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Diagnostics for Linearization Confidence Intervals 
in Nonlinear Regression 

Jian-Shen CHEN and Robert 1. JENNRICH* 

We investigate linear approximation (LA) confidence intervals for functions g(O) of the parameters 0 in a nonlinear regression model. 
These intervals are almost universally used and generally perform well, but at times they have poor coverage probabilities. A diagnostic 
plot and index are developed to detect these failures. We show how these diagnostics may be used to estimate coverage probabilities 
and these are used to calibrate the diagnostics. The performance of the coverage probability estimates in a variety of nonlinear 
regression problems is investigated via simulation; for these problems, they work quite well. Conditions are identified under which 
the estimates are exact. Finally, we discuss the use of the profile t plot and asymmetry and bias indices as diagnostics for LA intervals 
and show how to calibrate them in terms of coverage probabilities. 
KEY WORDS: Coverage probability approximation; Estimator differential; Generalized linear function; Gradient direction plot; 

Invariance; Nonlinearity index. 

1. INTRODUCTION 
Linear approximation (LA) confidence intervals are very 

popular in statistical applications. They appear most often 
as an estimate and standard error obtained by linear ap- 
proximation methods. Their use is in fact many times more 
extensive than all alternative methods combined. These al- 
ternatives include intervals obtained by transformations of 
LA intervals, likelihood ratio intervals, and intervals of the 
simulation, jackknife, and bootstrap types. Motivated by 
their ubiquity, we propose diagnostics designed to detect one 
of their serious failures-the failure of their coverage prob- 
abilities to achieve nominal levels. Unlike most diagnostics, 
which are calibrated by rules of thumb, or not at all, we have 
calibrated ours in terms of coverage probability estimates 
that have a clear quantitative interpretation. 

Linearity is the key issue. To focus our work on detecting 
departures from linearity as opposed, say, to departures from 
normality, we have formulated our development in terms 
of normal theory nonlinear regression. Consider the nonlin- 
ear regression model 

y = f (0) +e, e - N(O, a2I). 

Here y is an n vector of observed responses, and f (O) is a 
known vector-valued function of an unknown parameter 
vector 0 that ranges over a p-dimensional parameter space 
0. We assume that f is one-to-one and has partial derivatives 
to order 3. (Actually, Lipschitz continuous second-order de- 
rivatives are sufficient.) 

We are interested in confidence intervals for real-valued 
functions g(O) and, more specifically, in LA confidence in- 
tervals. As the name implies, LA intervals are based on linear 
approximations. Here we carefully identify these approxi- 
mations, discuss some new diagnostics for departures from 
linearity, and study the effect of these departures on coverage 
probabilities. 

In Section 2 we define the LA interval and identify two 
conditions, weaker than the linearity of f and g, that make 
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it exact. In Section 3 we introduce a diagnostic plot and 
index to detect failures in what we believe to be the more 
important of these two conditions, and discuss methods for 
constructing this plot. We show how to use the plot to esti- 
mate actual coverage probabilities in Section 4. The accuracy 
of these estimates for a variety of nonlinear regression models 
is evaluated by simulation. The coverage probability esti- 
mates are used as a natural calibration for the diagnostic 
plot. In Section 5 we extend the use of the profile t plot of 
Bates and Watts ( 1988) as a diagnostic for LA intervals and 
show how it can be calibrated in terms of coverage proba- 
bilities. In Section 6 we give a new interpretation for the bias 
index of Box ( 1971 ) and show how to use it, and bias indices 
in general, as diagnostics for LA intervals and how to calibrate 
them. In Section 7 we give a new interpretation of the asym- 
metry measure of Lowry and Morton ( 1983) and show how 
it can be calibrated and used as a diagnostic for LA intervals. 
Finally, in the Appendix we give a variety of derivations 
deferred from the previous sections. 

2. LINEAR APPROXIMATION INTERVALS 
AND ASSUMPTIONS 

The LA confidence interval for g(O) with nominal level 
1- a is 

g(O) = g(0) ? to&oa(b), (1) 
where 0 is the least squares estimator of 0, to is the a/2 upper 
quantile of Student's t distribution with n -p degrees of 
freedom, &2 = lI - f(0) II 2/(n - p), and 

a 20) dgdfT df \l dg T 2 
dfl ( dO dO j dO (2) 

where df /dO and dg/dO are the Jacobians of f and g at 0 
and the superscript T denotes transpose. We assume that 
a(O) > 0. Here 0 and hence &2^ are functions defined on Rn, 
so, for example, 0(y) is the least squares estimate of 0 cor- 
responding to a response vector y. Although they will be 
explicitly defined in each case, the" "notation will be used 
throughout to indicate functions defined on gin. 

Let g = g(0) and a^ = a(0). It is easily verified that g, a^, 
and cr are invariant under reparameterization of 0, and hence 
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the LA interval is also invariant. We will frequently exploit 
this invariance. 

We say the LA interval is exact if its coverage probability 
is 1 - a. We are interested in diagnosing departures from 
assumptions that lead to exact intervals. The first step is to 
identify appropriate assumptions. The simplest assumptions 
are that f and g are linear. These are easily checked, and 
when they hold we are in the context of linear regression 
where it is known that (1) is exact. There are reasons why 
we are not interested in detecting departures from these as- 
sumptions, however. First, the LA interval can be exact when 
f and g are very far from linear (e.g., f (0) = 03x, g(6) 
= Os), so that departures from linearity do not by themselves 
indicate trouble. Second, the LA intervals are invariant under 
reparameterization, but the linearity of f and g is not. Finally, 
because of these problems, it is difficult to calibrate departures 
from linearity of f and g in terms of their effect on the LA 
interval. 

To develop alternative assumptions, let A be the range 
of f. The set S. is sometimes called an expectation surface. 
We might replace the assumptions that f and g are linear 
with the assumptions that A and g are linear-or, more 
precisely, that A is a linear manifold in Rn' and g is a linear 
function on Rn. These assumptions are invariant under re- 
parameterization and, as we will see, lead to exact LA in- 
tervals. A slightly more basic assumption than the linearity 
of g is that 

A g g( )(3) 
Z = ( )(3) 

a 

is linear. This assumption, together with the linearity of S, 
also leads to exact LA intervals. 

In our technical development we make frequent use of 
the differential of a vector-valued function at a point. For 
example, the differential of f at 0 is the linear function, dfo, 
defined by 

dfo( dO) = df dO dO 
for all dO in 9fP. Thus dfo is a linear transformation from 9XP 
into V. By the adjoint dfo of dfo, we mean the adjoint of 
this linear transformation with respect to the standard inner 
products on 9P and 9n, which means that df * is the linear 
transformation from N' into 9cP defined by 

df o (dy) = df dy dO 
for all dy in n1. 

We also use the second differential. The second differential 
of f at 0 is ddfo, defined by 

p p a2f 
ddf6(d01, dO2) = dfOr dar 0A2 

r=1 s=1 OOrd90s 

for all dO1 = (dOrl) and dO2 = (dOs2) in RP. If f is a scalar- 
valued function on SP then ddfo is a bilinear form on SYU. 
By tr(ddf), we mean the trace of the matrix (O2faOdAOO0) 
that defines this bilinear form. (A discussion of differentials 
and differentiation using them may be found in most ad- 

vanced calculus texts. We use Buck 1956 and Loomis and 
Sternberg 1968.) 

Let j, = f(O) and 4 = f(O). We show in the Appendix 
(Thm. A. 1) that there is a simple relation between a^ and 
the differential of g at 4: 

A = |Id g|| (4) 
From this and (3), it follows that the linearity of g implies 
the linearity of z. 

We next show that the linearity of A and z are suffi- 
cient for exactness of the LA interval. Note that ^(A) 
= g(O(f (O))) = g(O). Thus z(,u) = 0. If z is linear, then its 
first-order Taylor expansion about ,t is exact and has the 
form 

2(y) = d2g(y - A), (5) 

where d2,, denotes the differential of z at ,u. It follows from 
(3) and (4) that d2,, = dg,/ 11 dg,, 11, and hence dz,, has length 
1. Using (5), z N(O, o2). Clearly, if 4' is linear of di- 
mension p, then (n - p) 2/ a2 X2(n - p). From (3), z 
= z(4u) and hence is independent of a2. Thus z/ ^ has a 
Student's t distribution with n - p degrees of freedom. Using 
(1), we have proved the following. 

Theorem 2. ]. If z is linear, and A is linear of dimension 
p, then the LA interval is exact. 

We consider the linearity of z and M to be basic assump- 
tions. We do not claim that these are necessary conditions 
for exactness of the LA interval, but it is not easy, for us at 
least, to give a counter example. Because the linearity of f 
and g imply linearity of A and z and the converse is not 
true, linearity assumptions on A and z are weaker than those 
on f and g. 

Bates and Watts (1988) have proposed an index, the RMS 
relative intrinsic curvature, to measure the nonlinearity in 
A. They have computed this index for a fairly extensive 
collection of problems ( 1988, p. 257 ) and have come to the 
very pleasant conclusion that for most of these problems, A 
is fairly linear. Motivated by this, and by the desire to focus 
our investigation, we look for departures from linearity in z 
rather than in A. 

3. LINEARITY DIAGNOSTICS FOR 2 
Recall that z is a real-valued function on fn. If we had n 

+ 1-dimensional eyes, we would plot this function and look 
at it. To make a plot we can see, let d be the direction of the 
gradient of z at AL and for any real x, let 

z(x) = z(, + xd). (6) 
This is a real-valued function on the real line that can be 
plotted and examined. We call plots like this gradient direc- 
tion plots. Clearly, if z is not linear, then z is not linear. The 
converse is far from true, but we can learn interesting things 
from looking at z and related plots, as we show. 

We now describe a method for constructing z plots. Theo- 
rem A. 1 in the Appendix gives a computing formula for the 
gradient of g at ,u 

_df ( df Tdf -1 dgr 
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Figure 1. A Typical 2 Plot. A 45-degree line has been inserted for ref- 
erence. It connects the points ?(2o, 2o-). Here g(O) = 01 from the CGM 
model defined in the Appendix. 

Because, as noted earlier, d24 is a multiple of dR, Vz(,u) is 
a multiple of Vg(,u), and hence d may be obtained by scaling 
Vg(,u). To compute z at a point, construct the pseudodata 
y* = ,u + xd and find the corresponding least squares estimate 
0* = O(y* Then A(x) = (g()* -g(0))/ a(0* ). This requires 
a separate least squares fit for each value of x, but no special 
software. 

Figure 1 shows a z plot made in the manner just described. 
Its value at the origin is zero, and its slope is 1. These facts 
follow from (6), (3), and (4). Because, as in Figure 1, plots 
of z tend to be very smooth, good plots often can be made 
with as few as four points using cubic spline interpolation, 
a flexible ruler, or a steady hand. If z is linear, then the plot 
will be a 45-degree line through the origin. 

We view the plot of z as a nonlinearity diagnostic for z 
and view A(O), the second derivative of z at 0, as a nonlin- 
earity index. To compute z(0), note that when z is quadratic, 
Z(x) = x + 2 Z(O)x2. Computing z(x) for one small nonzero 
x and solving for z(0) gives a good approximation for 
z(O). The value z(O) can be computed exactly in terms of 

the first and second derivatives of f and g at 0 using Theorem 
A.2 in the Appendix. We call 

y= 0z(0) (8) 

a relative nonlinearity index, because it is the second deriv- 
ative at the origin of a plot of z/ o- on xl o-. Table 1 gives 
values of y computed using Theorem A.2 for 40 parametric 
functions g(0) associated with 14 models defined in the Ap- 
pendix (Table A. 1). 

4. COVERAGE PROBABILITY 
We give an estimate of the coverage probability, 

CP = P(g- toAA < g(0) < A + toAA), (9) 
of the LA interval and use it to calibrate the diagnostics z 
and -y. 

We say that z is a generalized linear function if 

z(y) = h((l, y)) (10) 

for some function h and n vector 1. The notation (1, y) de- 
notes the inner product of I and y. If z is a generalized linear 
function, then, using ( 10), Vz((,u) = h((l, ,u))l where h de- 
notes the derivative of h. Hence d is a multiple of 1. Let r 
be the residual in y - , after projection on d. Then y = , 
+ (d, y - ,u)d + r and r is perpendicular to 1. Thus z((d, y 
-g)) = z(. + (d, y - g)d) = z(y - r) = h((I, y - r)) 
= h((I, y)) = z(y). Hence if z^ is a generalized linear function, 
then z(y) = z((d, y -,u)). A similar statement holds forg. 

In the Appendix we show the following. 

Theorem 4.1. If z is a generalized linear function and 
4t is linear of dimension p, then 

(|= a 
< 

? ) ' ( 11) 

where z - N(O, 1), u - X2(n - p)/(n - p), and they are 
independent. 

In general, of course, z is not a generalized linear function 
and 4t is not linear. In this case we use the right side of ( 11 ) 

Table 1. Values of y, CP, and CP.Q for a = .05 and 40 Parametric Functions g(O) in 14 Models 

g(O) 01 02 03 04 

Models y CP CP.Q y CP CP.Q y CP CP.Q y CP CP.Q 

MMM -.032 95.0 94.99 -.107 94.7 94.95 
BOD -.346 94.0 94.38 -.351 94.2 94.38 
BOX -.121 93.7 94.88 -.075 95.0 94.93 
EAM -.169 95.5 94.80 -.038 95.9 94.90 
CGM -1.102 86.3 88.32 -.056 95.2 95.00 
ARM -1.750 85.1 85.56 1.797 84.1 85.21 .017 94.1 94.97 
LOG -.103 94.4 94.92 -.143 95.2 94.87 .040 95.8 94.96 
GOM -.262 93.5 94.58 -.126 94.9 94.89 .214 95.5 94.69 
CTM -.002 94.2 95.00 -.004 94.3 95.00 -.002 94.3 95.00 
MRM -.024 94.4 94.96 -.006 94.5 95.00 -.004 94.7 95.00 
FQM -.000 95.2 95.00 -.206 94.1 94.75 .000 94.1 95.00 
MMF -.406 95.2 93.72 .127 95.7 94.94 -1.559 83.2 85.72 -.060 95.6 94.99 
FMM -.406 95.2 93.72 .127 95.7 94.94 -.085 95.7 94.97 -.060 95.6 94.99 
WBT -.279 95.5 94.53 -.237 96.6 94.66 -.773 89.8 91.55 -.030 95.4 94.98 

NOTE: Simulation error is approximately 1%. 
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as an estimate CP of CP. Thus 

1- ( Z ) (12) CP = P(|a < tocu; (12) 

where z and u are as defined in Theorem 4.1. 
The estimate CP can be computed by a one-dimensional 

integral: 
00 2(01-Z") 21 

P [0 (n P)(- ') ] +(z) dz, 

where c-i is the standard normal density and S = 1 - F, 
where F is the cumulative distribution function for X2 
(n - p). 

Clearly, CP provides a natural calibration for the z plot. 
There are, however, simpler and more visual calibrations 
that work quite well. For these, we consider approximations 
to CP. 

The easiest and perhaps most useful approximation is ob- 
tained by setting n = so . Let CP. Idenote this approximation. 
Then CP.I = P(Ii(x) I < zo), where x- N(0, o2) and zo 
is the a /2 upper quantile ofthe standard normal distribution. 
Using this, one can read CP.I from the z plot. No numerical 
integration is required. For example, if a = .05 and i- 
= 19.31, as it is for the CGM model in Table A.1, then zoo 
= 37.9, so CP.I = P(Ii(x)I < 37.9). Inverting this using 
the plot of z in Figure 1 gives CP.I - P(x > -20) = .85 1. 
Our simulation estimate for the actual coverage probability 
CP for this example was .863. This is typical, not unusual, 
agreement. 

If one does not wish to construct the z plot, he or she can 
approximate it quadratically as described earlier. Let CP.Q 
be the value of CP using this approximation to z. It is easy 
to see, using (12), that CP.Q depends only on y I and n 
- p. Figure 2 gives a plot of the failure rate 1 - CP.Q on y 
for a = .05 and n -p = 5, 10, 20, and so. To use this, one 
need only compute one value of z to estimate y and then 
read the coverage probability estimate CP.Q from Figure 2. 
The figure also provides a coverage probability calibration 
for y. Clearly, from Figure 2 little is lost if n is set to infinity 
when n - p > 20. Our current mode of operation is to ap- 
proximate CP by CP. I if we have the complete z plot, and 
by CP.Q if we have only the index value y. 

The real comparison of interest, of course, is between CP 
and its estimates. Table 1 gives a = .05 values of CP and 
CP.Q for 40 parametric functions g(O) associated with 14 
models defined in Table A. 1 of the Appendix. Each CP was 
computed by simulation, using 1,000 fits. In every case but 
one, the interval for 02 in the WBT model, CP.Q, is within 
2.19 simulation standard errors of CP. The computations 
were done using MATLAB on a Sun SPARCstation 2 com- 
puter. The normal random generator was the MATLAB 
generator. It is hard to evaluate the numerical precision of 
all of our calculations, but in a number of cases where we 
were able to compare confidence intervals that we computed 
with those computed by others, they were essentially iden- 
tical, agreeing to at least five significant figures. 

0.2 

0.15 

0. 0.1 

0.05 9 

O 0.5 1 1.5 2 
gamma 

Figure 2. Plots of 1 - dP.Q on y for a = .05 and n - p=5(- -, 
10 (- --, 20 (... , and n - p = oo ( ). 

All of the parameter functions g(0) in Table 1 are co- 
ordinate functions of the form g( 0) = Oj for some j. These 
are functions of interest in the examples, and their use 
greatly simplifies the presentation of the results. But one 
need not view the results in Table 1 as coordinate function 
results. Simply reparameterize all of the models. The re- 
sults in the body of Table 1 are invariant and hence will 
not change. But the coordinate functions g(0) = Oj will in 
general transform into noncoordinate functions. Actually, 
we exploited this in carrying out our simulations by re- 
parameterizing when our fitting algorithm ran into trouble. 
For example, the ARM model generated a number of y 
vectors that were numerically difficult to fit. Rather than 
looking at these individually and attempting to nurse a fit 
in each case, we reparameterized to reduce the numerical 
difficulty for our Gauss-Newton algorithm for problems 
generated by the ARM model. The parameterization used 
wasfi () = 01 + 02(exp(03Xi ) -1 )/03. The functions to 
be estimated become g1(0) = 01 - 02/03, g2(0) = 02/03, 
and g3(0) = 03. These correspond to the coordinate func- 
tions under the original parameterization. 

Constructing the diagnostics discussed requires a value 
for 0. In a specific nonlinear regression analysis, the value 
of 0 of greatest interest is that used to define the population 
sampled. Because this value is usually unknown, one might 
replace it by 0 and view the diagnostics obtained as ap- 
proximations to those that would have been obtained using 
the population 0. 

5. USING THE PROFILE t PLOT 
The profile t plot (Bates and Watts 1988) is used as a 

device to construct likelihood ratio confidence intervals. It 
has also been suggested that the plot can be used as a diag- 
nostic for LA intervals. We expand on this suggestion here, 
by showing how the profile t plot is related to the gradient 
direction plot for g. 

To define the profile t plot, let fuL = f (Or), where Oc is the 
least squares estimate of 0 given g( 0) = c. The profile t plot 
is a plot of the function 
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t*(c) = sign(c - A) o 2 ) A (13) 

Bates and Watts noted the following. 

Theorem 5.1. If f and g are linear, then t * is linear. 
This suggests using the plot of t* as a diagnostic for LA 

intervals. If t* is not linear, then f or g must be nonlinear. 
To our knowledge there has been no further investigation 
of the use of profile t plot as a diagnostic for LA intervals. 
Because, as noted earlier, LA intervals can be exact when f 
and g are nonlinear, it would be helpful to have a stronger 
version of Theorem 5.1. 

To relate the profile t plot to the gradient direction plot 
for A, recall that d is the direction of the gradient of A at ,u. 
Thus the gradient direction plot for A is a plot of 

g(x) = g(,u + xd), (14) 

which can be constructed from pseudodata exactly as z was 
constructed. 

We say A is linearizable if there is a strictly monotone 
transformation h on the real line such that h(g) is linear. 
Clearly, a linearizable function is a generalized linear func- 
tion. Moreover, one can show that g must be invertible if g 
is linearizable. 

In the Appendix we show the following theorem. 

Theorem 5.2. If At is linear and A is linearizable, then 
g-l= x+ ?*,where A = (d,-) 
The next theorem follows at once. 
Theorem 5.3. If At is linear and A is linear, then t* is 

linear. 
This provides stronger motivation than Theorem 5.1 for 

using t * as a diagnostic for LA intervals. It is difficult to 
produce examples for which the LA interval is exact when 
At or A are not linear. 

Finally, one could also use the profile t plot to estimate 
LA interval coverage probabilities. We show the following 
in the Appendix. 

Theorem 5.4. If A is linear and A is linearizable, then z 
- (g- g(-))l9 

Thus starting with t*, one can produce g using Theorem 
5.2. Then, produce z using Theorem 5.4 and use this as in 
Section 4 to estimate coverage probabilities. This is a bit 
roundabout so we have not investigated it, but we would 
expect its performance to be similar to that of using z directly. 

6. BOX'S BIAS APPROXIMATION 
Box (1971) derived an approximation for the bias in 0 

that was extended by Ratkowsky ( 1983) to an approximation 
for the bias in A. A much simpler argument that leads directly 
to these approximations goes as follows. Approximate A by 
a second-order Taylor expansion at ,u, giving 

Ag() + dg(e) +I ddg(e, e) 

where ddg, denotes the second differential of g at ,u. An 
approximation for the bias in g is then given by 

0o2 
E(- g(O)) = - tr(ddg). (15) 

This is the Box-Ratkowsky (BR) approximation, except that 
those authors expressed it in a fairly complex form involving 
the first and second partial derivatives of f and g. Their 
expressions may be viewed as computing formulas for 
tr(ddg, ). 

We show how to use our methods to calibrate the BR bias 
estimate. If g is a generalized linear function, then g(y) 
= g((d, y -,u)) and tr(ddg,,) = g(O). We show in the Ap- 
pendix (Thm. A.4) that z(0) = -`(O)/a(O). Using (8), 

2Box 
= _ () 

where Box is the BR bias estimate given by ( 15). One can 
use this and Figure 2 to calibrate the BR index in terms of 
estimated coverage probabilities. 

Instead of using coverage probabilities to calibrate the BR 
index, one might do this the other way around and use the 
index to estimate coverage probabilities. But it is easier to 
base these directly on z(O), which is much easier to compute 
than the BR index. 

7. THE ASYMMETRY MEASURE OF 
LOWRY AND MORTON 

Lowry and Morton (1983) introduced an asymmetry 
measure for the distribution of each component Oj of 0 that 
may be viewed as a diagnostic for the LA interval for Oj. 
This was discussed further by Morton (1987). To define this 
measure, let =j(g + e), =e), and 0 

(J+ j. The Lowry and Morton asymmetry 
measure is Xj = var( 1)/var(Qj). Because this generally can- 
not be computed, they also given an asymptotic approxi- 
mation, 

X(a) =avar((P) 
avar(0j) 

where avar(ep) and avar(Oj) are asymptotic approximations 
to var(p^j) and var(Oj) defined by fairly complex formulas 
involving the first four partial derivatives of each f. Using 
the methods developed here, it can be shown that avar( p ) 
= 41 ddbj,, 112F/2 andavar(6j) = i2 11 dbj, 112 where 11*IlFde- 
notes the Frobenius norm. This provides a new interpretation 
for Xga). It measures the local nonlinearity of Oj at ,u. 

It is easy to extend Lowry and Morton's measure for Oj to 
arbitrary functions g(O). Let Xg denote this extended measure 
and let 4ga) denote its asymptotic approximation. Then 

S2 11dd 112 
X(a) = 2'1 ddR~j, X91 2 ld ^ 11 2 

It can be shown that when g is a generalized linear function, 
7 2 

X(a) - ( 16) 

Thus the results of Section 4 can be used directly to calibrate 
xjga) in terms of coverage probabilities. 

Given ( 16 ), which index Aga or -y should we prefer? As a 
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diagnostic for LA intervals we prefer y, because it is consid- 
erably easier to compute and because it is simply related to 
the z plot. 

8. COMMENTS 
It is possible that the methods used here may be as im- 

portant as the results derived. We believe that we have made 
a number of choices that worked well. The decision to look 
at confidence intervals rather than higher-dimensional re- 
gions was motivated by the fact that they are far more fre- 
quently used and are simpler. There are, however, many 
interesting things that one can say about them. The decision 
to consider g(O) rather than a component Oj of 0 seems not 
only more general, but also more natural and conceptually 
simpler. 

Perhaps the most important observation is that the linear 
approximation interval is invariant under reparameteriza- 
tion. This motivated our development in terms of invariant 
structures such as g, z, and At rather than in terms of f and 
g, which are not invariant. This in turn has led to substantial 
simplifications and insights. Consider the expression 

dg dfT df -1 dgT 
dO k dO dO) dO 

that appears in the definition of the LA interval. Using (7), 
this is a formula for the square of the norm of the differential 
of g at ,u. In symbols, 

dgI dfT df - I dg T 
1A= dO dO dO) dO 

From a theoretical viewpoint, the expression on the right is 
unnecessarily complicated, because it involves a specific pa- 
rameterization for f and g. It cannot be avoided entirely, 
because in a specific application g is defined by a specific f 
and g. However, it can, and we claim should, be viewed as 
a computing formula for the theoretical expression on the 
left. 

In general it is a good idea to separate computing formulas 
from conceptual formulas. We have given conceptually much 
simpler formulations for the bias index of Box and Rat- 
kowsky and the asymmetry index of Lowry and Morton by 
expressing them in terms of gas simple multiples of tr(ddg,) 
and || ddk,j 12 . The formulas given by Box and Ratkowsky 
and by Lowry and Morton are useful computing formulas 
but in our opinion are too complicated to provide useful 
theoretical insight. 

Finally, we have made extensive use of differentials rather 
than attempting to replace them by gradients and Jacobians. 
Our development has involved a fair number of rather del- 
icate differentiations that would have been awkward to carry 
out without the simple and precise differential notation. 

APPENDIX: DEFERRED THEOREMS AND PROOFS 
Theorem A.]. In the notation of Section 2, 

V( df ( df Tdf \-1dg7TA1 

and 

ae(O) = ||dgAI. (A.2) 

Proof By definition, 0 = 0(y) minimizes 1Iy -f (0) 11 2. Assuming 
that 6(y) is an interior point of the domain of f, 

(dfj(y)(dA), y - f (8(y))) = 0, (A.3) 

for all y E 9s1 and dO E 9VP. Computing the differential of both sides 
of (A.3) with respect to y and replacing y by ,u gives 

(df0( d), dy - dfo(db,.(dy))) = 0 (A.4) 

for all dy E 9s1 and dO E 9kP. Solving (A.4) gives d,, 
= (df * df)'- df , where df * denotes the adjoint of df9. Because 
g= g(0), 

= dgod0, = dg9(dfa df)-'df . 

When written in terms of Jacobians, this is (A. 1 ). Using (A. 1 ) and 
(2), 11 dg4II = 11Vg(M) 11 = a(O), which proves (A.2). 

The following theorem was proved by Chen ( 1991, p. 93). 

Theorem A.2. If 

/ fT df dgT and ' 

u = \db dOdO / dO A=zdidOdO' 

where di andfJ are the ith components of d and f, and if 

B = (ao( )f2A - (a'(O)) dOdO' 

then z(O) = UTBu. 

Proof of Theorem 4.1. 

From (9) and (3), CP = P(Iz^ < toe) = P(12((d, y -,))I 
< to a). Recall that d is the direction of the gradient of z at ,u. Using 
(3), Vz(,) = a^-&'(M)Vg(IA), so d is a multiple of Vg(,u). By (7), d 
is in the column space of df /dO, and hence d is tangent to A at . 
Because A is linear, y- is perpendicular to A. Thus (d, y 
-,4) = 0 and (d, y - ,) = (d, 4u-,u). Also because A is linear, 
, and y- are independent. Thus (d, y - ,) and y - , are 
independent, as are (d, y - ,) and 2. Again because A is linear, 
(n - p)a/o X2(n - p). The theorem follows from the fact 
that (d, y -,u) - N(O, U2). 

Proof of Theorem 5.2. 

Let ic(y) be the projection of y onto At = { f(O): g(O) = c}. 
Because g(f (0)) = g(O(f (O))) = g(O), 

AC = {z' it: NOz') = c}. (A.5) 

Because g is a generalized linear function, g(y) = g((d, y -,)), 
and because gis invertible, Ac = EA: (d, u'-,u) =-(c)}. 
Because this is a linear manifold, 

4c-A=xd (A.6) 

for some x. Using ( 13) and (A.6), 

t*(c) = sign(c - ) --. (A.7) 

Using (A.6) and the definition of x, 

(d, A'C - 11) = x + x^. (A.8) 

Using (A.5) and the fact that g is a generalized linear function, c 
= g()= g((d, 4z - i)). Using (A.8), 

c=g(x+x). ~~~(A.9) 
Thus 
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Table A. 1. Models Used in the Simulation 

Modelsa 0 or f(0) 

MMM (212.7, .06412)T 10.93 01x/(02 + x) 
x = (.02, .02, .06, .06, .11, .11, .22, .22, .56, .56, 1.10, 1.10)T 

BOD (19.14, .5311)T 2.549 01(1 - exp(-02x)) 
x = (1, 2, 3, 4, 5, 7)T 

BOX (205.3, .4306)T 7.100 01(1 - exp(-02x)) 
x = (1, 2, 3, 4, 5, 6, 7)T 

EAM (.4801, 1.603)T 1.560 01x62 
x = (4, 10, 17, 22, 25)T 

CGM (.009228, 1.826)T 19.31 01x62 
x = (50, 60, 60, 70, 70, 80, 80, 90, 90, 90, 95, 100, 100, 100, 105, 105, 110, 110, 

110, 115, 115, 115, 120, 120, 120,125,130,130,135,135,140,140,145,150, 
150,155, 155, 160, 160, 160, 165, 170, 180)T 

ARM (188.6, -193.2, -.006247)T 3.167 01 + 02e09" 
LOG (72.46,13.71, -.06736)T 1.159 01/(1 + 02eO3x) 
GOM (82.83, 1.224, .03707)T 1.906 Oele(e2-034 
MMF (80.96, 8.895, 49,577, 2.828)T 1.647 (0203 + 01X04)/(03 + x04) 
FMM (80.96, 8.895,10.81, 2.828)T 1.647 (02e03 + 01x04)/(e03 + x04) 
WBT (69.96, 61.68, .0001001, 2.378)T 1.294 01 - 02e-03K4 

xb = (9, 14, 21, 28, 42, 57, 63, 70, 79)T 
CTM (5.145, 6,149, 344.1)T 1.72E-4 -01 + 02/(03 + x) 
MRM (.00561, 6,181, 345.2)T 2.608 01e62/(03+x) 

xb = (50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,105, 110, 115, 120, 125)T 
FQM (.4889, 3.047, -.1008)T .266 01 - 20203x + 03x2 

x = (-4, -3, -2, -1, 0, 1, 2, 3, 4, 5)T 

a MMM, BOD: Bates and Watts (1988, p. 329); BOX, EAM, CGM: Draper and Smith (1981, pp. 522, 521, 519); ARM, LOG, GOM, MMF, 
FMM, WBT, CTM: Ratkowsky (1983, pp. 88, 71, 69, 88, 88, 88, 120); MRM: Meyer and Roth (1972, p. 232); FQM: Fieller (1954, p. 180). 

bThe foregoing models use the same x. 

x =g ^c0-x (A. I ) 

We need to find the relation between the sign of x and that of c 
-g. Because g has an inverse and g(O) = dg,(d) = || dg|1 > 0, g 
is strictly increasing. Because x = (d, ,u-,), g(x) = g((d, 4u-,u)) 
= g(u) = g. Using (A.9), c- = g(x + x) - (x), and hence c 
- has the same sign as x. Finally, from (A.7) and (A.10), a't* 
= x = X-^, which completes the proof. 

Let 

a(x) = a&(,u + xd). (A.11) 

Theorem A.3. &(O) = g(O) and &a(O) = g(0). 
Proof Because d is the direction of Vg(I,), &(O) = IIdg,|I 

=dg,(d) = g(O). From (7), Vg(,u) is tangent to A at ,u. Let y 
be a curve on A such that y(O) = ,u and j(O) = d. Because 4(,y) 

y,= ( dg) = (Vk(y)) 

Differentiating, 

a(,y)da,(T) = ddRg(V7(y), y). 

Evaluating at zero, 

a"(A) d `,(d) = ddg,(d, VR(A)). 

Because Vg(,u) = JI VRg) lid = &(,u)d, da',(d) = ddg,(d, d), and 
finally, using (A.1 1 ) and ( 14), 

a(O) = da&A(d) = ddg,(d, d) = g(O), 

which proves the second assertion of the theorem. 
Theorem A.4. z(O) =-g(0)/a(O). 

Proof Using (3), (6), (14), and (A.11), = ( g()) 
a. Differentiating twice and using Theorem A.3 gives z(O) 

.. 

-g(O) / O(O). Using (A. l l) again, &(O) = a&(,) = a(O), which 
completes the proof. 

Proof of Theorem 5.4 

Using (3), (6), and (14), z(x) = (g(x) - g(O))/&a(A + xd). 
Using (4) and the linearity of A, a&(, + xd) = || d,,+,dII. Thus 
it is sufficient to show that || dR,,+,dII = g(x). Because g is a general- 
ized linear function, g(y) = g((d, y - ,u)). Thus dk,+Xd(dy) 
= g(x)(d, dy), and hence IIdk,+XdII = Ig(x)I. Because g(O) 
=dg,(d) > 0 and g is invertible, g(x) 2 0 for all x. Thus 
II i,+xd = g(x), which completes the proof. 

[Received August 1992. Revised July 1994.] 
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