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ABSTRACT OF THE DISSERTATION

Modeling membranes under stress: dynamics and disease

By

Kathryn Manakova

Doctor of Philosophy in Mathematical, Computational and Systems Biology

University of California, Irvine, 2018

Professor Jun Allard, Chair

Biological membranes are essential to life as we know it. One of the most important roles

of membranes is to provide a stable barrier between two aqueous environments maintaining

spatially localized chemical environments to facilitate the occurrence of biochemical reac-

tions necessary for life. To accomplish this, membranes must remain stable under a variety

of external and internal stresses. Thus, membranes are often structurally reinforced with

networks of proteins or polysaccharides. Here, we present three models of metazoan mem-

branes and their associated protein networks. We first investigated the plasma membrane,

under which lies a dense network of actin filaments known as the cortex. Disruptions in the

cortex lead to transient membrane protrusions known as blebs, which are implicated in a

variety of cellular functions. Here, we developed a model which recapitulates the bleb life

cycle and provides conditions under which blebbing occurs. Furthermore, our model can

give rise to traveling blebs, a mysterious behavior observed in some cell lines, and predicts

traveling velocity, which had not been established by other models. We derived a previously

unknown necessary condition for traveling wave solutions to exist in such a system, and

demonstrate sufficiency numerically. Next, we present two models of the nuclear envelope

which is internally associated with a network of lamin proteins known as the nuclear lamina.

In the first model, we investigated nuclear shape defects resulting from mutations in the

gene encoding for lamin A/C, a major component of the nuclear lamina. Our model serves

xii



as a pipeline to determine unknown biophysical properties, presented as parameters in the

model, of the lamina. Our second model explored the scaling relationship between nuclear

size and cell size. We combined equations for the transport of nuclear elements, including

surface factor elements (e.g. lamins) and volume factor elements (e.g. NuMA), across the

cell and into the nucleus with a mechanical force-balance equation establishing the size of

the nucleus. This model predicts that nuclear size is regulated by a combination of surface

factor and volume factor elements with a non-negligible contribution from genomic content.
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Chapter 1

Introduction

Life as we know it could not exist without membranes. This is because membranes provide

a spatially localized compartment to protect genetic information, and to enable the chemical

and physical processes required to replicate the genetic information. Membranes are also

involved in a number of biological processes including (but not limited to): establishing and

maintaining chemical gradients across them (enabling the generation of energy); inter- and

intra-cellular communication; and compartmentalizing biochemical reactions into organelles.

(It is important to note that non-membrane bound organelles exist within both prokaryotic

and eukaryotic cells, and are functionally analogous to membrane bound organelles [52].

Non-membrane bound organelles form through phase separation of particular proteins, and

are often less stable than their membrane bound counterparts [101].) Biological membranes

are hard to study because they are composed of a dynamic ensemble of lipids, proteins and

surface carbohydrates all packed into a sheet less that 10 nm in width [89].

These membranes must support all these functions under the influence of many external

stresses (Figure 1.1B), e.g. osmotic pressure due to changing water concentrations inside

or outside the cell [114]. Thus, many membranes have structural support by association

1



with proteins networks on one or both sides (Figure 1.1C). This is a recurring feature in

metazoans, whose plasma membrane is supported on the inside by a dense network of actin

filaments known as the cortex, and whose inner membrane of the nuclear envelope is associ-

ated with a dense network of lamin filaments known as the nuclear lamina. These supporting

protein networks are also constantly undergoing processes of assembly and disassembly as

in Figure 1.1D. For instance, with every cell division the nuclear lamina must completely

disassemble and then reassemble within the daughter cells. Improper regulation of assem-

bly/disassembly kinetics can result in serious and fatal diseases such as progeria [94].

A B

C D

Membrane Membrane under 
stress

Membrane under 
stress with support 
from protein network

Membrane under 
stress with support 
from protein network 
actively turning over 

Figure 1.1: Membranes under stress.

In the following chapters, we treat the membrane as an elastic material [42] and use mathe-

matical modeling to study the interplay between the chemical dynamics of assembly/disassembly

of the proteins associated with membranes and the response of the membranes subjected to

various mechanical forces. These models are developed at the molecular scale to recapitulate

particular observations at the scale of the organelle and cell. By using the mathematical

2



tools of calculus developed over centuries, in conjunction with the computational advances

of the last century, we are able to isolate the parts of the system we are interested in, e.g.

membrane + associated protein complexes, without considering the system as a whole. In

this way, we can identify the minimum number of elements necessary to describe a partic-

ular behavior of interest. In Chapters 2 and 5, we show how a model that is too simple

fails to explain the observed behaviors, suggesting that something previously thought to be

negligible is in fact important, and/or that something is missing in general. Mathematical

modeling also allows us to use information that we know about a system, e.g. key biophysi-

cal parameters, to infer that which we are unable to obtain through laboratory experiments,

as we do in Chapter 4. This provides an opportunity to identify the molecular origin of a

difference observed at the scale of the cell or organism, e.g. the difference between a healthy

vs. a pathological cell/organism. This dissertation is a presentation of four projects, each

presented as a chapter, where we have developed biophysical models to investigate the me-

chanical responses of the plasma membrane of eukaryotic cells and the nuclear envelope of

animal cells. Each project is briefly introduced by the following four paragraphs.

The cell membrane acts as the main barrier between the cell and the surrounding environ-

ment. Inside the cell of metazoans, the membrane is supported by a dense network of actin

filaments called the cortex which is attached to the cell membrane via adhesion molecules.

The cortex maintains the cell shape and contracts inward generating internal pressure in

the cell. Local disruptions to the cortex result in dynamic, transient protrusions of the cell

membrane termed blebs. Blebs are implicated in many cellular activities including apoptosis,

mitosis and motility, yet little is known about the mechanism underlying bleb formation. One

particular aspect which has received little attention is the traveling behavior of some blebs

around the cell periphery, which may have implications in bleb based motility. In Chapter 2,

we use mathematical modeling to elucidate the mechanisms underlying this behavior.

The equations arising from Chapter 2 are interesting in their own right, as little research

3



has been done for this class of non-local PDEs. More typical systems of equations arising in

biological contexts, such as reaction-diffusion equations, have been studied extensively and

many of their properties are well established. One such property is the existence of traveling

wave solutions, which is known to be important to many biological processes [71]. In the case

of reaction-diffusion systems, a necessary and sufficient condition which allows for traveling

wave solutions is known. In our case of a non-diffusion like system, it is not. We believe

the class of equations which our system falls into can and will be used to describe other

biological systems in the future and so in Chapter 3, we describe an analog to this which

will be applicable to a particular class of non-local PDEs.

A superficially similar problem to that of cellular blebs is seen in the nuclei of animal cells.

Nuclei are bounded by a double membrane, and this double membrane is supported by

a dense network of lamin filaments termed the nuclear lamina. In cases where the gene

responsible for producing lamin A/C, the main constituent of the nuclear lamina, is mutated,

a variety of disease states may ensue, including extremely severe diseases such as progeria

and heart disease. The nuclei in these mutated cells often have a irregular shapes, with one

or more protrusions termed nuclear blebs. In this case, the blebs are not due to a disruption

in the linkage between the nuclear membrane and the lamina (as blebs contain lamina), but

rather might be due to a defect in the lamina itself. The mechanism by which nuclear blebs

form is unclear. In Chapter 4 we use mathematical modeling to probe potential defects

in the lamin A/C protein, and work in conjunction with the Grosberg (UCI - Deparment

of Biomedical Engineering) and Zaragoza (UCI - School of Medicine) labs to try to match

simulated nuclei to their patient and control samples. This will elucidate the mechanism

by which nuclear blebs form in disease states, and further our understanding of the disease

itself.

Nuclei must be disassembled and reassembled with every cellular division, a process occurring

throughout the lifespan of an organism. It has been previously shown that the final size of the

4



nucleus scales with cell size [50, 74], but the precise scaling relationship is unknown. Using a

custom microfluidics device, our collaborators in the Maddox (UNC Chapel Hill) and Gatlin

(University of Wyoming) have controlled for cell size and found that neither nuclear volume

nor surface area scaled directly with cell size. In Chapter 5, we use a mathematical model of

nuclear assembly to study the relative weights of the effects nuclear volume, nuclear surface

area and genome size on the total nuclear size.

Finally, Chapter 6 includes general comments about the similarities and differences of each

project, brief summaries and applications to other areas of mathematical and computational

biology.
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Chapter 2

Cell surface mechanochemistry and

the determinants of bleb formation,

healing and travel velocity?

2.1 Introduction

The eukaryotic cell surface is the site of cell-cell communication [3], cell-environment in-

teractions including motility and mechanosensing [113], and cell morphogenesis [2], among

other processes. Many of these processes involve mechanical forces and deformation, making

mechanics of the cell surface an increasingly important topic of investigation.

The study of cell surface mechanics is complicated by dynamic interactions among its mul-

tiple constituents with distinct material properties. The plasma membrane is fluid [83] and

resists deformation and experiences surface tension on the order of 10-100 pN/nm [97] that

is spatially and temporally non-uniform [78]. Below the membrane is a ∼ 100 nm layer of

?This work has been published in Biophysical Journal [Manakova et al. Cell surface mechanochemistry
and the determinants of bleb formation, healing, and travel velocity. Biophys J, 110 (2016), pp. 1636-1647].
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F-actin with distinct microarchitecture from the cytoplasmic F-actin further into the cell

[19], termed the cortex. The cortex is anisotropic poro-viscoelastic material [86, 39] that

generates internal active contractile stresses by association with myosin [97]. The membrane

and cortex are decorated with a myriad of molecules, some of which interact with both of

them, thereby facilitating dynamic adhesion between them [34]. This complexity obscures

fundamental questions such as, how quickly is hydrostatic pressure propagated through the

cortex [90, 18, 20], or surface tension propagated across the membrane [78, 31, 83]? These

questions have functional consequences since, for example, membrane bending and tension

are implicated in endocytosis [62], cell polarization [44] and motility [31, 110], while the

cortex is implicated in cell division, initiating filopodia and other cellular protrusion [60],

both facilitating and preventing vesicle export [105], and wound healing [86].

An example cell process that involves all the above components is offered by cellular blebbing,

pressure-driven protrusions that occur in many cell types and conditions [14, 17, 76]. An

individual bleb begins with an initiation phase whereupon the membrane separates from

the cortex, either spontaneously or under experimental triggering such as laser ablation

[19, 14]. Initiation is followed by a rapid (∼ 10 s) expansion phase which, unlike other cellular

protrusion, is not actively driven by cytoskeletal polymerization [22]. After expansion, blebs

can exhibit a range of dynamic behaviors: Stationary blebs heal in place with a slower

timescale (∼minutes). Other classes of bleb that have been experimentally observed travel

around the periphery of the cell — a phenomenon termed circus movement [35, 75, 61] —

or repeatedly bleb on top of an existing bleb [14]. The complete life-cycle is determined by

a complex interplay between flow of cytosol into the bleb, contractile forces in the cortex

and the formation and maintenance of membrane-cortex adhesions. Blebs are implicated

in non-lamellipodial cell motility [63, 15], including in protease-inhibited cancer cells [33];

in maintaining homeostasis during division [87]; and have a speculated role in the origin of

eukaryotic life [4].
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Traveling waves of protrusion are increasingly reported in different cell types [44, 85], but

these protrusions are typically F-actin-enriched (although see [51]), whereas blebs represent

regions with reduced F-actin. A fundamental question to the understanding of any traveling

wave phenomenon [2] is: what determines the traveling velocity of a traveling bleb? And, in

the case of blebs which may be stationary or travel, even simultaneously at different locations

on the same cell, what determines whether a bleb will travel or heal in place?

Several theoretical models of blebbing have been developed to capture various aspects of

the process. Computational fluid dynamics models [90, 93, 111] have been developed to

understand the initial expansion phase during which cytosolic fluid follows the protruding

membrane. Due to the computational cost of solving the fluid equations along with their

mechanical interaction with immersed structures (which typically have sub-second dynamics

[90, 93]), simulations of these models are typically limited to 2D approximation and sec-

onds timescales. Other researchers [61] have used force-balance models [1, 51] to obtain

computationally tractable models describing the full life cycle. These models are in 2D

and must assume an a priori bleb healing velocity to generate traveling blebs. Continuum

analytical models [107, 106, 108] have also been developed that move beyond the typical

small-deformation approximations typically used to describe membrane geometry. These

models capture details of the shape of stationary bleb that have, among other findings,

implicated lipid flow in determining bleb behavior.

A full, 3D description of the full life-cycle of traveling blebs is therefore lacking. In this

work, we develop a model of local cell surface mechanics on timescales of seconds to minutes,

thereby including cortex turnover and bleb healing. We exploit two simplifying assumptions:

First, we assume hydrodynamic equilibrium is reached rapidly and therefore avoid compu-

tationally taxing fluid dynamic simulation, at the expense of losing information about the

expansion phase. Second, our model contains a single, “effective” cortex corresponding to

the weighted average of cortical actin, allowing us to include implicitly the cytoskeleton
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further inside the cell.

An emerging feature of this model is that transient detachment between membrane and

cortex can lead to: 1) rapid healing, 2) stationary bleb formation, and 3) spontaneous bleb

travel, depending on model parameters. Our model makes two main contributions: First,

since traveling blebs arise naturally, we can elucidate the determinants of bleb travel. In

particular, several simplifying assumptions allow us to obtain an analytic expression for bleb

travel velocity that provides experimentally-accessible perturbations predicted to accelerate

or decelerate travel. Our second finding is that the biophysical ingredients hypothesized to

account for blebbing produce traveling blebs with unrealistic geometry. This suggests yet-to-

be-identified mechanism playing a role in cell integrity and the localization of morphological

perturbations. We explore the influence of dynamic, non-uniform membrane tension; hy-

drostatic pressure equilibration occurring at multiple length scales (i.e., global versus local

[93]); and spatial heterogeneity. We find the latter sufficient to maintain bleb compactness

during travel.

2.2 Model

Our minimal model, summarized schematically in Figure 2.1, consists of four fundamental

dynamic variables, as functions of time t and location on the two-dimensional cell sur-

face, parametrized by (x1, x2). The actin cortex, has local height described by yC(x1, x2, t)

measured normal to the mean cell surface from its steady-state configuration yC = 0, and

thickness c(x1, x2, t). The cortical-cytoplasmic actin cytoskeleton can in principle have com-

plicated morphologies that cannot be accounted for by a single location yC , so we think of

yC as the weighted average position of maximal cortical actin. Membrane-cortex adhesions

are described by density a(x1, x2, t) in molecules/ nm2. Finally, the membrane has local

height yM(x1, x2, t). Note that our model is agnostic about the molecular constituents of the

9



Figure 2.1: (A) Cartoon of a single bleb, with the plasma membrane depicted in blue and the
cortex in orange. (B) Model components. At each location on the surface of the cell x, four
quantities are represented: The height of the membrane yM(x, t), the height and thickness of
the actin cortex yC(x, t) and C(x, t) respectively, and the local density of membrane-cortex
anchoring proteins, A(x, t). Note that the schematic shows the range of possible model
states (e.g., thick or thin cortex, protruding or proximal membrane), while specific predicted
dynamics will be determined by simulation.

membrane, and it could include the plasma membrane as well as permanently membrane-

associated proteins and cytoskeletal networks [51]. Our approach is similar to previous

descriptions of membrane mechanics [1, 61, 3, 78].

2.2.1 Assembly and turnover.

The cortex is an active, anisotropic poro-viscoelastic material [86, 39]. Since the molecular

details of cortex assembly are still under investigation [8], we assume simple first-order

kinetics,

∂c

∂t
= ωa− rc. (2.2.1)
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The first parameter ω governs cortex assembly, and assumes new cortex requires adhesion

to a nearby membrane (although existing cortex can exist anywhere), consistent with the

observation that cortical actin has different architecture than cytoplasmic F-actin [19]. The

second term describes cortex turnover with rate r ∼ 0.05 s−1 [34]. While we use the term

thickness, we interpret c as a combination of density and spatial thickness, with fluorescence

intensity of labeled F-actin serving as its experimental proxy. Therefore c has arbitrary

units.

In stereotypical, pre-bleb conditions, the cortex is attached to the membrane via membrane-

cortex adhesion molecules including ezrin- radixin- moesin (ERM) family proteins [34], as

well as any other membrane proteins that interact with F-actin [77], therefore we use the

generic term “adhesion” to describe their combined effect. We use similar first-order ki-

netics for adhesion assembly and turnover, with three additional assumptions: 1) Adhesion

assembly saturates at high cortex thickness; 2) Adhesion attachment requires proximity be-

tween cortex and membrane, with characteristic distance δ that describes the “reach” of

adhesion molecules, which may be as large as ∼ 100 nm [19]; and 3) Adhesion detachment

is force-dependent with characteristic breaking force f0. These assumptions lead to

∂a

∂t
=

kon c

c0 + c
exp

(
−
(
yM − yC

δ

))
− koff a exp

(
κ(yM − yC)

f0

)
(2.2.2)

where kon and koff have units of nm−2 s−1 and s−1, respectively, and c0 is the cortex thickness

at which adhesion assembly is half-maximal. The numerator κ(yM − yC) follows from the

assumption that adhesions collectively behave like springs with Hookean stiffness κ. Note

that adhesion turnover koff ∼ 2 s−1 [34] is significantly faster than cortex turnover, leading

to a separation of timescales we exploit.
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2.2.2 Mechanics.

The above equations describing assembly and disassembly kinetics are coupled to a mechan-

ical description of the membrane and cortex via mechanical energy,

E =

∫∫
H1 +HM +HC dx1dx2 (2.2.3)

where

H1 =
1

2
aκ (yM − yC)2 − Π. (2.2.4)

The first term corresponds to tension on the adhesions. Since these adhesions break at

moderate tension, we model these as linear springs. The second term is hydrostatic pressure

Π, specified below. Membrane mechanics are described by

HM =
1

2
γM (∇yM)2 +

1

2
BM

(
∇2yM

)2
(2.2.5)

corresponding to the standard Canham-Helfrich energy with membrane tension γM and bend-

ing rigidity BM [42, 1, 106, 61]. These functional forms represent a small-deformation approx-

imation and comprise a simplifying assumption to make the model more easily amenable to

the analysis. We therefore do not expect our model to capture the shape of a fully-expanded

bleb with high accuracy, for which geometrically more complex models have been developed

[108]. Finally, mechanics of the actin-myosin cytoskeleton is included in

HC = cσm

(
y2
C +

1

2
wC (∇yC)2

)
, (2.2.6)

accounting for active of the cortex, which generates contraction stress σmc, assumed propor-

tional to cortex thickness. The first term accounts for inward contractility, as the cortical

cytoskeleton pulls against the cytoplasmic cytoskeleton, generating a normal (inwards) force,
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as shown in Figure A.1. Note this term has been neglected in previous work [61]. The sec-

ond term accounts for tangential stress in the plane of the cortex, where wC is the cortex

dimension that translates the 3D contractile stress to a tangential planar contractile tension.

Importantly, we find that in traveling blebs, where the cortex is discontinuous, the tangential

term does not generate sufficient inward force to heal the tail of the bleb as it travels, high-

lighting the importance of the normal contractility term. Cortex elasticity terms describing

how the cortex resists deformation are straightforward to add, however we find that their

omission is sufficient to explain our key results.

The mechanical features included in the energy equation 2.2.3 can also be understood by

their equivalent force-balance form, 2.2.8-2.2.9 below.

Pressure propagation inside the complex rheology of the cytoplasm is under intense inves-

tigation [16, 90, 87]. To address the nature of pressure dynamics, we investigate several

pressure model variants. As a base model, we assume pressure is locally relaxed when the

membrane is allowed to relax,

Π = Π̂ ·
(

1− yM
2y0

M

)2

(2.2.7)

where y0
M sets the characteristic distance at which pressure is significantly reduced. The

pressure drop would be lessened if the membrane is locally water-permeable [95], which

would have the effect of reducing the coefficient relating pressure to membrane extrusion.

Other model variants explore the possibility of rapidly-equilibrated pressure across the whole

cell surface and a mixture of global and local pressure relaxation.

The dynamics of membrane tension are also under investigation [31, 80, 97, 44, 2]. Under the

simplest assumption, membrane tension γM is spatially uniform and constant in time. We

use this as our base model, but also explore membrane tension that is spatially non-uniform

and dynamically responding to local stretching/unruffling and cortex attachment in 2.3.
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Table 2.1: Model parameters.

Symbol Dimensions Meaning
ω [A.U.] · s−1 Cortex assembly rate constant
r s−1 Cortex turnover rate constant
kon nm−2 s−1 Adhesion assembly rate
koff s−1 Adhesion turnover rate
c0 [A.U.] Cortex thickness at adhesion saturation
δ nm Adhesion length between cortex and membrane
κ pN/ nm Adhesion spring constant
f0 pN Adhesion breaking strength
γM pN/ nm Membrane tension
BM pN nm Membrane bending modulus
σm Pa / [A.U.] Actin-myosin contractility (per unit of c)

Π̂ Pa/nm Hydrostatic pressure scale

2.2.3 Preliminary analysis.

Taking the variational derivative of 2.2.3 leads to force-balance equations on the cortex and

membrane,

0 = +aκ(yM − yC)− σmcyC + σmcwC∇2yC (2.2.8)

0 = −aκ(yM − yC) +
δΠ̂

δyM
+ γM∇2yM − β ∇4yM (2.2.9)

Physical parameters are summarized in Table 2.1. Values for many of these parameters have

been estimated, see Figure A.1. The spatial terms significantly complicate both numerical

solution and analysis of the model, and we find that their omission does not significantly

influence blebbing dynamics. This is expected for membrane bending, since bending forces

are expected to be negligible on length scales above ∼ (β/γM)(1/4) ∼ 100 nm [3]. Therefore,

unless otherwise noted below, we neglect the tangential cortex stress ∇2yC and membrane

bending ∇4yM terms. However, see Appendix A for solutions with full terms.

We nondimensionalize by choosing a characteristic actin cortex thickness, Cc = c0, a char-

acteristic density of adhesions, Ac = kon/koff, a characteristic time, tc = 1/r ∼ 30 s [34], and
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a characteristic position, Yc = y0
M , and a characteristic length by xc =

√
2γMkoff/(konκ) ∼

0.2µm, resulting in a nondimensional model,

dC

dτ
= ΩA− C (2.2.10)

ε
dA

dτ
=

C

1 + C
exp

(
−YM − YC

D

)
− Aexp

(
YM − YC

F0

)
(2.2.11)

0 = A(YM − YC)−MCYC (2.2.12)

0 = −A(YM − YC) + P (1− YM) +
∂2YM
∂χ2

(2.2.13)

with six nondimensional parameters defined in Table 2.

Here we provide an overview of the roles of each term in 2.2.10-2.2.13. The first and second

term in the C equation describe cortex formation and turnover, respectively. The first and

second term in the A equation describe attachment and detachment of cortex-membrane

adhesions. The first exponential in 2.2.11 arises because the membrane and cortex must be in

proximity for an adhesion to form. The second exponential in 2.2.11 describes the accelerated

breaking of adhesions under force. Then, 2.2.12 and 2.2.13 describe the mechanical balance

between five forces acting on the membrane and cortex. The forces, in order of appearance,

are: Adhesion force on the cortex; myosin contractility of the cortex; adhesion force on the

membrane; pressure; and membrane tension.

Note that our choice of nondimensionalization means that only relative changes in YM and YC

are physically meaningful. We numerically solve these equations as described in Appendix A

[104].
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Table 2.2: Nondimensional parameters.

Symbol Definition Interpretation
Ω ωkon/γc0koff Cortex intensity
ε r/koff Ratio of adhesion and cortex turnover times
D δ/y0

M Adhesion reach
F0 f0/κy

0
M Adhesion bond strength

M σmc0koff/konκ Myosin contractility relative to adhesion strength

P Π̂koff/konκ Pressure relative to adhesion strength

2.3 Results

2.3.1 Model exhibits blebbing and non-blebbing behaviors.

The quantitative model combines five mechanisms of the membrane-cortex interaction: force-

sensitive adhesions, local hydrostatic pressure, cortex contractility, membrane tension and

cortex turnover. We numerically simulate the model and find three classes of dynamics

arise from the same model at different parameters: Stable non-blebbing states, stationary

blebbing, and traveling blebs. We discuss these in turn.

At equilibrium, the membrane and cortex are locally approximately flat. We apply an initial

perturbation corresponding to local ablation by locally reducing the adhesion density by

99%. In blebbing states, the membrane will detach from the cortex and protrude locally.

The membrane then continues to move away from the thinning cortex as the detached

region grows in both lateral size (along the surface) and in height (i.e., normal to the cell

surface) until it reaches a maximum size around τ = 1.75. The adhesions subsequently

accumulate under the protruding membrane and the cortex is able to re-attach and thicken.

Under the influence of cortex contraction, the bleb heals and the membrane returns to

its equilibrium. This bleb-like behavior is observed in 2D (Figure 2.2A left) and in 3D

(Figure 2.2B) simulations. In contrast, at different biophysical parameters, the detached

region of membrane may not grow after perturbation, but instead directly and rapidly return
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to equilibrium, shown in Figure 2.2A right. This stable behavior is observed in both 2D

(Figure 2.2A right) and in 3D (not shown).

2.3.2 Blebs as excitable phenomena

While numerical simulation of the full model reveals a range of blebbing behavior, we seek to

elucidate how biophysical parameters determine the class of dynamics, specifically whether

or not a bleb forms. To this end, we simplify the model by neglecting the tension term

in 2.2.12. Heuristically, we model an (unrealistic) system in which a patch of cell surface

has been cut off from its neighbors (as in Figure A.1). This transforms the force-balance

equations 2.2.12-2.2.13 into a pair of algebraic equations,

YM =
(A+ CM)P

AMC + AP +MCP
(2.3.1)

YC =
AP

AMC + AP +MCP
, (2.3.2)

shown in Figure 2.3A as a function of A and C. These are then substituted into the assem-

bly/disassembly equations, yielding

dC

dτ
= ΩA− C (2.3.3)

ε
dA

dτ
=

C

1 + C
exp

(
− 1

D

MPC

AMC + AP +MCP

)
− A exp

(
+

1

F0

MPC

AMC + AP +MCP

)
(2.3.4)

The model is now a system of two ordinary differential equations (ODEs) amenable to phase

plane analysis [26]. We plot nullclines in which dA/dτ = 0 (green) or dC/dτ = 0 (orange)

in Figure 2.3B,D. Four regimes of behavior are observed in this system: In one (top-left),

there is a single stable equilibrium with no threshold behavior. In this regime, perturbations

rapidly return to their steady state. We identify this with the stable non-blebbing behavior
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of the full model.

The stable equilibrium can exhibit excitability (bottom-left), a threshold phenomenon in

which small perturbations rapidly return to the equilibrium, but a large sufficiently large

perturbation results in a large, slow excursion in parameter space that eventually returns to

the equilibrium. We identify this with blebbing behavior in the full model and is characterized

by a fold in the dA/dτ nullcline.

One such excitation trajectory is shown in Figure 2.3C. Prior to the initial perturbation,

τ < 2, the flat surface is stable to small perturbations but susceptible to large perturbations

such as the decrease in adhesion density applied here at τ = 2. The membrane rapidly finds

a new mechanical equilibrium, pushed out by hydrostatic pressure which is no longer in

competition with cortical contraction. The comparatively slow timescale of cortical turnover

(orange curve) leads to a delay before cortex begins to reform (τ ≈ 4), after which the cortex

accumulates, pulling in the membrane. Note that many excitable trajectories exhibit low-

amplitude oscillations in the cortex as it heals, corresponding to a slight “over-shooting” of

the equilibrium (τ ≈ 7). Interestingly, such overshooting has been observed experimentally

[19].

The minimum threshold to initiate an excitation can be extracted from Figure 2.3 as follows:

The stable equilibrium is at the intersection of the two nullclines. From this point, removing

adhesions corresponds to moving horizontally to the left. When adhesion removal is sufficient

to cross the dA/dτ nullcline, an excitation is initiated. Since the dA/dτ nullcline determines

this threshold, it is independent of membrane tension. This is in disagreement with previous

estimates of the threshold, where membrane tension has been predicted to be a strong

determinant of the size of initial ablation required for bleb initiation [17]. In contrast, our

model predicts that membrane tension determines how big a bleb grows (laterally), but

not whether it initially grows. This tension-independence arises heuristically because, once

a patch of membrane has been de-adhered, membrane tension promotes bleb growth by
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pulling neighboring adhesions, and inhibits bleb growth by pulling in the de-adhered region.

By the force-balance condition (2.2.9), these forces are equal.

We also observe oscillations (bottom-right), which could represent continually blebbing cells

[14]. At yet other parameters, the same model exhibits bistable states (top-right) in which

the flat, unperturbed equilibrium is stable, but is accompanied by a second state in which all

adhesions are broken, and hydrostatic pressure is too great for the actin cortex to overcome,

thus healing does not spontaneously occur. We expect this permanently-damaged state to

not be observed experimentally as other cellular processes adjust to heal the cortex.

Thus, by observing the nullclines for different parameters, our model makes predictions about

the emergence of blebbing following changes in biophysical parameters (Figure 2.3D). We

summarize these predictions here and in Table A.1. Increasing the effective reach of adhesion

molecules corresponds to increasing D, and abolishes excitability, while decreasing D is

predicted to not abolish blebbing but extends the excitable trajectory, therefore predicting

a slower healing period. Increasing hydrostatic pressure, e.g. by decreasing extracellular

pressure by modulating osmolites, leads to emergence of blebbing from non-blebbing states,

in agreement with experiment [97] and intuition. Decreasing myosin contractility abolished

excitability, while increasing it delays healing.

2.3.3 Biophysical determinants of travel and travel velocity

The previous section’s analysis predicts when the cell surface will be excitable and how the

bleb evolves in height, but not its dynamics along the cell surface. To understand bleb travel,

we return to the full, spatially-extended model first in 2D, then in 3D.

Excitable parameter sets all spread laterally. However, some parameter sets expand in a

limited manner (Figure 2.2A), which we identify as stationary blebs, while others trigger
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traveling pulses that persist, as shown in Figure 2.4A. We identify these as traveling blebs.

In 2D, they move in both directions from the site of initial triggering. The time interval τheal

from triggering and expansion to healing is equal to the healing time in the local analysis

and is determined by the cortex turnover time τheal ∼ 1/r. The width of the traveling bleb

w is thus determined by its travel velocity, w ∼ vτheal.

Traveling pulses are a generic feature of spatially-extended excitable systems [49, 84, 5].

In many cases, neighboring regions are coupled by the diffusion of a molecular participant.

In these reaction-diffusion systems, a simple mathematical condition exists for determining

whether an excitation will induce a traveling pulse or remain localized, sometimes called the

Maxwell condition [9, 68]. Since our system is not a reaction-diffusion system, the Maxwell

condition fails to predict whether the blebs travel or not.

A major goal of this work is to elucidate the determinants of the traveling velocity, which

is known for reaction-diffusion waves and mechanical linear waves [2]. Parameter variations,

shown in Figure 2.5, reveal that the parameter regime that allows traveling blebs is narrow

in all nondimensional parameters except ε. Indeed, its relative range is less than 100.3,

corresponding to a 2-fold change. The model therefore predicts a nondimensional velocity

V ∼ 1/ε, yielding the following dimensional velocity, the principle result of this work:

v ≈

√
γMk3

off

κkon

h(Ω, D, F0, P,M) (2.3.5)

≈

√
γMk3

off

κkon

(2.3.6)

where the function h expresses to a weak dependence. We confirm this prediction in Fig-

ure 2.5B by performing a large pan-parametric search through parameter space. Equa-

tion 2.3.6 predicts that travel will accelerate with increasing membrane tension, with a

specifically square-root dependence, and will decelerate with adhesion formation rate kon,

a parameter that could be varied by increasing the abundance of total adhesion molecules.
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Figure 2.4: Traveling blebs in 2D and 3D. (A) Profile of a traveling blebs in 2D after a pertur-
bation at time τ = 0. Membrane height in blue, cortex thickness in orange. Parameter values:
Ω = 55, ε = 0.1, F0 = 1, M = 0.007, P = 0.1 and D = 0.15. (B) Profile of a traveling bleb in
3D after a perturbation at time τ = 0 in the spatial-heterogeneity hypothesis model as shown
in top panel, see Results.
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Figure 2.5: Velocity of traveling blebs. A) Plot of each of the 6 nondimensional parameters, Ω,
D, F0, P , M , ε, versus nondimensional velocity. Parameter ranges show the full extent of the
parameter regime exhibiting traveling solutions. Fixed parameters in each plot are: Ω = 55,
ε = 0.1, F0 = 1, M = 0.007, P = 0.1 and D = 0.15. (B) Plot of hypothesized relationship
between velocity, 2.3.6, versus velocity observed in numerical simulation.

The affinity of adhesions for the cortex, KA ≡ kon/koff, is also predicted to have a decel-

erating influence on bleb travel. Interestingly, all other parameters, including hydrostatic

pressure and myosin contractility, are predicted to have only a minor influence on travel

velocity. Note, however, that these parameters strongly determine whether or not a bleb can

form, and whether or not the bleb travels laterally. This model prediction is distinct from

a previous prediction [61], which posited that cortex healing has an intrinsic velocity, and

that this velocity determines bleb travel velocity.

2.3.4 Hypotheses for compact traveling blebs

In 3D, the base model also exhibits excitations that either travel or heal in place, in agreement

with the local analysis and 2D model. Parameter conditions for excitability and travel are

the same as for the 2D model, as is travel velocity. However, we find that a localized
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initial perturbation spreads radially in all directions, leading to an expanding bull’s-eye or

target pattern, Figure 2.6B. This is a generic feature of excitable systems and arises because

of inherent symmetry: a protruding region of membrane will pull neighboring regions of

membrane, without directional bias.

Since traveling blebs are not experimentally observed to expand in bull’s eye patterns, we

are led to investigate the question of what gives rise to spatially compact traveling blebs?

That is, what breaks the symmetry, inducing travel in a single direction?

We introduce three hypotheses. The first is that hydrostatic pressure may be reduced globally

fast enough that, once the excited region enlarges past a certain size, there is no longer

sufficient pressure to drive further excitation, thus limiting the target pattern to a compact

region. In our model, we modify the membrane force-balance equation, 2.2.9, by including

the pressure term

Π = Π̂ ·
∫∫ (

1− yM
2y0

M

)
dx1dx2. (2.3.7)

This equation corresponds to a shared, global pressure that responds to pressure release (via

membrane protrusion) instantly anywhere in the domain. We variously simulated purely

global pressure, purely local pressure, and pressure with both local and global equilibration,

following recent theoretical evidence [91].

We find that global pressure dynamics can limit the bleb’s outward growth when Π̂ is suf-

ficiently large. However, we do not see symmetry breaking, even upon introduction of 10%

parametric noise (Figure 2.6A). Interestingly, at intermediate global pressures, the bleb does

not heal and instead undergoes slow oscillations (Figure 2.6A right). These oscillations re-

veal an inherent negative feedback between cortical formation, which builds pressure, which

in turn breaks adhesions, weakening the cortex.
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The second hypothesis is that bleb compactness and asymmetry is due to a dynamic, non-

uniform membrane tension. Following recent evidence [80], we introduce the assumption

that tension increases with increasing local cortical actin contractility,

γM = γM0 + γM1C. (2.3.8)

We find that this is sufficient to terminate the protrusion (Figure 2.6B), but, again, do not

observe symmetry breaking.

Our third hypothesis is that large-length-scale heterogeneity, specifically on the ∼ micron

length scale of blebs, exists in the local density of proteins such as adhesion molecules and

cortical actin nucleators. These manifest as spatial heterogeneity in model parameters such

as D and Ω. Since these parameters sensitively determine whether the bleb can travel,

such heterogeneity might create specific paths, forcing traveling blebs from spreading in all

directions. We simulate the model on a surface in which a small rectangular region has

distinct parameters from its surrounding region, as shown in Figure 2.4B top. Since the

parameter region allowing traveling blebs is fairly narrow (Figure 2.5), it is straightforward

to find parameter sets with less than 2-fold variation for which the equilibrium is the same,

but only one allows travel. As expected, blebs initiated in the excitable-travel region remain

compact and move with velocity v from 2.3.6, and front-to-back width w ∼ vτheal.

We conclude that small differences across large length scales in the underlying biophysical

properties of the cell surface are sufficient to explain compact traveling blebs. This hypothesis

makes the prediction that subsequent traveling blebs will tend to occur in the same location

on the cell surface, provided that the heterogeneity’s own timescale of variation is longer

than the bleb lifetime.
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Figure 2.6: Alternative hypotheses for hydrostatic pressure and membrane tension dynamics.
(A) Profile of 3D bleb using the global pressure model, 2.3.7, which assumes pressure equilibrates
instantaneously across the domain. The bleb expands and contracts in oscillatory cycles (right
panel). (B) Profile of a 3D bleb using a non-uniform tension model, 2.3.8, which assumes
membrane tension depends on to the cortex thickness at a given point on the membrane. As
the strength of this dependence increases (bottom row), the bleb no longer travels across the
membrane. Here, Γ = γ/γ0 is the nomdimensionalized membrane tension.
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2.4 Discussion

Excitability is a recurrent theme in cell biology [47, 109, 30, 5]. We find that the conditions

for excitability emerge naturally from the mechanical properties of the cell surface, namely:

the combination of a contractile cortex, a membrane exposed to internal hydrostatic pres-

sure, and force-sensitive adhesions connecting them. In addition, membrane mechanical

properties (i.e. surface tension) are sufficient for this excitability to lead to either limited-

growth stationary blebs that heal in place, or traveling blebs reminiscent of circus movement.

Notably, three classes of dynamics arise from the same model at different parameters: Sta-

ble, non-blebbing states (Figure 2.2B), stationary blebbing (Figure 2.2A,C); and traveling

blebs (Figure 2.4A,B). Thus our model provides quantitative conditions for bleb growth and

whether the bleb heals locally or travels.

The model makes two main contributions. First, it allows elucidation of the determinants of

the travel velocity in terms of biophysical parameters such as membrane tension and adhesion

kinetics, 2.3.6. Surprisingly, we find that hydrostatic pressure and myosin contractility only

weakly determine velocity, while strongly determining other features such as whether the

bleb forms, and its height. This is in distinction to previous assumptions [61] and other

traveling waves in biology [2].

Our second finding is that known biophysical mechanisms are insufficient to account for

the compactness of traveling blebs in 3D. The excitability inherent in the system leads to

traveling waves. However, a striking distinction from other excitable waves on a two dimen-

sional domain is that other waves create bull’s eye patterns or spiral patterns. Since local

membrane-cortex detachment promotes nearby detachment symmetrically, why do blebs

travel in a compact shape, rather than spreading in all directions? Generically, for a shape

to remain approximately constant as it travels, the normal velocity on its perimeter must

vary from maximal at its front to zero at its sides. This observation, termed the Graded
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Radial Extension condition [59], was stated for steady cell motility but holds in general and

therefore must be true for compact traveling blebs. One hypothesis we find sufficient to

maintain compact travel is heterogeneity in the biophysical properties of the cell surface,

such as adhesion density. There is no direct evidence that such heterogeneity is responsible

for determining bleb travel paths, and it is likely that other mechanisms can explain compact

travel. Since membrane tension is a strong determinant of local expansion velocity, it is pos-

sible that a model including different non-uniform membrane tension can recover a compact

bleb in the absence of parametric heterogeneity. Other alternatives are: constraints set by

lipid flow through the neck of the bleb [83], or nematic ordering in the cortex [51], which

would break isotropic symmetry. For cells adhered to a rigid surface, the curvature is higher

at the cell perimeter. This higher curvature could also potentially bias bleb formation and

travel. We anticipate these will be a future direction of research.

A crucial feature of our model is the presence of a normal stress generated by the cortex, in

addition to tangential stresses. We find that this normal stress is necessary for the dynamic

healing and retraction of a traveling bleb. If myosin in the cortex generates an isotropic

contractile stress, then it will induce stress in any direction in which there is F-actin. There

is significant F-actin beneath the cortex (around 60% of the density in the cortex [19]), which

is referred to as the cytoplasmic actin network and plays a role in cell integrity [64]. Our

results suggest it also plays a role in retracting cellular protrusions.

The rheology of the cytoplasm, which determines how pressure propagates, is under intense

investigation. Our model assumes a particular relationship between pressure change and

volume change. To be as faithful to the correct rheology as possible, in 2.3 we simulate

two extremes. Either (1) pressure relaxes entirely locally, with pressure at nearby locations

unchanged, except perhaps on longer timescales if the bleb doesn’t retract, i.e., pressure

is local on short timescales, as described by our model (2.2.7). Or, (2) pressure relaxation

spreads rapidly, and it nearly equal everywhere following blebbing, i.e., pressure is global on
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short timescales, as described by our model (2.3.7). Recent computational models of detailed

cell rheology [91] demonstrate a more complicated possibility. Assuming the cytoplasm is

poroelastic [18, 65], they find that, following blebbing, there is a small global drop in pressure,

but full global equilibration is significantly slower. In the language of our model, this means

that, on the ∼ 1 s − 10 s timescale we consider, part of the pressure drop is local and part

is global. We may therefore be interested in a part-local, part-global pressure model. In

Appendix A, we consider pressure models in which local membrane protrusion leads to

both local and global pressure drops. We find that pressure must be at least partly local,

i.e., that neighboring regions are not equilibrated as quickly as at the site of protrusion, for

blebbing to arise. As the global pressure drop is increased (corresponding to the assumption

that the cytoplasm is less poroelastic and more like an incompressible fluid), the simulation

approaches the purely global pressure model shown in Figure 2.6A.

Increasingly, mechanics is included in theoretical models of cellular processes [77, 96, 78, 24,

81]. In these cases and others, subcellular mechanics equilibrates on sub-second timescales

but drives processes that play out over seconds or slower, therefore mechanics is included via

instantaneous force-balance or, equivalently, minimization of an energy functional as in 2.2.3

at every moment in time. Instead of reaction-transport (diffusion or advection) partial

differential equations, these models can be expressed as a boundary value problem at each

moment in time coupled to local time-dependent governing equations. This distinct class

of models presents new opportunity for mathematical development. For excitable reaction-

diffusion systems, a straightforward condition termed the Maxwell condition [68, 9, 72] can be

computed that determines whether the excitation will generate traveling waves. Analogous

conditions for the new class of mechanical models exist, and are the subject of the next

chapter.

Our model makes several testable predictions about how bleb behavior will be modulated

by experimental perturbations. The specific predictions about bleb formation and travel
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velocity, in Results, correspond to changes in hydrostatic pressure, which can be modulated

via the extracellular pressure by, e.g., osmolites; Cortical turnover, which can be promoted or

slowed by jasplakinolide or cytochalasin-D [19, 87]; Myosin contractility, which in blebs has

been demonstrated to be susceptible to blebbistatin and indirectly to Y-compound [97]. In

addition to these experiments, our model predicts that the “reach” of the adhesion molecules,

δ, influences bleb characteristics via the (nondimensional parameter D). It might be possible

to modulate this parameter by mutagenically elongating or truncating cortex-membrane

adhesion molecules.

In addition to the model variants we explored here, this model is readily extendable to differ-

ent surface geometries and assumptions about stresses below and above the cell surface. An

intriguing direction of research is the coupling of the present model of surface mechanochem-

istry with different rheological models of how stress evolves inside the cell [91, 18]. Another

direction is the coupling to extracellular fluid dynamics, which have recently been proposed

to play a role in determining membrane dynamics, even on slow (∼ 1 s) timescales [12].
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Chapter 3

Analysis of traveling waves in a

non-local model of cell surface

mechanics?

3.1 Introduction

Reaction-diffusion equations are used to describe many phenomena. They are of particu-

lar importance to the field of mathematical biology, and have been used to study pattern

development [98] and the emergence of periodic structures from non-periodic sources dur-

ing embryogenesis [55]. Because of a long history and extensive applications, mathematical

studies have revealed the conditions for various spatiotemporal patterns to arise.

The inclusion of biomechanics to chemical kinetic frameworks naturally leads to non-diffusion

PDEs. In particular, the separation of time scales between typical mechanical equilibration

?with Y. Mori and J. Allard
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(often sub-second) and chemical dynamics (often on seconds timescale) allows a system,

where all interactions are fundamentally local, to be approximated with a non-local model

[58]. This principle was used by us in Chapter 2 to model the phenomenon of cellular

blebbing.

Here we are studying a type of non-local PDE resulting from mechanical constraints in con-

junction with chemical dynamics. In particular, we have chosen to investigate the conditions

under which traveling wave solutions arise. We speculate that this phenomenon is relevant

to a larger class of equations arising in cellular biophysics. We establish a non-local ana-

logue of a mathematical condition previously established in reaction-diffusion systems and

sometimes called the Maxwell condition [10, 67].

3.2 Statement of model

The model is derived in Chapter 2, and therefore will not be repeated here. I will simply

remind the reader that a particular choice of nondimensionalization results in the following

system:

dc

dt
= Ωa− c (3.2.1)

ε
da

dt
=

c

1 + c
exp

(
−y − yC

D

)
− aexp

(
y − yC
F

)
(3.2.2)

0 = a(y − yC)−McyC (3.2.3)

0 = −a(y − yC) + P (1− y) + ε2
∂2y

∂x2
. (3.2.4)

Note that for ease of reading we have deliberately abused notation by using slightly different

variables than in Chapter 2. For a detailed description of the scales used for nondimension-
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alization, see Chapter 2.

3.2.1 Connections to a larger class of models arising in cell me-

chanics

As previously mentioned, mechanical equilibration is fast compared to the chemical kinetics

of the system and as a such, we are not explicitly modeling the dynamics of mechanical

equilibration, which would involve hydrodynamic effects [92] on microsecond or millisecond

timescales. A consequence of this method is that our resulting system includes non-local

interactions. Non-local formulations are useful to biologists for a number of reasons and

may provide even greater insight into the variables of interest, and they are often easier to

solve numerically as in Lee et al. [58]. In Mogilner and Edelstein-Keshet [66], the authors

used non-local interactions to describe how a group of individuals can migrate together in

a swarm or a flock, a behavior which was not observed with traditional population models

which considered only local interactions. Several other single-species ecological population

models have incorporated non-local effects including Gourley et al. [37], Yu and Chen [112].

Edward and Mathematical [27] extends the Mogilner and Edelstein-Keshet [66] model to

describe the non-local interactions between two cell populations. Lee et al. [58] showed that

a non-local interaction model is suitable to describe the behavior of the chemotactic systems,

when the associated chemical(s) diffuse much more rapidly than the cells. Incorporating non-

local interactions into a mathematical model has the effect of turning a system of PDEs into

a single (or system of) integro-PDE(s).
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3.3 Non-spatial system

Numerical simulation of the full, spatial, model reveals a range of blebbing behavior as in

Chapter 2. In this section, we seek to elucidate how biophysical parameters determine the

regime of behavior. To this end, we simplify the model by neglecting the tension term

in (3.2.4). This transforms the force-balance equations (3.2.3)-(3.2.4) into a pair of algebraic

equations,

y =
(a+ cM)P

aMc+ aP +McP
(3.3.1)

yC =
aP

aMC + aP +McP
. (3.3.2)

These are then substituted into the assembly/disassembly equations, yielding

dc

dt
= Ωa− c (3.3.3)

ε
da

dt
=

c

1 + c
exp

(
− 1

D

MPc

aMc+ aP +McP

)
(3.3.4)

− a exp

(
+

1

F

MPc

aMc+ aP +McP

)
.

The model is now a system of two ODEs amenable to phase plane analysis [26].

3.3.1 Regimes of behavior at small ε

We ran simulations of this non-spatial system using Matlab’s ode45 and ode23 (for ε <

0.01) differential equation solvers. We found that for ε � 1, the system is capable of ex-

hibiting four different states which are qualitatively different. There is a monostable regime,

where the system returns to steady state immediately upon perturbation. Upon changing

parameters, the system can exhibit a bistable regime where two stable steady states are

separated by an unstable steady state. The presence of a stable limit cycle characterizes
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the oscillatory regime. Finally, there is a second monostable regime which we term the

“excitable” regime. In this case the system returns to the original steady state after pertur-

bation and so is in fact another monostable state, but rather than returning immediately,

the solution initially travels away from the steady state. Phase plane diagrams with sample

trajectories for each of these regimes are shown in Figure 3.1A, and time series for the vari-

ables a(t) and c(t) are plotted in Figure 3.1B. It is the excitable regime which is associated

with the blebbing behavior.
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Figure 3.1: Phase plane analysis. (A) Range of behaviors of the system of equations given
different parameter sets visualized by the nullclines (dark blue for c and light orange for a)
of the non-dimensionalized system of equations. Sample trajectories are shown in black. (B)
Time series plots of the adhesion density (orange) and cortex thickness (blue) beginning in
steady state with a perturbation at time t=2. Monostable parameters: Ω = 100,ε = 0.1,
F = 6.3, M = 0.09, P = 0.08 and D = 0.23, Bistable parameters: Ω = 6.5, ε = 0.1,
F = 2.9, M = 0.43, P = 0.016 and D = 0.19, Oscillatory parameters: Ω = 100, ε = 0.1,
F = 1, M = 0.007, P = 0.1 and D = 0.15, Excitable parameters: Ω = 10, ε = 0.1, F = 1,
M = 0.007, P = 0.1 and D = 0.15.

3.3.2 Bifurcation analysis in ε and Ω

We next relax the assumption that ε � 1 and characterize the dynamics of the system

for various ε and Ω values. For ε � 1, we noticed a bifurcation from a stable equilibrium
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to a large amplitude stable limit cycle and back again (Figure 3.2A). As ε gets larger,

the amplitude of the oscillations get smaller until they disappear entirely. The sudden
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Figure 3.2: A bifurcation in the ODE system. (A) Phase plane diagrams with sample
trajectories plotted for a range of Ω and ε values. The yellow line demarcates the boundary
between the oscillatory and stable equilibrium regimes. (B) Two parameter sweep through
Ω and ε demonstrating the emergence of stable oscillations in the system.

appearance of large-amplitude oscillations from a stable equilibrium is common in fast-slow

dynamical systems [79]. Often these are Hopf bifurcations which happen in conjunction

with a canard explosion [23], a “false bifurcation” in which amplitude grows rapidly with

small changes in bifurcation parameter. In order to investigate this bifurcation, we employ

continuation methods. In our case, a subcritical Hopf bifurcation occurs as the parameter Ω

varies, as shown in Figure 3.3A. Here the amplitude of the unstable limit cycle was obtained

using the continuation package XPP-AUTO. The canard occurs just prior to the collision

of the unstable and stable limits cycles (Figure 3.3A). The canard is characterized by the

resulting “duck-shaped” trajectories, as shown in Figure 3.3B top.
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3.4 Full system in traveling wave parameter regime

As previously mentioned, for a particular set of parameters, the full non-dimensional system

exhibits a traveling wave pulse. Here we define a traveling wave pulse as a solution which

travels in space, x, with constant velocity and waveform, and which begins and ends in

the same state (as opposed to a wavefront which is a transition from one state to a second

state which propagates through space). Due to the separation of timescales in our system,

are able to section the wave into different regions of dynamics, see Figure 3.4. Region I

is the equilibrium state, a stable steady state solution at which the system remains unless

perturbed. Region II comprises the wavefront. Regions III, IV and V are the plateau region,

the downstroke, and the recovery phase respectively.
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Figure 3.4: The traveling wave solution of the full non-dimensional system. The numerals
denote different phases of the wave pulse: I. equilibrium state, II. wavefront, III. plateau,
IV. downstroke and V. recovery phase.
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3.4.1 Wavefront

In order to examine the wavefront, i.e. region II in Figure 3.4, we re-scale our equations by

the change of variables T = t/ε and X = x/ε. The system becomes

dc

dT
= ε(Ωa− c) (3.4.1)

da

dT
=

c

1 + c
exp

(
−y − yC

D

)
− aexp

(
y − yC
F

)
(3.4.2)

0 = a(y − yC)−McyC (3.4.3)

∂2y

∂X2
= −a(y − yC) + P (1− y). (3.4.4)

Note that since (3.4.3) is algebraic in yC , we can eliminate it from the system. Collecting

O(1) terms, we can eliminate (3.4.1) and as a result (3.4.2) becomes

∂a

∂T
=

css

1 + css
exp

(
− y
D

(
1− a

a+Mc

))
− aexp

(
y

F

(
1− a

a+Mc

))
. (3.4.5)

The dynamics of excitation are thus only governed by the a equation (3.4.5) and a version

(3.4.3) with yC written as a function of a and y. We will refer to this system as the inner

re-scaling of the full system.

The traveling wave solution of the inner re-scaling of the full system is observed in Figure 3.5.

In this parameter regime, (3.4.5) is bistable and the wave is characterized by a transition

from the equilibrium state (a+, y+) to the other equilibrium state (a+, y+). Without loss of

generality, we assume the waves traveling in this direction will be associated with a positive

velocity v.

40



0 10 20 30
space (X)

10-4

10-3

10-2

10-1

100

lo
g(

a
)

0 10 20 30
space (X)

0.5

0.6

0.7

0.8

0.9

1

y

Wave front of inner rescaling

T→∞ T→∞

a+

a–

y–

y+
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By using the wave coordinate Z = X−vT , where v is the velocity of the traveling front, and

substituting a(X,T ) = a(Z) and y(X,T ) = y(Z), the system is described by a first-order

ODE and a second-order ODE (3.4.6)-(3.4.7), or equivalently 3 first-order ODEs:

−v da
dZ

=
css

1 + css
exp

(
− y
D

(
1− a

a+Mc

))
− aexp

(
y

F

(
1− a

a+Mc

))
(3.4.6)

∂2y

∂Z2
= −ay

(
1− a

a+Mc

)
+ P (1− y). (3.4.7)

The traveling wave solution comprises an orbit that departs an initial fixed point (a+, y+)

and arrives at another fixed point, (a−, y−) as Z → −∞ (as in Figure 3.6A,B). Using

linear stability analysis, we calculated the stability properties at both fixed points via their

eigenvalues (see Figure 3.7) and have found both fixed points to be saddles with one negative

eigenvalue and 2 positive eigenvalues. If we let ninit = no. of eigenvalues with positive real

part of the initial state and nfin = no. of eigenvalues with negative real part of the final

state, then we find in each case that ninit+nfin = 3 = dimension of the space. This suggests
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there is a unique velocity which will provide a heteroclinic connector between the two states,

for further discussion, see Chapter 6 of [57].
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(a+, y+, dy/dZ = 0) to (a−, y−, dy/dZ = 0) as z → −∞. (B) Individual variables as func-
tions of Z. The parameter values used were css = 15.62, D = 0.15, P = 0.1,M = 0.007,
F = 1 and v = 0.988.
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3.4.2 Downstroke

The upstroke of the wave occurs at c = css, with velocity v. We conjectured that the

downstroke occurs at a c value, c = c−, that produces a velocity −v. We now move to region

IV of Figure 3.4, re-scaled as in the previous section. Numerical exploration of c values

has provided evidence that there does not exist such a c− value. This might imply that the

downstroke is a phase wave rather than a trigger wave. In this case, the downstroke will occur
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at c = c− dictated by the shape of the nullcline of the corresponding non-spatial system,

i.e. c will decrease until it “falls off” the da/dτ nullcline, as in fact it does for sufficiently

small ε (see Figure 3.8A). Figure 3.8B shows the calculated velocities for a range of css values

spanning the region of bistability in the single ODE of the reduced system (where c is held

constant). We see that a non-zero velocity only results from css ∈ [≈ 10,≈ 16], and is

always positive. An sample wave is shown in Figure 3.8C for css = 13. Interestingly, for

css ∈ [≈ 0.5,≈ 10], we find wave stalling behavior (Figure 3.8D,E), where the perturbation

neither spreads in a traveling wave nor recovers.
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Figure 3.8: Investigation of the downstroke of the system. (A) Full system traveling wave
trajectories plotted on the nullclines of the system for ε = 0.1 and ε = 0.01 at a spatial
location sufficiently far from the initial perturbation (see red line in (C)). (B) Velocity as a
function of css in the reduced system (i.e. where c = css but yC remains dynamic). (C) Ad-
hesion density as a function of time and space with initial conditions smoothly transitioning
from (a+, y+) to (a−, y−) across the spatial domain for css = 13. Here we see a traveling
wave solution. (D,E) Adhesion density as a function of time and space with initial conditions
smoothly transitioning from (a+, y+) to (a−, y−) across the spatial domain for css = 1 (D),
and css = 9 (E). Here we see that the solution doesn’t travel in either direction. Other
parameter values used were D = 0.15, P = 0.1,M = 0.007 , F0 = 1 and Ω = 55.

To verify that this stalling behavior was not due to a numerical error, we used a fourth-

order accurate central finite difference method in space looked at how the adhesion density

converged to a steady state in space and time (Figure 3.9A,B). Additionally, we tested for

convergence upon finer spatial discretization (Figure 3.9C) and finally that |da/dT | ⇒ 0
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within the simulation time.

3.5 Derivation of a nonlocal Maxwell condition for trav-

eling waves

Given a parameter regime in which the non-spatial system is excitable, will there be a

traveling solution in the full system? This is the question we seek to answer. However this is

outside our current scope. A narrower version of the system is obtained if we assume the force

balance equations are linear in a, which can be done by making the following simplifying

assumption: we assume the variable, yC , does not move significantly during excitation,

yC = yssC . This leaves us with a simplified system of two equations (while remaining in our

inner re-scaling coordinates),

∂a

∂T
=

css

1 + css
exp

(
−y − y

ss
C

D

)
− aexp

(
y − yssC
F

)
(3.5.1)

0 = −a(y − yssC ) + P (1− y) +
∂2y

∂X2
. (3.5.2)

Let

f1(y) =
css

1 + css
exp

(
−y − y

ss
C

D

)
, (3.5.3)

f2(y) = exp

(
y − yssC
F

)
, (3.5.4)

g1(y) = P (1− y), (3.5.5)

g2(y) = (y − yssC ). (3.5.6)
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Our system can be generalized to the form:

da

dT
= f1(y)− af2(y) (3.5.7)

0 = g1(y)− ag2(y) +
∂2y

∂X2
. (3.5.8)

In this section, we derive a necessary condition for the system described by (3.5.7) and

(3.5.8) to exhibit a traveling wave solution. In the parameter regime where we observe a

traveling wave solution, shown in Figure 3.10, (3.5.1) is bistable. As such, we assume that

the general system (3.5.7-3.5.8) has two stable roots which we will denote by (y+, a+) and

(y−, a−). Without loss of generality, we assume the waves traveling from (y+, a+) to (y−, a−)

will be associated with a positive velocity v.
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Figure 3.10: Wavefront of inner re-scaling of simplified system. The solution moves from the
steady state (a+, y+) to (a−, y−). Parameters used are css = 20, yc = 0.4, P = 0.1, D = 0.15
and F = 1.

In order to study the traveling wave solution we again make a change of variables to a wave
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coordinate Z = X − vT . Equations 3.5.7-3.5.8 become

−v da
dZ

= f1(y)− af2(y) (3.5.9)

0 = g1(y)− ag2(y) +
∂2y

∂Z2
. (3.5.10)

Once again this results in a system described by a first-order ODE and a second-order

ODE (3.5.9-3.5.10), or 3 first-order ODEs. The traveling wave solution departs an initial

fixed point (a+, y+) and arrives at another fixed point, (a−, y−) as Z → −∞ for positive

velocities (as in Figure 3.11A,B). We are now able to observe negative velocities (waves

traveling from (a−, y−) to (a+, y+) as Z → −∞) for css values above a certain threshold,

c∗, as in Figure 3.12A. We also notice a change in the stability properties of the two steady

states as css passes through c∗. Both steady states have 1 negative eigenvalue and 2 positive

eigenvalues for css < c∗ and 2 negative eigenvalues and 1 positive eigenvalue for css > c∗

(Figure 3.12B,C). In all cases, this is consistent with the suggestion of a single velocity.

3.5.1 The nonlocal Maxwell condition

Once we are in the traveling wave coordinate of the re-scaled simplified system (3.5.9-3.5.10),

we can solve (3.5.10) for a,

a =
1

g2(y)

(
g1(y) +

∂2y

∂Z2

)
. (3.5.11)

Note that this forces us to require that g2(y) 6= 0 for y ∈ [y+, y−]. Then it follows that

−v ∂a
∂Z

= f1(y)− g1(y)

g2(y)
f2(y)− f2(y)

g2(y)

∂2y

∂Z2
. (3.5.12)
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We then multiply by
g2(y)

f2(y)

∂y

∂Z
(again, now requiring that f2(y) 6= 0 for y ∈ [y+, y−]) and

integrate over Z,

∫ ∞
−∞
−v ∂a

∂Z

g2(y)

f2(y)

∂y

∂Z
dZ =

∫ ∞
−∞

(
f1(y)

g2(y)

f2(y)
− g1(y)− ∂2y

∂Z2

)
∂y

∂Z
dZ. (3.5.13)

We change variables on RHS,

−v
∫ ∞
−∞

∂a

∂Z

g2(y)

f2(y)

∂y

∂Z
dZ =

∫ y+

y−

(
f1(y)

g2(y)

f2(y)
− g1(y)− ∂2y

∂Z2

)
dy

⇒ −v
∫ ∞
−∞

∂a

∂Z

g2(y)

f2(y)

∂y

∂Z
dZ =

∫ y+

y−

(
f1(y)

g2(y)

f2(y)
− g1(y)

)
dy −

��
��

�
��*

0∫ y+

y−

∂2y

∂Z2
dy

⇒ −v
∫ ∞
−∞

∂a

∂Z

g2(y)

f2(y)

∂y

∂Z
dZ =

∫ y+

y−

(
f1(y)

g2(y)

f2(y)
− g1(y)

)
dy. (3.5.14)

For the specific case of our cellular blebbing model, we plug in (3.5.3-3.5.6) and obtain

− v
∫ ∞
−∞

∂a

∂Z

∂y

∂Z
exp

(
−y − y

ss
C

F

)
(y − yssC )dZ

=

∫ y+

y−

(
css

1 + css
exp

(
−
(

1

D
+

1

F

)
(y − yssC )

)
− P (1− y)

)
dy.

We also note that in our specific case y− > y+ (see Figure 3.10) and therefore it is more

natural to integrate from y+ to y−.

− v
∫ ∞
−∞

∂a

∂Z

∂y

∂Z
exp

(
−y − y

ss
C

F

)
(y − yssC )dZ

= −
∫ y−

y+

(
css

1 + css
exp

(
−
(

1

D
+

1

F

)
(y − yssC )

)
− P (1− y)

)
dy. (3.5.15)
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We define the nonlocal Maxwell condition number as

NLMC = −
∫ y−

y+

(
css

1 + css
exp

(
−
(

1

D
+

1

F

)
(y − yssC )

)
− P (1− y)

)
dy

exp

(
+

(
1

D
+

1

F

)
yssC

)(
y− − y+

)
+ P

(
1− 1

2

((
y+
)2 −

(
y−
)2
))

.

The integral on the LHS is of (3.5.15) determined sign (-). Therefore, the nonlocal Maxwell

condition in this case is

NLMC ≤ 0⇒ v = 0, no traveling solution.

Note that only necessity is shown here.

We varied two parameters continuously in our simplified re-scaled system (3.5.1-3.5.2) to

numerically verify our derivation of this necessary condition for traveling waves. To solve

these equations we built a PDE solver in which we use a standard five-point stencil finite

difference method in space and forward-Euler in time. We discretized space into a uniform

grid of width ∆x = 0.1 and time step size ∆T = 0.01, and used Matlab’s mldivide to

solve (3.5.2) directly.

The nonlocal Maxwell condition is equal to 0 in the parameter regimes where (3.5.1) has

only one stable root (because y− = y+), but can be negative or positive in the bistable

regime. Figure 3.13A shows the sign value of the nonlocal Maxwell condition number through

our two-parameter sweep. The regions shown in Figure 3.13A align with the numerical

solutions of the PDE as depicted in Figure 3.13B, which shows the velocity of the traveling

wave solution (= 0 for a stationary solution). This numerical evidence suggests that the

nonlocal Maxwell condition is also a sufficient sufficient condition (i.e. NLMC > 0 ⇒

v exists, traveling solution).
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Figure 3.13: Nonlocal Maxwell condition demonstrating emergence of traveling waves. (A)
Plot of the sign of the nonlocal Maxwell condition as parameters css and D are varied in
the system. Gray areas indicate regions where the system is not bistable, and therefore the
condition is not applicable. (B) Plot of velocity of the system as parameters css and D are
varied in the system.

3.6 Concluding remarks

Here we have derived a condition, analogous to the Maxwell condition, for predicting trav-

eling wave solutions to a particular class of integro-PDE occurring in biology. The traveling

wave observed here shares several properties with other classes of traveling waves encountered

in the field.

Fisher waves are the archetypal traveling wavefront of modern mathematical biology. They

arise as solutions to the Fisher-Kolmogorov equation [28, 54]. It is considered the simplest

non-linear reaction diffusion equation. When transformed to the wave variable, z = x −

vt, this equation becomes a second order ODE in z. Linear stability analysis on the two

equilibrium solutions showed that there is one stable equilibrium and one saddle node. It

also revealed that there exist a cmin value below which traveling wave solutions are not
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physically relevant (stable equilibrium is a focus). When physiologically relevant traveling

waves are observed, it has been show that the observed speed is strongly dependent on the

initial conditions [71], putting these waves in a different class than those described here.

The FitzHugh-Nagumo model [29, 73] is a two species system of ODEs which was originally

developed as a simplification of the Hodgkin-Huxley action potential model. When diffusion

is added to the model, the system produces traveling waves in the form of pulses, as well

as oscillations. It is a classic example of traveling waves in excitable media. As in the

system described in this work, traveling wave solutions only occur when the corresponding

non-spatial (i.e. without diffusion) system is in an excitable parameter regime, which arises

from the separation of timescales inherent to the system, and the non-linear feedback within

the equations. Within this regime, the existence of traveling wave can be predicted using

the classical (local) Maxwell condition. The downstroke of this system has been investigated

and it has been found that for different parameters the system can admit both trigger-type

and phase-type downstrokes [99], unlike our system.

The Wilson-Cowan model [103, 102] is a neural field model describing the overall evolution

of populations of excitatory and inhibitory neurons. While the first description of the model

[103] was spatially homogeneous, the spatially structured model [102] rendered the model a

system of two integro-PDEs. Varying the strength of connections between these populations,

as well as other parameters the model can exhibit a variety of dynamics including traveling

wave pulses, damped waves and oscillations. Phase plane analysis on the spatially homo-

geneous system [103], Wilson and Cowan found that for sufficient strong synapses between

excitatory cells, the system exhibits bistability. On the other hand, weak synapses between

inhibitory cells gave rise to limit cycle solutions. While the model account for different

timescales of activity between excitatory and inhibitory populations, traveling wave solu-

tions do not require the separation of timescales characteristic of traveling waves in excitable

media.
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A phenomenon known as wave-pinning has been shown to arise in a model of cell polarization

[67]. The model consists of a pair of reaction-diffusion equations representing active/inactive

forms of a protein with positive feedback to its own activation. When the inactive form of

the protein is held constant, and the equation describing dynamics of the active form is

bistable, the system exhibits traveling wavefronts [67]. However, when the two equations are

coupled the traveling front decelerates and becomes stationary. While there is no separation

of timescale in this system, it is crucially dependent on a separation of scales in the diffusion

coefficients between the two forms.

3.6.1 Future goals

In greatest generality, we would be ultimately interested in a necessary and sufficient traveling

wave condition for the system

∂a

∂t
= f(a, y) (3.6.1)

0 = g

(
a, y,

∂2y

∂x2

)
. (3.6.2)

This would likely encompass a larger class of models describing biological or biochemical

systems, and would therefore be more useful to the mathematical biology community as a

whole.
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Chapter 4

Nuclear shape?

4.1 Introduction

Cardiomyopathies and arrhythmia are conditions with high morbidity and limited therapies.

Although a vast number of genes have been discovered to contribute to the etiology of these

diseases, translational research, the practical application of genetic knowledge to improve

screening, diagnosis, and treatment for affected individuals and their families has been lim-

ited. One major obstacle is the lack of understanding of the relationship between genotype

and emergent phenotype, the mechanisms by which pathologies occur, and the identification

of factors that cause clinical variability between and within families. Our collaborators in

the Grosberg (UCI - Department of Biomedical Engineering) and Zargoza (UCI - School of

Medicine) labs are currently studying three affected families each with different mutation in

the Lamin A/C (LMNA) gene. LMNA, together with LMNB1 and LMNB2, encode the main

proteins of the nuclear lamina, the structural matrix of the nuclear envelope that interacts

with both chromatin in the cell nucleus and the cytoskeleton [11]. In their experiments, it

?with M. Mehrabi, A. Grosberg, M. Zaragoza and J. Allard
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has been obserbed that the nuclei often have a wide variety of geometrical defects, including

rounded protrusions which we will refer to as nuclear blebs, as in Figure 4.1. This is a known

property of LMNA mutated cell lines [70] (such as in progeria), however the mechanisms

by which such defects forms are unclear. It is known that the LMNA mutation impacts

the nuclear lamina, which is present at the inner layer of the nuclear membrane. As a key

component of the nuclear lamina, lamin plays an important role in nucleus-cytoplasm in-

teraction and signaling through lamin-binding protein complexes including SUN and KASH

that span the nuclear membrane [43]. Cells in this line of experiments come from patients

with heart disease (i.e., cardiomyopathy and/or arrhythmia), and they exhibit a mutation

in a gene that is known to correlate with nuclear defects. In addition, our collaborators have

control cells from people without heart diseases from the same family as the patients’ cells.

Nuclei from both patient and control cell lines have been imaged, and a variety of nuclear

shapes in the two types of cells has been found. Nuclear blebbing involves dynamic, complex

interactions among many elements: The nuclear lamina, nuclear membranes , membrane-

lamin linkers, and chromatin. Preliminary studies have found that both control (fibroblasts

of human origin with no mutation) and patient (fibroblasts from patients with the muta-

tion) exhibit some number of defects. We hypothesize a correlation between nuclear shape

types and cardiomyopathy and arrhythmia. Therefore we have an ideal system in which to

investigate a possible correlation between specific nuclear defects and disease states.

We use mathematical modeling that has potential to test the hypothesis that abnormal

nuclear shapes in patients arise due to a mechanical anomaly in the lamin protein due to

the mutation in LMNA. This will allow the possibility to differentiate between the type of

defects expected under normal biological variability vs. in a pathological situation.
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Figure 4.1: Defective nuclei have an irregular shape as compared to normal nuclei.
In particular, there may exist one or more protrusions at the boundary resulting in
a concave nuclei. Image used with permission [21].

4.2 Model

4.2.1 Statement of the model

We developed a model which consists of 2 dynamic variables representing the line density

of lamin A/C, a(t), and lamin B, b(t), as functions of time, t on a simple closed curve in

2D, s(t), enclosing an area, A(t). The details of lamin A/C (B) assembly and disassembly

into the lamina are unknown, we assume usual assembly kinetics and allow for possible

feedback in the disassembly terms. It is known that lamin proteins are not confined to the

nuclear lamina, but exist in the nucleoplasm where they may be performing other functions,

including gene regulation [46, 48]. We will assume there is a pool of nuclear lamins which

exchanges dynamically with the the lamins in the nuclear lamina. The resulting equations

are:
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∂a

∂t
=

kaon

A(t)
anuc − kaoff(s, b)a (4.2.1)

∂b

∂t
=

kbon

A(t)
bnuc − kboff(s, a)b. (4.2.2)

The parameters kaon, k
b
on govern assembly of lamin A/C, and lamin B into the lamina, re-

spectfully. The functions kaoff(s, b) = k0a
off + Φa(s, b) and kboff(s, a) = k0b

off + Φb(s, a) describe

laminar turnover with possible feedback terms arising from Φ to be explored in future work

and will be further discussed in Section 4.3. The nuclear pools of lamin A/C (B) are labeled

by anuc(bnuc). We therefore have the following conservation of lamin equations:

atot =

∫ L0

0

a(s, t)ds+ anuc (4.2.3)

btot =

∫ L0

0

b(s, t)ds+ bnuc. (4.2.4)

Here, L0 is the length of the perimeter of a nucleus. These equations are coupled to a

mechanical description of the lamina via the energy functional:

E = Estretch + Epressure + Ebending + Ecytoskeleton + kBT ξ, (4.2.5)
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where

Estretch =

∫ L0

0

1

2
(Ga(a(s)) + Gb(b(s)))

(∣∣∣∣∣∣∣∣∂~x∂s
∣∣∣∣∣∣∣∣− 1

)2

ds, (4.2.6)

Epressure = P
(
A
A0

− 1

)2

, (4.2.7)

Ebending =

∫ L0

0

1

2
(Ma(a(s)) +Mb(b(s))

∣∣∣∣∣∣∣∣∂2~x

∂s2

∣∣∣∣∣∣∣∣2 ds, (4.2.8)

Ecytoskeleton =

∫ L0

0

Fcyto(a(s))Θ(θ)||~x||ds, (4.2.9)

and

Θ(θ) =
ecos (2θ)/σVM∫ 2π

0
ecos (2θ)/σVMdθ

.

The lamina is modeled as an elastic material where the first term, Estretch corresponds to

laminar surface tension. The next term, Epressure is the intranuclear pressure, possibly due

to chromatin. The third term, Ebending is bending resistance terms due to lamin-lamin cross-

linking. It is known that there are non-negligible forces produced by the cellular cytoskeleton

(actin and microtubules) which act on the lamins via nuclear transmembrane proteins [40]

and so the fourth term, Ecytoskeleton, is due to this. Finally we include a term for thermal fluc-

tuations generalized to 2D, kBT ξ. A cartoon schematic of the model is shown in Figure 5.2.

Several of the mechanical parameters are in fact functions of the local densities of laminar

proteins, thus connecting the mechanical properties of the lamina (and therefore the nucleus)

to the mechanical properties of lamin. A complete list of parameter descriptions can be found

in Table 4.1.

We nondimensionalized the system by choosing characteristic scales for length, time, energy

and amount of lamin. The details of this nondimensionalization procedure can be found in

Appendix B. The resulting nondimensional system is expressed by the following system of
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Intranuclear 
pressure

Bending resistance

Surface tension

Cytoskeletal force

Lamin A/C

Lamin B

Figure 4.2: Schematic diagram of the model including Lamin A/C/B desities, and
the forces acting on the lamina.

Table 4.1: Mechanical parameters.

Symbol Dimensions Meaning
Ga [pN] Stretch modulus associated with lamin A/C
Gb [pN] Stretch modulus associated with lamin B
P [pNµm] Bulk modulus
L0 [µm] Resting perimeter of nucleus
Ma [pNµm2] Bending modulus associated with lamin A/C
Mb [pNµm2] Bending modulus associated with lamin B
θ [rad] Angle
Fcyto [pN /µm] Force line density of the cytoskeleton
σVM [dimensionless] Concentration of distribution of cytoskeletal force

equations:
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Table 4.2: Nondimensionalized variables.

Symbol Meaning
A Laminar nondimensionalized density of Lamin A/C
B Laminar nondimensionalized density of Lamin B
Anuc Nucleoplasmic lamin A/C
Bnuc Nucleoplasmic lamin B
S Nondimesionalized position of the lamina
λ(τ) Nondimesionalized area of nucleus

∂A

∂τ
= κon

1

λ(τ)
Anuc − (κoff + φA(S,B))A, (4.2.10)

∂B

∂τ
=

1

λ(τ)
Bnuc − (1 + φB(S,A))B, (4.2.11)

(4.2.12)

with energy

E =

∫ 2
√
π

0

1

2
(GA(A(S)) +GB(B(S)))

(∣∣∣∣∣∣∣∣∂~χ∂S
∣∣∣∣∣∣∣∣− 1

)2

dS + Π

(
λ(τ)

λ0

− 1

)2

(4.2.13)

+

∫ 2
√
π

0

1

2
(MA(A(S)) +MB(B(S)))

∣∣∣∣∣∣∣∣∂2~χ

∂S2

∣∣∣∣∣∣∣∣2 dS (4.2.14)

+

∫ 2
√
π

0

Fcyto(A(S))Θ(θ) ||~χ|| dS + kBTξ. (4.2.15)

A description of non dimensional variables can be found in Table 4.2 and parameters in

Table 4.3.
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Table 4.3: Nondimensionalized (ND) parameters.

Symbol Meaning
κon ND rate constant associated with lamin A/C incorporation into the lamina
κoff ND rate constant associated with lamin A/C dissociation from the lamina
GA ND stretch modulus associated with lamin A/C
GB ND stretch modulus associated with lamin B
Π ND bulk modulus
λ0 Resting non-dimensionalized area of nucleus
MA ND bending modulus associated with lamin A/C
MB ND bending modulus associated with lamin B
θ Angle
Fcyto ND force line density of the cytoskeleton

4.2.2 Numerical implementation of the model

The model is implemented in Matlab by discretizing the 2D simple closed curve into a series

of nodes connected by linear springs with an elastic modulus dependent on the amount of

lamins at the two nodes on either side of each spring. We solve the ODE systems using the

forward Euler method. The energy minimization is done using a Markov chain Monte Carlo

method known as the Metropolis algorithm. At each step forward in time, 10n, where n =

no. of nodes, single node movements are proposed at random from a uniform distribution.

For each node movement, the energy is re-calculated and an acceptance criterion is calculated

based on the difference between the current energy state of the system, Ecurrent, and the energy

state of the proposed move, Eproposed. If the acceptance criterion

(
exp
Ecurrent − Eproposed

kBTξ

)
is greater than a randomly generated number on a uniform distribution between 0 and 1,

the move is accepted, otherwise the move is rejected. In this way, we accept moves that are

energetically favorable with higher probability.

4.2.3 Tuning the model

Many of the mechanical parameters of the model are unknown because they are difficult

or impossible to measure experimentally. We therefore have to tune the parameters in

64



our model using some data. We used data from a series of experiments conducted on rat

cardiomyocytes grown on fibronectin islands of various shapes and sizes as shown in Figure

4.3 [25]. The features we extracted from the images are cellular aspect ratio, F-actin OOP

(a measure of the anisotropy in the F-actin network), nuclear eccentricity, nuclear area, and

nuclear perimeter.

20 µm

Figure 4.3: Rat cardiomyocytes grown on fibronectin islands of various shapes and
sizes. Image used with permission [25].

In order to extract information about the correlations between these features we plotted each

against the others in a scatter plot matrix, see Figure 4.4. While most of the data appear

uncorrelated, there is a clear correlation between F-actin OOP and nuclear eccentricity (R2

= 0.42), and other attributes suitable for fitting. In particular, we chose three patterns in

the data to fit our model: nuclear area, nuclear perimeter and correlation between F-actin

OOP and nuclear eccentricity. We first chose a subset of the cell which have an aspect ratio

of 1 and tuned parameters to match the histograms of nuclear area and nuclear perimeter

in both mean and standard deviation. This subset of cells was chosen so that we could
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Table 4.4: Order of magnitude parameter estimations.

Parameter Estimate
Ga,Gb 100 − 101 pN
P 100 − 101 pN·µm
L0 28 µm fds
Ma,Mb 104 − 105 pN·µm2]
Fcyto 103 − 104 pN/µm

assume isotropic cytoskeletal force and therefore set it to 0. Once these parameters were

tuned (Figure 4.5), we returned to the entire data set and tuned our model to match the

eccentricity vs F-actin OOP plot, see Figure 4.6. This gave us an estimate of Fcyto which is

in fact a ratio of two dimensional quantities, Fcyto and Gb. Since the traction force of actin

has been measured experimentally [56], we were able to back-calculate and to obtain order

of magnitude estimates for all our mechanical parameters. These estimates are summarized

in Table 4.4.
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Figure 4.4: Matrix of scatter plots between features of the experimental data. Note
that along the diagonal, the distributions of each feature are plotted.
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Figure 4.5: Histogram matching model to experimental data. Experimental his-
tograms of nuclear area (A) and nuclear perimeter (B) of cell with aspect ratio 1.
Simulated histograms of nuclear area (C) and nuclear perimeter (D) of simulated
nuclei with no active cytoskeletal force.

4.3 Future work

The future goal of this work is to reliably reproduce nuclear shape deformations. This

requires a symmetry break in the system governing laminar assembly/disassembly dynamics.

This might be achieved by including a feedback term in the functions ka,boff . Hypothesized

sources of feedback include competition between lamin types, and stress induced feedback.

These ideas are shown schematically in Figure 4.7. Once we have established a symmetry

break, one could explore perturbations to the model which correspond to physical changes in

the lamin A/C protein which can best reproduce patient versus control data. These potential

perturbations are summarized in Table 4.5.
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Figure 4.6: Fcyto was obtained by matching the correlation between F-actin OOP
and nuclear eccentricity observed experimentally.

Table 4.5: Potential perturbations.

Model perturbation Change in lamin A/C
Decrease total amount of lamin A/C Haploinsufficiency
Modify assembly/disassembly rates Abnormal localization of lamin
Modify Ga (elastic modulus) Weaken molecular strength of Lamin A/C
Modify Ma (bending modulus) Weaken Lamin A/C-Lamin A/C cross-linking
Modify Fcyto, σVM Weaken transmembrane link
Modify feedback from lamin B Modify interaction with Lamin B

A

B

Surface
tension

Figure 4.7: Schematic diagram of the possible sources of feedback in the model.
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Chapter 5

Model of Nuclear Assembly?

5.1 Introduction

Throughout the lifetime of an organism, particularly during development when cells multi-

ply rapidly, the nuclei must be disassembled before cell division and reassembled after, in

a process known as nuclear organogenesis. It has been shown that during nuclear organo-

genesis, nuclei will expand to a given size and that this size scales with the size of the cell

[50, 74]. The mechanisms regulating nuclear size are yet unknown. Our collaborators have

used a custom microfluidics device to control for cell size and have observed the growth of

the nucleus [7]. In some cases, more than one nucleus becomes fixed in a cell of a given

size. From here we can make predictions about how the nucleus is expected to grow under

different scaling hypotheses, as in Figure 5.1. The first hypothesis is that nuclear size is

driven by genomic content. In this case, we would expect the size of the nucleus to remain

constant as the cytoplasmic size varies. Furthermore, we would expect that two nuclei in

?This is the computational portion of a joint experimental-computational work posted in BioRxiv. V.
Boudreau, J. Hazel, J.K. Sellinger, P.Chen, K. Manakova, R. Radzyminski, H.G. Garcia, J.Allard, J. Gatlin
and P. Maddox. Nucleo-cytoplasmic trafficking regulates nuclear surface area during nuclear organogenesis.
doi: https://doi.org/10.1101/326140 [7]
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a fixed cytoplasmic volume would have twice the surface area and twice the volume, and

similarly three nuclei would have 3 times the surface area and three times the volume. This

would result in a constant surface area to volume ratio as the number of nuclei are var-

ied. Alternatively, nuclear size might be regulated in a nuclear envelope-limited regime or

a volumetric network-limited regime. In this case we would expect that either the total

nuclear volume (volumetric network-limited regime) or total nuclear surface area (nuclear

envelope-limited regime) would remain constant, as we vary the number of nuclei in a fixed

cytoplasmic volume.

Figure 5.1: Models of nuclear size scaling within a defined cell size predict scaling relation-
ships and nuclear surface area:volume ratios under different regimes. a) In Hypothesis 1,
nuclear size is driven by genome size. As cell size/cytoplasmic size increases, nuclear size is
constant as genome size is constant. By keeping cell size constant and varying the number of
genomes in this regime, nuclear volume and nuclear surface area increase. b) In Hypothesis
2, nuclear size to cell size scaling is independent of genome size. Considering the nucleus
as a viscoelastic material composed of a nuclear envelope and a nucleoplasmic volumetric
network, nuclear size is hypothesized to be regulated in a nuclear envelope-limited regime
(upper panel) or a volumetric network-limited regime (lower panel), where either nuclear
surface or nuclear volume regulate nuclear size respectively.

It has been observed that nuclear size does not scale directly with nuclear volume, nuclear
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surface area nor with genomic content. Here we have developed a mechano-chemical model

of nuclear assembly to study the relative contributions of these three elements to the final

nuclear size achieved. The model assumes both the surface factor (proteins which contribute

to surface area, e.g. lamins) and volume factor (proteins which contribute to nuclear volume

e.g. NuMA) are uniformly distributed throughout the cytoplasm and must be transported

by passive diffusion and microtubule-associated dynein to the nuclear periphery. Once the

factor is near the nucleus, it is imported to (and exported from) the nucleus, enabling nuclear

growth.

5.2 Basic model equations and assumptions

5.2.1 Mechanics of the nucleus

The nuclear volume V (t) and surface area S(t) are both dynamic quantities. The total

mechanical free energy of the nucleus, which determines nuclear shape dynamics, is itself

determined by several factors. As our starting point, we assume that this energy has three

dominant terms:

E = ∆PvolV + ∆PchromV + ∆PosmoV + γS (5.2.1)

where Pvol is the hydrostatic pressure due to the hypothesized elastic volumetric network,

Pchrom is the pressure due to chromatin, Posmo is osmotic pressure, and γ is the surface

tension, which includes the full nuclear envelope (membranes and lamina). These are shown

in Figure 5.2 (Top). This energy drives changes to nuclear volume according to

dV

dt
= −αdE

dV
(5.2.2)
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Figure 5.2: (Top) Transport of nuclear assembly factors. Simplified model with three re-
gion. Same transport mechanism is assumed for both the volume factor and surface factor.
(Bottom) Mechanical factors included in model that (a priori) can determine nuclear size.

where α is the hydraulic permeability [53] of the nucleus, which has units of nm3/(Pa · s). In

words, (5.2.2) states that the nuclear volume will increase or decrease in order to minimize

the free energy, at which point the three forces in (5.2.1) are in balance.

In general, the nucleus might buckle into a non-spherical shape. However, following data from

[7], we first formulate the model assuming it remains approximately spherical. This approx-

imation is valid provided we are below the buckling threshold [53]. Combining 5.2.1, 5.2.2,

and the spherical approximation, we obtain

4πr2 dr

dt
= −α

(
∆Pvol + Pchrom + ∆Posmo +

2γ

r

)
(5.2.3)

where r(t) is the nuclear radius. In absence of precise measurements of the permeability α,

we make the reasonable assumption that α is proportional to the surface area, α = α04πr2
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(canceling the left-hand-side prefactor).

Pressure due to confining chromatin has been estimated to satisfy [69, 88]

Pchrom = Gchrom/r
2 (5.2.4)

where Gchrom is the chromatin compressibility modulus. We treat both the bulk inside the

nucleus and the nuclear envelope as elastic materials. Therefore, they have elastic compress-

ibility Gvol and extensibility Gsurf , and the pressure and surface tension are given by

∆Pvol = Gvol

(
4

3
πr3 − V0

)
(5.2.5)

γ = Gsurf

(
4πr2 − S0

)
(5.2.6)

where V0(t) and S0(t) are the preferred volume and surface area, i.e., the “rest” volume and

“rest” area. Note that, a priori, we do not assume which term dominates, i.e., it could be

that Gsurf is negligible compared to the bulk volume compressibility.

5.2.2 Transport of nuclear assembly factors

During nuclear assembly, material is added to the nucleus via regulated import at nuclear

pore complexes (NPCs). This includes nuclear material destined to assemble throughout the

nucleoplasm, such as NuMA [82], and material destined to assemble the envelope, such as

lamin A/C and lamin B [38]. We generically refer to these as a nuclear volume factor fvol

and nuclear surface factor f surf .

At the beginning of nuclear assembly, these factors have a distribution throughout the cy-

toplasm. As a first approximation, we divide the cytoplasmic space into two regions: distal

to the nucleus and proximal to the nucleus, with volumes Vcyto and Vprox respectively. This
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is shown schematically in Figure 5.2 (Bottom).

Material is transported between these regions by two mechanisms: passive diffusion, which

is bi-directional, and active transport by dynein along NMT centrosomal microtubules with

velocity vdyn. Once the factor is proximal to the nucleus, its exchange with the nucleus is

regulated by NPCs with first-order kinetic rates kin and kout (both with units of µM−1 s−1

per NPC). This leads to dynamic equations

dfvol
cyto

dt
= D

(
−
fvol

cyto

Vcyto

+
fvol

prox

Vprox

)
− rMTNMTf

vol
cyto (5.2.7)

dfvol
prox

dt
= D

(
+
fvol

cyto

Vcyto

−
fvol

prox

Vprox

)
+ rMTNMTf

vol
cyto +NNPC

(
−kvol

in

fvol
prox

Vprox

+ kvol
out

fvol
nuc

4/3πr3

)
(5.2.8)

dfvol
nuc

dt
= NNPC

(
+kvol

in

fvol
prox

Vprox

− kvol
out

fvol
nuc

4/3πr3

)
. (5.2.9)

The diffusion parameter D = D̃Sprox is the molecular diffusion coefficient (with units of

nm2/ s) times the area of interface between the proximal cytoplasmic region and distal cy-

toplasmic region. The active transport parameter rMT = vdyn/lprox is the dynein velocity

divided by the mean transport distance between distal and proximal cytoplasmic regions.

These definitions of D and rMT assume each molecule of factor is equally likely to be trans-

ported actively or by diffusion. We can adjust this assumption by decreasing either (or both)

of these parameters.
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Similarly for surface factor,

df surf
cyto

dt
= D

(
−
f surf

cyto

Vcyto

+
f surf

prox

Vprox

)
− rMTNMTf

surf
cyto (5.2.10)

df surf
prox

dt
= D

(
+
f surf

cyto

Vcyto

−
f surf

prox

Vprox

)
+ rMTNMTf

surf
cyto +NNPC

(
−ksurf

in

f surf
prox

Vprox

+ ksurf
out

f surf
nuc

4πr2

)
(5.2.11)

df surf
nuc

dt
= NNPC

(
+ksurf

in

f surf
prox

Vprox

− ksurf
out

f surf
nuc

4πr2

)
. (5.2.12)

Note that the nuclear amount of factor f surf
nuc scales with nuclear surface area, rather than

nuclear volume.

5.3 Parameter estimation and model simplification

Instead of tracking factor amounts in numbers of molecules, we define f 0
vol as the amount

(i.e., number of molecules) of volume factor required to assemble one unit of nuclear volume,

and f 0
surf as the amount of surface factor required to assemble one unit of nuclear surface,

and set Fvol = fvol/f
0
vol and Fsurf = fsurf/f

0
surf . This allows us to re-write the force-balance

equation 5.2.3 as

dr

dt
= α0

(
Gvol

(
F vol

nuc −
4

3
πr3

)
+
Gchrom

r2
+

2Gsurf

r

(
F surf

nuc − 4πr2
)

+ ∆Posmo

)
. (5.3.1)

The units of kin and kout are now s−1.
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Table 5.1: Model parameters.

Parameter Description Xenopus HeLa Source /
note

α0 Per-area hydraulic
permeability

10−6µm/Pa ·min 10−6µm/Pa ·min [53], see
5.3.2

D Diffusion rate parame-
ter

103 s−1 103 s−1 Estimated
(5.3.1)

NMT Number of micro-
tubules involved in
transport

50 50 Observed
here

rMT Transport rate for
microtubule-based
delivery

10−3 s−1 3× 10−4 s−1 Fit (5.4.3)

Gvol Volumetric factor bulk
modulus

104Pa/ µm3 5× 106Pa/ µm3 Fit (5.4.2)

Gchrom Chromatin confine-
ment coefficient

109Paµm2 109Paµm2 Fit (5.4.2)

Gsurf Surface factor elastic
modulus

5× 103pN/ µm3 5× 103pN/ µm3 Fit (5.4.2)

Vcyto Volume of cytoplasm,
distal region

6.5× 104(µm3) 4× 103 µm3 Measured

Vprox Volume of nuclear
proximal region

3× 103 µm3 103 µm3 Arbitrary

NNPC Number of nuclear
pore complexes

3× 103 3× 103 [13]

ksurf
in Import rate of surface

factor
0.25 s−1 10−3 s−1 Fit (5.4.4)

ksurf
out Export rate of surface

factor
0.05 s−1 10−6 s−1 Fit (5.4.4)

kvol
in Import rate of volume

factor
0.65 s−1 8× 10−2 s−1 Fit (5.4.2)

kvol
out Export rate of volume

factor
0.05 s−1 8× 10−3 s−1 Fit (5.4.2)

F vol
tot Total amount of vol-

ume factor
8× 103 µm3 1.5× 103 µm3 Estimated

F surf
tot Total amount of sur-

face factor
1.1× 104 µm2 1.1× 104 µm2 Estimated
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5.3.1 Diffusional delivery rate in cytoplasm to nuclear periphery

We split the cytoplasm into two regions, which we term the cytoplasm (distal to the nucleus)

and the proximal region (the nuclear periphery). Diffusive transport between two regions

obeys the diffusion equation that simplifies, for the case of two compartments, to

df1

dt
≈ aD̃

(
c2 − c1

L

)
= a

D̃

L

(
f2

V2

− f1

V1

)
, (5.3.2)

where D̃ is the true diffusion coefficient, estimated to be 10µm2/s [45], and ci is the concen-

tration, fi is the factor, and Vi is the volume of a given region. L denotes the length over

which factor is transported and a is the cross-sectional area separating the regions. To apply

this to our cytoplasmic systems, we define L ≈ rcell and a ≈ r2
prox. This leads to

df1

dt
=
r2

prox

rcell

D̃

(
f2

V2

− f1

V1

)
(5.3.3)

= D

(
f2

V2

− f1

V1

)
, (5.3.4)

where we have defined the diffusion rate parameter

D ≡
r2

prox

rcell

D̃. (5.3.5)

Using rprox ≈ 10-100µm and rcell ≈ 100-103µm, we obtain D = 104µm3/min. This leads us

to estimate that D = 103 − 105µm3/min.

5.3.2 Hydraulic permeability of nuclear envelope

To estimate the per-area hydraulic permeability α0, we refer to Kim et al. [53], where α is

a constant of proportionality between change in volume and pressure, i.e., dV /dt = α∆P .

They find parameter values VN0 = 805µm3, α = 3× 10−3min−1, and µ = 104 Pa, related to
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the permeability by their equation

α =
αµ

VN0

. (5.3.6)

If the nucleus is spherical, as we assume in this model, the per-area hydraulic permeability

is α = α04πr2. Combining this with equations

α0 =
α

4πr2
=

αVN0

µ4πr2
(5.3.7)

∼ 10−7 µm

Pa ·min
. (5.3.8)

We find that this value of α0 is large enough that water import and mechanical equilibration

is fast enough (during assembly) that nuclear growth is limited by other factors, specifically

transport of material to the nuclear periphery and import of this material into the nucleus.

5.4 Simulation results

5.4.1 Numerical simulation of model and fitting to experimental

data

We simulate the model, which is a systems of 7 ordinary differential equations given by (5.3.1)

and (5.2.7-5.2.12), with 15 parameters. We begin simulating at t = 0, which we identify as

the anaphase-to-telophase transition, after the nuclear envelope is sufficiently formed so that

transport in and out is regulated via nuclear pore complexes. At this time, we observe that

the nucleus has size r(0) = r0 = 4.18µm. We assume that it is in mechanical equilibrium

with fvol
nuc(0) = 4/3πr3

0 and f surf
nuc (0) = 4πr2

0, and that an equal concentration of the remaining

factor are in the proximal and distal cytoplasmic pools. Of the 15 parameters, 6 are well-
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constrained by direct observation or by estimated from the literature, see Table 5.1. We

explore ranges for the remaining 8 parameters as discussed in the sections below. From

the seven dynamic variables (nuclear radius, and surface factor and volume factor amounts

in each of three spatial compartments), we can further compute nuclear surface area, cross-

sectional area and volume, and the concentration (amount per volume) of surface and volume

factors. A sample time series produced by the simulation is shown in Figure 5.3.
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Figure 5.3: Sample time series produced by the simulation.
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5.4.2 Continuum of behavior between volume-dominated and surface-

dominated regimes

We modify the model so that Nnuc nuclei share a common peripheral space and common

pools of surface and volume factors. We then simulate the model until it reaches a steady

state. The parameters with the least-well constrained values are the three mechanical moduli,

specifically the surface factor compressibility Gvol, the surface factor compressibility Gsurf ,

and the chromatic confinement coefficient Gchrom, so we perform exploration in these three

parameters.

We first explore the model under the hypothesis that nuclear size is determined by a com-

petition between volume and surface factors, without contribution from genomic content.

We do this by setting the chromatin confinement coefficient Gchrom = 0. Resulting nuclear

scaling is shown in Figure 5.4. When the volume factor modulus is low compared to surface

factor modulus (left top and bottom), the total nuclear surface area is constant. This nec-

essarily implies a decreasing total nuclear volume. When the volume factor modulus is high

compared to the surface factor modulus (right top and bottom), the total surface volume is

constant. This necessarily implies an increasing total nuclear surface area. Note that this

model cannot give rise to total nuclear volume that increases with number of nuclei. For

this reason, our simulations argue against this hypothesis.

We next simulate the model under the hypothesis that nuclear size is determined by a

competition between surface factor, volume factor and chromatin, as shown in Figure 5.5.

To match the nuclear sizes in obtain in experiments by our collaborators, we find best-fit

parameters shown in Table 5.1. We find that agreement arises when the surface factor

modulus is low, and therefore nuclear size is primarily determined by the remaining two

factors, volume factor and chromatin.

To match the growth speed, i.e., the approach to this steady state, observed in Xenopus, we
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Figure 5.4: Nuclear size scaling as the ratio of Gvol (units of Pa/ µm3)) to Gsurf ( pN/ nm3),
with no chromatin effect (Gchrom = 0).

find that kvol
in ∼ 0.65 s−1. Note that the growth speed is approximately independent of ksurf

in

since the system is close to the volume-limited regime.
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Figure 5.5: Nuclear size scaling with Gchrom = 0 (purple) and for increasing Gchrom (units of
Pa · µm2, color axis). Note the log scale.
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5.4.3 Roles of diffusive and active delivery to nuclear periphery

Experiments have shown that inhibition of microtubule/dynein-based transport, e.g., using

nocodazole, reduce the nuclear volume by approximately half [41]. Roughly speaking, this

suggests that half of delivery to the nuclear periphery is based on this active mechanism and,

in the context of this model, suggests the remaining half of delivery is due to passive diffusion.

In Figure 5.6, we simulate the model with NMT = 0 to mimic the nocodazole experiment

(red curve and bar). We then simulate the control NMT = 50 and find that, to reproduce

the two-fold change, we must assume a per-microtubule delivery rate of rMT 10−3 s−1.
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Figure 5.6: Microtubule/dynein-based transport inhibition implies relative importance of
diffusive to active transport of material to nuclear-proximal region. (a) Steady-state nuclear
size with and without microtubule/dynein-based transport. This constrains the parameter
for microtubule/dynein transport rate, rMT 10−3 s−1. (b) Time series of nuclear volume with
and without microtubule/dynein-based transport.

5.4.4 Nuclear export inhibition in HeLa

Finally, we simulate the inhibition of nuclear export through nuclear pore complexes by

reducing ksurf
out and kvol

out by half. In agreement with intuition, this leads to larger nuclear size.

However, counter-intuitively, this leads to a decrease in the concentration of surface factor

in the nucleus, see Figure 5.7.
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Figure 5.7: Export inhibition leads to larger nucleus size but lower concentration of surface
factor in the nucleus. a) Nuclear radius as a function of time. b) Nuclear surface factor
concentration over time.

We note that although the time series shown are for specific choices of parameters, this

behavior is generic under two conditions: First, if the nucleus is volume-limited, and second,

if the the surface factor is import-dominated or, in the language of biochemistry, has a high

affinity for the nucleus. In these two cases, reducing export leads to a larger nucleus because

more volume factor is imported. Meanwhile, since all of the surface factor was already in the

nucleus, the export inhibition cannot lead to more surface factor. Instead, the same amount

is distributed over a larger volume, thus reducing its concentration.

At these parameters, at early times, the concentration of surface factor initially drops. At

these times, the nucleus is small, therefore relatively small increases in size lead to dilution

of surface factor and thus decrease in its concentration.
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5.5 Discussion

Here we have explicitly dissected nuclear volume, nuclear surface area and cell size scaling

relationships by altering the number of nuclei in a defined cytoplasmic volume. In [7] it was

found that none of nuclear surface area, nuclear volume nor genomic content scale directly

with cell size. Here, we developed a mathematical model based on prior biochemical knowl-

edge that is dependent on microtubule and dynein-based cargo transport, nucleo-cytoplasmic

trafficking, hydrostatic pressure, osmotic pressure and nuclear envelope surface tension. Our

model recapitulates nuclear expansion and the scaling relationship between nuclear surface

area and cell size observed in vitro [7].
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Chapter 6

Discussion

In this dissertation, we discuss four projects related to biological membranes and their inter-

actions with protein networks. Each of the projects is discussed separately in the following

four paragraphs.

Because of their mechanical nature, cellular blebs inform us about general cell surface me-

chanics including membrane dynamics, pressure propagation throughout the cytoplasm, and

the architecture and dynamics of the actin cortex. Mathematical models including detailed

fluid dynamics have previously been used to understand bleb expansion. In Chapter 2, we

developed mathematical models on longer timescales that recapitulate the full bleb life cycle,

including both expansion and healing by cortex reformation in 2D and 3D, in terms of exper-

imentally accessible biophysical parameters such as myosin contractility, osmotic pressure,

and turnover of actin and ezrin. The model provides conditions under which blebbing oc-

curs, and naturally gives rise to traveling blebs. The model predicts conditions under which

blebs travel or remain stationary, and predict the bleb traveling velocity, a quantity that has

remained elusive in previous models. As previous studies have used blebs as reporters of

membrane tension and pressure dynamics within the cell, we have used our system to inves-

86



tigate various pressure equilibration models and dynamic, non-uniform membrane tension

to account for the shape of a traveling bleb. We also find that traveling blebs tend to ex-

pand in all directions unless otherwise constrained, suggesting the importance of cell surface

heterogeneity. This was the main challenge of this project (breaking symmetry within our

system). This is a feature central to the field of cell polarization and there has been much

effort dedicated to understanding the mechanism by which this occurs both theoretically and

experimentally [36]. This work has been published in Biophysical Journal [Manakova et al.

Cell surface mechanochemistry and the determinants of bleb formation, healing, and travel

velocity. Biophys J, 110 (2016), pp. 1636-1647].

The types of equations which arise from this type of biomechanical modeling are often non-

classical and therefore little is known about them in general. In Chapter 3, we elucidated

some features of one particular class of equations arising from our bleb model. An important

element in our bleb model is the existence of travelling wave solutions. For some classical

mathematical models, for example reaction-diffusion systems, the conditions allowing for

travelling waves solutions are well established. This is not the case for our non-diffusion-like

system of equations and therefore we are studying the existence of traveling wave solution for

our non-local class of models. We derive a necessary condition for the existence of traveling

wave solution and demonstrate sufficiency numerically. We used classic tools of mathematical

analysis such as bifurcation analysis, and characterized the transitions between the types of

solutions. We found that our system exhibits a Hopf bifurcation in conjunction with what is

known as a canard explosion. Canard explosions are characterized by a sudden jump from

a single steady state solution to large amplitude oscillations for very small changes in the

bifurcation parameter. These types of analyses can be applied to a wide range of non-local

models in biology. Non-local models frequently arise in the field of ecological population

dynamics as in [37, 112], as well as in neural field models [103, 102].

An important application of these mechano-chemical models is to the identification of altered
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protein mechanics in disease states. Often diseases can be linked to a genetic mutation, but

the specific effects that the mutation has on the gene product is much more difficult to re-

solve. We collaborated with the Grosberg and Zaragoza labs to study a mutation in LMNA

gene which codes for the lamin A/C proteins. Lamin A/C proteins perform many functions

in the nucleus, including localizing to the nuclear lamina, a network of proteins associated

with the nuclear membrane which is thought to provide mechanical support to the nucleus.

Patients with a mutated LMNA gene can suffer from a variety of disorders, collectively

termed laminopathies. A common feature of all laminopathies is altered nuclear shape con-

taining more bumps or “blebs.” Nuclear blebs are also found in normal cells to some extent

and a key step in learning about the mechanisms of the ensuing diseases is to understand how

much nuclear defect is due to normal cell to cell variability and how much is due to the muta-

tion. The underlying mechanism responsible for producing these nuclear defects is unknown.

We developed a mathematical model of the nuclear lamina in 2D. We include mechanical

properties such as surface tension, bending rigidity, and cytoskeletal forces. These laminar

mechanical properties come from the mechanical properties of the lamin protein itself. Using

this model we have developed a pipeline to infer unknown parameter values (representing

biophysical properties) from measurable ones. This will help to identify which particular

mechanical defect explains the differences we observe between patient and control cells. In

[32], the authors use a similar technique by using a model to connect an external applied

force to the internal turgor pressure of Arabidopsis cells, in vivo, thereby disentangling it

from the mechanical response of the cell wall.

Nuclear organogenesis is a crucial part of cell development, however the mechanisms regu-

lating nuclear assembly are unknown. In particular, it is unclear how the nucleus develops

to a particular size. In general, it is known that nuclear size tends to scale with cell size.

In Chapter 5, we used a mathematical model to explore to the relative influences of nuclear

volume, nuclear surface area and genomic content on the size of the nucleus. The model

assumes a uniform cytoplasmic distribution of all factors contributing to nuclear volume and
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surface area. These factors move towards the nucleus through a combination of diffusion and

microtubule-associated dynein whereupon they are imported to the nucleus at a particular

rate. By matching to data collected by our collaborators, we explored the relative influences

of various forces and mechanical properties of the nucleus in regulating its final size. We

have found that nuclear size is primarily determined by volume factors and chromatin (ge-

nomic content) and less so by nuclear surface factors. Similar models may be applied to a

wide range of biological systems as size control is an prominent feature at all scales of the

biological world. At all stages of development, the sizes of organelles, cells, tissues, organs

must be tightly regulated to ensure proper function. Misregulation of size at different scales

often coincides with disease [100].

While these project contain many similarities, they are distinct in terms of the goals they

are designed to achieve as well as the corresponding data available. Our project on cellular

blebs sought to elucidate the mechanisms behind bleb formation, expansion and healing

in both time and in space. By modeling only a small patch of space, we were able to to

reduce the dimensionality of a fundamentally 3D phenomenon down to 2D and 1D, while

maintaining the qualitative properties of the system. This reduction then enabled us to

perform the analyses of Chapter 3. On the other hand, the data on nuclear shapes in

Chapter 4 is 3D in nature, but contained no temporal information. Therefore, our modeling

strategy was different in that we were able to ignore time dynamics completely and model

the system at steady state. The data available for the the nuclear assembly project of

Chapter 5 was also 3D in nature, but in this case we were able to exploit to reported

spherical symmetry of the system and describe the size of the nucleus by a single variable,

the radius. The main goal of the nuclear shape project of Chapter 4 was to identify molecular

defects, represented in the model as biophysical parameters, which may contribute to the

nuclear shape abnormalities observed in the disease states. For this reason, it was important

for us to use the model to infer physiological values of those parameters. In contrast, the goal

of the nuclear assembly project was to determine the relative influences of the various forces
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on the nucleus in determining its overall size, rather than absolute physiological values.
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McNally, Ketty Schwartz, and Gisèle Bonne. Nuclear envelope alterations in fibroblasts
from lgmd1b patients carrying nonsense y259x heterozygous or homozygous mutation
in lamin a/c gene. Experimental cell research, 291(2):352–362, 2003.

96



[71] J D Murray. Mathematical Biology : I . An Introduction , Third Edi-
tion, volume 1. 2002. ISBN 0387952233. doi: 10.1086/421587. URL
http://books.google.com/books?hl=en{&}lr={&}id=4WbpP90Gk1YC{&}oi=

fnd{&}pg=PR7{&}dq=Mathematical+Biology+:+I+.+An+Introduction{&}ots=

7pV6xaDATm{&}sig=Puq3bu3Ob8z657v1tgna4E51b-Y.

[72] James D Murray. Mathematical Biology. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1989.

[73] J. Nagumo, S. Arimoto, and S. Yoshizawa. An Active Pulse Transmission Line Simu-
lating Nerve Axon*. Proceedings of the IRE, 50(10):2061–2070, 1962. ISSN 00968390.
doi: 10.1109/JRPROC.1962.288235.

[74] Frank R. Neumann and Paul Nurse. Nuclear size control in fission yeast. Journal of
Cell Biology, 2007. ISSN 00219525. doi: 10.1083/jcb.200708054.

[75] E C Olson. Onset of electrical excitability during a period of circus plasma membrane
movements in differentiating Xenopus neurons. Journal of Neuroscience, 16(16):5117–
5129, aug 1996.

[76] Ewa K Paluch and Erez Raz. The role and regulation of blebs in cell migration. Current
Opinion In Cell Biology, 25(5):582–590, oct 2013.

[77] Matthew J Paszek, Christopher C DuFort, Olivier Rossier, Russell Bainer, Janna K
Mouw, Kamil Godula, Jason E Hudak, Jonathon N Lakins, Amanda C Wijekoon,
Luke Cassereau, Matthew G Rubashkin, Mark J Magbanua, Kurt S Thorn, Michael W
Davidson, Hope S Rugo, John W Park, Daniel A Hammer, Grégory Giannone, Car-
olyn R Bertozzi, and Valerie M Weaver. The cancer glycocalyx mechanically primes
integrin-mediated growth and survival. Nature, 511(7509):319–325, apr 2015.

[78] Barak Peleg, Andrea Disanza, Giorgio Scita, and Nir Gov. Propagating Cell-Membrane
Waves Driven by Curved Activators of Actin Polymerization. PLoS ONE, 6(4):e18635,
apr 2011.

[79] B. Peng, V. Gaspar, and K. Showalter. False Bifurcations in Chemical Systems:
Canards. Philosophical Transactions of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, 337(1646):275–289, 1991. ISSN 1364-503X. doi: 10.
1098/rsta.1991.0123. URL http://rsta.royalsocietypublishing.org/cgi/doi/

10.1098/rsta.1991.0123.

[80] Julia Peukes and Timo Betz. Direct Measurement of the Cortical Tension during the
Growth of Membrane Blebs. Biophysj, 107(8):1810–1820, oct 2014.

[81] Shuyan Qi, Michelle Krogsgaard, Mark M Davis, and Arup K Chakraborty. Molecular
flexibility can influence the stimulatory ability of receptor-ligand interactions at cell-
cell junctions. Proceedings Of The National Academy Of Sciences Of The United States
Of America, 103(12):4416–4421, mar 2006.

97

http://books.google.com/books?hl=en{&}lr={&}id=4WbpP90Gk1YC{&}oi=fnd{&}pg=PR7{&}dq=Mathematical+Biology+:+I+.+An+Introduction{&}ots=7pV6xaDATm{&}sig=Puq3bu3Ob8z657v1tgna4E51b-Y
http://books.google.com/books?hl=en{&}lr={&}id=4WbpP90Gk1YC{&}oi=fnd{&}pg=PR7{&}dq=Mathematical+Biology+:+I+.+An+Introduction{&}ots=7pV6xaDATm{&}sig=Puq3bu3Ob8z657v1tgna4E51b-Y
http://books.google.com/books?hl=en{&}lr={&}id=4WbpP90Gk1YC{&}oi=fnd{&}pg=PR7{&}dq=Mathematical+Biology+:+I+.+An+Introduction{&}ots=7pV6xaDATm{&}sig=Puq3bu3Ob8z657v1tgna4E51b-Y
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.1991.0123
http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.1991.0123


[82] Andreea E. Radulescu and Don W. Cleveland. NuMA after 30 years: The matrix
revisited, 2010. ISSN 09628924.

[83] Padmini Rangamani, Ayelet Benjamini, Ashutosh Agrawal, Berend Smit, David J
Steigmann, and George Oster. Small scale membrane mechanics. Biomechanics and
Modeling in Mechanobiology, oct 2013.

[84] Gillian L Ryan, Heather M Petroccia, N Watanabe, and Dimitrios Vavylonis. Excitable
Actin Dynamics in Lamellipodial Protrusion and Retraction. Biophysical Journal, 102
(7):1493–1502, apr 2012.

[85] Gillian L Ryan, Naoki WATANABE, and Dimitrios Vavylonis. A review of models
of fluctuating protrusion and retraction patterns at the leading edge of motile cells.
Cytoskeleton (Hoboken, N.J.), 69(4):195–206, feb 2012.

[86] G Salbreux, J Prost, and J F Joanny. Hydrodynamics of Cellular Cortical Flows and
the Formation of Contractile Rings. Physical Review Letters, 103(5):58102, jul 2009.

[87] Jakub Sedzinski, Maté Biro, Annelie Oswald, Jean-Yves Tinevez, Guillaume Salbreux,
and Ewa Paluch. Polar actomyosin contractility destabilizes the position of the cytoki-
netic furrow. Nature, 476(7361):462–466, aug 2011.

[88] Mark R. Smyda and Stephen C. Harvey. The entropic cost of polymer confinement.
Journal of Physical Chemistry B, 2012. ISSN 15205207. doi: 10.1021/jp302807r.

[89] William Stillwell. Introduction to Biological Membranes. In An Introduction to Bi-
ological Membranes. 2013. ISBN 9780444521538. doi: 10.1016/B978-0-444-52153-8.
00001-5.

[90] W Strychalski and R D Guy. A computational model of bleb formation. Mathematical
Medicine and Biology, 30(2):115–130, jun 2013.

[91] W Strychalski and R D Guy. Intracellular Pressure Dynamics in Blebbing Cells . 2015.

[92] Wanda Strychalski and Robert D Guy. Intracellular Pressure Dynamics in Blebbing
Cells. Biophysj, 110(5):1168–1179, March 2016.

[93] Wanda Strychalski, Calina A Copos, Owen L Lewis, and Robert D Guy. A poroelastic
immersed boundary method with applications to cell biology. Journal of Computa-
tional Physics, 282(C):77–97, feb 2015.

[94] Pekka Taimen, Katrin Pfleghaar, Takeshi Shimi, Dorothee Möller, Kfir Ben-Harush,
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Appendix A

Cell surface mechanochemistry and

the determinants of bleb formation,

healing and travel velocity

A.1 Summary of experimental predictions

The model makes several testable predictions. For convenience, we tabulate these predic-

tions here. Note that these predictions presume that the cell is exhibiting blebs before the

perturbation.

Table A.1: Model predictions for experimental perturbations.

Experimental perturbation Parameter Prediction

Increasing hydrostatic pressure P ↑ Larger blebs
Increasing molecular size of adhesion molecules D ↑ Abolish blebbing
Decreasing molecular size of adhesion molecules D ↓ Slower bleb healing
Increasing myosin contractility M ↑ Abolish blebbing
Decreasing myosin contractility M ↓ Slower bleb healing
Increasing membrane tension γM ↑ Faster bleb travel
Increasing abundance of adhesions kon ↑ Slower bleb travel
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A.2 Details of geometry of cortical and cytoplasmic

actin

In 3D, the cell surface and cortex are curved, discontinuous two-dimensional manifolds and

the cytoplasm is a 3D field. In full generality, the cortex and cytoplasmic actin network

have a density at each point in space. We assume that actin-myosin contractility is isotropic

and generates local stress proportional to the local density of cortical actin c. This stress

therefore has two components: a tangential component due to connection with nearby cortex

σt = σmwcc∇yC , (A.2.1)

and a normal stress due to connection with the cytoplasmic actin network

σn = σmcyC . (A.2.2)

We find that the normal contractile force is necessary for asymmetric bleb healing, as occurs

during bleb travel. This necessity can be understood from Figure A.1: In the absence of

cytoplasmic actin, the tangential stress pulls the membrane tangentially, but there is no force

driving the cortex into the place of the cell.

Our goal is to understand in 3D. To this end, we find it informative to study simplified 2D

systems and 1D systems as an analytical tool. The 2D model is equivalent to either the

geometries shown in Figure A.1C or D. The 1D model, which we refer to as the ODE model

in the Chapter 2, corresponds to the geometry shown in Figure A.1E.
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1D strip2D extended geometry

2D thin protrusion3D with cytoplasmic actin

3D without cytoplasmic actinA

B

EC

D

Figure A.1: Approximations of cortex and cytoplasmic actin geometry in 3D.
(A-B) Bleb geometry in 3D including only tangential cortical contractility
(A), and both tangential and normal contractility (B). (C-D) Representation
of 2D model. (E) Hypothetical 1D “non-spatial” model corresponding to ODE
system used in this project.

Table A.2: Estimates of parameters used in nondimensionalization.

Model parameter Estimated value Source
r 0.1/s [34]
kon 100/ µm2 · s [17]
koff 1/s [34]
κ 10 pN/µm [17]
σm 0.1Pa/ µm2 [17]

Π̂ 100Pa/ µm [17]
y0
M 3µm [19]
γM 100 pN/ µm [80]
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A.3 Parameter estimation

Using these estimates, the correspondence between dimensional and nondimensional param-

eters are given by

x = χ · 0.2µm (A.3.1)

t = τ · 10s (A.3.2)

a = A · 100/µm2 (A.3.3)

yM = YM · 3µm (A.3.4)

yC = YC · 3µm. (A.3.5)

Note that model parameters not included in Table A.2 do not impact the nondimensional-

ization.

To perform the parameter-space exploration in Figure 2.5, we used ranges shown in Table

A.3.

Table A.3: Dimensional parameters with ranges explored in simulation.

Parameter Range explored for velocity plot
ω 0.0004− 0.0006 [A.U.] · s−1

r 0.01− 0.25 s−1

kon 95− 140µm−2s−1

koff 0.5− 1.05 s−1

δ 0.14− 0.17µm
κ 9− 13 pN/µm
f0 5− 20 pN
σm 550− 725 Pa/ [A.U.]

Π̂ 65− 105 Pa/µm
γM 10− 400 pN/µm
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A.4 Model variants

A.4.1 Bending

The inclusion of higher-order derivatives in the mechanical energy transform the system into

a higher-order boundary value problem. For example, the bending energy term transforms

the membrane shape equation to a fourth-order equation. We simulate the base model

with the addition of bending terms B > 0, where the nondimensional bending modulus is

B ≡ β/γx3
c . Results are shown in Figure A.2. We find that the excitable parameter regime

and traveling parameter regimes are unchanged. For B = 100, the velocity of travel is

increased by approximately two-fold and healing is delayed compared to no bending.
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Figure A.2: Influence of membrane bending rigidity. (A) Traveling bleb on a uniform surface
with no bending energy B = 0. (B) Traveling bleb with large bending rigidity B = 100. The
bleb velocity is increased by approximately two-fold and healing is delayed (but eventually
occurs, not shown).

105



A.4.2 Part-local, part-global pressure models

In the Main Text, we present models in which pressure is either purely global (one quantity is

shared among the entire domain) or purely local (a local increase in yM leads to a local drop

in pressure, and no where else). However, recent evidence from computational models [91]

suggests that in a poroelastic cytoplasm, local membrane extension may lead to a large local

pressure drop and a smaller global pressure drop. To address this possibility, we simulate

model variants in which the pressure drop is part local and part global.

• Local-global additive:

Π(x1, x2) = Π̂

((
1− yM(x1, x2)

y0
M

)
+ εp

∫∫ (
1− yM(x̃1, x̃2)

y0
M

)
dx̃1dx̃2

)
(A.4.1)

• Local-global multiplicative pressure:

Π(x1, x2) = Π̂ ·
(

1− yM(x1, x2)

y0
M

)
·
∫∫ (

1− yM(x̃1, x̃2)

y0
M

)
dx̃1dx̃2 (A.4.2)

Results are shown in Figure A.3. As expected, when the global component of pressure drop

is small, simulation results are similar to purely-local pressure, with blebs expanding outward

as an expanding annulus. As intermediate global components, the global pressure drop is

enough to collapse the bleb as its area increases. No symmetry breaking is observed.
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A. Weak global part

B. Intermediate global part

C. Multiplicative pressure

Figure A.3: Simulations assuming that local membrane protrusion leads to both local and
global pressure drops. (A) Additive pressure Eq. A.4.1 with weak global part, εp = 0.1. (B)
Additive pressure with intermediate global part, εp = 0.18. (C) Multiplicative pressure.

A.5 Details of numerical method

A.5.1 Base model

The base model, Eqs. 10-13, comprise a two-dimensional boundary value problem of elliptic

type at each instant in time, coupled to two first-order (in time) partial differential equations.

To solve the base model, we discretize space into a uniform grid of width ∆χ = 0.1 and time

step size ∆τ = 0.01. We use a standard five-point stencil finite difference method in space

and forward-Euler in time.
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A.5.2 Non-uniform tension

The inclusion of non-uniform tension changes the boundary value problem to a non-uniform

elliptic equation. The equations takes the form

P = f(χ1, χ2)YM(χ1, χ2)−∇ · (Γ(χ1, χ2)∇YM(χ1, χ2)) (A.5.1)

where f and Γ are spatially varying. We use a uniform grid in space and set ∆χ = 0.1.

The functions f, YM and Γ all live at cell edges (f |i,j = f(i∆χ, j∆χ), i = 1, 2, ..., 2000 )

and we impose periodic boundary conditions. The parameter functions f and Γ must be

interpolated to the edges, which we do by uniform averaging. The resulting discretization

stencil is given by

P =

(
f |i,j +

1

2∆x2
(Γ|i+1,j + Γ|i−1,j + Γ|i,j+1 + Γ|i,j−1 + 4Γ|i,j)

)
YM|i,j

− 1

2∆x2
((Γ|i+1,j + Γ|i,j)YM|i+1,j + (Γ|i,j + Γ|i,j−1)YM|i−1,j)

− 1

2∆x2
((Γ|i,j + Γ|i,j+1)YM|i,j+1 + (Γ|i,j + Γ|i,j−1)YM|i,j−1)

Since this equation remains linear, it can be written into a sparse matrix and solved as a

linear system.

A.5.3 Higher-order models including bending forces

Adding higher order terms, including bending forces, transforms the boundary value problem

into a higher-order boundary value problem. The bending term, in particular, introduces

a fourth-order bilaplacian operator. This significantly increases the computational cost of

solving the equations, therefore we use a more sophisticated solver described here. We solve
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the following equations:

∂C

∂τ
= ΩA− C (A.5.2)

ε
∂A

∂τ
=

C

1 + C
exp

(
−
(

1

D

MC

A+MC
YM

))
− A exp

(
1

F0

MC

A+MC
YM

)
(A.5.3)

P = hYm −∇ · (Γ∇YM) +B∇4YM (A.5.4)

h =
AMC

A+MC
+ P, (A.5.5)

where Ω = 57, ε = 0.1, D = 0.15, F0 = 1,M = 0.007 and P = 0.1. In non-uniform tension

models, B = 0 and the non-uniform tension term Γ = 1 + θC where θ = 0.1 or θ = 0.2. For

bending models, Γ = 1 and B ∈ {10−2, 10−1, 1, 101, 102}.

All variables satisfy periodic conditions at all boundaries. The initial condition for YM and

C is their steady state value Y ss
M = 0.5582 and Css = 15.8236. A is also set to steady state

Ass = 0.2776 except where the bleb is triggered on a 5χ x 5χ patch where A = 0.

The system is solved in a square computational domain [−200, 200]2. The domain is initial-

ized to a 64×64 mesh with a maximum of 5 refinement levels. At the finest level, grid length

is 400/(64× 25) ≈ 0.2. The time step is 10−2.

We use the implicit second order Crank-Nicholson scheme for time discretization in eqs. (A.5.2)

and (A.5.3). Spatial derivatives are discretized using central difference approximations.

eq. (A.5.4) is reformulated as a system of two second order equations. Block structured

Cartesian refinement is used to efficiently resolve the multiple spatial scales. In particular,

the mesh is refined in regions with large spatial gradients of YM (typically around the bleb).

The equations at implicit time level are solved by the adaptive nonlinear multigrid method

developed in [104].
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Appendix B

Nuclear shape

B.1 Nondimensionalization

Characteristic scales

ac = btot/L0

bc = btot/L0

acnuc =
k0b

off

kbon

btot

L0

L2
0

4π

bcnuc =
k0b

off

kbon

btot

L0

L2
0

4π

tc = 1/k0b
off

sc = L0/(2
√
π)

Ec = Gb(bc)L0/(2
√
π)
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Let

A = a/ac

B = b/bc

Anuc = anuc/a
c
nuc

Bnuc = bnuc/b
c
nuc

τ = t/tc

S = s/sc

~χ = ~x/sc

E = E/Ec

Then

∂A

∂τ
=
L0

btotk0b
off

(
kaon

A(t)
Anuc

k0b
off

kbon

btot

L0

L2
0

4π
− kaoff(s, b)A

btot

L0

)
=
kaon

kbon

L2
0

4πA(t)
Anuc −

kaoff(s, b)

k0b
off

A

∂B

∂τ
=
L0

btotk0b
off

(
kbon

A(t)
Bnuc

k0b
off

kbon

btot

L0

L2
0

4π
− kboff(s, a)B

btot

L0

)
=

L2
0

4πA(t)
Bnuc −

kboff(s, b)

k0b
off

B

→ let κon =
kaon

kbon

, λ(τ) =
4πA(t)

L2
0

, φA(S,B) =
Φa(S,B)

k0b
off

, φB(S,A) =
Φb(S,A)

k0b
off

, κoff =
k0a

off

k0b
off

⇒ ∂A

∂τ
= κon

1

λ(τ)
Anuc − (κoff + φA(S,B))A,

∂B

∂τ
=

1

λ(τ)
Bnuc − (1 + φB(S,A))B
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And

E =
Estretch + Epressure + Ebending + Ecytoskeleton + kBT ξ

Gb(bc)L0/(2
√
π)

Estretch =

∫ L0

0

1

2
(Ga(a(s)) + Gb(b(s)))

(∣∣∣∣∣∣∣∣∂~x∂s
∣∣∣∣∣∣∣∣− 1

)2

ds

Gb(bc)L0/(2
√
π)

=

∫ 2
√
π

0

1

2
(Ga(A(S)ac) + Gb(B(S)bc))

(∣∣∣∣∣∣∣∣∂~χ∂S
∣∣∣∣∣∣∣∣− 1

)2 L0

2
√
π
dS

Gb(bc)L0/(2
√
π)

let GA(A(S)) =
Ga(A(S)ac)

Gb(bc)
, GB(B(S)) =

Gb(B(S)bc)

Gb(bc)

⇒ Estretch =

∫ 2
√
π

0

1

2
(GA(A(S)) +GB(B(S)))

(∣∣∣∣∣∣∣∣∂~χ∂S
∣∣∣∣∣∣∣∣− 1

)2

dS

Epressure =

P
(
λ(τ)

λ0

− 1

)2

Gb(bc))L0/(2
√
π)

= Π

(
λ(τ)

λ0

− 1

)2

where λ0 =
4πA0

L2
0

, and let Π =
P

Gb(bc))L0/(2
√
π)

Ebending =

∫ L0

0

1

2
(Ma(a(s)) +Mb(b(s))

∣∣∣∣∣∣∣∣∂2~x

∂s2

∣∣∣∣∣∣∣∣2 ds
Gb(bc)L0/(2

√
π)

=

∫ 2
√
π

0

1

2
(Ma(A(S)ac) +Mb(B(S)bc)

∣∣∣∣∣∣∣∣2√πL0

∂2~χ

∂S2

∣∣∣∣∣∣∣∣2 L0

2
√
π
dS

Gb(bc)L0/(2
√
π)

let MA(A(S)) =
4πMa(A(S)ac)

Gb(bc)L2
0

,MB(B(S)) =
4πMb(B(S)bc)

Gb(bc)L2
0

⇒ Ebending =

∫ 2
√
π

0

1

2
(MA(A(S)) +MB(B(S)))

∣∣∣∣∣∣∣∣∂2~χ

∂S2

∣∣∣∣∣∣∣∣2 dS
Ecytoskeleton =

∫ L0

0

Fcyto(a(s))Θ(θ)||~x||ds

Gb(bc)L0/(2
√
π)

=

∫ 2
√
π

0

Fcyto(A(S)ac)Θ(θ)

∣∣∣∣∣∣∣∣ L0

2
√
π
~χ

∣∣∣∣∣∣∣∣ L0

2
√
π
dS

Gb(bc)L0/(2
√
π)

let Fcyto(A(S)) =
Fcyto(A(S)ac)L0

2
√
πGb(bc)
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⇒ Ecytoskeleton =

∫ 2
√
π

0

Fcyto(A(S))Θ(θ) ||~χ|| dS

let kBT =
kBT

Gb(bc)L0/(2
√
π)

⇒ E = Estretch + Epressure + Ebending + Ecytoskeleton + kBTξ
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