.> 0). o

At end of life, using the value of the parameter w deter_mined
by Eq. (255), the first approximation of the flux time, Eq. (257), shall
be added to the correction given by Egs. (119) fhrough (121). The cor-

rective term for.the average burnup can then be written
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' Bg 265
<[3>1 = / ?-.—37 Nk(W) . (265)
k=1 k™ 0

The functions Nk(w) are defined, according to Egs. (120) through (122)
and Egs. (260) through (264), by

Np(w) = B} (W)E; (W)

L (wE, (W) E; (w)]
- By oWihy T ’
’ [ (w)]

dw

(266)

As expected, the result of the second-order perturbation theory
" is a linear function of 855 i.e., a linear function of the magnitude of
the perturbation g(6).

The following sections give the numerical results for slab,
sphérical and cylindrical reactors. One finds that the burnup is larger
than predicted by the first-order perturbation theory. This effect has
been expla.inedBl by noting that since the flux is flatter, the burnup is
more uniform. More precisely, one notes that for the same average
burnup, the fuel is comparatively less depleted at the center where its

importance is larger.

4.4. One-Dimensional Problems: Slab and Sphere

Although reactors shaped as slabs or spheres are not commonly
used, the theory of slab reactors is of importance for its application to
'some continuous fueling schemes (cf. Sec. III), and spherical reactors
can be used as a first approximation in the study of cylindrical reactors.

For a bare slab reactor, the eigenfunction expansion is an ordinary
Fourier series. According to Egs. (168) and (263), the approximation
of the flux shape is given by

5

cosj2k + 1)% ¢,

b T "E— E (W)

uo(é)ﬁ-ul(QSW)= COS% é*—gZS"a 2k
' /k_,_...,l 2k(2k+2)

= (270)
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and the average and central values of the flux are proportional to

2y < -k
()= 7 [1 * 825 é{ 2k(2k + 1) (2K ¥ 2) EZ,,k(Wﬂ’(Zn)
=5

= E, (W)
k=1 . =

Table II-2 shows the rapid convergence of the series in the
right side of the above equations; using the results of Sec. II1.4.1, one
can prove that, for large k,. E2 k(w) is of an order of magnitude 1/k

For w = 1.0, Table II-2 yields the following results:

u(l,w) = cos 5 §.+g25[ -0.0103 cos3 £+0. 0009c055—§

'~0.0002 cos 7.2_ L4001, (273)
<u>z% (1+0.0037 g,) , (274)

and
u(0) =1 - 0.0096 g, . (275)

The flux shape flattens more and more as irradiation increases,
and this can be shown to result in an increase of the burnup at end of life

over the value predicted by the first-order perturbation theory.

4.5. Cylindrical Reactor

The flux changes are given by Eq. (263) with the functions

EZ, k4(w) tabulated in Table II-8. Unlike the reactors considered above,
the cylindrical reactor corresponds to a flux shape which is a function
not only of w and 825 but also of the ratio of the .radial to ax1a.1 d1-
mensions; that is, according to -Eq. (239), the coefficients Bo/(B -B )
are now functions of a parameter X\ = R/Z. If either one of the rad1al
or axial dimensions tends toward an infinite vé.lue while the buckling
remains constant, the flux changes become larger and larger. . For in-

stance, if the radius becomes very large, the coefficients of all the
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eigenfunctions .I()(J"z ) cos% € tend to become infinite; this is not in con-
tradiction with the results obtained for a slab or cylindrical but perfectly
reflected reactor, since the boundary conditions now yield Jo(jon) as the
initial radial flux shape instead of the radially uniform flux in an infinite
slab reactor. v

. The dependence of the flux changes upon the shape factor of the
cylindrical reactor shows clearly the nonseparability of the flux; that is,
only for the uniform reactor is the flux-shape the product of a function
of the radial coordinate by a function of the axial coordinate =z.

When the radius becomes infinitely large, i.e., when the buckling
in the r direction (see Reference W3, p. 204) becomes infinitely small,
the radial-~flux changes become extremely large as irradiation proceeds
since the diffusion of neutrons along the radial coordinate r is too
small to balance the loss of reactivity of the fuel.

For all practical purposes, the ratio M\ of radial to axial di-
mensions (physical dimensions of the bare reactor core) is close to
nity. The following table gives some typical values of the coefficients

2,2 _2
BO/(Bk-—BO).

R/Z=1 0.4180 0.1393 0.3342 0.1857 0.0983 0.1194 0.0929 0.0643
R/Z=2 0.1983 0.0661 0.6340 0.1510 0.0598 0.2265 0.1057 0.0517

Inspection of Table II-8 giving E, k(W) shows that the coefficients

of the eigenfunctions
v (x) = T, 276
k( ) JO(‘]E ) cos (Ymé) ( )

rapidly become negligible when the value of (£ 4+ m) increases. The
most important correction to the flux shape and to the flux time arises

from the eigenfunctions

Toligm cos (v,£) (277)
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and - : _
Jol m) cos (v 8) . _ : (278)

The coefficients of these eigenfunctions are proportional to the corres-

- ponding auxiliary functions EZ, k(w),_ in Eq. (263), and they are negative
when g5 is positive. This covrre.:sponds to a flattening of the flux shape
in the axial and radial directions.

To a given value of (g, + g25)/g25, there corresponds a value w
of the irradiation parameter at end of life, in Eq. (256), and a first approx-
imation of the average burnup <ﬁ >0, in Eq. (258). The flattening of the
~ flux then yields a positive correc’cion<{3>1 proportional to the parameter
g,5- In the following paragraphs, we study the variation of< B>1/g25 as

a function of w and \.

4.5.1. Variation of< ﬁ>l/g25 with the irradiation parameter w. This

variation is determined by the functions Nk(w). - For small w, Eqgs. (145)

‘and (266) yield

2
f » f 2 [d°N
. - 1,0 2,k 2 _ w k|
Ny (w) ~[3T—hk'f2,k - fl,k] 2V T 7T\ z - (279)
2,0 ‘ dw w=0
L (4N,
The values of s \—> ~ are given in the following table:
dw w=0
1=0, 1=0, 1=1, £=1, =1, 1=2, £1=2,
m=1 m=2 m=0 m=1 m=2 m=0 m=]

0.01576 0.00069 0.03059 0.00011 -0.00004 0.00110 -0.00004

The above numerical values indicate clearly that, for typical
2

-
various eigenfunctions decrease rapdily as the value of (£+m) increases.

values of the coefficients -Bé/(B Bg), the correction terms due to the

The following computations will be performed by taking into account only

the first eigenfunctions corresponding to £=0, m=1 and £=1, m=0.
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The functions Nk(w) have been evaluated, from the tabulations
of the functions El, k(w), EZ, k(w) and E3, k(w), by hand computations

of the derivatives appearing in Eq, (266), using three or five-point

formulae, H2

The following table gives the functions corresponding to £=0, m=1

and to £=1,m=0, which have been denoted by NZ(W) and N4(w), respec-

tively. :
0.1 0.2 0.3 0.4 0.5
N, (w) 0.00015 0.00054 0.00111 0.00182 0.00262
N, (w) 0.00028 0.00102 0.00213 0.00350 0.00502
0.6 0.7 0.8 0.9 1.0
N, (w). 0.00349 0.00439 0.00532 0.00623 0.00714
N, (w) 0.00666 0.00836 0.01008 0.01179 0.01346

Using the above table of the functions Nz(w) and N4(w), the
value of <B>l/g25 as a function of w has been plotted on Fig., II-3.

4.5.2, Variation of<ﬁ>l/g25 with the shape factor A\=R/Z. Since the

 effects of the higher-order eigenfunctions are very small, this study will

be performed by assuming that the flux changes can be represented by
only the two eigenfunctions corresponding to £=0,m=1 and {=1, m=0.

Equations (239) and (265) then give

2 2. 2 2 2. 2
<@ Jg ¥ MY Jogt MY
1 _70 0 N (w) 42 O N (w) (280)
8o 2,2 2,2 T2z gt
25 MAvi-vg) 31730

For simplicity’s sake, a new shape factor y is defined by the

following equation

: 2 2
Yo 2 Y R

y=Zz M= =
Jo jo 2

(281)
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Then Eq. (280) becomes:

<‘3>1 YZ | '2
= 14 —)-2—7 N, (w) + (1+y)-2—2- N, (w). (282)
25 Y17Yp . J1 Jo

For positive values of y, the above function of y has a unique

minimum which is the root of

2 .2
0 <B>1 L Y0 e wy=d (283)
gzsay 7 2 2 2 w Zm 2 4 :
Y17¥0 J1-do
Thus, YMm is the following function of w:
2
;YO
2 2 Natw)
Y17Y |
Y W)= i , (284)
J0
Z 2z NgW)
J1790
and the correéponding minimum value of the correction to the burnup is
2
<;3>1’ M= €55 (285)

For small values of the irradiation variable w, Eq. (279) and

the numerical values of the corresponding table give:

2 2
YO d Nz.
72 i
| YitYo \9¥ /o /0275 = 0.524 (286
»YM(O)‘ — dZN =/ 0.275 = 0. (286)
Jo 4
VA vi
J1790 dw™ /o

and .R/Z = 1.11.
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This is just slightly larger than the value of the shape factor correspond-
ing to the minimum leakage in a bare cylindriéal reactor éminimum vol-

ume for the uniformly loaded reactor), which is given by
y = 0.5 and R/Z = 1,0855 . (287)

Between w =0 and w =1, the value of yM(w), Eq. (284), in-
creases slightly, but does not differ more than 5% from its initial value.
The correction to the burnup varies with the factor shape y; its

variation can be studied as follows: First, Eqs. (282) and (285) yield

| \ 2
2 , 2
BY, «( B ﬁ N, (w) J
<>1 < >1,M= 2o , 2 zOzYN4(W) . (288)
Then, Eq. (284) yields
2 2
(&) (P, m - 0w [Y_M(;ﬂ_ (289)
B2s yf»yoz ¢ Y ¥y {W)

B Thus, for each value of the irradiation parameter w, i.e., for
each value of (g0+g25)/g25, there are two values for y which yield the

same value of the final burnup; they are related by the equation
2
VY2 = VW) -
The curves representing the variation of the second-order cor-
rection to the burnup, Fig. II-3, have been labeled with the two values

of the ratio R/Z which correspond to the above equation when the small

variations of yM(w) are neglected, i.e., when yM(W.) = yM(O) = 0.524.

4.6. Discussion of the Results

The foregoing sections show the flattening of the flux predicted
by one-group theory and the resultihg increase of the average burnup
over its value predicted by first-order perturbation theory when a reactor
is loaded with highly enriched fuel; for cylindrical reactors, the average
burnup is a function of the shape of the reactor core, and, in the present

case, is minimum for reactors whose radius is about 1.1 times the height.
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Fig. II-3. Second-order perturbation correction to the
' average burnup in U235 fueled cylindrical reactors.
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The values of the average burnup at the end of batch irradiation
of fixed fuel in a bare cylindrical reactor whose height and diameter are
equal are shown in Fig. II-4. The fuel is pure UZ35, and its excess
neutron production varies according to Eq. (250). Thus, (g0+g25)/g25
is the value of the burnup corresponding to completely mixed fuel, and
g5 then characterizes the magnitude of the perturbation of the flux
shape; the evaluation of the parameters from the physical properties
of the uniformly loaded (initial) reactor is detailed in Sec. IV. 1.

According to the second-order perturbation method, the flux
changes are proportional to g5 The curve labeled g5 = 0 corre-
sponds to the first-order perturbation theory (unperturbed flux shape);
the second-order perturbation results are obtained by adding to it the
product of 55 and the -correction<ﬁ>1/g25 computed in the preceding
section (cf. Fig. II-3); the correspondence between the irradiation
variable w and the parameter (g0+g25)/g25 is given by Eq. (256).

As stated in Sec. 1.3, the results of the second-order pertur-
bation method shall be compared with those obtained by more accurate
computations. Thus, the reactor equations, Eq. (20), has been solved
by numerical methods on a high-speéd digital.’computer, The program
used for these computations is a modified version of the FUELCYC
code developed at MIT. 53 Equation (20) is solved repeatedly for suc-
cessive values of the time t. It is written in matrix form by use of the
finite difference method and, at each time step, is solved.by the Crout
reduction technique.

Results of the finite differences computations are shown in
Fig. II-4. A sufficient number of time steps has been chosen to make
the error negligible; the results are then functions of the number of
mesh points used in the finite differences representation of the Laplacian
operator. This number of mesh points is limited by the capacity of the
memory of digital computers. Computations have been performed with
49 and 100 mesh points. If the error were exactly proportional to the
square of the mesh size, or inversely proportional to the number of mesh
points, the exact results would differ from the curve corresponding to’
100 mesh points by the same amount the latter curve differs from the

curve corresponding to 49 mesh points,
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Fig. II-4. Average burnup at end of life as a function of
the parameters g0 and 825 in U235 fueled
cyclindrical reactors.
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_ The second-order perturbation is seen, in Fig. II-4, to be very
accurate for small values of the average burnup and for small values
of the perturbation parameter g5 It is as accurate as finite-differences
computations with 49 mesh points for average burnups up to 20% when
85 = 5, or up to 10% when g5 = 15. Application to a specific reactor
is given in Sec. IV.1.2.3.
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11I. CONTINUOUS FUELING

In this section, we consider a reactor core shaped as a right
cylinder of arbitrary cross section. The fuel can be irradiated according
to the fuel management procedures described in the introduction: these
procedures are radial mixing, graded irradiation, and various steady
-axial movements of the fuel. These fuel managément procedures, as
defined in this section, have in common the characteristic that the average
composition of the fuel at a given position in the reactor is independent

of the radial coordinates.

1. Equations and Methods

1.1. Equation for the Axial Flux-Shape

If the average composition of the fuel is independent of the radial
coordinates x and vy, so is the localproduction 6f excess neutrons repre-
sented by the symbol V¢ in Eq. (I-24). One assumes that the control
absorber EE, if needed, is also independent of the radial coordinates.
One uses then the method of separation of variables, writing the flux as
the following product:

o(x,y,2z,t) = £(x,y,t) h(z,t) . (1)

The basic reactor equation, Eq. (I-24), can be written as the

~sum of the two following equations:

2
o h 2.\ _
-D<—2+Bzh>-(v¢-EE)h, L (2)
oz
and
> _
-D(Af + Bpf) =0, o (3)
with
2 2 2 v
B, = Bp + B, . (4)

If the boundary condition on the curved surface of the cylinder
is independent of the axial coordinate z and of the irradiation, Eq. (3)
can be solved to yield an axial flux shape f(x,y) as well as a radial buckling

2
BR constant throughout the irradiation.
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Dividing Eq. (2) by DB;, one obtains the following equation for

the axial flux shape:

_<1 32h+h)_ Vo~ T . s
— = ——p— h. .
B, 8z DB

Let the reactor core be of height '2Z and choose the origin of
the coordinate system in the midplane xy. The function h(z, t) shall

satiéfy the boundafy condition

dh
hﬁ:él —&Eco for z = x* Z . (6)

We use the following notations:

ve=82/2°, (7)

L=2/2, (8)

h(z, t) = u(l,t) , Y
and v

€, =5£/z° (10)

The axial flux-shape is then the solution ul{{,t) of the equation

2 V =2
1 8% YT *E 11
\TZ2— zte| = ———— u, (11)
Yo 8L DBZ

- with boundary conditions
ute, 220 for L =21, (12)
Z 8¢

For a reactor symmetrical about its midplane, one considers
only the interval 0 <{ <1, and the boundary conditions become

du du _

ag O, § O, and u + ez-a—g 0, L 1. (1 )

The symbol V. in the right side of Eq. (11) represents the re-
sult of an operation on the function u, an operation which will be made

explicit for each fuel scheduling scheme.
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The perturbation method seeks the solution of Eq. (11) as the

sum of an infinite series of functions, each of which is the solution of a
linear differential equation. Some general methods for solving such a
linear differential equation are given in.the following sections; they could
-also be used for solving Eq. (11) by the perturbation-iteration technique.

. Finally, elliptic functions are introduced; they yield the exact
solution of Eq. (11) when the variation of the excess neutron production
v (6) is a quadratic function of the flux time to which the fuel has been

irradiated.

1.2, The Linearized Equdtions

The left side of Eq. (l1) can be considered as a linear operation
on the function u; it will be written Lu, where L is a linear operator.
Likewise, the right side of Eq. {11) can be considered as a nonlinear
operation on the function u.

‘There could have.been many other ways to write Eq. (11) as an
equality between the results of the operation of a linear operator on the
left side, and of a nonlinear operator on the right side; howéver, the
perturbation method, as applied to the present problem, fequires,that
the right side of Eq. (11) vanish for the just critical homogeneous reactor.
Thus, L is defined by

1 g° .
L= (—2——2—“) (14)
Yo 8

in such a way that the equation
Lu, =0 (15)

has a nontrivial solution u, satisfying the boundary condition.in Eq. {12).

0
This solution is

u, = cos YOc" (16)
where Yy 1is the smallest positive root of the equation,

cos Y, - €4 \1(0 sin yon, (17)
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According to the perturbation method, the solution of Eq. (11)

will be sought as the infinite series
u(,t) = up(L,t) + uy (L, t) +uy(L,t) - (18)
where each term is the solution of a linear differential equation
Lu_(L,t) = F_(L,1) . (19)

The following presents some general methods which will be considered

for solving such an equation.

1.3. Green's Function

The following results are the application to the present problem
of a theorem stated by Friedman (see Ref, F1l, p. 170),

The self-adjoint homogeneous differential equation
Lu(f) = F({), where 0<{ <1, (20)

with linear homogeneous boundary conditions, has a scluticn if and only
if F(L) is orthogonal to the nontrivial solution u0(§,) of the correspond-
ing homogeneous equation; i.e., if,

1
J F(x)uo(x)dx =0. (21)
0 .

Let V({) be a function satisfying the equation LV ({) = 0 (with
arbitrary boundary conditions) and let V({) be independent of uo(é) .

Then, a particular sclution of Eq. (20) is the function U({) de-
fined by

SN v [
u) = S f V() Fixdx - &) [ up B F(a)dx, (22)
0 0

where J is a constant which is easily determined from Eq. (20) in which
one replaces u({) by U({) (J can also be determined from its definition

as the 'conjunct' of the two functions u, and V),

0
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Letting L be defined by Eq. (14), with the boundary conditions
for symmetrical reactor, Eq. (13), one can then take V({) = sin YOQ;

the particular solution U({), Eq. (22), is given by

4 4
U(t) = Yg [cos yot,f sin yoxF(x)dx - sin yol;/ cos Y X F(x)dx
0 | Jo
We see that U({) vanishes as well as its first derivative at & = 0,
and the general solution u({) of Eq. (20) is the sum of this particular
solution and of an arbitrary multiple of the solution cos yoé of the

homogeneous equation, Eq. (15). Thus,

¢
u{l) = u({0) cos YOL - YO/sin yo(_g—x)F(x)dx . (23)
J0

An additional condition (normalization condition) is required in
order to define uniquely the arbitrary constant u(0), which is here the
value of the function u{{) at { =0.

The above result could be used in order to obtain the solution to
~ the linear equation, Eq. (19), when the function Fn(g,t) is simple enough
for the above integrals to be evaluated analytically.

This result could also be used in order to determine the solution
of the nonlinear equation, Eq. (11), by an iteration procedure, since

Egs. (11) and (23) are equivalent to

3 V.- Z
u(f,t) = u(0,t) cos YOQ = . YO/ sin yo(g-ix) _u__z_E u(x, t)dx (24)
0 DBZ v

and

1 v -ZE
[cos YoX _1_1—2-— ulx, t)dx=0.
Jo DB,

(25)
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Assume that one has obtained an approximate solution u(n)(é,t)
and the corresponding explicit expressions for V and EE’ noted by

V (n) and Z( n) respectively, which satisfy

! o ) _ g |
[ cos y,x u v E u(n)(x,t)dx =0, (26)
70 DBZ

then the iteration method yields the next approximation u(n+1)(§, t) as

u(n+l)(§,t) - u(n*l)(O, t)cos yoé

g v () _ g
= - Y[ sin y,(t-x) —u——Z—E— u(n)(x,t)dx. (27)
0 DB,

The values of u(n+l)(0,t) and Z)(E'H) are related by the following

equation:

1 g (ntl) _ s(0+1)
cos y X u > E u(n'H)(x,t)dx = 0. (28)
0 DB,

For instance, if one seeks the solution of Eq. (11) for which the
reactor is just critical without control absorber, i.e., if one lets
Z_. = 0, then Eq. (28) is just a normalization condition which determines

E
the value of u(n'H)(O,t)a

In.section III.4.3, the solution of the first-order perturbation
equation is obtained in closed form by use of the Green's function.

Equations (191) and (192) compare the results thus obtained with those of

an eigenfunction expansion.

1.4, Eigenfunction Expansion

In general, the function F({) on the right side of Eq. (20) is not
simple enough for the integral in Eq. (23) to be evaluated analytically;

one then seeks the solution u by using the eigenfunction method.



-95..

We developed this method during the study of the batch irradiation
.of unmixed fuel. In Sec. II, the case of a slab reactor corresponds just
to Eq. (20) where the operator L is defined by Eq. (14) together with the

boundary conditions for symmetrical reactor, Eq. (13). With the present

- notations, the result is o 1 .
, w . 2 F(x) cos vy, xdx
v5 jo (x) Yy e
u(t) = ajcos y b + =z cos y b 5 - — (30)
. =1 Yk Yo j cos ykxdx
0 g

where a_ is an arbitrary constant, F(x) satisfies Eq. (21), and Yy is

the (k+1)  .root of the equation
cos Y, - €5 Y sin yk:O. ‘ T (31)
- An iteration procedure for solving the nonlinear equation, Eq. (11),

could be derived with the help of Eq. (30), just as had been done with the
help of Eq. (23).

1.5, Fourier Expansion

The foregoing.eigenfﬁnction expansion has the disadvantage of
requiring one to first solve a transcendental equation, Eq. (31), in order
to obtain the eigenvalues Y and the éorresponding eigenfunctions
cos yk{, .

This section shows how to obtain the solution of Eq. (20) as a
Fourier series of trigonometric functions over a correctly enlarged
interval. Only the case of a symmetrical boundary condition, Eq. (13),
will be developed below.

First, one defines Q?l' as the first positive root of the equation
u0(§)= 0.

The function uo(g) can then be defined as the nontrivial solution

of Eq. (15) which satisfies,

(1) =0, at t=0, I (32)
and ' .
either u + ¢ du _ 0, atf =1 (33)
Z ag”' ] - H /

(2) ,
or  u(t;)=0. (34)
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Given a positive value of ¢ Z’ Yo is determined uniquely by Eq. (17)

and §1 is then given by
: - ‘
?;l =\»Tr/2 y0> 1. (35)

The above equivalent boundary conditions, Eqs. (33).or (34), are

defined in reactor theoryW3 as follows:

(1) The li‘nea‘.rb exfrapolation distance, 6£ , is the distance beyond Z
(the physical boundary of the reactor core) at which the tangent to the
neutron flux goes to zero. To fix the value of &, [ or ¢, Eq. (10)]

implies the use of the boundary condition given by Eq. (33).

(2) The reflector saving & is the distance beyond Z at which the
analytic continuation of the flux goes to zero. The degree of truncation

of the initial flux will be defined by the coefficient e, where

Z -7 5 :
€ = - = (36)
| 7 246
and the change of variable, Eq. (8), yields
B ' . 1 . )
Lt = T— - (37)

For a hdmogeneo;ls reactor, € and €, are related by Eq. (35)
in which one replaces él and Yo by their values obtained from Eq. (17)
and (37).

" The above definitions are represented in Fig. III-1.

Consider now the solution w{{) of the following equation:

- £L%L4,w> :EYQ)HU-QL’O$Q~$§;, (38)
YO dg
‘with
%‘g_o ¢ =0 andw(t_,)_o (39)

The symbol H, in Eq. (38) represents the Heaviside step function;

ie., H( - t) = 0 if £ >1, (40)
: I if §E<1.
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Fig. III-1. Reflector saving and linear extrapolation
distance.
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Seeking the function w({) by Green's function technique, one

first requires that the orthogonality condition be satisifed; i.e.,

L 1
[F(x) H(l-x)uo(x)dx :f F(x)uo(x,)dx =0, (41)
0 0

which is the same as Eq. (21).

A particular solution w{{) can now be constructed with the same
functions uo(g) and V({) as in Eq. (22).

The function w({) is then, when inside the interval 0 <{ <1,
identical with the function u(f), Eq. (23). Since the right side of Eq. (38)
is a piecewise'continuous funcfion, w(l), as well as its first derivative,
is continuous on the enyire interval 0 < sél .‘Fl Thus, at { =1, it also
satisfies Eq. (13).

Then, in th’e-interval 0 éé si, the solution w({) of Eq. (38),
with boundary condifion Eq. (39), is exactly the solution u({) of Eq. (20)
with boundary condition, Eq. (13).

However, at ¢ = 1, the higher derivatives of the function w({)

are not continuous; if one replaces the reactor equations, Eqgs. (11)

and (13) by

> ——tu 2

2 VvV -2 g
{1 2w ): _u_ E u H(1-¢), where 0 <{ §§1 , (42)
Yo ot DB

Z

and

i;i.z 0 at £=0, and u({;,t)=0, (43)

then the linear extrapolation distance is assumed constant throughout the
irradiation, but not the reflector saving. This corresponds to a reflec-
tor the composition of which does not change with irradiation.

One can now use the eigenfunction technique to solve Eq. (38).

The eigenfunctioris are c‘os'ﬁkg, ‘and the eigenvalue equation is simply
)
cos B, L, =0 . (44)

Equations (35) and (44) yield
{3k = {2k + 1) Yo (45)
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The solution u(t) has then the following expansion

1
: : [F(x)cos(Zk-fl)yOxdx
) an
: ' — : 5
u(t) = a, cos y,b + ) cos(2k+1)y, &
0 0 —/k—;l (2k41)°-1 0y
. f cosZ(Zk+1)y0x dx
o -

(46)
where
0l =<1,

Clearly Eqs. (30) and (46) are identical when ¢, = 0 (and con-

Z
sequently, when e = 0 ). _
Section 1II.4.2 describes the application of the Fourier expansion

technique to the solving of the first-order perturbation equation.

1.6. Elliptic Functions

The reactor equation, Eq. (11), can often be transformed into
the following equation which determines the flux time to which the fuel
has been irradiated:

_ > . _
6
{1 _9Y Lo} aioy-1. . (50)
2 2 1
Yy dx _

Here, G(0) is a given function of _ 6, and I, is a constant of integration

1
which is determined by the fuel scheduling scheme. ,
Equation (50) can be solved directly by two integrations; by

multiplying both its sides by g% and integrating we obtain

0
2 2 .
dée 2 6
(a;) =2y |1, +1,6 _T-ja(e) ae| = £(6), (51)
. _ 0

where I0 is a constant of integration. After requiringthatthe function £(9),

defined by the above equality, be non-negative, one obtains

: 1
tx= [ [£6)]7Z a0 +1,. (52)

In general, the above intégi'al cannot be evaluated in terms of
tabulated functions, but the following case (see Ref. W6, p. 454) is an

"~ exception.
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If f(t) is a quartic polynomial with no repeatéd factors,

4 , .3 2
f(t) = agt” + 4a,t” 4+ bayt” + dat+a,, (53)

the integral _ P

x= | [£(t)] © dt

N -

is equivalent to Ja
VIR () @y 2 1)) + 2 fl@) £ (@)

- , (54)
2 [vix) - 371 (@) °. 4i8-f(a)fw(a)

0 =a+

where vy(x) = y(x; GZ’ G3) is the Weierstrassian elliptic function formed

with the invariants of the quartic f(t), and

5
G, = aja, - 4a1a3 +3a,", - (55)

and
Gy =agaya, +2aja5a5 -a,” -aga; -2 a,. (56)

Whenever possible, the solution will be expressed in terms of
the Jacobian elliptic functions which are readily amenable to computations,
although that requires that the quartic f(t) be first resolved into factors
(see Ref. B3, p. 307).

For most fuel scheduling schemes, the function G(@) is the inte-
gral of the excess neutron production g{(f), Eqs. (62) and (67). Then,
Eq. (50) has a solution in terms of elliptic functions whenever the excess

neutron production, {or the nuclide concentrations) can be fitted to a

quadratic polynomial; we have

2

g(0) =gy + 8,0 +g,0", (57)
g 2 8

G(0) = g0 + o 0 +— 0>, (58)

and
l+g g g
£(0) = Zyg(lo $1,0 - —2 6% . %393 -5 94>. (59)

When Il = 0 (radial mixing with central control, graded irradiation,

~ bidirectional, in-out), Eq. (51) is in Jacobian normal form if g, = 0.



-101-

Otherwise, one has to find the roots of the polynomial £(8); this could
be done easily for any steady state fuel scheduling scheme when g2=0;
and one would then use the formulae given by ByrdB3 in order to solve
the integral in Eq. (52),

Sections III.4.5, III.5.2, III.5.3 and III.5.4 treat some simple
applications of the above discussion.. Standard no‘cationsD2 are used
consistently to denote the Jacobian elliptic functions sn, cn, and dn,

their modulus k, complementary modulus k', and reduced period K.

.2, Radial Mixing

2.1. Description and Equations

The fuel is irradiated batchwise while being thoroughly mixed
radially; its composition is then a function of the time and of the axial
coordinate only, The reactor is kept just critical throughout the irradi-
ation by means of a control absorber the composition of which is also
independent of the radial coordinates. The flux is then separable as
shown in Eq. (1). |

In a plane z = constant, the flux time to which the fuel has been
uniformly irradiated is the time integral of the radial average of the flux

t

0(z, t) =f hiz, t) 5 ff(x,y,t) as] at, (60)
0 S

where S is the surface of a2 normal section of the cylindrical core.

One defines a normalized flux shape u(f, T) and the corresponding

irradiation parameter T by T _
018, T) = f u(¢, T)AT . (61)
0
The excess-neutron producticn denoted by Va in Eq. (11) is now
the function V[6(¢,T)] . The following dimensionless functions
g(6) = v(6)/DB, (62)

¢(t,T) = Z (¢, T)/DBS , (63)
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will still be referred to as the neutron excess production and the control

absorption, respectively.: With the above definitions Eq. (11) becomes

T .
> |
<—1z a—u(zéﬂ+ u(c,T)> ={gU u(t, T)dT| - c(c;T)}u(c,-T) (64)
0 3 0

The above equation is exactly that which has been found to describe
“the batch irradiation of unmixed fuel in a slab reactor, Eq. (II-20); an
approximate solution can be obtained by the perturbation method developed
in Sec, II. The results shall be compared as follows:
Assume that the same fuel is irradiated batchwise in reactors
of the same geometrical buckling, Bg, according to the following pro-
cedures:
Case 1, the fuel is mixed radially throughout its irradiation in
a cylindrical reactor.
Case 2, the fuel is fixed in position throughout its irradiation in
a slab (or cylindrical but perfectly reflected on its

curved surface) reactor core.

The dimensions of the two reactors are not the same, sirice the
height of the first reactor must be Bo/.,/B(Z)an{ (i.e., BO/BZ) times
the height of the second; furthermore, the term in the right side of
Eq. (64) is,for Case 1, B(Z)/Bé times what it is for Case 2,
For both cases, the first-order perturbation theory determines

the control absorption by the equation
<[g(u0T) - c] uo'uo>= 0. (65)

This yields the same value of the flux time at end of life (c = 0)
and the same value for the final burnup of the fuel.

However, the flux changes as given by the solution of the first-
order perturbation equation are,in Case 1, Bé/BZZ' times the flux changes
in Case 2, and so are the corrective terms to be added to the flux time

and to the burnup of the fuel.



- -103-

In the following sections we consider nonuniform distributions
of the control absorber, and develop a technique for solving exactly the
equation.corresponding to a control absorber localized at the midplane

of the reactor.

2.2. Equation for the Flux-Time. Uniform Control Absorber

Equation _(64)ﬂcan‘ be transformed into an equation which determines
the flux-time; integrating it with respect to the irradiation parameter T

and using Eq. (61) yields

- T
2 : _
-(_é_ %gg + 6) = G(0) - jc(L,T) g_eT dT . (66)

The function G(f), which represents the total number of excess
neutrons which have beén-produced at a time t afterr startup, is defined
by 6

G(0) =f g(6)do . (67)
/0

The boundary conditions, Eq. (12), which applied to the function
u(f, T) also apply to the function 6 (§, T); thus, the right side of Eq. (66)
must be orthgonal to the function u,y (¢) in Eq. (16); that is

T
.<G(9), u0> = f<c '%GT, u, >d’I‘ ., (68)
0

Since the function uo(g) is also the ""importance"w?J of a neutron
.in the initial (homogeneous) reactor, the above equation states that the
total importance of the excess neutrons produced during the irradiation
is equal to the total importance of the neutrons absorbed by the contrcl
absorber. This is not in.contradiction with the existence of a neutron
-balance which should take into account that fact that the leakage from the
reactor did vary during the irradiation and is not exactly balanced by the
term DBg in the definition of the excess neutron production.

Equation {68) shows also that the end of life (c = 0) is reached
when the total importance of the excess neutron produced during the

irradiation attains its maximum value.
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The perturbation method could be applied to Eq. (66) instead of
Eq. (64) and would clearly yield the same results. The first approxi-

mation of the flux timeis 6, =T uo(l_i,), solution of the equation

0
LGO = 0. The first-order perturbation equation is then
' 0

which has a solution if and bonly if T and cy are reléted by

T

<G(uOT), u0> = [<c0 uo,uo> daT. (70)
Jo

When the control absorber is uniformly distributed, c, can be
taken out of the bracket, which represents a spatial integral, and Eq. (69)

will take the form

%& . )
0’70

The above equation will be helpful in the study of the graded irradi-

L91 = G(uoT) -

ation of the fuel. An approximate solution of this equation is obtained by
the calculation procedure developed for the batch irradiation of unmixed
fuel in a slab reactor with uniform control absorber| see Eqs. (II-109)

through (II-171)] .

2.3, Central Control

Equation (66) can be reduced to a simpler equation, Eq. (50), by
letting the control absorber be concentrated at a single axial position, for
instance, in the midplane of the reactor. Using the symbol § to repre-

sent the Dirac §-function, Eq. (66) becomes

1 5%
. (T S+ 0)= G(6) - C(T)5(L) , (72)
Yo XA

where

T
C(T) :/ c (T) de((i#) aT . ‘ (73)
o -



-105-

The above equé.fion reduces to
T
C(T) =j c(T)dT (74)
0

when one defines the irradiation parameter T as.the central flux time

(which is a monotonically increasing function of time)
T = 6(0,t) . : , (75)

According to Eq. (61), this corresponds to normalizing the flux shape
by u(0,t) = 1. The function C(T), the total number of neutrons which
have been absorbed in the control absorber during_the .irradiation, is
also a monotonically increasing function of t, and could be used as a

new variable,inste_é,d of T. The end of life is determined by the condition

Ty =g%-=0. (e

2.3.1. Exact solution. Equation (72) is the symbolic representation

of

5
'(—lr _‘i_g +~e) = G(9) , (77)
Yo 8

with a nonhomogeneous boundary condition at { = 0. In the present case,
this boundary condition can be obtained simply by integrating Eq. (72)
over a small interval - € <{ < ¢ and letting ¢ tend toward zero; this

yields

80 _
- 28 _E) - - om. (78)

_ 1 [aé6
;g__at +e€

The function 8(¢, T), the solution of Eq. (72), is continuous at
£ = 0, but its derivative has a jump of magnitude Y(Z)C(T)., Thus, if the

reactor is symmetrical about { = 0, the boundary condition is

89,12 o (79)
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The'problem can now be stated as follows:
The flux time is the solution 6({,\) of Eq. (77) which satisfies

the boundary conditions

20 _ a 88 _ _
gr =M at L =0, and 9+€Z.8—C_0&tg_l°- | (80)

An example of such a solution 6({,\) is given in Sec. III.4.5. The central

flux time T and the parameter \ are related by

T = 6(0, \) . ' ' (81)

The flux shape, normalized to 1 at the center, is

Equations (79) and (80) give the total number of neutrons, which have

been absorbed by the control absorber throughout the irradiation, as
_ 2 '
C(T) = 2)\/vq (83)

and the macroscopic cross section of the control absorber required to

keep the reactor critical is

. -1
o(T) - _T{%Ygd_oi%ﬂJ , (84)

and at end of life, c¢(T) = 0 determines X\ .

In general, however, the analytical representation of the func-
tion 6(L,\)  cannot be obtained exactly. An approximate solution of .
Eq. (72) can then be obtained by the calculation procedure developed

below.

2.3.2. Perturbation method. Rewrite Eq. (72) as

»

L6 =¢[ G(0) - C(T) 6(x)] , (85)
and seek the solution 6({, T) by the following power series:

6(8,T)= 6L, T) + €L, T)+ ¢ 0,(L,T) +---, (86)
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C(T) = Cy(T) 4 €C (T “Co(T) + -+, (87)
and
i
G(0) = G(GO) +¢G (90)9l o0 (88)
Equating the coefficients of each power of ¢ in both sides of

- Eq. (85) yields the successive equations,

Lo =0, | (89)

0
L91 = G(@O) - CO(T) &(x), (90)
§
etc.

The above equations are solved as follows:

(1) The first approximation to the flux time is 90(1;, T)=T uo(-L),
(2) The value of T is determined by the condition that Eq. (90) have

a solution; i.e., that its right side be orthogonal to uov(é):

(ColT) 8(L),ug ) = 5 Co(Thuy(0) =(GlugThug). | (92)

The &-function, which is generally normalized byf S{x)dx = 1,
| .1

has been normalized, for the éymmetrical case here considered, by
1

J §(x)dx = % . According to Eqs. (92), (73), and (67), the amount of
0 | -

control absorber needed to keep the reactor just critical at an irradiation
T 1is given by

2 (glagThugug) .« 2Cugig)
uO(O)u(O, T) - uO(O)u(O;T)

CO(T) = SO(T) ° (93)

(3) The general solution.of Eq. (90) can then be obtained by Green's
function technique, Eq. (23), the eigenfunction expansion, Eq. (30), or

by the Fourier series, Eq. (46). For instance, the eigenfunction expan-

sion is
an 2 1
A y <G(u0T),v >.,, 5 C4(T)vy (0)
6.(L, T) = A (Thu. (L) + Z k k v, ()
1!
T Gvew| () x

(94)
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(4) The coefficient AO(T) in the above expansion is arbitrary. It is re-

lated to Cl(T) by the condition that Eq. (91) has a solution, that is,
{C(T) 8(),u, )= C (T) u,(0) ={ G (8,)8 u> (95)
1 70 2 71 0 : 0’71’0/

According to Egs. (95), (73), and v(67), the corresponding correction to

the control absorber is

2<u0,u0> d {(g(uoT)Gl,uo>}

uO(O)u(O, ’r) dT <u0,u0>

Let 91(?;, T) = AO(T) un) +9>1k(§, T); if s,(T) is defined by Eq. (93) and
ay(T) = dAO(T)/dT, one obtains

cl(T) =

2 (ug,up) (gl T)e*,u> ds
_ 0’70 d 0 1’70 0
1) =g om T AT 0%y | 20(T)sg(THAGThgr

| (96)

(5) The general solution of Eq. (91) can then be obtained asin (3) above,
and one could repeat the foregoing procedure in order to obtain higher
terms of the perturbation series in Eq. (86).
A calculation procedure using eigenfunction expansions inv(3)
and (4) above is as follows:
Let hy, sk(T), and Sk(T) be defined by Egs. (II-109) through
(II-111), and note the definition of G(8), Eq. (67). By letting
uO(C.) = vo(g), one obtains

6,(8,T) =T E a, (T) v, (£), and v, (£) = cos y, L, (97)
’ k=0
where, according to Eqgs. (92) and (94),
2
Yo
0 (T) = —— [Sk(T) - by 5,(T) ] , where k #0, (98)
Yk~ Yo

and aO(T) = AO(T)/T is related to c,(T) by Eq. (96). At end of life,
one has sO(T) = 0 from Eq. (93), and one shall set cl(T) = 0. Equation
(96) then yields
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| .dd(T) = - %ST % ZT hk ak(T) Sk(T) ' (99)
k=1

T3r

Note that if one drops the term hk SO(T) on the right side of
Eq. (98),. Egs. (97) through (99) give the function 6 '1,(§, T) correspond-
ing to a uniformly distributed control absorber.

The flux shapé is now the derivative of the flux-time, Eq. (61).
The burnup of the fuel is given by the same formulae as in Sec. IIL3.
. The auxiliary functions defined and tabulated there make the 'problem
amenable to hand computation when the properties of the fuel vary as
a sum of exponential functions of the local flux time; another case

(polynomial representations) is developed in Sec. III. 4.

3, Graded Irradiation of the Fuel

3.1, Description and Equations

The fuel rods are replaced individually when burned up to a specific.
extent. . The fuel replacement is so scheduled that each small region of
the reactor contains fuel rods in all stages of irradiation between zero
and maximum, with average local composition independent of the radial
position, '

The flux is then vsepara,ble in spatial coordinates and the axial
flux shape is the solution of Eq. (11).

The flux time to which the most exposed fuel eiement, ready to
discharge, has been irradiated is denoted by 6({, T). It is proportional
to the flux shape; let T be the proportionality faétor, then

6 (¢, T) =T u(t,T) . o)

For instance, T would be the maximum irradiation at the mid-
dle of the fuel element ready to discharge if the axial flux shape,
u(¢, T), were normalized to unity at the midplane of the reactor; i. e.,
if
u(0, T)=1. : (102)
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The average local concentration N of a nuclide, the concentra-

tion of which varies with the flux time 0, as a function N(0) is,

g
N = %f N(6)d6 . (103)
0 -
In Eq. (11), the average excess neutron production Vo is then
1 , , ,
V.S 7F v (0)deo, (104)
0
and, since the reactor is just critical without control absorber,
ZEE 0. ‘ (105)

The equation for the flux shape, Eq. (11), becomes

- a—‘24+u = £ GO (106)
Yo ¢ '

where G(0) is defined by Eq. (67).
Multiplying both sides of the above equation by T and using
Eq. (101), one obtains

1 a%
| 59— —=+9)= GO), (107)
Y dag
0
o de _ _ dé _ _
with E—O at { =0, and G*GZEZ:_O at L =1. (108)

This is a second-order nonlinear differential equation, 6 is a
_ functlon 6(L) of the only variable &, and the irradiation parameter T

is only an auxiliary variable describing the relation between the flux

shape and the flux time. For instance, when the flux shape is normalized

by Eq. (102), one has
T =6(0) . (109)

Taking the scalar product of both sides of Eq. (107) with

{G(8), )= 0.

uo(é) yields
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Thus, a fuel rod is discharged when the total "importa.nce“w3
of all excess neutrons it has produced during its irradiation history has
decreased to zero. This illustrates th.e advantage of ''graded irradiation'
over ''radial mixing'" where, according to Eq. (68), the total importance

of the excess neutrons produced by the end of life is its maximum value.

3.2. Perturbation Method

The perturbation method can be applied to Eq. (107) as has been
done for Eq. (64), if we assume that the function G(6) is a small per-
turbation term compared to 6.

Defining L. by Eq. (14) together with the boundary condition,
‘Eq. (13), we write B | | '

L6 =¢ G(6) ' ' (110)
- and seek the expansion of the solution 6 in power,série's' of the pertur-

bation parameter ¢; we set

6=0_4+ €6 +e292+°'-, (111)

and a Taylor expansion of the function G(0) yields

2 ¥ 1 2 ) 2 _n
G(0) = G(GO) + (eG1 + ¢ 92 + )G (90)-4— -2-(691+ € 92 + ) G (90)+ :
(112)
Equating the coefficients of each power of ¢ in both sides of

Eq. (110) yields the following set of equations:

Loy =0, (113)

L6, = G(6,) , (114)
]

Lo, =G (6,6, : _ (115)

N 1 0 192 "9 6

LO; = G (6)6, + 507G (6,) , (116)

etc.

Each of the above equations has a solution if and only if its right
side is orthogonal to the nontrivial solution of Eq. (113); this yields the

following set of conditions :
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4<G(90_), 6,)= 0, o a1

(c' (8,06, 60)= 0, | - (118)

(e (010, + 567G (90)], 05 )= 0, (119)
etc,

The method of solution is as follows:
The first equation, Eq. (113), has a solution 60 ‘which is
uo( £), except for a constant factor; let then : ” '

0o = Tug(t) . o (120)

The second equation, Eq. (114), has a solution if Eq, (117) is
satisfied; this determines the value of T. The solut1on is then the sum
of a particular solution 61 and of an arbitrary multiple of the nontrivial

solution of the correspondmg homogeneous equation, Eq. (113); i.e.,
*
6,18 = 67(L) + Ay uy(L) . (121)

The third equation, Eq. (115) then has a solution if AO is so
chosen as to satisfy Eq (118).
This is,

/f"n'l T * - . -~
(G {u,T) 191+A0u0]590>—0, (122)
or, by using Eq. (120),

(e G (0, T), ug )

<u - oo Tha > (123)

One could then find a particular solution 0: of Eq. {115), and
repeat the preceding procedure.

The foregoing method of solution is just the same as that developed
in Sec. II for the study of ba.tch irradiation of unmixed fuel when the suc-
cessive correction terms to the flux shape are there so normalized that
the control absorption.is exactly equal to its first approximation, i.e.,
when all successive corrections to the control absorption are zero.
Accordingly, the calculation procedures are vefy similar, and use the
same results which have been obtained in the case of a uniformly distri-

buted absorber.
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<.uT), 0>
4rogy O

because the last term vanishes according to Eqs. (117) and (120); it is

The right side of Eq. (114) can be written G(GO) -

identical with the right side of Eq., (71). Thus, both equations have the

same particular solution, orthogonal to u,, which has the following

0
eigenfunction expansion:
o
* SN '
91(‘;, T)=T .ak(T)Vk(é) . (124)
/ =
However, the coefficient of vo(f,) is different. According to

Eqs. (67), (117), and (120) |
<uO,G(u T)) = j(g(u Thug u0> 0, (125)

and since: T must be pOSitive,_ it is the vrodt of the equation

T 7 )
g(u T)u P &
S(I)=1f<o 0 L4 = o. (126)
, < ‘

By replacing G (6) by £{6), Eqs. (123) and (124) yield

g(u T),u '
<<u1;g(u TY, u00>> (127)

The flux time to which the fuel of an elément ready to discharge

a (T) = - A (T)/T = - o.k(T)

has been irradiated and the corresponding average burnup are then cal-
culated as follows:

The functions k(T) Sk(T) <B>O , and T< k,B (v, T)> are de-
fined by Eqs. (1I-110) through (I1-113). They can be computed by Egs.
(11- 132), (II 133); (1I-135) and (II-141), with the help of the Tables of
auxiliary functions and coeff1c1e_nts correspondlng to thie slab reactor,
Tables II-1 through II-3.

Then, the first appfoxi'rhé.tion to the flux time is

90-(?;, T) = T cos yol; (128)
where T is the root of the équation
.So('II.“)= 0. (129)
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The corrective term is

91 (¢, T)y =T Zak(T)cos yké , (130)
k=0
with = ' Sk(T)'
| k=1 0
and >
Yo
4y (T) = ———r Sk(T), where k> 1. (132)
Y Yo

The corresponding flux shape is easily obtained from Eq. (101).

The average burnup of the fuel discharge fuel is
L]
. ) p ]
<6>_z<p>o + :f' a (TWT (v,. B (vOT)> : (133)
k=0

4. Polynomial Representations

In the following we are concerned with the study of flux shape,
flux time, and burnup; we assume that the variations of the properties
of the fuel with the local flux time 6 are functions of 6 which have

been fitted to polynomials; i. e.,

p
g(0) = Zgnen, (150)

and

B(6) = (151)

M
o
o}
[ea)
=}

n=0
The coefficients g, thus defined in the present section should
not be confused with those already defined for the exponential representa-
-tion of the functions g{(0) and B(6); for instance, g0 is now equal to

g(0) and by = B(0) = 0.
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The perturbation method, which has been developed in the preced-
ing sections, now yields €quations the solutions of which can be obtained
in closed form by using Green's function. The following gives the solution
of the first-order perturbation equation, Eq. (71), (90), or (114), as ob-
tained by eigenfunction éxpansions, Fourier series, or Green's function
technique. The case where g(0) is a quadratic function of 6 will be
given special consideration, since the approximate solution obtained by
the perturbation method can be compared with the exact solution given

by elliptic functions,

4.1, Eigenfunction Expansion

The general method of calculation which has been developed by
solving the first-order perturbation equation can always be applied. It

requires the computation of the following functions:

| o o
sk<T)=<gggz,)ZE§vk>=z n*\‘___”o‘,k’»@ (152)

1 : 2 " <V§n+l’vk>

1 ‘ :
S, {T) = —fs (T)dT = ¢ <, (153)
Pk T | %k E I AN
A n n <Vk Vk>

n=0

a
; 1 n '
. . _ N .
<B>0 <6(VOT)> an"r (¥ 1Y, (154)
n=0
and a
. L n n-1
T(v,. B (v T))= T: b_nT"(v, Vi) (155)
n=0
All the coefficients defined by the bracketed terms in the above

equations are integrals which could be evaluated analytically; they are

denoted as

1
ny _ n
Cx. n -_<vk,v0 >_f cos y x cos yyx dx . (156)
70
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For a bare reactor with negligible extrapolated distance, the

coefficients C are given by a single formula and the coefficients

O,n
Ck o 2re calculated by a recurrence formula| Eqs.(II-244) and (1I-245)].
For n odd, only the first terms up to k = 2241 are nonzero.
For n even, one obtains formulae of the following type:
2 _ k+l 2 21 '
<"o"’k>” CD7 3 BRI 2RSS (157)
and

4 _ k+l 2 41
(o) OO R T TR (158)

The eigenfunction expansionof'the solution of the first-order per-
turbation equation could then be obtained easily by the formulae previ-
ously derived, for instance, Egs. (97) through (99), or Egs. (130)
through (133).

The above formulae, Eqgs. (157) and (158), show the rapid de-
crease of the coefficients of the successive eigenfunctions when k in-
creases. Table III-1 gives the values of the first few coefficients Ck n

3

.corresponding to a bare reactor.
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Table of coefficients 2 C

) a
(evo )

2 Oy

! 2 3 4 5
4 2 3 4 8 10
1 - 3 Py ™ 3.5 16
4 2 1 4 8 5
0 T 35 T T BT 16
- 4 2. . 4 8 1
2 0 T 35T ’ T BT9 16
4, 2 0 4, -8 0

0 T B5.7-9 ' w579 11

< 4 .2 4  2:3-4
4 0 T ToTI 0 7 5 7°9-11° 13 0

a
Yk

=

cos (2k + 1)% 4
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4,2. Fourier Expansion

A particular solution of the first-order perturbation equations,
Eq. (69), (90), or (114), can be obtained by applying Eq. (46). Changing
the ,variable Lto x= yoé, the limits of integration in Eq. (46) become
YO 1= /2 and \ (1-e¢)m/2 according to Eqs. (35) and (37)., Thus,
if F(x) is then the right side of either Eq. (69), (90), or (114), a particu-

lar solution is given by

6, (x,T) - A'(T) cos x =

(1-¢)m/2
/ F(x) cos (2k + 1)x dx
T cos (2k + )x 0

éT (2k 4 1)°-1
= /2 cos® (2k + 1)x dx

0.

The integral in the denominators in the above equation is equal
to m/4. The integrals in the numerators can all be evaluated in terms
of the following integral:

(l-¢)m/2

C = = cos (2k 4 1)x cosx dx .

» One would then determine the solution of the first-order pertur-
bation equation [i. e., A(;(T)] in order to obtain a solution for the second-
order perturbation equation. The integrations which arise then.can also
be performed with the help of the integrals Ck n

For a bare reactor, Ck,n is identical with Ck,n in Eq. (156),
because ¢ =70 and Yy = (2k 4+ 1) /2. In general, the above defined co-

efficients C could easily be obtained as a power series of €. Re-

k,n
actors, whose reflector saving is small compared with their core di-
mensions, could then be easily compared with bare reactors by consid-

ering the coefficients of the first few powers of .
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4.3, Green's Function

4,3,1. Radial mixing with uniform control. The radial mixing of the

fuel with uniform control described by Eq. (71), as well as the graded
irradiation described by Egs. (114) and (117), yield the same equation

for the first-order perturbation of the flux time,

o (epeg)
< 0’0 5
P n+l _
=‘. . 8 7T (cos y‘oé - Kn)cos YO-Q , (159)
n=

where each coefficient Kn is defined by the condition that the right side

of the above equation be orthogonal to cos YOQ; i,e.,
1 :

J cosn+2y0§, dag
0 c

o 0,n+l1 :
K =em— LA (160)
n 1 Coyl

S | c‘oszyo'z_, at
0

Let Hn(g) be a ﬁ“articuiai' éolution of thé équaﬁ'on,

CLH_() = (cos™ypL - K_) cos vyt - (161)

Hn(l_’,) is now given by Eq. (23) as follows:
S ¢ ’

. . . : 1 . . i ] H

Hn(g) = - yojsin yo(gag._) cosnyog .;.Kn]cos YO{, dL . (162)>
0

With the change of variable,

X = YOQ R ) (163)

X

one obtains

Hn(x) = coSs x] cosn+1x sinx dx - sin x cosn+2x dx
0 .

S

x x
-Kn . cos x f 'éos % sin x dx - sin x coszx d};} ,
‘... 0 0 J
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or

H (x) = 1-cos™*2x sinx O .(x) + + K_ x sin x (164)
n X) = CO8 X —T+2-——- - 1 n+2 'Z n ) »
where the integrals X
Q  ,(x)-= cosn+2x dx (165)
n+2
0

are given by the following formulae:

-1

P
Y
n=2p-2, Q, (x) = —2-p <Zp> + 2—2—1p_1 T(er,——ﬂ—sm p(fr)r)x (166)
r=0
:PL p\sin r+l, P p!
n=2p-1’ sz+l(x) :Z ( l) <>7;+1— N Where <r>:m’ R (167)
r=0

Then, a particular solution of Eq. (159) is

+1

P
Gl(x, T) - 91(0, T)'COS X T gnn—H

o

One notes that the coefficient K Eq. (160), is defined equivalently

Hn(x) . (168)

as follows:

S A L P AN (169)
n = Qz(yo) 1 sin ZYO

When we have Yo = -; , the coefficient of the term x sin x in
Hn(x) of Eq. (164) vanishes, and one verifies that HZp(X) can be obtained
as a finite sum of eigenfunctions cos(2k+1)x .

The first functions I—In(x) are:

n =0, Hyx) =0, K (170)

o~ 1>
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' =1, .2 , 3 .
Hl(x)— —3-—(s1n x+1-cosx--Zle51nx),

ﬁ ( : sinzy )
. _ 0 :
sin y { 1 - ——— , v
K, = 0 3 . | (171)
1 : sindy
> Yol +'7—0
2 0 Yo
fn=2

Hz(x) = -317 (cos 3x.- cos x - 12x sin x + 16K2 x sin x),
(172)

3y0 X sin ZY_Q sin 4\(0
B 7 Y37

1 sin Tyo
A Zvy

2

Thus, Eq. (159), correspohdihg to radial mixing with uniform
control and to graded irradiation of the fuel, has a particular solution

given by Eqs. (168) and (164).

4.3.2. Radjal mixing with central control. In the case of radial mixing

of the fuel with central control, the first-order perturbation Egq. (90)

becomes
| L6 (&, T) = GluyT) - Cy(T) 6(¢)
P D ,
- Z 2, ?r.;_l Eosn“yog-K;a(g)] (173)
n=0
where each cogefficient K1:1 is defined by the condition that the right side
of the above equation is orthogonal to cos YO?;. By normalizing the 6-

function by g §(x) dx = % and by using Eqgs. (156) and (165), one obtains
0 .
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1
' n+2 _ _ 2
Kn = Zf cos yoédé = 2 CO,n+1 = 7(; Qn+Z(Y0) . (174)
0

Changing the variable ¢ to x, Eq. (163), a particular solution
of Eq. (173) is given by

£_ n+l .

T
8 ~mzT ) (175)

n<=

Gl(x, T) - 91(0, T)cos x =
i
where Hn(x) is a particular solution of the equation
1 n+1 i
LHn(x) = cos xaKné(x) . (176)

Just as with Eq. (116), the above equation is solved by Green's function

technique; one obtains
\

H (x) = 1-cos™ % sinx Q Ly K si (177)
n X) = COos X —n+r - in n+2 X) + ? YO n 1n x,
or, according to Eq. (164);
v 1 si ' 178
Hn(x) = Hn(x) + ZSIn'X(YOKn_KnX)" ( )

The solution of the first-order perturbation equation, Eq. (173),
is then normalized by the condition that the second-order perturbation

equation, Eq. (91), has a solution,

4.4. Examples - Perturbation Method

In the following we develop simple examples that illustrate the
use of the techniques of solution developed in the preceding sections,
and which yield a parametric study of the effects of the burnup of the fuel.
We consider a bare reactor with negligible extrapolation distance,

i.e., with

: i1
¢, =0, Y5 = 3. (179)
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Then the eigenfunction éxpansion and the Fourier expansion become
identical. The various integrals which.arise in computations using the
perturbation method are readily performed with the help of Table III-1;

1 1 <Vk’ V0n>
n \

they are:

1 c
. . n 2 O,n
f {.,51n-2-§ cos Z-Qd?;-F 3T
0
2 2
<V v >' 1 h, = 1, and 0 = Yo = !
N'k*kR/T 2 kT Z _Z2° "Z 27 i

In the folloWing Wwe assume that the neutron excess production,

g(0), is represented simply by
g 8o 7 82 .

The results are to be compared with those obtained if the fuel
were irradiated batchwise, but thoroughly mixed throughout the irradia-
-tion. The flux time Of to which the fuel has been irradiated uniformly

at end of life would then be the root of the equation glfy) =0si.e.,
0, =/ -go-/gz . (181)

Rewriting Eq. (181) as

g0) = g,[1 - (6/69°1 , (182)
a parametric study is performed by varying the two parameters$ g9 and

Of. The parameter g is the ratio of the initial excess neutron production

to the leakage, and is related to the initial reactivity of the reactor.
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The flux time to which the fuel has been irradiated is repre-
sentative of its burnup. Average and maximum flux time will be derived,;
they correspond exactly to the average and maximum burnup when the
function p(0) is linear.

The chosen form of the function g(8) will also allow a simple
comparison of the results of the second-order perturbation method with
those obtained by exactly solving the nonlinear equation.

The solution of the first order-perturbation equation will be ob-
tained either by eigenfunction expansion or by Green's function technique

using the following results:

(2) Green's function. Equations (160) and (174) and Table III-1 yield

1 1 3
K—-KO'—I, KZ:K2:2C0,3:Z’
Then, Eq. (172) gi H (L) = 0, Ho(L) = — 30 ¢ T
en, Eq. ) gives 0 ) =0, 2( ) = ﬁ(cos =& - cos > )
. ! v .o
and Eq. (178) gives HO(C,) = Z(l -t) sin > ¢,

and H;(g) = —:l)’-g (1 -¢) sinlzT L4 —;’2 {(cos 3 —zlr(, - CcOS % ).

(b) Eigenfunctions. Equations (152), (153) and Table III-1 yield:

_ 3 2 N 1 2
sO(T)—g0+ 78, T ,SO(T)-g0+~4-g2T ,
_ 1 2 1 2

s (T)y= 78, T, 5, (T) = zng/3,

5, {T) =0, k 22, and § (T) =0, k >2.

4.4.1. Example 1:. Radial mixing with uniform control. In this case, the

solution of the first-order perturbation equation is given in closed form
by its eigenfunction expansion which contains only the two first eigen-

functions. One applies the formulae which have been derived in Sec. II:
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3
o . _ 1 1 T _ .
- Eq. (II-121) .glves.al(T) = -gsl('r) =358, 3 and a.k(T) = 0 for k =2 2;
: : 3
. * d d 1 T 1 2
_ 5 2 T4
= 1zx3Z &2

. ds '
Eq. (II-120) givesa, (T) = C*(T)/T )= > T?
- g S| aT /= "~ 18x32 82

Then, for a value T of the irradiation, to which corresponds
an amount of control absorber cO(T) = sO(T), the flux time as given by

Eq. (1I-119) is

5
isx3282

and the flux shape is its derivative with respect to T; i.e.,

1

2 ™
Ix328,T cos 33¢4],

0L, T)=T[ (1 - TZ) cos% ¢+

5 2 U 1 2 £
w(, T)= (l-gsm>g,T ) cos > L + 55 g, T cos 35¢L.

At end of life, sO(T) = 0 yields

g
T=2(2) and T=2 6, . (183)
82 V3
The final flux time, and its central and average values, are then
0(L, T) = T[(1 4 1< ycos Tt- L g cos3T 1] (184)
P oex72 &0 Z 72 80 z > b
_ 1 2 7
00, T) = T(1 - gxrzgg) and (0)= 5T (1 +5xmreg) -
and the final flux shape, and its central and average valueés, are
u(§T)-(1+5‘()cos‘"§ 1 cos 30 L
Sl &x24 80 A zZ5
(185)

1 /N 2 7
w0, T) =1 - gy gy and (u) = 2 (1 +gzp7 &) -
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4.4.2, Example 2: Radial mixing with central control. The eigenfunction

of the solution of the first-order perturbation equation is first obtained
as follows:

Equation (98) gives the solution orthogonal to ug = Ccos % { as

cos(2k+1) 127- 4

* 1 37 ;

6. (L, T) = T<x [S,(T) - S ,(T)] cos £ - S,(T)

1 8 1 0 2 0 1/(:2 (2k+1)2.=1
(186)

The corresponding term for the flux shape is obtained by derivation with

respect to T

cos(2k+1) FZ' 4

* 1 3w
u (8, T) = x[s (T) - s,(T)] cos - ¢ - s,(T) 5
1 8 1 0 2_ 0 (2k+1)2-1

When the approximations of the flux time and the flux shape are

6(L, T)= T cos 3 4 + ef(g,T) and u(t, T) = cos 3 & +u’1"(g,T) ,

the control absorption corresponding to the value T of the irradiation

is
. [co(T) + ¢ (T)] (o, T) .
Equations (93) and (96) yield:
c(T) u(0, T) = 54(T)
and

1
c (T)u(O T) = (%T [ (gO +g, T 2‘ cos —g E)ej‘(é,T) coslzT— ¢ dg

o

-2 & {gz > £1S L(T) = s, (T)] 01,3}

because the coefficients all vanish for k= 2. Finally,

“k, 3

* -1 2 5 2
¢ (T)u(0,T) = 358, T (3g,+ 58, T) .
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At end of life, however, one can normalize the flux time in order
for the irradiation parameter to be the solution of the simpier equation,
. Eq. (183). The normalization coefficient,, AO(T) in Eq. (94), is then
given by Eq. (96) where so(T) =0, i.e.,

3k
c. (T)u(0,T)
= 1 0T 5 2, T 17
A== —g7ar - P58 T ) m “me

’ g
Since TZ = - —;E Y , one also has
S (T) = 2 and S (T) = - = (187)
olT) =385 and 5,(T) =-7g,
and Eqgs. (94) and (186) yield the flux time at end of life as
N
. 117 - . - o cos(2k+l)5 §
(8, T)=T{ (l4 55X 75 8,) €08 5 { = 5. g c0s 3 5L - =g .
2418 °0 , 2 8X9 207" 2 350 (2k+1)2—1
(188)

The above results will now be obtained in closed form by using

Green's function technique. Equation (175) yields

: : 3 v
91(4: T)-61(0, T)-cos _g ¢ = gO T Ho(g) + gZ % HZ(L)

3
= 7T S)(T) (1-)sin 3L + 35 g, ITr(cos 358 -cos 38), (189

and Eq. (95) gives the corresponding correction to the total control ab-

sorption )
1
: ' 2 2 ‘rr .
Cl(T) = Zf[go +g, T cos -TZTQ]GI(C,T)'COS 7?; d¢
0

1 T3

2 X
+16 82 T(‘ Co,18 82T '(61,3"Co,3)>'
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-finally,
15 2 1T 1 2
C(T) = 6,(0, T)so(T) + T Sy(TI 78y +37 8T 1~ 578, F(gpt 78,7 )

and the correction to the control absorption is the derivative of Cl(T)u
At end of life, sO(T) [ the derivative of T SO(T)] vanishes.

Equation (73) then yields the correction to the control absorption,

ds (T)
_ 0 5 2 1 2 5 2
cl(T)u(O, T) = 91(0» T)T +R>—g2 T SO(T) 'g‘z‘gZT (g0+€g2T ) .

This corrective term vanishes if 61(0, T) is given by

2 |1 5 2. 5 |
6,00.T) =5 T{a‘z(go t58T )~ Téso(T)] ,

‘and Eqs. (183) and (187) then yield the value of the correction to the final

flux time at the center of the reactor as

61
9100, T) = - gx77 8T -

Thus, the final flux time is

6(t, T)zT[(l-a—i% g )cos 3 ¢ - A gcos 35 L 4 g, % (1-t)sing gJ (190)

The above equation and Eq. (188) represent the same function.
The following equations give the central and average flux time at end of
life; the exact values from Eq. (190) are compared with the series from

Eq. (188):

(@) . . 72w - 197  _
‘é‘I‘->~l +Wg0 - 1 + 050676g0 2 (191)

., 31 3 -k
T T Eo\6x72 " Z 2K(Zk+1)(2k+2)
k=2

= 14g,(0.0718 - 0.0055 +0.0020 +~ ),

6(0,T)_, 61 . . . 0(0,T)_ 25 1 < 1
T ~ g3 80=1-0-14128, and ——=—'=l-g)lgz7> + 7 kzzz =)

=1-g(0.058+0.028+0.014+0.008 + = - °) .
° (192)
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A rather large number of terms shall be kept in the eigenfunction ex-
pansion in order to attain high degree of accuracy. This is due to the
discontinuity of the derivative of the flux time at { =0 .

One notes that the initial {(bare) reactor is homogéeneous except

for the central absorber. This yields

u(t, 0) = cos%[\/ 14 8¢ (§=1)+1]/'cos %— (n/ 1+g0 -1)

and the flux is everywhere positive if gg < 3. The above perturbation
method then gives the initial flux, normalizedto 1 at the center, as
cos% L+ 2— g_O(l" {) sin ;g- { and the initial control absorber as

cpte; = go(l + g0/4), while the exact value of the initial control is

) _
c=xTrg tez v/ 14gy~1) =g ltgy/4) +9'(g(3))°

4.4.3. Example 3: Graded irradiation. As for radial mixing with uniform

control, the eigenfunction expansion gives the solution in closed form.
The computations are straightforward: the flux shape is just proportional

to the flux time.

. The value of the irradiation parameter at steady state is given by
Eq. (129) as

S (T) =0 T2=4(—§9-) and T =26 | (193)
0 ’ g, £

Equations (131) and {132) yield

) s,(T)
a; = @SI(T) = - g0/24 and-ay = - a, é—a——ﬂ = g0/48 ,

and Eqs. (128) and (130) then yield

- L, 1 il 1 v
9(‘§,T)~T(1+Z§g0)¢os—Z-C—ﬁgocos37§°

The average and maximum flux time are

6(0, T) = T(1 “"21% gg) and <9> = %T (1 +T2-4g0) . (194)
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Central and average flux time to which the discharged fuel has
been irradiated are plotted in Fig. III-2, They are given in units of the
uniform flux time Qf [ Eq. (182)] to which thoroughly mixed fuel could be
irradiated in reactors of the same geometrical buckling.

The first-order per1:urba,tionBl gives the points corresponding to
g = 0. The second-order perturbation method gives the lines through

these points.

4.5, Elliptic Functions Solution Example

Equation (77) or (107) corresponds to Eq. (50) where I, =0.

Then by setting g,= 0 according to Eq. (180), Eq. (59) becomes

l+¢g g \
2 2 2 4
f(e)ZZYo[Io“T—OO 'ITGJ'
Setting > l+g0
T = , where g.>0 and g, <0, we have
..,gz 0

1 +¢g

_ 2 0 ! 2 52 4\
T -

For graded irradiation, as well as for radial mixing with central

control, the flux time shall be maximum somewhere in the volume of the

reactor. Let Trn be the absolute maximum; then, f(Tm) =0, and

l+g
2 2, .2 2 4 4
£(06) = vg 6—29[67@ - 0% - (T - 0%
T
l+g
2 2 2 2
:YO -‘?(—)(T -6)(67 - T =6)

f(6) shall be positive when 6 increases toward _Tm; the condition

(1 + go) > 0 yields

2
2 2 'Tm

67’ 32 Tm or —2-—-—
67" - T
m

n

N
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2.0

E— <e> /Gf
—.— 501/

}for the discharged fuel

4 Rad‘Radxal m'nc'm‘g\t uniform control
/3 ~
N
>0 ' 2 3 4 5 6 7
%

MU-29368

Fig. III-2. Average and central flux time for radial
mixing and graded irradiation (perturbation
method).
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Thus Eq. (51) can then be written as follows:

2 gl ()

m

2 2 67" - Tm
b = YO (1 + go) _6_7_2—— s (195)
and
2 T :
- m
k -— —2___‘-'2— sl ° (196)
61 - Tm

The general solution of the above equation is the Jacobian elliptic

function represented by the symbol sn:
6(t) = T sn (a + by),

where Tm and a are determined by the following boundary conditions:
(1) At ¢ = 0;

For graded irradijation, 6 (0) = 0 readily gives a = K.

For radial mixing with central control, Eq. (79) yields
9' (0) = Tmb cnadna = %— ycz) C. The foregoing equation is a relation be-
tween a, T ., and C, the total number of neutrons which have been
absorbed by the control absorber. The end of life is determined by
dC/dT = 0, where T is any monotonic function of the time (T, for

instance)

(2) At ¢ =1, Eq. (13) yields

sn(a 4+ b) + ezlbc:n(a 4+ b) dn(a 4+ b) = 0.

This is the second relation between a and Tm
If €, = 0, one obtains simply a + b = 2K,

For radial mixing with central control, the flux shape is the
derivative of 6({) with respect to T (or Tm) which involves derivatives
of the elliptic sine with respect to the modulus k as well as with respect

to the argument.
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Example: Graded irradiation of the fuel in a reactor with negligible

extrapolation distance. The boundary conditions are now satisfied if

a=b=K; the flux time is 6(¢) = TmsnK(1,+ t), and Eqs. (195) and (196)

yield -
2
K% = __2____2__Tm_ 1+k2=_2——z—6”2
6r°-T ~ 67°-T
and 2 6 72.T 2 2

K= (5) Urg) — ™ = (F) U4/t 45
. T

The quarter period K is the complete elliptic integral of the
first kind, a function of the modulus k. Given gy» one can determine

kz (ot K) by the last of the above equations, which is written as

2
2 2, 2 :
I:;K(k):l (L+k7)=1+g;. (197)
The central (and maximum) flux time is then given by
2 14 g, 2 l+g g 2
T2 sertk e 0 k.3 .‘0-4—‘ 01k . (198)
14k "82 14k &0 82/ 14k

The ratio of averagé to maxifmum flux time (or flux) is
1 ' K
‘ 1 - 1  [dnK - kcn K
0 0

and finally
<9>/T = log(#%)- -l——tanh k. - (199)

Figure III-3 represents the variation of the central and average
flux time as a function of tl.le parameters g0 and - Bf in Ezqé3(182).

Weé have used tabulated values of the function K(k) and com-
puted first the values of go co.rresponding to a set of values for k

Eq. (197); then, Egs. (198) and (181) yield
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Asymptote for (

T

Average flux time (6)/9f ]

)

%

MU-29369

Fig. III-3., Graded irradiation (elliptic-function solutions).
K = modulus of the elliptic functions.
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l+g 2
6(0)=T_ =6. /6 0% K
m f, €0. 14k

2

The flux shape snK(14{) is completely defined by the value of kz'
drawings are given by Jahnke and Ende. J2 ‘The ratio of central (ma.x1mum)
to average flux, Eq. (199), is representatlve of the ﬂattemng of the flux
due to the less reactlve fuel at the center

 In the follow1ng paragraph we verlfy that for go 0 the first-
order perturbation is exact and the second- order descrlbes, exa.ctly,
small deviations about 8y =0. ' 5

When go tends toward zero, Eq (197) shows that k“ - 0 and

K = m/2. Using the series expansion of the function K(k~), we obtain

2
L, 2 2
2 — k k .oou'

2 2, 3.2 N N
<—T?K> (1+k)=1+>5k ‘_"54<‘8_> + ;
. ' 3.,2 9 .2 - : - . -
and Eq. (197} yields 8g = 2. k (1v+ TB_k ) . :

Then, Eq. (198) gives T__ =261/ 1 ;go/z4 ~ 20,(1 - g,/48) , and
. v
(199) gives -2-<6>~ T (1 + g0/18) = ZGf(l +1z go)
These are the results already obtained.in Eq. (194)

5. Steady Axial Movements

5.1. Description and Equations

The fuel is moved steadily lengthwise through the reactor so that
the fuel at position z from the entry plane in each channel has been
burned up to the sarne extent. The composition is uniform radially, and
the flux is separable. | '

The increase in flux time to which the fuel is irradiated when the
fuel moves from z to z.+ dz is the product of the magnitude of the flux
at z by the time takeh to travel the distance dx, i.e., by the ratio of
‘the distance dz to the veiociff This is independen’c of the radial co-
ordinate when the fuel moves in each channel w1th a velocity proportional
to the radial ﬂux shape The flux time 6 is then a function of z only,

which is related to the axial flux shape u by
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e -
6(L,T) = Tj ul(t, T)dL, (200)
| Ly o

where T here denotes a parameter which is a functlon of the velocity
at which the fuel is moved For instance, if the flux shape were to be
normalized by the condition that its 1ntegra.1 from the entry face to the

'd1scha.rge face is- equal to unity, T would be the flux time to which the
>d1scharge fuel has been 1rrad1atef1

Various movements of the fuel will be considered.

(1) Unidirectiohal‘:.the fuel enters the reactor at { = - 1 and leaves at
¢ = 1. |
(2) Bidirectional: part of the fuel enters the reactor at { = - 1 and

leaves at . { = + 1, and the remaining part enters the reactor at { =
and leaves at Lt =-1. ‘

(3) In-Out: the fuel enters at { = 0 and leaves at { = % 1.

| (4) Out-In. the fuel enters at § = + ] and leaves at ¢ = 0.

"In the reactor equation,. Eq. (11), one sets" ZE = 0 for the
steady state,and one sets V =.v(6), where 6 is the function defined
by Eq. (200) with C’O 1, LO 0, LO +1 for unidirectional, in-out

and out-in movements respectively.

For bidirectional movement (symmetrical), one has
[ g
+
-1

u =%lv<9+) +v(67)], with4 o | : (201)
1 ‘

6~ T]u(Q,T)dL
£

The function u(f, T) is symmetrical about ¢ = 0; then, by de-

A<

.

fining 1

, . .
T:fu(g T)dT -Q—’Z’i , 0 = Tfu(C,T)dT =9—=}6—» (202)
0 0
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[

one obtains, : :
v, =3 [ V(T+6)4+9(T-0)] . | (203)

The reactor equation,jEfq*. !' (1 lv),l, "can then be written

- +ull, T) |= g (0)0u(t, T),  (204)

o
1 @ u(f,T)
—=

Yo 8L
and eé.ch of the. four fuel moyemen't‘s considered here is specified by the

follovﬁng definitions:

Movement (1)Unidirectional (2)Bidirectional (3)ln-Out  (4)Out-In

800 g®) . HeT+g(T-0]  g6) g6
Bounda.ry. Eq.(12) o YE'q._(13)" . Eq. (13) ‘..Eq. (205)
conditions '

o B O Y S

:T T F] - U 9. u 3 u H
©m/T [ et Joremas fpute i,

The function g(0) is defined by Eq. (62) and the last boundary

condition is

-g—g- - ¢, u= 0, where { = 0; and 'g—lé: 0, where ¢ = 1. (205)

We can then develop the perturbation méthod, as in the case of
batch irradiation of unmixed fuel, writing Eq. (204) as
. Lu= ¢ gA(VG) u, - : (206)

o=
and seeking the solution u as a power series in ¢, where u = €u .
n=0
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The functions un' are then the solution of the following equations:

LuO =0, - (207)
‘I_zu1 = gA(Bo)u0 ;o i : (208)
§
]'_,u2 = gA(GO)ul + gA(GO)GluO y - (209)
etc. , S

where 6 is obtained from u by the 1ntegrat10ns 1nd1ca.ted above;
| each"fur‘icletion/' ur; could be norma.hzed for instance, by the condition
that the equation for Uil has a solution. '

However, Eq. (204) is in fact a third-order nonlinear differential

~equation for the function 6, where

‘ 3 :
1 d76 d9 dé
_’Jg ar |= ealOgr (210)
Yo :
with three linear homogeneous boundary conditions given by the following
table:
1 7 2 and 3 4
6(-1)=0 : ‘ : 8(0)=0 o : 8(0)=0
6' ' 9" ‘ 9"(0 -0 " "
(-1)-eZ (-1)=0 )= 6 (0)-€ZG (0) =
-1 1 1 ” 13
6 (1)+e_ze (1)=0 1 6 (1)+eze (1)=0 6 (1)=0

An integration of Eq “(VZ.lO) with respect to § yields Eq. (50)
which can be solved by t\:'n}o' iritlégra.tions; the integration constants IO’
Il’ and I, are determined by the three boundary conditions. One notes
that in cases (2) and (3), I, = 0.

However, the boundary condltlons on the function @, the solution
of Eq. (50), are not generally linear and homogeneous. The application
of the perturbation method directly to Eq. (50) instead of to Eq. (206)

would then become unnecessarily intricate.



-139.-

The following sections give examples where the solution of
Eq. (50) is exactly given by elliptic functions. These examples have
been chosen because they yield solutions simple enough to allow para-

metric study.

5.2, Bidirectional Fuel Movement

In this case, elliptic functions yield the solution of the equation
for the flux time 6 = %(6"'@9") even when the excess neutron production,
g(0), is a cubic polynomial in 6, Let

2 3 2
8(9)=g0+g19+g29 *839 ’ (211)
then »
1 17 2
g,(6) = g(T+46) + g(T-0) = g(T) + 3 g (T)9° . (212)

We note that the sign of -g(T) and of g"(T) is not known, while
_ i‘n, preceding examples with g(6) = go t 8, 92 we had set g >0 and
g, <0. Thgre, however, the case go <0, g5 >0 would correspond to
a reactor used as a breeder; anysteady-statefuel scheduling scheme
could be used for this purpose. :
Integrating Eq. (210) with respect to { and using the boundary
condition at § = 0 yields

2

- Yg{[l +g(T)] 6 4 ¢ g"('r)e3} « (213)

14
Multiplying by d6/d{ and integrating again yields

2
d6 _ 5.2 1 2 1 v 4
The boundary condition is now 6(0) = 0, and I0 is determined

1] 13
by 6 (1) 4 €,6 (1); with 6(1) = T, this yields

2
2 4 € "
Ig S—[1+gM] + 57 8 (T) +2—;§—[0 1% (214)
0

L1
where 6 (1) shall be replaced by its expression as a function of T.
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In the following we consider bare reactors only, Eq. (179). Then

we have

2 1)
(%) N Yé (T% - 0% 1+ g(T)+§7g (T) (T2 +6%)].  (215)

This equation has for a solution either T sn K{ or T cnK(1-{), ac-

cording to the signs of [1 + g(T)] and g"(T) .
(1) When we have g"(T) <0, then
() =T sn KL, . (216)

since this function satisfies

2 2
d6> K° o2 2,2 2,2
=2 (T° - 0% (T” - k67,
<€C ;2

and one can find the positive quantities, K2 and kZ, such that Eq. (215)

is identical with the above equation. That is

2' "
K = v [1 +g(T) + T3 g (T)jl : (217)
and 2 TZ 1" TZ r .
k =-17g(T)/l:l+g(T)+17g (T)}° (218)

We know K2 and k2 are positive because the last factor in Eq. (215)
shall be positive when 6 = 0. Since this factor shall also be positive
when 6 increases toward T, k2 is smaller than 1. The complete
elliptic integral of the first kind, K, is a function of the modulus k only,
| i.e., K(kz) which is tabulated by Byrd. B3 Thus, Eq. (217) with Kk given

as a function of T by Eq. (218) is the equaticn which determines T.
11
(2) When we have g (T)> 0, then

6 =T cn K(1-8) , (219)

since this function satisfies

) 2 ‘2 5
(.g_g_) = K7(T‘Z - 92) (k T2 + kZGZ), where k = 1-k ,
T
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and Eq. (215) is identical to the above equation with

42 2
Kk =y [1+g(T)+T g (T)}

a.nd' ' 2
A k- / |:1+g(T)+—2-g(T’-| —Zg(T)

The above quantities are positive, as is the right 51de of Eq. (215). Both
the above equations are an equality between a Afuri'c‘:ti_o_r;' of k on the left
side and a function of T on the right side. Given ,thé»functior_l. g(T), they
determine - T, k’z and K-Z. For instance, by forming,'fifst_

2 . Co
2 2 n . ) ) E
K K% = YO —T—-Zg (T) : & - (220)

the following equations, similar to Eqs. (21‘7) and (218), are obtained:

‘ 2 .n'. ‘ . ;
KZ = Y(Z) [l + g(T) +%—g (T):|‘, e (221)
k™ =158 (T) / 1 + g(T) +—6—'g (Tﬂ . . (?22)

5.2.1.. Example 1: L1near case:; g(09) = g + gle ‘where g (T)=

‘Equation (218) or (222) yields k2 = 0, and then K= Yo = % Equation
(217) or (221) yields simply g(T) = 0 or, | |

T - - gy/e, | (223)

The flux tirﬁe to which the fuel has been irradiated whendischar,ged
is 9+(1) 2T, according to Egs. (201) ahd (202). . This is twice the final
value of the flux time which would be attained if the fuel were" 1rrad1ated
batchwise while being thoroughly mixed. _ - v

Equation (216) or (219) ylelds -_6 = T sin %é =T %:os% (1-¢), and
the flux shape, u({, T) is proportional to the derivative of 6 with respect
to ¢, i.e., ' . - ’ '

u(t) = cos 3¢ o (224)

as expected, because the composition of the reactor is uniform.,
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The above results are a function of -g‘O/gl, -only. If g9 >0
and g; < 0, the reactivity of the fuel decreases during the irradiation;
this is the usual case. However, one could use the reactor as a breeder
by feeding a.fuel the reactivity of which increases with irradiation
(gp <0 and gl > 0); the operational qualiti'es of the reactor are then
reversed; if the velocity of the fuel were decreased, the reactor would

become supeércritical.:

- 5.2.2. Example Quadratm case: g(@) = gO + g262, g"(T_) = Zgz";

(l) When ‘we have g, < 0, Eqs (217) and (218) become

2 2 ' 7 2
K —YO [l+go+€g2T],

and . >
- | K‘Z'kzﬂ-vggz?é_l‘
The e11m1nat10n of T2 yields the following relation between g0 and
(where 7 = yo)
| K (1 + Tk )— Yo(l + gO), and TZ‘ 6 & i

(225)
82 147K”
‘_ The flux shape is 'prepertionalﬂto the derivative of the flux time, Eq. (216),

with respect to §; that is, _‘
u(g, T)_ = ¢n K¢ dn KC . » (226)

The flux shape is pea.ked at the center because the fuel is more reactive

' there The average flux is glven by

(2) When we have g, >0, Eqgs. (220) and (211) become

22 2 T%

Kk =vye, 7

(227)

Al ey
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and

22 .. o4 2.
| K = YO.[1'+ g0 +_3» gZT 1

The elimination of T gives

) "1+g0_. _kz

2 2. 2 '
K(l-8)=vy.(l+4g,) and T =6 , (228)
0 0 8 1.8k%

The flux shape is proportional to: the derivative of the flux time,
(219) with respect to &. Norma,]1z1ng u(f, T) to umty at the center,

" one obtams

u(t, T) = sin K(1-¢) B EA-0)
' k

which can be transformed (see Ref. B3, formulae 122) into,

u(f, T) = cn Kg/an_Kg . o (229)

The average flux is

<u> cn, Kt ar=Lsar=-2L, . ' L (230)
u(0) 0 dn“Kt X Kk
The ma.x1mum flux is g1ven by 7 = 0. By using Eq. (213),

this yields

1" 62 2.1 .2
14 g(T_)-ljg‘g (T)9 =14 go_+g2Tl+§g26 = 0,
or * o _< . ‘
, 2 )
o, 1—8k2+1 K-z

. Then, if k'2 <1/2, the maximum flux is the central flux; if k2 >1/2,
there is a maximum flux given by the above equation, . and the flux has

a relative minimum at the center. -
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"
5.2.3. Example 3: Cubic case: g(0) = gy 1 83 93, g (T)=6gsT .
This example is treated exactly as was the preceding.

(1} ‘When we have g3 <0, Eqs. (217) and (218) yield

T3
-

ow‘-

2 2 3.3 22

Thus wé-h-ave
.\K(l 3k%) = y3(1 4 g.) and T° = 2l+g° i
+ =vy2(1+g,) an =22
0 0 83 143Kl

and ' ,
" u(¢,T)=cn K¢ dn K¢ and g‘%:—;—(n

(2) When we h?.ve g3 >0, Egs. (220) and (221) yield
KZ = y(?; E t gyt 2g3T3]v, K k YO g5T /2

" Thus we have

1+g 2
, g3  1-4k
and
1
u{f, T) =cn Kg/dn K¢ and (0) = R
The maximum . flux is off center when k‘2 > % ; it is given by
14 g(T) 4 L "(T.OZ -1 2. T + ¢, T6"
+ g(T) + T 8 )6 =1+ 8g t £3 £3
or by ' .
2 1 2 LI
(_9_) A T T S -z
T g;T 2k k

The ratio of central to average flux is plotted in Fig. III-4 for
the three examples treated above; it is a.function of g9 only.: Also
plotted is the value of k, the modulus of the corresponding elliptic

functions.
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1 ]
0] 12 14

MU-29370

Fig. III-4. Flux changes resulting from bidirectional fuel
movement (elliptic-function solutions).
u(0)/ <u> = ratio of central to average flux.
k = modulus of the elliptic functions,
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The value of T, which is half the flux time to which the fuel is

irradiated when discharged, is compared with the flux time 9f to which

thoroughly mixed fuel could be irradiated in reactors of the same geo-

metrical buckling; in the following tabulation we give some typical values

of (T/6;), which is a monotonically decreasing function of g0

g_Q.: - oo go =0 go = co
Linear: 1 1 1
1 1 1
"z N\ 2 2
Quadratic: (—67—\ = 0,925 (%) = 0.894 (%) = 0,866
L
. 5\ 1/2 /3 | 1/3
Cubic: 3 =0.873 - =0,,830 > =0.794

One notes that, although the changes in the flux can be very
large (cf. Fig. III-4), the value of T does not vary more than 5% from

the value it has when 8o = 0.

5.2.4. Perturbation method. An approximate solution could be obtained by

applying the perturbation method to Eq. (206).

The following gives the
results of the first-order perturbation.
Equation (207) has a solution ug proportional to cos YO?;, which

is normalized in order for the average flux to be unity, i.e.,

Yo
uo(g)_‘_—‘ é—iﬁ—y-o cos Y0§

and the corresponding flux time, Eq. (200), is
0 sin YOC'
o& T =T =y
The first-order perturbation determines T by the condition
that Eq. (208) have a solution; i.e., <gA(60)u0,uo> = 0. With gA(O)
given by Eq. (212), one obtains
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Lo (Bgugug)
g(T) + > g (T) —= = 0.
(Yo%)
The corresponding integrals are evaluated as follows:
1 .
.2 2
fsm yog cos yoérdg
0 : : :
1
sinzyoéf coszy0§ dg
A :

| <65uo’u.0_>_ "y

(%)

TZ (l-'§1n_2y0/4y0)
{l4sin %YO/ZYO)

4 sinz'\(0

" For the three examples treated above, Yo = % gives

2 "
g(T) + T g (T) = p .

(1) Linear case: g"(T) = 0; gg t ng =0,
11
(2) Quadratic case: g (T) = Zgz; g * Z—gZT‘2 =0.
; .o (T = . 7 3.
(3) Cubic case: g (T) = 6g3, gyt 783T° =0.

which correspond to the exact value of T when go tends toward zero.

5.3, Unidirectional

After two integrations, Eq. (210) becomés Eq. (51), where the
two constants of integration, I-O and Il’ must be determined by the
boundary conditions., One will consider the case of a bare reactor with
¢, =0 and Yo =12T- ; the boundary conditions at { = - 1 then yield

IO = 0; when the function G(6) is quadratic, Eqs. (59) and (51) become

2 l+g g g
a6\~ _, 2 0 1,2 2 53
(d’;) =2Vl - 5—0- 50" - 17 07).
The flux time T = 6(1) is a root of the last factor on the right side of the

above equation because of the boundary condition at § = 1.
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In the above equation, one can then use T instead of I1 as a

.constant of integration; it becomes

do 2 0 1 2 .2 I 2 2 2
<_§.> =2 y09('l-9)(_2_ _6_’[‘ +__2_T _6_4- )9+—2—9

This equation.can be solved by finding first the roots of the

(231)

quadratic polynomial in the last factor and then by using standard formulae

as in the following examples.

5.3.1. Example I: Linear case: g(0) = 8ot 8, 6. Let

>0 0, and T = 8o (232)
g » &, <0, and 7= =,

then Eq. (231) becomes

' 1+
dé \" _ .2 0

Using the condition 6(-1) = 0, one obtains

1+g0
Yo /37 +8) "] g0 9) (37—T 7)

and the inversion formulae (see Ref. B3, Eq. 233) give

(L) =T sn b(1+L), with bZ =Yg —35 —F °

2
2_ T k
k“= 5z=% , or T=31——7. (233)
I+k

The condition that 6({) be an increasing function of { and the

t
boundary condition 6 (1) = 0 yields

6(L) =T sn’ %—K(l-ké) (234)
and '
K= Y0(1+go)373 L oor ki) = vy Uegy). (23%)
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The last equation determines K and kz as a function of 8o
and Eq. (233) determines T, the flux time at discharge.
Using Eq. (200), one obtains.the flux u({, T) as

u(¢, T) =K sn %K(Hé) cn %K(1+C)dn %K(HC)

and the corresponding average flux is 1/2. Thus, we have

ul0) _ g2k ‘ (236)
) 14k

The flux shape, normalized to 1 at the center, can be written

u(t, T) = 1+k' [ l~k2

2k

on” JK(144) snK(I4L).  (237)

This shows the asymmetry of the flux about the center of the re-

actor.

5.3.2, Example 2: Quadratic case: g(0) = g0 i_gzez . Let

1+g0
g0>0,‘ g1<0, and T =7—,
-8

(238)

then Eq. (231) becomes

2 l4+g
2 2 2 2
<§,‘Z) = vg 6_720_ 6(T-0) (67° - T“ - TO-6%) .

The last factor is positive if T2 < 2.7'2., Let its roots be 9+ and

6 , then:

% («/ 3(872_T2)_T>s 6, >T202020_ = - _12.(,\/ 3(872’-T2)+T>°

Using the condition 6{(-1) = 0, ‘one obtains

| 8
Y /17—+g° (142) = 19
% er "~ Jy N0, (T-0) 0 (9-6)

(239)
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and inversion formulae [ see Ref. B3, Eq. (254)] give

(L) = T sn’ b(l+¢)/[ 1- % cnzb(1+§)] ,

with bz i Y(Z) 1+g20. 6+_(Z-9_) ,
67
and X T(9+—9_)
k= TIT0)

The boundary conditions yield b = -é— K. We will then eliminate

T between the equations

2 2 9+(T--0_‘)
K™ = Yo (1+g0) —-z-;z— s
and
T -6 )
2.2 2 + -
T

By noting that 9+ and 6 , Eq. (239), satisfy

, 2 .2
6,40 _=-T, and 0.0 =- (67°-T"),

equations containing only Tz, kz and )\=K2/[y(2)(1+g0)] are obtained as follows:

2
24 T2 (0.40)7-460 2 o2
61 6T 671 2T
lio 46T -0606 2
Ai- Lty -2+ - "":1-—2T
2 6'7'd 4T
and
2 2 2
NMa-Ledy s oIy
2 2 2
81 - 2T

Elimination of T2 between the first and the last of the above three

equations yields

KA/ - k%4 =yl g, (240)
and | 1.2
2 . 2 l-2k
T = 47 - - N (241)
Al -KkK™+ k;
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The flux time is then

6(L,T) = T sn” 2 K(1+8)/ [ 1-7 cn” 2 K(140)], (242)

and the flux given by Eq. (200) is

K( _P'I_jsn% K(14¢)cn %K(l}g)dn —;—K(I-PC)

(243)

u(t, T) =
[1-% cn® %—K(HQ)]Z

The ratio of average to central flux is then obtained from Eq. (200) as

T Zk’
3,
u(0 y—- 14k

O <1¢%x k'§2’

(244)

1

- 14k

where T/@_ is obtained from Eqgs. (239) and (241).
The flux time at discharge T and the ratio u(0)/ <u>of central

‘to average flux are plotted in Fig. III-5. For finite gy the flux is not

maximum at the center of the reactor. Therefore, the ratio u(O)/< u. ;
which decreases very rapidly with 8o is not the ratio of maximum to
average flux,
The perturbation method can be applied to obtain an approxi-
mation to the flux changes.  The first-order perturbation is as follows:
Equation (207) gives the first approximation to the flux shape,

cos yol;. Then Eq. (200) with §0 =-1 gives

Yo sin yOC, + sin Yo
%8 =m0 Yob Oolb T) = T——5y Yo

The first-order perturbation determines T by the condition

that Eq. (208) have a solution; i. e°,<g(60)uo,uo>= 0. Let

5 .
g(0) = g, + g; 6 + g, 6 (246)
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Fig. III-5. Irradiation resulting from unidirectional fuel
movement (elliptic-function solutions).

et
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and
. . 2
. [ v v T si2Yeh [ w p] p28in Yb
g(eo-) = gl -Z) +[g ( 'z'q > —s_irTy—_+ Vi g ("2') (7)' — >
0 sin” Y,
then ‘

g(6,)u,,u, ' " g
( 0% %o) g(gzr_) " fl[g (%ﬂ %Jr%fz[g -(g)](?z) , (247)

O

- where the coefficients fl and fzy can be evaluated as follows:

sin YOL cosZyO§ d¢
-1

f) = I, =0,
sin YO/ cos yot_, ag
~and 1 -1 |
in 4
f sin2 YOL coszyoé dg - sin %Yy
-1 | _ Y,

T T i 2 sin 2 vg \
sin yof cos yoé dag 4 sin Yo I—T—
0
-1

When Vyo = —1?; , Eq. (247) becomes
T 1y »T,|,T 2
g(7)+§ g (7)(7) =0.
The two examples treated above give

(1) Linear case: g, =0, gg t gl %—= .

2
(2) Quadratic case: gy = 0, 8ot % g, %_ =0.

. The above equations give the exact value of T for 8g = 0.

' - . S2
The first-order perturbation method has been applied by Sola
to this unidirectional fuel movement. Functions giving the first approxi-
mation to the value of T have been tabulated in the case where the excess
. . . Bl1
neutron production is represented by a sum of exponentials. The sec-

ond-order perturbation method would then yield an eigenfunction expansion
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of the correction to the flux, the coefficients of which are also given for

a bare reactor by modified Bessel functions of the first kind.

5.4, In-Out

A first integration of Eq. (210) yields Eq. (50) with 'Il = 0; this .
is the equation for graded irradiation, and it has the same general so-
lution. The boundary conditions are now 6(0) = 0 and Bv (1') +626”(1) =0,

,If“ €, = 0, the bqundary condition is 8(0) = 0 and 6 (1) = 0 while
it was 8 (0) = 0, 6(1) = O for graded irradiation. The solution is then

exactly the same except for a change of the variable { to 1-&.

5.4.1. Example: £5,=0 and g(0) = g0+ 8; 6% . This case has been

treated for graded irradiation. One obtains the same values of K, k,

and T , with
m

0(%) = T  sn K¢,

where Tm = 6(1) is the flux time of the fuel ready to discharge; the fuel
is now irradiated to the maximum flux time which is attained only at the
center of a rod for graded irradiation.

The flux shape is proportional to the derivative of the flux-time,

u(f) = cn K{ dn KU .

The flux is much more peaked at the center due to the effect of

the more reactive flux at the center, The average flux is now

i v

| 1 _ 2

‘<1‘(1—0>)=/cnK§dnK§d§=R< =
0

The perturbation method can be applied to Eq. (206), giving the

first approximation to the flux shape and to the flux time as

et

Y sin YOC

uo(é) = cOos Yoc, and GO(Q,T) = T —éﬁ—y—o o i

sin Yo
The condition for Eq. (208) to have a solution is <g(90)u0,ﬁ0> =0.
"When g(0) is a quadratic function of 6, this yields

<g(90)“0”u0>= 2

7_——7“0’“0 go + flng + fngT =0,
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.where f, and fz are evaluated as follows:

! 2
f sin YOC cos YOC’ dg
0

1

2(1- cos yo)

f. = .= -
. 2 . PAE ’
T feetgar g T

AT
and '
1 <3 > sin 4 Yo
ﬂ) sin yoé cos yot, df 1- TT
f. = = a o
2 .2 1 2 sin 2 Yy
’ . . 2
sin YO/O cos YO{" d¢ 4 sin Yo <1+ TY__9>
' 0

When Yo = 321 , one obtains simply

4 1 2 _
go-k-?’?gv1 T + IgZT =0.

One recognizes the function SO(T),&Eq. .(153).

For a bare reactor where .YO = -TZT- , one could obtain an approxi-
mation of the flux time by using the same formulae which apply to the
graded irradiation of the fuel; however, the flux shape is now the deriv-

-ative of the flux time with respect to § .

6. Discussion of the Results

The average flux time <9> to which the discharged fuel can be
irradiated according to various fuel scheduling schemes is plotted in
Fig. III-6 as a function of the parameter go- It has been assumed that
the excess neutron production is represented by the following function

of the irradiation flux time 0:

» 2. 2
glo) = vy Z;- Z - DBS)/DB‘;:gO[I,-(ﬁ/ef) ],

where Of is the uniform flux time to which completely mixed fuel could
be irradiated batchwise, and gy 1is the ratio of (a) the excess neutron
production corresponding to the fresh fuel to (b) the axial leakage of
neutrons in the uniformly loaded reactor. The burnup of the fuel is a

monotonically (here linearly) increasing function of the flux time 0.
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Fig. III-6. Comparison of average irradiation of the fuel
at discharge for various fueling schemes,.

[l
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.The results are interpreted as follows:

(1) The avérage burnup of the discharged fuel is largest for

steady-state fuel scheduling schemes because the reactor always contains

some fresh fuel with reactivity greater than average, while only the most
irradiated fuel, with reactivity less than average, is discharged. Steady
axial movements usually yield better results than graded irradiation where
the most irradiated fuel rod still contains some nearly fresh fuel.

(2) According to first-order perturbation theory (i.e., for' a
given flux shape), the greater the average importance of the fuel, the
larger the reactivity of the reactor. The importance function is pro-
portional to the unperturbed flux shape, aﬁd thus, larger burnup is ob-
tained with the in-out technique where the fuel at the center of the re-
actor is relatively more reactive than in the bidirectional or unidirectional
fueling schemes. Similarly, radial mixing, in which the less reactive
fuel-is at the center\, yields smaller burnups than completely mixed fuel.

(3) The second-order perturbation theory takes into account the
flux-shape changes; the flux shape tends to flatten when the less reactive
fuel is at the center, according to the one-group diffusion model. The

flattening of the flux, which here occurs for radial mixing and graded

. irradiation, results in an increase of the average burnup of the fuel;

this has been explained in Sec.11.4.3. Thus, as shown on Fig. III-6, the
average burnup increases with the parameter g0 to which the flattening
of the flux shape is proportional. On the other hand, for in-out and bi-
directional movements, the fuel at the midplane of the reactor is the most
reactive; the flux shape peaks, and, on Fig. III-6, the average burnup is
seen to decrease with 8g° For unidirectional movement, the flux shape
is not symmetrical about the midplane of the reactor, and this skewing
of the flux decreases strongly the attainable burnup.

On Fig. III-6, exact results have been obtained by means of ellip-

tic functions for the steady-state fuel scheduling schemes. The accuracy

~of the perturbation methods is then easily determined, since first-order

perturbation approximates the average flux time by a value that corres-
ponds to the unperturbed flux shape (g = 0), and since second-order per-
turbation theory approximates the curves plotted on Fig. III-6 by their
tangent at 8 = 0. '
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The first-order perturbation results are accurate within 5%
for bidirectional movement and can be in error of as much as 25% for
unidirectional movement. 7

- The exact results here lie between the first-order and the sec-

ond-order perturbation approximations. The second-order perturbation
method emphasizes the effects resulting from the flux-shape changes; it
always agrees ‘qualitativ_ely with the exact results, but gives close agree-
ment only for small values of 8g3 quantitative agreement decreases as
8o increases. For graded irradiation when 8o reaches the value 10,
second-order perturbation results are 13% larger and first-order per-
turbation are 13% smaller than the éxact results; at larger values of
8o’ first-order perturbation is better than second-order perturbation
method. However, only the latter can describe .the flux changes.
| Elliptic function solutions of the one-group reactor equation
.should be useful for survey studies of steady-state fuel scheduling schemes:
The general method requires that we first approximate the excess neutron
production g(f) by a second-degree polynomial, However, the uncer-
tainties in the basic nuclear data, discussed by McLeod, M4 as well as
the corrections for lumped fuel (see Appendix C), indicate that a more
refined representation of the function g(f) may sometimes not be justified.
Furthermore, the one group model is shown in the next section to be
adequate. to describe the diffusion of the neutrons in large thermal re-
actors (with energy independent boundary conditions) loaded with low en-
fichmeﬁt fuels.

Such exact solutions are not available for batch irradiation. How-
ever, since the burnup of the fuel is smaller there, the flux changes are,
in general, also smaller. Therefore, perturbation methods are more

accurate for the same initial reactivity of the fuel.
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IV. APPLICATION TO SPECIFIC REACTOR SYSTEMS

Specific reactor systems will be defined by a corresponding re-
actor which is considered to be at operating temperature with equilibrium
xenon and samarium, Such "reference designs have been developed for
large thermal reactors, Bl, Pl In the present section, we present a réf-
erence design for a small high-leakage U235 light-water reactor. The
flux change throughout the irradiation and the average burnup of the fuel
at end of life are.then determined easily by using the perturbation calcu-
lations developed in the preceding sections, according to a one-group
model. ’

The validity of the one-group diffusion model is then investigated.
For reactors whose reflectors can be represented by a reflector saving,
two-group diffusion calculations can be performed with only a slight modi-
fication of the calculation procedure developed in Sec. II.

1, U235 Light- Water Reactor

1.1. Reference Design
5

The reference design reactor is defined as the reactor whose core

is uniformly loaded with a charge of fresh fuel; high cross-section fission
products {xenon and samarium groups) are present at their equilibrium

concentration,

1.1.1. Initial composition, The homogenized composition of the clean

reactor core is that of the mixture with which experiments have been per-

formed at Bettis L«’;\Lboratories:CAz Uranium (U308, 93.37% enriched

2 24
U 35

), Zirconium, and water. The number densities, in units of 10

atoms/cc, are as follows:

Ny = 0.0001717, NH = 0.03368,

= 0.000012, and N, =0.02132.
Zr

5

Nog

1.1.2, Effective thermal cross-sections, These have been obtained from

L Al
the tables of cross:sections averaged over a Wilkins spectrum. corres-

ponding to a neutron temperature of 500°K and a U235 to hydrogen-atom

ratio of 0.005.
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For 1/v absorbers, the absorption cross sections are given by

the formula o'a = AK

0.180 barns,
0.332 barmns.

6.0 barns, K
2.73 barns, and K

A =0.6087 K26
K

Zr
H

28
For non 1/v absorbers, one obtains directly:

= 386.6 barns, = 328.7 barns, and 0, = 1.n979><106barns°

Oa,25 Tt 25 Xe
The average number of neutrons produced per fission and the
23
capture to fission ratioin U > are

Vo = 2,47, and ayp = 0.1761

- The transfer cross section of hydrogen is Oir H- 24,34 barns.

For the other materials, transfer cross«sections are computed according

to the formula 0‘tr = Ga + (1-H)Gs .

UZ'35 or U?'38 Zirconium Oxygen

(1-p)o 9.972 6.155 4,025

The diffusion coefficient is then computed from the total macro-

scopic transfer cross section ztr by the formula

D=1/3Z =0.3054 cm.

1.1.3. High cross-section fission products., The samarium group contains

the stable fission products. If Y is the yield per fission of such fis-

Sm
sion products, then at secular equilibrium

YSm Zf"> = NSrnG Sm¢ ’
The xenon group contains the fission products with a large dis-
integration constant N\. If the total yield of xenon per fission is Y,

then at secular equilibrium
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YX2f¢ = NX0X¢ + XXNX .
The total poiéoning ratio, defined by
NxOx * Ngm Osm = ¥ Nag0 25 -

is thus given by the formula

3 1 T ' y ‘
r = W {Ysm + YX/_(l‘f')\X/O'X(P)] .

The fission yields which have been used in computations per-

formed by Shanstrom are

Y = 2.1% and YX =6.1%. .

Sm

The Reactor I—Ia.ndbookE1 gives
5 -1

KX = 2,1X10 sec

The average flux has been chosen

¢ = 3X1013 neutrons/cmzsec

corresponding to an average power density of 52 kW/liter of core. Then

we have
r = 5,,62‘700

1.1.4., Neutron balance., The neutron balance is written on the basis of
235, The corresponding production of

one thermal neutron absorbed in U

fast neutrons is
Z: 25 V25

25 = Y25 Z o5 Trayg (1)

Because the amount of U2 8 present is very small, the fast fis-

sion effect and the resonance absorption are negligible; thus, the fast
fission factor is € = 1, and the resonance escape probability is p = 1.

The nonleakage probability during moderation is computed accord-
ing to the Fermi equation _’BZT (2)

_ 0
Pth_e
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For the considered mixture with equal volumes of metal and

water, the Fermi age to thermal, as computed by Wilkins, w7 is
T=61cm

The neutron balance is computed for a reactor of geometrical
buckling, Bg, corresponding to a bare cylin_d;ical reactor of equivalent
height and diameter equal to 70 cm where BO = 0.006735.

The fast nonleakage probability is then P, = 0.6632,

The absorption by the permanent absorbers is proportional to the
sum of the macroscopic cross-sections of Zr, H, and U238. If the mix-
ture were not homogeneous, equivalent homogeneous cross sections could
be determined by weighting the cross~section of each nuclide by the cor-

responding thermal disadvantage factor. Gl’ Bl

Neutron Balance

Production of fast neutrons: N5 = 2,1002
Leakage during moderation: (I'Pth)nZS - 0.7073
Net production of thermal neutrons: Pth o5 = 1.3929
Consumption of thermal neutrons by:
U?3> fissions: 1/(1+a25) =  0.8503
u?3® capture: a25/(1+o.25) = 0.1497
Absorption by Xe and Sm: r = 0.0562
Absorption by permanent
absorbers: NPG P/NZSO'25 0.1381
Thermal leakage: DB(Z)/N2.5025 = 0.0310
Total: = 1.2253
Absorption by control poison: ZE/NZSGZS 0.1676
Total consumption of thermal
neutrons: = 1.3929
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The reactivity p for the reference design, defined as the ratio
of the absorption of the thermal neutrons by control absdrbers to the

production of thermal neutrons, is

_0.1676
P=13929

The effective multiplication factor of the reference design without

= 0.12,

control absorbers is
K _1.3929
eff ~ T,2253

1.1,5. Effective thermal cross-sections GF and 026"— The low cross-

= 1.14.

‘section fission products can be considered as 1/v absorbers, with a

reference cross section 0%“200: 65 barns (see Ref. El, Sec. 2-11), The

corresponding crosszsection averaged over a Wigner-Wilkins spectrum is

Op = 0.6087- 65 = 39,6 barns.

The resonance absorption in U 36 is taken into account by adding
a resonance contribution to a purely thermal cross=section. The rate of

absorption in U236 is

N, 0,6 &= Nyo 052 ¢+(1-p)vP T4, 3)
where v P1 chb is the number of neutrons slowed down to resconance
energies, per second, and Pl is the nonleakage probabilit323from fis-
sion to resonance. The largest resonance absorptionin U occurs
at 2.6 eV, and the leakage from this resonance energy to thermal is
negligible; one.then lets Pl = Pth" The quantity p is the resonance
escape probability, Assuming that resonance absorptions occur only in
UZ36 » 1-p is the probability for a neutron to be absorbed in UZ'36
resonances. The U236 is very dilute in hydrogen and the resonance
escape probability p is a linear function of the resonance integral

26 .
Ieff’ that is,

26
_Nag et

l-p = .
Nyos, g
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The scattering cross section Os g of hydrogen at resonance

energies is constant and equal to 20.4 ba.rns;I_14 Iezsff)f

is given by
. H3
Halperin as 400 barns,
Finally, dividing Eq. (3) by N26¢ and replacing (1-p) by its above

expression, and replacing P1 by Pth and replacing v Zf by

o = oth 4 " Pin Nas %25 26
26 = %26 " THa,, N og p eff

The above data yield

0y = 3.65 + 53.83 = 57.5 barns.

1.2, Composition Changes During Irradiation

1.2.1, Equations. The nuclide concentrations, excess neutron reactivity,
and burnup of the fuel, are expressed as functions of the flux-time 6 to

which a local section of the fuel has been uniformly irradiated. The cor-

responding assumptions are stated in Sec. I1.2.1.1.
The nuclide concentrations vary with the flux time 6 to which
the fuel has been irradiated, according to Eqgs. (I-3) through (I-8); i.e.,
~0 50
0 25

Nyg = Nyg e ’

Ny¢e O %xe * Ngm sm = ¥ Nog 925

-0 2]
01 25
Nyg = Nog Tra,, (1-e )
5
and . 0.0
0 25 025
Ng = Nog 155 (1-e ).

25

2
The burnup B(6) is defined here as the fraction of U 35 atoms
destroyed; it is simply

-0,.0
BO)=1-e 22 . (5)

The macroscopic cross section for production of thermal neutrons

is
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VinZe = Ve Py PNyg 0 op

Ve PwP o0 o 928
T7a,, Nes%2s®

and the macroscopic cross section for removal of the thermal neutrons
is

2
Ea + DB0

= Npg0 5t Ny O *Ng 0 g +NLO 4Ny 0 )0 +N op+DB0

0 a,.0,,40 -0,.0
9257 %259267%F 0(1- 25 )+Npop+DBz

=(1+7)N% o o

4 ———
259 25° l+a25

The excess neutron production v is then the function of 6 de-
fined by
2
v(0) = Vih Ef - Za - DB0 .
According to Eq. (II-18), the dimensionless excess neutron pro-

N
duction 1is

g(0) = v(G)/DB = g (6) - g, (6) , (6)
with
| 0
VinZs Npg0p5 Ve Py P -0,0
g (9) = 2 - 2 ]_+a e 3 (7)
p DB DB 25
0 0
and
N 0 N pBZ +o
25925 @259 2670 | ~025Y Np0,1P05p 22502670 p
gr(e) - 2 l+r- T+a )0 e t—0 HIT I
DB 2519 25 N>50 56 25) 92

(8)

ak
3k

For use in Sec III one should multiply the right side of Egs. (6)
through (8) by BO/B , according to Eq. (III-62).
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1.2,2. Fuel- cycle parameters. The burnup and excess neutron pro-

duction are now functions represented by the sum of a constant and of an -
exponential function of the flux time. The numerical values of the cor-
responding parameters g, and 8,5 are computed by Egs. (6) through

(8).

The above reference design corresponds to the following values:
3

-0 9
g (6) = 44.95¢6 2° |
p
-0 6 .
g.(0) = 8.98 + 30.56 e 25 , * (9)
and —0250 :
g(0) = - 8.98 + 14.39 ¢ . d

These functions represent the neutron production, the neutron re-
‘moval, and the excess neutron production in a reactor loaded with the
same armount of U235 as is the reference design reactor.

In order to reduce the variation of the excess neutron production
of the fuel, it is customary to add in the reactor a '"burnable poison'"
which burns out more quickly than U235° Figure IV-1 shows the vari-
ation of the neutron production, the neutron removal and the excess neu-
tron production with and without burnable poisoc% GAnalytica.lly, one adds
to gr(G)[and subtracts from g(f)] a term gp B m Fig. IV-1, one
has chosen for gp the value which cancels the initial excess neutron

production,

1.2.3. Application. The results of the parametric study performed in

Sec. I1.4 can readily be applied to the above reactors, with

(go*+8,5)/8,5 = 0.376, and g, ¢ = 14.39 .

~

The following values of the average burnup of the fuel at end of
life correspond to the bare cylindrical reactor of equal height and dia-

meter with no burnable poison.
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Without burnable poison
———— With burnable poison
o) m —
5 -
TSI
O 4 S
g(8)
-5 | |
0 0.5 1.0
o,5 8
MU.29372

Fig. IV-1. Variation of neutron production, neutron removal,
and excess-neutron production with irradiation,
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Average burnup at end of batch irradiation of fixed fuel.

Perturbation method Finite differences

. Zero-dimensional
ISt order Zn‘d order 35a 49a 100a
0.376 0.182 0.254 0.250 [ 0.2441(0.241

Finite differences computations predict an exact value of 0.238.
The first-order perturbation, although more accurate than the zero-
dimensional approximation, is still in error by 24%. The second-order
perturbation yields as accurate a result as does finite differences com-
putations using less than 35 mesh points, and thus should be useful for
survey studies.

The above results illustrate the use of the perturbation method.
However, they correspond to a one-group analysis which is not adequate

in the present case, as will be shown in the next section.

2, Two-Group Diffusion Equations

2,1. Assumptions and Equations

&

The neutron distribution is now described by a fast flux ¢ and
a thermal flux ¢.

The fast flux is caused by neutrons of all energies above a thermal
cutoff energy. These neutrons are produced at a rate eV zfq;, and the
properties of the fast neutrons can be characterized (see Ref. W3,p.

502) by a diffusion coefficient Dl

section approximated by:v_Dl/T,, where T is the age of the neutron from

and a removal (slowing-down) cross-

fission energies to the thermal cutoff energy. Thus, the fast flux satis-
fies the equation
D1
-D, Ap + — ¢, = evIp. (10)
By assuming that all resonance absorptions take place at the
thermal cut-off energy, the production rate of thermal neutron is

D
pTl ¢y and the thermal flux satisfies the equation

#Number of spatial mesh points; 12 time steps have been used.
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D
-DAG + (B, + Eg) ¢ = p= &) - (11)

It is assumed that the diffusion coefficients D and D1 are con-
stant in the volume of the reactor; otherwise, one should have written
div(D grad ¢) instead of DA¢ .

The following applies to bare reactors and to reactors whose
reflector can be represented by a reflector saving. * Thermal and fast
fluxes are assumed to satisfy the same linear homogeneous boundary
condition, Eq. (I-13), on the outer surface of the reactor core. Since
both functions ¢ and ¢y satisfy this boundary condition, they can be
easily expanded in the eigenfunctions Vi of the corresponding eigen-
value equation, Eq. (I-39),

Consider first the following linear operator

Liby =-7A¢ +¢; . (12)

The operator L. is such that the self-adjoint homogeneous

1
equation L1¢1 = 0 does not have any nontrivial solution; therefore, it

has an inverse L_ll, and Eq. (10) becomes .

Dl -1
__;¢1=L1 (evzf¢), (13)

For instance, using the eigenfunction technique yields

D, {3 v | |
Aoy s S S -

An equation for the thermal flux is now obtained from Egs. (11)

and (13); it can be written

2 - 2 |
-D(a¢ + Bgo) = p L' (ev Z) - (£, 4 DBL + Z) ¢, (15)
while the cne-group diffusion equation reads

> 4
“Such reactors are considered by the FUELMOVE Computer Code. Ma -
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2 2
-D(A¢ + By¢) = (ev Pup E, - Z_ - DB; - Zo) ¢ (16)

The one-grbup model thus replaces the operator L1 by a
scalar, the probability Pth that a fast neutron escapes leakage during
the slowing down process. For the uniformly loaded reactor, the two-
group model defines the .fast non-leakage probability by Pthzl/(1+Bg 7).

The definition of v Eq. (I-10), is now

th’

€vp ‘
v zev P p:——-T . (17)
th th 1+B0"r

The two-group diffusion equation, Eq. (I5), is now set in di-
mensionless form. As an example, the equation corresponding to batch
irradiation of unmixed fuel is derived below by extending the definitions
of Sec., II.1.1.

A thermal flux shape u(x,t) and an irradiation variable T are

defined as follows by their relation to the thermal flux-time 0(x,t):

t

T
0 (x, t) =f ¢(x, T)dt =f u(x, T)dT . (18)
0 0

The macroscopic cross sections Zf and Z_ are assumed to be
known functions of the thermal flux time to which the fuel has been

irradiated; one defines then two dimensionless functions

2
Vv z Z + DB
th ~f a 0
g () = —— and g_(0) = —2—y | (19)
P DB, T DB,

which represent respectively the production and the removal of thermal
neutrons, in units of the initial thermal leakage. The corresponding
definition of the dimensionless excess neutron production g(f) and con-

trol absorption c¢ is

: ZE
g(0) = gp(@) - gr(e) and ¢ = —— . (20)
D55 :
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With the above notations, and under the assumption that the
resonance absorption p. be uniform in the volume of the reactor core,
Eqs. (15) and (17) yield '

-(B—lz- Au 4 u> = (1 4 B(Z)‘T) Lil[gp(e)u], - [gr(9)+c] u . (21)
0 .

Finally, dimensionless coefficients P, are defined by

1+ Bz'r
- 0 - (22)
Pk 7
1+ Bk'r

and the eigenfunction expansion of the right side of Eq. (21) is obtained
from Eqs. (13) and (14). Thus, the thermal flux shape u(x, T) is the

solution of the equation

= (] 6) - g_(6) - .
(o) of, Oy e

By =0

5

The above equation can also be written:

1 = (O)u Vk>
a(T Au -+ u) = [ g(8)-c] u - wk Vi (24)
B k
N0 : =1
where one has made use of Eq. (20) and defined coefficients wk.by
(BL-BO) 7 14BCT |
14B, 7 - (By-By)T

The one-group diffusion equation, Eq. (II-20), would be obtained
by setting W = 0. .The infinite sum on the right side of Eq.. (24.)' repre-
sents the net deficit in the production of thermal neutrons resulfing from
their diffusion during slowing down; it is orthogonal to the ﬁnperturbed
flux Vo and thus it does affect the flux-shape changes. However, the

criticality condition is always

(Lglo) - <] u,v0>= 0.
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Multigroup diffusion equations, with energy independent boundary
conditions, as well as the continuous slowing down model, still yield
Eq. (24). Only the definition of the coefficients W need be modified
(see Appendix B).

2.2. Computation Procedure.

The perturbation method can now be used to yield an approximate
solution of Eq. (24) with only slight modifications of the procedure de-
veloped in the preceding sections.

The flux shape is expanded in the eigenfunctions vk(x), .and its
first-order perturbation ul(x, T) is the solution of Eq. (24) where u

and 6 are replaced by vo(x) and Tvo(x).,

2,2,1. Batch irradiation of unmixed fuel with uniform control absorber.

In the calculation procedure, we use Eqgs. (II-109) through (II-122) ex-
cept for the following modifications: Eq. (II-116) is replaced by

2
BO ‘
a.k(T) = B_Z._B;Z_ [sk(T) - W Sp,k(T)] , where k =1, (26)
k™70
and Eq. (II-121) is replaced by
B
k70
The function sp k(T), which can be computed exactly like the function
sk(T), is defined by
T
s (T) = <gp(V°T) Yo' k) and 5. (T) = & [ s (m)ar (28)
p-k V,,V p-k T Pk )
k’ "k o

2,2,2. Continuous fueling. When the composition of a cylindrical reactor

core varies only with the axial coordinate =z, the radial shape of both the
fast and the thermal flux is the same and it does not vary during the ir-
- radiation; this requires energy independent boundary conditions on the
curved surface of the cylindrical core. The flux is then separable in the

axial and radial coordinates., -
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Thus, considering for instance the graded irradiation of the fuel,

only the last of Eqs. (III-128) through (III-133) is modified as follows:
2 -

Y
0 .
ak(T) = 7.—\(2—[ Si(T) - w . Sp,k(T)] . (29)
k™Yo
2.3. Example 1: U235'Light-Water_ Reactor

Computations have been performed for graded irradiation of the

35 light-water reactor préviouslyvdescribed, . According

fuel in the U2
to the note below Eq. (6), the right side of Eq. .(9) is multiplied by
Bg/B; = 3.34 and one obtains

p - 0-259
g(6) = - 30 + 48e , and gp(@) = 150e

2.3.1, One-group analysis. The one-group analysis is performed accord-

ing to Eqgs. (111—128) through (III-132), The first-order approximation of

the flux time at steady state is

- Tr ’
0,50(6)=1.228 cos> ¢
and the corresponding value of the average flux time is 0,5 <60> = 0.782,

The second-order perturbation correction to the flux time is

0,50,(8) = 1,228 [q.,1184 coslzT- £ - 0.3534 cos 3% 4

+0.0266 cos 55 § - 0.0047 cos 7‘%;

40.0013 cos 974 ++-- | .
The average value of the flux time is then

= 2 -
. <00 + 91>,_ 1.228 = (1 +0.242) = 0.971 .

This is 24.2% larger than predicted by thefirstorder perturbation
theory (the average burnup of the fuel is about 20% larger).
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2.3,2. Two-group analysis. The two-group diffusion model results in a

modification of the second-order perturbation of the flux-time. The use

of Eq. (29) instead of Eq. (III-132) yields

i m
0,50 (8) = 1.228 [ -0.0358 cos 5L + 0.1000 cos 33¢
-0.0296 cos 5 % £ + 0.0071 cos 7 I&ig

- 0.0023cos 9 55 + -+ ],

and

_ 2 -
025<90 + 91> = 1.228 5 (1 - 0.076) = 0.722 .

The average flux time is now 7.6% smaller than predicted by the

first-order perturbation theory.

2,3.3. Discussion of the results. The flux time at steady state:(propor-

tional to the flux shape) is plotted in Fig. IV-2. The very large dif-
ference between one-group and two-group results can be explained as
follows:

Consider for instance the central region of the reactor, where
U235 is strongly depleted. According to the one-group model, thermal
neutrons are produced in this region proportionally to Vih Ef and ab-
sorbed proportionally to Z_ . During the irradiation of the fuel, v 2P
h'as decreased more : than Z_  did: there is a net deficit of neutrons,
Vih .Ef - Z)a, resulting in a minimum in the flux.

According to the two-group model, some fast neutrons, produced
at higher rate by fissions in the adjoining regions of the reactor, thermal-
ize in the central region; this increases the net production of thermal
neutrons in this region, above the value predicted by one-group theory.
This increase can be more than large enough to compensate for a deficit
of neutrons proportional to Vih Ef - Ea, thus resulting inan increase in
the flux in the central region.

The continuous slowing down model, Appendix B, yields results
which differ even more from those obtained by the one-group analysis,
because it increases the fast leakage probability, i.e., the diffusion

of the fast neutrons.
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Two-group

One-group

(arbitrary units)

Flux time 8 ({)

MU-29373

’

Fig. IV-2. Spatial variation of the flux time for graded
irradiation of U235 fuel. Dashed curve represents
zeta first-order perturbation values; solid curves
represent second-order perturbation values.

/
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Addition of burnable poison to the fuel tends to decrease the
flux where it is already smaller; i.e., where this poison has been
burned up to a lesser extent. Thus, in Fig. IV-2, the flux shape cor-
responding to the one-group diffusion model would be closer to the un-
perturbed flux shape and that corresponding to the two-group diffusion

model would be more peaked at the center.

2.4. Example 2: Natural Uranium Heavy-Water Reactor

Consider the graded irradiation of natural uranium fuel in the

Candu Reactor.  The reference design is to be found in Nuclear Chemical

EngineeringB1 together with the formulae for computing the variation

of the nuclide concentrations on irradiation. . Computations leading to
the determination of functions such as the above defined g(6), gp(e),
~and B(B) are illustrated b'y Davidson, D3 ‘We have obtained the fo,llowing

results for the Candu Reactor with the reference design loading of natural

uraniums:
' -G .0 -G, .0
VIO) - 0.2356 - 0.0411 6 4+ 2.2269 e 22 +5.2057 e 7
N>59 25 -0 448 -0 4,0
)‘ - 6.1417 e - 0.9599 e ,
and
vE (6) -0..0 -0, .0
= 1.9064 4 7.1509 ¢ 2> 418.4351e 0
NT o
25 %
> -0 409 -0 40
223.2431 e - 2.1847 e .,

The neutron burnout of U236 has been neglected and the symbol
049 here represents the exponent denoted as vy 049 by Benedict and
Pigford; when the flux time 6 is expressed in neutrons per kilobarns,

the various exponents in the above equation are

0,5 = 0.5670, 049 = 0.8811, 040 = 0.7711, and 041 = 1.3387.

The functions g(6) and gp(G) are then obtained according to

g(6) = V(O)/DBS and gp(e) = vtth/DBg , (30)
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with the following values (see Ref. Bl):

* - 0.0392, B>
250 25 = 0.0392, B, h

According to Eq., (III-62), for the following second-order per-

2
DBO/N T = 0,0156, and vth/v =¢P,, p=0.8968.

turbation computations performed for graded irradiation of the fuel, one

multiplies the right sides of Eq. (30) by Bg‘/B; =.2,7885,

2,4.1. One-group analysis. We use Egs. (III-128) through (III-132) to

obtain the approximate value of the flux time at steady state; the first-

order perturbation result is
o
00(4) = 3,065 cos =&,

and the corresponding value of the average flux time is <90> = 0.1951.

The second-order perturbation correction to the flux time is

6,(L) = 3.065 (0.1133 cos ; £ - 0.2828 cos 3 %r,

+ 0.0124 cos b -TZT ¢ - 0.0004 cos 7 %g o),

and the average value of the flux time at steady state is now

<60 + 61> = 3,065 —12; (1+40.2101) = 0.2361 neutrons/kilobarn.

Thus, it is 21% larger than the value predicted by the first-order per-

turbation theory.

2.4.2. Two-group analysis, When Eq. (III-132) is replaced by Eq. (29),

the second-order perturbation correction of the flux time becomes
6, (¢) = 3.065 (0.1134 cos > L - 0.2827cos 3 5 ¢
+0.0136 cos 5 3¢ - 0.0015 cos 7 3¢ - 0,0004cos 9 34 + ") -

The average value of the flux time is now

<90 + 91>= 3.065 TZT_ (1 4+ 0.2105) = 0.2362 neutrons/kilobarns.
It is again 21% larger than the value predicted by the first-order per-

turbation theory.
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2,4.3, Discussion of the results, One-group and two-"group analyses

yield results which agree to the third decimal; the agreement is well
- within the accuracy required in the above fuel cycle computations. This
is of importance because one-group analyses are simpler; it suggests
the usefulness of the analytical solutions which could be obtained in
terms of elliptic functions (cf. Sec.Ill.6). The agreement of one-group
‘and two-group results (for energy-independent boundary conditions) is
due to the following:

(1) ﬁkThe fast-leakage probability is small; thus,.the coefficients
W in Eq. (24) or (26) are small.

(2) The variation of the total fission cross section on irradiation
is small because of the production of fissile isotopes of plutonium; a
constant fission cross section_[gp(@) =.constant] would correspond to
sp,k(T) = 0 in Eq. (26).

The second-order perturbation method yields here a correction
of 21% of the average flux time predicted by the first-order perturbation
theory. A similar correction has been obtained by Shanstrom, S3(p, 205)
in the case of graded irradiation of low enrichment uranium fuel in the

Yankee Atomic Electric Reactor.



~179-

V. CONCLUSIONS .

1. Perturbation Method

The first-order perturbation theory had previously been developed
as an important tool for fuel-cycle analysis, becausé it yields results in
'~ an analytical form which can be easily used for parametric studies.

"It is improved as follows by the present use of a generalized
perturbation theory: ‘ :

(a) The flux changes can now be described and their effects on
reactivity lifetime and burnup of the fuel taken into account.

(b) A successive approximations scheme is obtained; since the
equation giving each ’approximation can be chosen in the simplest possible
form, computations are relatively easy. The accuracy obtained by using
- first- and second-order approximations has been determined for a wide
variation :of the physical parameters. The second-order a.ppro)dmation
gives more accurately the average quantities, ‘like the reactivify life-
time and the average burnup of the fuel, than the local quantities, like
the flux shape (see Sec. II.4.7).

(¢) "The effect of a variation of any physical parameter can be
studied analytically. Many practical cases are now amenable to hand
computations by the perturbation method. .This should be of particular
importance in survey studies of various fuel-cytcling schemes. This
method also suggests a simple approach towards programing such
studies on digital computers. Functions have been tabulated which allow
the study of fuel burnup and reactivity lifetime for one-.and two-dimen-

sional reactors to the second-order approximation.,

2, Fuel-Cycle Results

Application of the one-group and two-group perturbation methods
to typical reactor problems has illustrated the importance of an accurate
description of neutron transport with respect to energy and space for
small thermal reactors with large fast leakage. In such case, the one-

group model may result in large errors in the predicted flux shape at
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the end of irradiation. However, the one-group model yields useful and
reasonable results for large thermal reactors with relatively little leak-
age.

Parametric studies emphasize the importance of the neutron leak-
age in keeping small the variations of the spatial distribution of the neu-
trons during the irradiation. Large leakage favors the use of first-order
perturbation methods. The first-order perturbation predicts a smaller
- or a larger burnup according to the reactor type and the fuel scheduling
scheme considered; its results are not always on the conservative side.

Our study has indicated that there could exist an optimum ratio
of radius to height of a cylindrical reactor core such that maximum re-
activity lifetime and fuel burnup takes place for a given initial fuel
loading. '

An exact analytical solution for the reactivity lifetime and fuel
burnup has been developed for continuous fueling schemes, provided
the 6ne»group model applies and provided the characteristic excess neu-
tron production of the fuel varies as a quadratic function of the flux time
of irradiation exposure. A comparative study of various continuous fuel-
ing schemes has been made for fuel with typical propefties (see Sec.

I11-6).
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NOMENCLATURE

- Coefficients of the eigenfunction expansion of u,. Eq (I-40)

Coefficients of the eigenfunction expansion of 6, Eq. (II-92)
Coefficients in.the function representing the burnup, Eq. (I-31)

Eigenvalue of Helmholtz Equation, Eq. (I-39)

Geometrical buékling, .Eq.. (I-19)

" Dimensionless control absorption, Eq. (II-19) or (III-63)

Time integral of the dimensionless control absorption,
Eq. (III-13) '

Coefficients defined by Eq. (II-243)

Diffusioncoefficient,,Eq, (I-10) '

Auxiliary functions dvefined.by the following equations in
Sec. II:.EO(W), Eq. (137); _]331 k(w),.Eq. (140);

E, (%), Eq. (128); E5 1 (w), Eq. (134)

Auxiliary coefficients defined by the following equations in

Sec. II: f., Eq. (138); f Eq. (139); f “Eq. (129)

0’ 1,k’ 2,k’
Flux magnitude factor, Eq. (I-33)

Right side of Eq. (II-34) or (III-19)

Dimensionless excess neutron.pr_oduction , Eq. (II-18) or
(IV-62)

Coefficient in the function g(f), Eq. (II-125) or Eq. (III-150)

Integral excess neutron production, Eq. (I1I-67)

.Dimensionless coefficients, Eq. (II-109)

Eigenvalue, (l+l)th, root of Eq. (II-213)



-182-

Modulus and complementary modulus of Jacobi elliptic

functions
Complete elliptic integral of first kind

Linear operator, .Eq. (II-33)

Nuclide concentration

Functions.defined by Eq. (II-266)

Resonance escape ';;robabil_ity

Nonleakage probability for fast neutrons

»Pofsoning,ratio in Secs. I and IV; Eq. (I-8)

Radical coordinate, in Sec. II

Radius of the reactor core

Function defined by Eq, (II-110)

Function defiried by Eq. (II-111)

Time after startup of the reactor

Irradiation parameter
Flux shape, Eq. (I-33)
Eigenfunction of Helmholtz Equation, Eq. (I-39)
Dimensionless irradiation variable, Eq. (II-255)

Spatial coordinates

- Half thickness of a slab or half height of a cylindrical reactor

core
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Greek Letters

35

Capture to fission ratio in ‘UZ ,. Eq.  (I-4)

Coefficients in the eigenfunction ,expanéion of the flux time
Eq. (I-102)

Burnup, . Eq. (I-31)
Eigenvalue, (k+l) ~ root of Eq. (II-152)

Dirac function, Eq. (IV-72)

Linear extrapolation distance, Eq. (I-13)
Kronecker symbol, Eq. (II-131)

Laplacian oéerator

Excess neutron production, Eq. (I-.ZZ)v

Perturba.tion parameter in Secs. II and III, Eg. (II-23)
Fast fission ,facto.r in Sec, IV . |

Ratio of linear extrapolation distance to core dimensions
Reduced avxi.a,l'goorvdinate, Eq.. (iI»lSO)

Reduced radial coordinate, Eq. (II-207)

Flux time, Eq. (I-1)

Flux time to which completely mixed fuel could be irradiated
batchwise

Coefficients defined by Eq. (I1I-142)

Average number of neutrons produced per fission

Average number of thermal neutrons produced per fission,

Eq. (I-10)

Radial coordinate (II-176)

Coefficients for multigroup analysis, Eq. (IV-22)
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o, Microscopic cross section

za”zE"Zf Ma__.cros,copic cross sections, Eq. (I-10)

T Fermi age, in Sec. IV
b Neutron flux, Eq. (I-1)
W Coefficients for multigroup analysis, in Sec. IV, Eq. (IV-24)
Subscripts
i,j,k,1,m, » : :
n,p have been used as integer subscripts; k always'refers to the
(k4+1) " solution of the Helmholtz equation, Eq. (I-39)
R Radial

Axial

Note: Symbols which are used only in the section where they are de-
fined are not listed in this nomenclature.

Equations have been numbered consecutively with arabic numbers
stértin’g with one at the beginning of each chapter. Roman numerals
always refer to section numbers. Equations referenced out of their
proper section are preceded by their correct section number/|e. g.,

Eq. (II-121) would be so referenced in Section III] .
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APPENDIX

A. Scalar Product of Functions; Adjoint Operators

The scalar product of two functions f and g defined in a volume

V 1is defined and denoted as
1
(f.g)=v | fx) gtav .

, According to this notation, the average value of a function f in

(1,£).

Two functions are said to be orthogonal if their scalar product

the volume V 1is

is equal to zero.
A linear operator L acting on functions defined in a volume V
and satisfying some given boundary conditions on the surface S of V

is self-adjoint if, for any two such functions u and v, one has.

<u, va> = <Lu, v> .

The Laplacian operator A, acting on functions which satisfy
linear homogéneous boundary conditions, is self-adjoint with respect
to the above defined scalar product. This property is a consequence

of Green's formula

_ dv du \ 44
[(u Av)dVv -[(vAu)dV +](uﬁ-vcﬁ" D,
~V IV S

since the last integrand on the right side vanishes.
Non-self-adjoint operators arise, for instance, in the matrix
representation of the multigroup equations. w3 An adjoint operator L~

is then defin‘edFZ by the equation

(u, LY = (Lu,v).
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B. Continuous Slowing Down; Fermi Age Equation

Let T be the "age' of a neutronWI. and q(x, T) the number of neu-
trons per unit volume slowing down past the energy corresponding to the
age T in unit time. Then, if the slowing down properties of the reactor
do not vary with the position, the function q(x, 7) satisfies the age
equation '

Aqlx, T) Qi‘%‘%l)z evE$5(T) . Y

The function §&(7) is the fission energy spectrum; when all the
fissions are assumed to yield neutrons of the same energy (corresponding

then to 7 = 0), 6(7) is the Dirac § function, and the above equation can

~ be replaced by

Aqlx, ) - 29T - o, (2)
with
qf{x,0) = eVEfcp . (3)

By assuming that the slowing down density q(x, T) satisfies a

. boundary condition which is independent of the age 7, we can expand

q(x, 7) in the eigenfunctions Vi of the correspording eigenvalue equation,

Eq. (I-39). Letting -
o : 4

qlx, 7) E qy (T)v, (x), (4)

k=0

Egs. (2) and (3)yield

qu () - By —3—=10 (5)

with
€V Z ¢,V
q, (0) = <—-———v Al <) (6)
ev)
The solution of the above equations is
: 2
-B, T <ev chp,vk) - )

qk(T) = e ka Vk>
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-The rate of production of thermal neutrons is now p__g(x,'rth),

where 7T . 1is the age from fission to thermal cutoff energy and p is

th
the resonance escape probability (assumed uniform). Then, Eqs.. (4)

and (7) yield

e 2 2 . ‘ .
pa(x, 7,,) = e-'(Bk-B()W(—————Vthz»fd)’ Vk) v, (%) (8)
> 'th <Vk,‘ Vk> k'
“BoTth
where Yih is defined by Eq. (IV-17) and one sets P‘ch'= e ,

~ which is the fast nonleakage probability corresponding to the Fermi -
- age model in the uniformly loaded reactor. D

The term pq(x, Tth) corresponds now to the term pTl ¢1 in the
equation for the thermal flux, Eq. (IV-11). Thus, the coefﬁcients W
in Eq. (IV-24) shall now be replaced by the coefflclents w defined by

-(B - B )'7' .
wp=l-e : (9)
Numerical applications,
U235 Reactor. We consider graded irradiation of the fuel in the
reactor of Sec. IV 2. 3 Thus,
- 2
- -BLT(v,- Yo)/Yo YE-vE
we=1-e , and B T= 0.1228, ———= 4k(k+l) .

Yo
Values of wF are compared below with the values of W given

k
by Eq. (IV-25):

@ 0.4105 0.6761 0.8071 0.8741

0.6256 0.9475 0.9972 0.9999
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The difference between two-group and Fermi - age results is
(wi- k)/wk times that betweeﬁ one-group and two-group results; As
an example, the following table gives the results for the value of the
s'econd—ofder perturbation of the average flux time to whic}; thve fuel
can be irradiated; the results are in units of the average: flux time given

by first-order perturbation .method.

One-group Two-group Fermi - age

» (9)1/(9»)0 | 0.242 -0.076 | -0.241

This illustrates how important it is to describe as accurately
‘as possible the diffusion of the fast neutrons before any attempt can be
made to determine the flux-changes resulting from the nonuniform burn-
up of the fuel in a nuclear reactor whe/re fast leakage is large: The
‘correction taking into account the departure of the flux shape from its
unperturbed value results in an over or underestimation of the average

flux time as large as 25%.

L';arge thermal reactor. The reference design of the Candu Re-

a.ctorBZ corresponds to B27 = 0.0156 and BZ'.T = 0.0056.

_ 0 zZ
The fast leakage probability is very small, and so are the co-

efficients @ ‘correspo‘nding to the first (and most important) eigen-
functions. For instance, for graded irradiation, Eqs. (9) and (IV-25)
yield values of wli‘ and wy slightly smaller than 0.05, and

(wl;‘?-wl)/wl = 0.037. Thus, the correction bfought ;bout by using the
two-group diffusion equation instead of the one-group is likely to be small;
furthermore, this correction i accurate within a few percent (here about

3.7%) whatever the model (two-grbﬁps or Fermi - age) used to describe

the diffusion of the neutrons during slowing down.
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C. Lumped Fuels

Most fuel-cycle computations have taken into account the effects
due to the lurmping of the fuel by means of the following homogenization
procedure:

Consider, for instance, a cell consisting of a fuel element and
of the adjacent moderator; the cross sections of the nuclides in each
region are weighted by the relative value of the average flux in this
region. . An extremely detailed computational model has been developed
by GreeblerGl according to such an homogenization procedure. The
underlying assumption is that the nuclides are uniformly distributed
in the volume of the fuel lump.

Here, we investigate the effect of the nonuniform distribution
of the nuclides in the fuel lump. The nuclide concentrations and the flux
are functions of the position in the fuel lump as well as of the irradiation;
thus, when computing the reaction rate of the neutrons with a given nu-
clide, the average value of the product of the nuclide concentration by
the flux differs from the product of the average concentration by the
average flux in the fuel lump. . This has been taken into account by
Ioffe, 12 who introduced a corrective coefficient, here called "effective
concentration coefficient;" its variation with irradiation is investigated.

It is shown that the effects of the nonuniform distributi(.)nvof the
nuclides in a fuel lump can be just as important as the effects of the
variation of the flux energy spectrum during irradiation. The chosen
example is the natural uranium metal NRX rod, whose behavior on
ii‘radiatic_)r_l_ has been studied in much detail by AERE, Harwell, and
. AECL.. we The effective concentration coefficients computed according
to a very simplified procedure here developed allow an accurate evaluation

of the effects of the nonuniform distribution of U2'35 and Pu'239.

1. Reaction Rates in Fuel Elements: Genéral Considerations.

Let t be the time after the beginning of the irradiation, x be
the spatial coordinate, and E be the energy of a neutron. The neutron
flux per unit energy interval is denoted by &(x, E, t); let N(x,t ) be the
concentration of a given nuclide and ¢ (E) its cross section for reaction

with neutrons of incident energy E. The local reaction rate is
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o0

A(x,t);N(x,t)f 0 (E) 8(x, E, t)dE . Y
, ‘

The average value of a function f(x) in the volume V of a fuel

el_emenﬁ is. defined and noted as

<f>: %jf(x)dv; - (2)
| v

then, the average reaction rate in the fuel element is

o

<A>=<N(x,t)f o(E)cIn(x,E,t)dE>., (3)
0 _ '

To study the effects of the nonuniform distribution of a nuclide

lin the fuel element, we define an "effective concentration coefficient
¢ by w
L(t) = {A)/@g 0 (E) 8(x, E, t)dE ), (4)
0

where {(t) is the coefficient by which the reaction rate computed accord-
ing to the homogenization procedure (i.e., letting N(x,t) be approximated
by <N>) shall be multiplied in order to yield the effective reaction rate
which takes into account the nonuniform distribution of the nuclide.

For each nuclide, the cross sections ¢ (E) are usually known
functions of the energy E. .

The nuclide concentrations N(x,t) are the solutions of a set of
first-order differential equations; these equations are generally non-
linear because of the dependence of the neutron flux per unit energy in-
terval, ®(x, E,t'), upon the concentrations N(x,t).

Kushneriuk, Kl who has determined an approximation of the neu-
tron flux in a cylindrical fuel rod of uniform (average) composition, and
Westcott, w9 who considered a slab of purely absorbing material, have
investigated the '"hardening' of the neutron energy spectrum within a

fuel element and determined the spatial dependence of the quantity

)f 0(E) ® (E, x,t)dE in Eq. (1).
0
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It is suggested here that an accurate determination of the neu-
tron flux by unit energy interval, ®(x, E,t), in fuel elements of arbitrary
shape, be performed on high-speed digital computers with the help of
multigrouping multiregion transport codes. Thus, the function ®(x, E, t)
would be represented in each energy group Ei <E< E1+1 by a function

q;i(x, E,t) which is separable in space and energy according to the follow-

ing equation:

2, (x, E,t) = ¢, (t)h, (x, t)E; (E, 1); (5)

hi(X_, t) is the "flux shape! for the group i; it is conveniently normalized

to an average value equal to unity, i.e.,

<hi(x,t)>= 1; -

ci)i(t) is the magnitude of the corresponding éverage flux in the fuel ele-

ment when the function fi(E t) is normalized by

E i1
f £(E,t)dE = 1.
E.

1

. We can now define an effective cross section associated with the

group i as

i+l :
o, ) =f o (E)S, [, t)dE . (6)
E.
i
The effective cross section oi(t) is that corresponding to the
average energy spectrum of the flux @i(x, E, t) in the fuel element;
oi(t) can be obtained by computations performed according to the usual

homogenization procedure. Gl

Equations (1), (5) and (6) now yield
Alx,t) = Nix, t)h, (x, t)o, ()¢, (t) . (7)
Thus, assuming that the flux shapes hi(x,t) have been obtained

from multigroup computations, functions Qi (t) are defined by
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o= o) / () () @

and the effective concentration coefficient defined by Eq. (4) is

"C(t)éz,éi(t)oxi(t) b {t) / Z:oiv(t')‘pi(tv).-. L (9)

2, Simplified Model for Evaluation of the Effective Concentration

Coefficients

4

Est1mates of the effective concentration coefficients will here be
obtained by a one- group ana.lysls The single group will be referred to
as the thermal group, and the,subscribt i used in the above equations

is no longer needed. Equations (7), (8) and (9) now read

A(x,t) = N(x,t) hix,t) o(t)p(t),

t(t) = (N oheen ) / (N (n).

- Furthermore, the variation of the flux shape with irradiation

and

is neglected, i.e., h(x,t) is replalced by hi(x).

With these simpliﬁcatibns, .'the neutron absorption rates in the
“u??® and the Pu**?
The subscripts 26 and 49 which will be used hereafter refer respectively
to U;35 and Pu 39°
uniform and it does not contain any plutonlum
Rate of Absorption in U235

235 . .
"The rate of neutron absorp’clon in U > is now

%
of a uranium fuel element can be studied analytically.

Initially, the composition of the fuel element is

Agglait) = Npgls, o, OREISE), (10)

where 0'25(t) is the effective thermal cross section for ‘absorption in

234
U7, it could be determined ‘according to the homogenization procedure.

The concentration of U235 then satisfies the equation

N, (x, t)

ﬂ_——_t = - AZS(X,t) o (11)

“Similar studies could be performed for a cluster of small fuel elements.
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By setting o 25(0), a new irradiation (time) variable, the flux time

25
6 is defined by ' t
0250 jo25(t)¢<t)dt . (12)
O :
and the solution of Eq. (11) subject'to st(x, 0) = N(Z)S is
-0 5.0 h(x)
0 25
N(x,G) = st e . (13)
The effective concentration coefficient §,25, Eq. (4), ié now
given by -0 ,0h(x)
| _ <h(x) e 23 )
259 = %R (14)
> < 25 >
e
Note that for small irradiations
: h™/) -(h
§25(9)z1._ <—2—H%_—> 0'259 , (15)
and for very lérge irradiations |
Lygl=) =n)/ (k). (16)

.whére h(0) denotes the minimum of the flux shape. The minimum
usually occurs at the center of the fuel element , and then, §25(6) de-
creases monotonically with irradiation;  this decrease is clearly due
to the largest depletion of U235 at the periphery of the fuel element,
where the ﬂux is largest. |

The absorption. rate in U 236 and in the fission products could
be studied in a very similar way. ' |

Absorption Ra.te in Pu 39

Because of the important role played by the UZP’8 resonance ab-

239

sorptions in the production of Pu , they should be distinguished from

the thermal absorptions.
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The thermal absorptions in U238 are due to the thermal flux

$(t) h(x) to which corresponds an effective thermal cross section 0'28(t):

| Ayglx,t) = stix,t)ozs(t)q)(t)h(x) . (17)

Theoretical determinations of the distribution of the resonance
absorptions have been performed by Kushneriuk. K2 For our present
purpos.es, it is convenient to make the following additional simplications
which yield a simple ‘éxpression.:for' the coefficient §.49(-6), Eq. (22):

(2a) The depletion of U238 is neglected, i.e., N28(x‘,t) = Ng8 .

(b) The changes in the flux-energy spectrum are neglected,
“i.e., 028(t)=028, '

(c}) The resonance absorptions in U238 take place with a given
238

distribution g(x); resonance and thermal neutron capture in the U

present in the fuel element are in a constant ratio R.
238 .

Thus, the absorption rate in U is
0
A,gl(x,t) = Nygo g [ hix) + Rg(x)] o(t). (18)

Let 049 be the effective thermal cross section of Pu'239, which

is then destroyed at a rate

A49(x,1:) = N49(x,t) 049¢(t)h(x). (19)
. 239 . . .
The concentration of Pu is the solution of the equation
dN49(x,t) v
t
with 'N49(x, 0) = 0. Letting 6 --f é{t) dt, one obtains
0 .
Ngs 028 h(x)+Rg(x) -0 4¢6h(x)
Nyglx, 0) = 0z9 B [1-e = I (21)

The effective concentration coefficient 449(t), Eq. {(4), is now

given by
_\Ih(x) + Rg(x)] (1-e
[ 1 +Rg(x)/h(x)] (1-e

-0'499 h(x)
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The function §49(9) has the following particular values:

(o0 = (8%)+ r{gn) and 4, () - (n) + r{g)

GHICC) EOTRTIC)

The flux shapes g(x) and h(x) usually decrease from a maximum

(23)

value at the surface of the fuel lump to a minimum value about the center

of the fuel element; the Pu239

~ of the fuel element where the flux is the largest, and 4,49(0) > 1; similarly,

production rate is greatest at the periphery

its destruction rate is greatest at the periphery and §49(6) decreases on

~ irradiation.

. Simple estimates

The determination of the above defined functi_ons Z_.25(9) and
§,49(6) require first the determination of the flux shapes g(x) and
h(x); only the spatial averages of the first few powers of the flux shape
are required to obtain the first few terms of an expansion of @) in
| power series of the flux time.

For instance, let the thermal flux shape in a cylindrical fuel
element of radius-a be knoWn as hix) = C IO(KX); then, Eq. (15) yields

(K a)*
C25(0) =1 - gz 0550 (24)

and Eq. (23), with R = 0, yields

(K 2)*

Similarly, a thermal flux shape h(x) = C cosh Kx in a fuel ele-

ment shaped as an infinite slab of half thickness a yields

N (K a) N (K a)

for R =0. (26)
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Thus, the correction due to the nonuniform distribution of the
nuclides in the fuel element is proportional to the fourth power of the
.dimension of this element. If the thermal flux in the fuel were to be
represented by the elementary (diffusion) approximation, Ka would be
proportional to the dimension of the fuel element in units of the diffusion
length in the fuel; Eqs. (24) through (26) then yield crude but extremely

simple estimates of the coefficients §.

3. Application to Natural Uranium Rod

Computation of the coefficients LZS(O) and §,49(__Ql

Radial distributions of the thermal neutrons and of the resonance
absorptions in a natural uranium fuel rod have been measured by
Niemuth. N2z The rod had a radius a = 1.689 cm and the ratio R of
resonance to thermal captures in U238»Was reported as 0.575. The re-

ported flux shapes, renormalized to an average value equal to unity, are

h{x) = 0.79 IO'(IA x),
and 4

g(x) = 2.133 I (x) - 1.374 I (1. 4x) 4+ 0,7477 ———-—6-
1.3662-x

where x:r/a, ,and 0 < x <1,

Numerical integration of the integrals in Egs. (13) and (22) yield
the followihg results:
For irradiations up to 0'256 = 2, the function 025(9) is accurately

represented by the equation
L,60) =1 - 0.016 0,40.

. For similar irradiations, §49(9) should be represented by a
polynom1al of at least second degree. The function §49(9) -1 is tabu-
lated below for various values of the irradiation and for values of the

. . . . . 23
ratio R, which is the ratio of the resonance to thermal captures in U 8
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(Table C.1.). It has been assumed that the flux shapes h(x) and g(x)
do not change with R.

The resonance absorptions in U238 strongly increase the non-
uniformity of the Pu.239 distribution and the effective concentration co-

efficient 449 .

Table C.1. 1 - {,4(6)

!
!

0 499 = 0.0 0.5 1.0 1.5 2.0 =

R=0 0.0160 0.0124 0.0094 0.0070 0.0051 ‘0.0000
R=0.3 0.0213 0.0175 0.0144 0.0119 0.0100 0.0048
R=0.5 0.0236 0.0198 0.0167 0.0142 0.0122 . 0.0070
R=o 0.0389 0.0349 0.0315 0.0288 0.0268.  0.0211

Application to NRX rod

The effects of the irradiation on a natural maximum rod of radius
a = 1.727 cm have been eXtensively studied experimentally and theoreti-

cally, w8, M4

Results obtained according to various computational models
are compared below, with the following notations:

(a) o (0) is the effective thermal cross section defined by Eq. (6).
The values of 0(9)/0 (0) listed below were computed by McLeod (see
Ref. M4, Table 5.3) according to the homogenization procedure.
0(0)/0(0) represents the effect due to the changes of the thermal flux
energy spectrum upon the reaction rates.

(b) The coefficients 425(6) and 449(9) are those computed in
Sec. 3. The following numerical values are used:

0,5=519.9b, 0,44=1041.3b, and 0 ,g=2.142b,

and the initial conversion ratio ICR = 0.77 yields R = 0.35.
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The functions §,25(9) and §49(6) are then represented by the

following polynomials in 6 (neutrons/kilobarn):

{,5(6) = 1 - 0.0083 6,

and ‘ 2
249(9) = 1.0219 -.0.0083 6 + 0.0013 6", - (26)

(c) 0 (t) is an average effective cross section defined by

(&)= 50 o (N)- N @7)

A one-group (thermal) analysis would then yield

T(t) = a(0) 4(6). o (28)

The values of G (t)/0(0) listed below have been computed by Ward
(see Ref, W8, Table A-2) according to a model which takes into account
the details of the space-energy dependence of the neutron flux and of the
nuclide concentrations, Kl The correspondence between t and the ther-
mal flux time 6 has been approximated by t = 156 when 6 is the ther-
mal flux time in neutrons/kilobarns and t is the irradiation variable
used by Ward; WO

Tables C.2 and C.3 give the values of 0¢(6)/c(0), 4(6)/¢(0)
and 6(t)/5(0) thus determined for U?'35 and Pu239 .

Table C.2. Effective absorptions in U235

o | 2@, LI g(emei g_:to))
0.1 | -0.0000 | -o0.0008 | 0.9992 0.9985
0.3 -0.0017 -0.0025 0.9958 0.9953
0.5 -0.0029 -0.0041 0.9939 0.9920
0.7 -0.0035 -0.0058 0.9907 0.9886
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Table C.3. Effective absorptions in _Pu239
o | 9O | Lo 0 (9) £(0) o (t)
o0y T{o) G (0)Z (0) 5 (0)
0.1 0.0000 -o.,oooé 0.9992 0.9895
0.3 | o.0021 2020023 - 0.9998 | | 0.9748
0.5 | 0.0036 -0.0038 0.9998 0.9652
0.7 | 0.0047 -0.0051 0.9996 10.9578

4, - Discussion of the Results
235

 Absorption Rate in U
| Table C.2 shows that the correction intré)duced by 425(0) is

larger than that introduced by 02,5(0)_/025(0), Furthermore, Eq. (28)
is nearly satisfied, The results are to be interpreted as follows: .

(a) Both the hardening of the average flux-energy spectrum and
the nonuniform depletion of UZ'35 result in a decrease of the absorption
rate in U235 as irradiation proceeds, |

(b) The nonuniform depletion of U;35 induces larger corrections
‘than does the hardening of the average flux-energy spectrum,

(c) A one-group analysis, where the variations of the flux shape
.during the irradiation are furthermore neglected, gives a quite accurate
description of the relative decreases of the average effective cross
sec_tion -625(t), The uéefuln‘ess of such a szigr;pliﬁed apalysis was ex-
pected because resonance absorptions in U are small and because
the macroscopié absorption cross séction of natural uranium varies
little during theii_rra.diation (Za varies less than 10% when the flux

time increases from 0 up to 1.7 n/kb. ).



-201-

Absorption Rate in Pu239

39

The initial increase of the reaction rate in Pu due to its non-

uniform production by neutron captures in U238 is here approximated
by 449(0) - 1=22,2% ; it is larger than any subsequent increase resulting
solely from the hardening of the average flux-energy spectrum. The
results given in Table C.3 are interpreted as follows:

(2) The hardening of the average flux spectrum results in an in-

239

crease of the absorption rate in Pu because of the non 1/v behavior

of its absorption cross section. The nonuniform consumption of Pu239,

on the other hand, results in a decrease of the reaction rate as irradiation
proceeds. '

(b) The effects of the hardening of the average flux spectrum are
ovércompensa"ted by the effects of the nonuniform distribution of Pu239.
A'simple. approximation negiecting both those effects would be better
than the usual homogenization procedure.

(c) The product 0'49(6) _§49(0), corresponding to a one-group
(thermal) analysis, decreases upon irradiation; however, this decrease
is by far not as large as the one predicted by a multigroup analysis. The
discrepancy is too large to be explained solely by the possibility of in-
accuracies in the determination of the flux shapes g(x) and h(x) (see
Sec. 3); this discrepancy was expected because of the large absorption
in the Puz'39

of the thermal flux to a single group of constant flux shape.

resonance at 0.3 eV, which invalidates the use reduction

A two-group analysis, performed by subdividing the thermal
spectrum into a low-energy group and a Pu2'39-resonance group, would
take into account a Pu239-resonance flux shape which varies with irradi-
ation much more than does the overall thermal flux shape. An accurate
description of the distribution of the resonance absorptions would then.
be required in further studies of the effects of the nonuniform distributions

of the plutonium isotopes.



-202-

5., Conclusion

The reaction rates computed according to an homogenization
procedure that takes into account solely the variations of the average
flux energy spectrum in a fuel lump are corrected by an effective con-
centration coefficient which accounts for the nonuniform distribution of
the nuclides in fuel lump. When fuel elements have dimensions com-
parable to, or larger than the neutron diffusion length, any refinement
in the determination of the variation of the flux-energy spectrum with
irradiation is not justified unless the effects of the nonuniform distri-
bution of the nuclides are also taken into account.

The correction introduced by the effective concentration co-
efficient has been evaluated according to a simplified method which
easily yields accurate results for the reaction rates in the U235 of
a natural uranium fuel element. More detailed studies are required
for an accurate determination of the reaction rates in plutonium isotopes,
and the variation of the flux shapes inside the fuel element should also
be taken into account in case of highly enriched uranium fuel whose ab-

sorption cross section varies strongly during the irradiation.
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