
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Robust Semantic Systematicity and Distributed Representations in a Connectionist Model of 
Sentence Comprehension

Permalink
https://escholarship.org/uc/item/6x938340

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28)

ISSN
1069-7977

Authors
Frank, Stefan L.
Haselager, Willem F.G.

Publication Date
2006
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x938340
https://escholarship.org
http://www.cdlib.org/


Robust Semantic Systematicity and Distributed Representations
in a Connectionist Model of Sentence Comprehension

Stefan L. Frank (s.frank@nici.ru.nl)
Willem F. G. Haselager (w.haselager@nici.ru.nl)
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Radboud University Nijmegen; P.O. Box 9104
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Abstract

There is considerable debate about the amount and kind of
systematicity displayed by neural networks. One important
requirement is that the systematicity is robust and not overly
dependent on specific parameter settings and training details.
We present a recurrent neural network model of sentence com-
prehension that realizes robust semantic systematicity on the
basis of distributed representations.

Introduction
Ever since Fodor and Pylyshyn (1988) claimed that con-
nectionist models could not display systematicity and pro-
ductivity, many researchers (e.g., Pollack, 1990; Chalmers,
1990; Christiansen & Chater, 1994; Niklasson & Van Gelder,
1994; Bod́en & Niklasson, 2000) have attempted to provide
counterexamples. In all cases, however, doubts have been
raised (e.g., Haselager & Van Rappard, 1998; Aizawa, 2003;
Hadley, 2004) about what exactly the proposed networks
achieved. Basically, three types of criteria can be discerned in
the evaluation of connectionist models that allegedly display
systematicity: robustness, applicability on a larger scale, and
usability in inference. Simply put, these criteria come down
to the requirement that systematicity should be displayed by a
network under a wide range of parameter settings and a great
variety of learning circumstances, while it is dealing with a
large number of (combinations of) representations, in a way
that is usable for reasoning.

According to Hadley (1994a), the degree of systematicity
a system displays equals the degree of input novelty it can
tolerate. For a neural network, this depends on its ability
to generalize from the training examples to novel (test) in-
puts. Hadley (1994a) reviewed several connectionist models
of sentence processing and argued that none of these got close
to the degree of systematicity displayed by people, which he
referred to assemantic systematicity(Hadley, 1994b, 2004):
the ability to assign a correct semantic representation to any
novel sentence.

In this paper we will discuss a new model, show that it
displays semantic systematicity, and evaluate it from the per-
spective of the criterion of robustness. It is possible to trace
back this criterion to the claim made by Fodor that it is alaw
that cognitive capacities are systematic (Fodor & Pylyshyn,
1988, p. 48; Fodor & McLaughlin, 1990, pp. 202–203). Ac-
cording to Fodor, it is not enough to merely show that sys-
tematicity is possible, one has to indicate that it is a neces-
sary consequence of the network’s architecture. By analogy,
Butler (1993, p. 232) noted that a theory of planetary mo-
tion should not merely allow for the possibility of elliptical
orbits of planets, but should have the elliptical orbits as its
necessary consequence. Even though we agree with several

authors (e.g., Dennett, 1991, p. 27; Wilks, 1990, p. 331) that
systematicity is not as ‘lawful’ as Fodor may suggest, we do
think that Fodor’s requirement is important in the sense that
it provides a safeguard against too readily taking ‘accidental’
signs of systematicity for the real thing. After all, one would
like an explanation of systematicity, not just a mere demon-
stration (see also Niklasson & Van Gelder, 1994, p. 297).

Even though systematicity does not have to follow neces-
sarily out of a network’s architecture, the network has to dis-
play it under a wide, and preferably psychologically realistic,
set of conditions, in order to count as a genuine case of sys-
tematicity. This means that the results should not be overly
dependent on the fine-tuning of parameters, nor on the spe-
cific details of carefully arranged training regimes.

One of the few robust demonstrations of semantic system-
aticity is formed by the sentence comprehension model of
Hadley and Cardei (1999). It is different from most connec-
tionist systems in that its processing units differ qualitatively
from one another, some being ‘concept nodes’ while others
are ‘proposition nodes’ or ‘binding nodes’. As pointed out by
Hadley, Rotaru-Varga, Arnold, and Cardei (2001, p. 74), such
a model ‘employ[s]classical, combinatorially pre-disposed,
representational layers’. Much of its systematic abilities
is likely to be the result of this ‘combinatorially-endowed
wiring’.

In contrast, the model we present here uses only genuinely
distributed representations to demonstrate systematic behav-
ior in sentence comprehension. It implements the theory that
understanding a sentence requires the construction of a men-
tal representation of the situation to which the sentence refers
(cf. Zwaan & Radvansky, 1998). These situations occur in
a simple ‘microworld’ and are described by sentences in a
‘microlanguage’. In a previous version of this model (Frank,
2005), a Simple Recurrent Network (SRN; Elman, 1990) was
trained to transform some of the microlanguage sentences
into distributed representations of the corresponding situa-
tions. Although Frank’s (2005) primary intention was not to
demonstrate the network’s ability to behave systematically,
he did show that it could correctly process novel sentences,
even if these described microworld situations on which it was
not trained.

Here, the same microworld and representations (described
below) are used. The microlanguage, however, is extended
to allow for a stronger demonstration of semantic systematic-
ity. Also, we apply a new type of recurrent network that is
not only easier to train than a SRN but has also been shown
to outperform it on a task requiring syntactic systematicity
(Frank, in press) and may be more appropriate for semantic
systematicity as well.
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Table 1: Ten basic situations in the microworld.

situation meaning
BOUT Bob is outside
JOUT Jilly is outside
SOCCER Bob and Jilly play soccer
HIDE Bob and Jilly play hide-and-seek
BCOMP Bob plays a computer game
JCOMP Jilly plays a computer game
BDOG Bob plays with the dog
JDOG Jilly plays with the dog
BWIN Bob wins
JWIN Jilly wins

Microworld and Microlanguage
Since we are dealing with semantic (as opposed to syntac-
tic) systematicity, arising from situational representations, it
is necessary to define a world in which situations occur. Ob-
viously, the real world (or even a substantial subset thereof)
is far too complex to implement in a computational model.
For this reason, we make use of the microworld developed by
Frank, Koppen, Noordman, and Vonk (2003) for their Dis-
tributed Situation Space (DSS) model of knowledge-based
inference in story comprehension. The microworld has only
two characters, called Bob and Jilly, who can perform differ-
ent actions and be in several places and states. Anything that
happens to them can be expressed as a boolean combination
of a small number of so-called ‘basic situations’. Only ten of
these, listed in Table 1, are relevant here.

Of course, not just anything is possible in the microworld.
For instance, soccer and hide-and-seek are always played by
Bob and Jilly together. This is why there are no basic sit-
uations in which only Bob or only Jilly plays one of these
games. Also, someone can win only whenSOCCERor HIDE
is the case, or when both Bob and Jilly play a computer game.
Furthermore, soccer can only be played when Bob and Jilly
are outside, while computer games are only played inside.
Naturally, Bob and Jilly cannot win simultaneously.

Any situation in the microworld can be described by a
sentence from a microlanguage. Sentence comprehension is
taken to be the reconstruction of the situation from the sen-
tence that describes it. In the Frank (2005) model, there were
only 15 different words, which could be combined to form
328 different sentences. Moreover, word order was not rel-
evant to these sentences. Here, a more complex microlan-
guage is used: It has 20 words that can form 3558 different
sentences, some of which contain a transitive verb that makes
word order relevant to the sentence’s meaning.

The language’s lexicon contains two proper names (bob,
jilly ), one pronoun (someone), five nouns (dog, soccer, hide-
and-seek, computer-game, game), five verbs (wins, loses,
beats, plays, play), two adverbs (inside, outside), three prepo-
sitions (with, to, at), and two connectives (and, or). These
words form sentences according to the grammar in Table 2.
A few examples of sentences, and the way the corresponding
microworld situations are constructed from basic situations,
are shown in Table 3.

Table 2: Rewrite rules of the microlanguage. The probabili-
ties of possible productions are indicated if they are unequal.
S = sentence; NP = noun phrase; VP = verb phrase; APP = ad-
verbial/prepositional phrase. Variablen denotes verb number
(singular or plural).

Head Production
S → Splay | Swin

Splay → NPsing VPplay,sing(.7) |
NPplu VPplay,plu (.3)

Swin → NPsing VPwin,intrans| NPsing VPwin,trans

NPsing → someone(.2) | bob(.3) | jilly (.3) |
bob or jilly (.1) | jilly or bob (.1)

NPplu → bob and jilly | jilly and bob

VPplay,n → Vplay,n (.36) | Vplay,n Place (.24)|
Vplay,n Activities (.24)|
Vplay,n Activities Place (.16)

VPwin,intrans → Vwin,intrans(.3) | Vwin,intransAPP (.7)
VPwin,trans → Vwin,transNPsing (.3) |

Vwin,transNPsing APP(.7)

APP → Place (.3)| at Games (.3)|
Placeat Games (.2)|
at Games Place (.2)

Vplay,sing → plays

Vplay,plu → play

Vwin,intrans → wins | loses

Vwin,trans → beats| loses to

Place → inside| outside

Activities → game(.15) | Activity (.45) |
Activity i or Activity j (i 6= j) (.4)

Activity → Game (.75)| with dog(.25)

Games → game(.15) | Game (.45)|
Gamei or Gamej (i 6= j) (.4)

Game → soccer| hide-and-seek| computer-game

Note that the microlanguage (as any natural language) can
describe situations that are impossible to occur, such as Jilly
losing to herself or playing soccer inside. To prevent the
occurrence of a very large number of such sentences, plu-
ral noun phrases and the phrasewith dogare not allowed in
sentences describing winning or losing. As a result, there are
no sentences stating that both Bob and Jilly win or lose, nor
any sentence stating that someone wins or loses at playing
with the dog. Both these situations are impossible in the mi-
croworld.

The Model

Representing microworld situations

According to Hadley (2004, p. 150), for a sentence-
comprehension model to display semantic systematicity, it is
necessary that ‘the resultant meaning representation for the
entire sentence possesses properties which would enable us to
justly claim that the entire representation could, in principle,
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Table 3: Examples of microlanguage sentences and the con-
struction of the corresponding situations from the basic situ-
ations in Table 1.

Sentence Situation
jilly plays SOCCER∨ HIDE ∨ JCOMP

∨ JDOG

bob plays game SOCCER∨ HIDE ∨ BCOMP

bob and jilly play with dog BDOG∧ JDOG

someone wins BWIN ∨ JWIN

bob or jilly wins at (JWIN ∧ JCOMP)
computer-game ∨ (BWIN ∧ BCOMP)

bob loses JWIN

jilly loses to jilly inside BWIN ∧ JWIN ∧¬JOUT

constrainthe set of situations which could render the sentence
true.’ The representations used by the DSS model (which are
also used here) have exactly these properties. Any situation
that can occur in the microworld is represented distributively
by a vector in a high-dimensional ‘situation space’. As for-
malized below, relations among these ‘situation vectors’ cor-
respond to probabilistic relations among the represented mi-
croworld situations.

Situation vectors are developed by training a Self-
Organizing Map (SOM; Kohonen, 1995) on descriptions of
situations occurring in the microworld (see Frank et al., 2003,
for details). These descriptions take the form of binary vec-
tors containing a 1 for each basic situation that occurs at a cer-
tain moment in time, and a 0 for each basic situation that does
not. As a result of training, a membership valueµi(p) ∈ [0,1]
is associated to each SOM-celli and basic situationp. This
value indicates the extent to which celli forms part of the
representation ofp. The SOM has 150 cells, so the repre-
sentation ofp can also be viewed as a 150-element situation
vector of membership valuesµ(p) = (µ1(p), . . . ,µ150(p)).

Representations of negations, conjunctions, and disjunc-
tions are constructed as is common in fuzzy logic:

µi(¬p) = 1−µi(p)
µi(p∧q) = µi(p)µi(q) (1)

µi(p∨q) = µi(p)+µi(q)−µi(p)µi(q),

wherep andq can themselves be combinations of (basic) sit-
uations.

Let vector(x1, . . . ,x150) represent some microworld situa-
tion X.1 The a priori probability that this situation occurs can
be estimated by

τ(X) =
1

150∑
i

xi . (2)

The content of situationX can be extracted by compar-
ing its representation(x1, . . . ,x150) to several known situation
vectorsµ(p). From Equations 1 and 2 it follows that the con-
ditional probability that somep is the case in situationX, can

1This can beany vector in situation space, that is, it does not
need to have been constructed using Equation 1.

be estimated by:

τ(p|X) =
τ(p∧X)

τ(X)
= ∑i µi(p)xi

∑i xi
. (3)

Theseτ-values are calledbelief valuesbecause they indicate
the extent to which the DSS model may ‘believe’ particular
(basic) situations to be the case given a situation vector. As
shown empirically by Frank et al. (2003), belief values are
accurate estimates of (un)conditional probabilities in the mi-
croworld. This proves that relations among microworld situ-
ations are indeed (implicitly) encoded in the organization of
situation space.

The Network
A new approach to dynamical computation by neural net-
works was recently developed independently by Maass,
Natschl̈ager, and Markram (2002) and by Jaeger (2003).
Their so-called Liquid State Machines (LSM; Maass et al.)
and Echo State Networks (ESN; Jaeger)2 are both based on
the insight that training all connections of a recurrent net-
work is not needed. Instead, the weights in the recurrent part
of the network may remain fixed, greatly increasing train-
ing efficiency. These recurrent connections contribute to the
network’s computations by forming a ‘dynamical reservoir’
(DR) that stores the input sequence in an unstructured manner
(in much the same way that the pattern of waves in a bucket
of water contains information about what has recently fallen
in). A separate ‘readout’ network is trained to convert the
activation patterns in the DR into target outputs.

The network used here (drawn schematically in Figure 1) is
in fact an extension of the ESN in that the readout network is a
two-layer feedforward network, that is, it has a hidden layer.
Frank (in press) reports that this additional layer improves
generalization in a sentence-processing task. The complete
network consists of four layers:

• The input layer, with one unit for each of the 20 words in
the microlanguage.

• The dynamical reservoir, serving as a short-term memory
for retaining the input sequence. The number of DR-units
was varied from 80 to 250.

• The hidden layer, varied in size from 10 to 40 units.

• The output layer, with one unit for each of 150 dimensions
of situation space.

Words enter the network one at a time by activating only
the corresponding unit of the input layer. This activation is
sent to the DR, which, like the recurrent layer of a SRN, also
receives its own activation that resulted from processing the
previous word. The main difference with a SRN is that the

2Although LSMs and ESNs are conceptually similar, there are
some differences in their technical descriptions and in the way they
are commonly applied. The network we use here is most like an
ESN, so we shall refer to it as such.
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hidden units

20 input units

Dynamical Reservoir

Win

Wdr

Whid
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150 output units

readout 
network

Figure 1: Extended Echo State Network. Solid arrows in-
dicate connections with trainable weight, dashed arrows are
connections with fixed weight. Connection weight matrices
are denotedW.

ESN’s input and DR-weight matricesW in and Wdr remain
fixed at their initial values.3 If the two weight matrices of
the readout network,Whid andWout, are trained correctly, the
network’s output activation vector represents the microworld
situation referred to by the input sentence.

Although Wdr, the matrix of DR connection weights, has
random values, not just any matrix will do. First, it is im-
portant that only a small fraction of possible DR-connections
is present. In the network used here, 85% of DR-connection
weights are set to zero. Second, the optimal overall scaling
of weights depends on the network’s task. This scaling is
expressed by the spectral radius ofWdr,4 which was varied
from .4 to .95. The larger this value, the longer information
remains in the DR.

Training and Testing
The network was trained on a set of 10 000 sentence tokens,
randomly generated by the production rules of Table 2. The
following sentences were excluded from the training set:

• Those withbob, bob or jilly, or jilly or bob as object of
beats.

• Those withjilly , bob or jilly, or jilly or bob as object of
loses to.

• Those containing bothdogandinside.

• Those containing bothhide-and-seekandoutside.

This means that the network does not learn to construct any
situation in which Bob and/or Jilly plays with the dog inside,
nor any situation in which they play hide-and-seek outside.

3Furthermore, in our network, DR-units are linear and have no
bias weights, while all units of a SRN usually have sigmoidal acti-
vation functions and bias weights.

4The spectral radius of a matrix is its largest absolute eigenvalue.

The networkis trained on situations in which Bob loses or
Jilly wins. However, these situations are only described using
the intransitive verbswinsand loses, not the transitivebeats
andloses to.

The microworld situation referred to by each training sen-
tence was the target output during training on that sen-
tence. After each word of each training sentence, connec-
tion weightsWhid andWout were updated using the standard
backpropagation algorithm.

After training, the network was tested on three sets of test
sentences:

• The ‘win’-set, consisting of all 88 sentences that describe a
possible situation in the microworld, do not specify a place,
and have eitherbobas object ofbeatsor jilly as object of
loses to.

• The ‘game/place’-set, consisting of all 14 sentences that
describe a possible situation in the microworld, and end
in eitherplay(s) with dog insideor play(s) hide-and-seek
outside.

• The ‘random’-set, consisting of 100 random sentences.

The sentences in the ‘random’-set may or may not
have been training sentences. In contrast, the ‘win’ and
‘game/place’-sets contain only novel sentences. Moreover,
the situationsdescribed by the ‘game/place’-sentences were
not presented to the network during training. To successfully
process these sentences, the network must have learned how
novel combinations of known words refer to novel combina-
tions of known situations. That is, it must display semantic
systematicity.

Rating performance
Comprehension is not an all or none type of phenomenon.
Millis, King, and Kim (2000), for instance, showed experi-
mentally that the extent to which readers develop a situational
representation of a text varies between subjects and experi-
mental tasks. The model, too, may only construct the correct
situation vector to a degree. To ascertain the network’s perfor-
mance, the comprehension measure defined by Frank (2005)
is used. It is based on the belief values from Equations 2 and
3.

Suppose the network processes a sentence that statesp, and
the resulting output vector represents some situationX. The
associated comprehension score is then defined as

τ(p|X)− τ(p)
τ(p|p)− τ(p)

.

If the probability ofp in situationX is larger than its a pri-
ori probability (i.e., if τ(p|X) > τ(p)), processing the sen-
tence has increased belief inp. This means that the sentence
was understood to some extent, as indicated by a positive
comprehension score. A perfect network will result inX = p,
soτ(p|X) = τ(p|p), corresponding to a comprehension score
of 1. In contrast, if processing the sentencedecreasesbelief
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in p (i.e., if τ(p|X) < τ(p)), the sentence was misunderstood
and the network made an error. The resulting comprehension
score is negative.

Most sentences describe more than one basic situation. For
instance,jilly wins at hide-and-seek outsidedescribes a game
(Jilly plays hide-and-seek), a place (Jilly is outside) and an
outcome (Jilly wins). To investigate whether the network un-
derstood all of these basic situations, comprehension scores
are computed not only for the complete situationHIDE ∧
JOUT ∧ JWIN, but also separately for the three basic situa-
tions. In general, each sentence may give rise to up to four
separate comprehension scores: for the game, the place, the
outcome, and the conjunction of the three.

Results
To investigate the robustness of the training process and the
model’s results, three parameters were varied: the number of
DR-units (80 – 250), the number of hidden units (10 – 40),
and the spectral radius ofWdr (.4 – .95).

Apart from the smallest networks, all combinations of pa-
rameter settings resulted in positive comprehension scores for
all test sets (averaged over test sentences). In general, the
larger the network, the better its performance. For the largest
network, the optimal spectral radius was around .6.

Applying this optimal parameter setting, ten networks were
trained, differing only in their initial random weights. The re-
sulting comprehension scores, averaged over the ten networks
and over test sentences, are listed in Table 4. Clearly, all
scores are significantly positive, indicating that the network
understood each part of the sentences (as well as complete
sentences) of each test set. The table also shows the percent-
age of errors. Most of these are very low, meaning that only
a few sentences were misunderstood.

Conclusions
The sentence comprehension model clearly behaves system-
atically: It was not trained on sentences stating thatjilly beats

Table 4: Average comprehension scores with 95% confidence
intervals, and percentage of errors for all three test sets.

set part comprehension % errors
win game .80± .02 0.0

outcome .30± .01 0.0
complete .28± .01 0.0

game/place game .29± .03 7.1
place .76± .03 0.0
complete .27± .02 0.0

random game .77± .02 2.9
outcome .49± .03 0.4
place .70± .04 7.4
complete .60± .02 2.2

bob or bob beats jilly, yet it could correctly construct rep-
resentations of these situations. Furthermore, it was never
trained to represent situations in which Bob and/or Jilly play
with the dog inside, nor situations in which hide-and-seek is
played outside. Nevertheless, it did comprehend sentences
referring to such situations.

These results are quite robust in the sense that they did not
crucially depend on a delicate setting of parameters, nor re-
quired an extensive and complex training procedure. Ten net-
works were trained, starting with different weight settings,
and each of these managed to comprehend the test sentences.
Also, we demonstrated that many novel sentences were com-
prehended correctly, again indicating that the network’s abil-
ities are not just accidental.

As stated in the Introduction, two more criteria are of-
ten applied to evaluate systematicity in connectionist models:
scalability and usability in inference. It is only fair to ad-
mit that the size and complexity of the simulations need to
be expanded considerably in order to be psychologically re-
alistic. Although the microlanguage was 10 times the size of
Frank’s (2005b), other models of language processing have
used more extensive languages. However, it should be kept
in mind that our focus on microworld situations requires the
time-consuming and effortful construction of a microworld
and corresponding microlanguage, making large-scale simu-
lations laborious to set up. As for the criterion of usability
in inference, be reminded that the situational representations
were developed for the DSS model of inferencing in story
comprehension (Frank et al., 2003). Correct predictions of
experimental data by the DSS model indicate that these rep-
resentations not only allow for simulations of inferencing, but
do so in a realistic manner.
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