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On Melonic Supertensor Models
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Abstract: We investigate a class of supersymmetric quantum mechanical theories (with

two supercharges) having tensor-valued degrees of freedom which are dominated by melon

diagrams in the large N limit. One motivation was to examine the interplay between su-

persymmetry and melonic dominance and potential implications for building toy models of

holography. We find a definite tension between supersymmetry (with dynamical bosons) and

melonic dominance in this class of systems. More specifically, our theories attain a low energy

non-supersymmetric conformal fixed point. The origin of supersymmetry breaking lies in the

need to regularize bosonic and fermionic degrees of freedom independently. We investigate

various aspects of the low energy spectrum and also comment on related examples with differ-

ent numbers of supercharges. Along the way we also derive some technical results for SL(2,R)

wavefunctions for fermionic excitations.
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1 Introduction

Despite the holographic AdS/CFT correspondence having been discovered more than two

decades ago, the raison d’être for planar field theories to have classical gravitational duals

has as yet proven elusive to formulate. While we have various necessary conditions such as

the existence of a sparse spectrum of light states in the planar limit the full set of sufficient

conditions are yet to be discovered. Part of the issue is that while planar field theories are

easy to attain by taking suitable ’t Hooft-like large N limits, canonical representatives are

either too simple (e.g., planar vector models) or too difficult to solve analytically (e.g., planar

matrix models). The simplicity/complexity in the field theory analysis translates into the dual

picture a correspondence notion of complexity/simplicity, preserving the overall intransigence

of the system from revealing the rationale for the duality. One might hope that identifying

theories which lie in some intermediate domain between the aforementioned would potentially

aid in our attempts to understand the origins of geometry from field theory.

A promising arena for such explorations which has attracted lots of recent attention is

the family of large N melonic models. Interest in these theories stems from the success of

the quantum mechanical model, the Sachdev-Ye-Kitaev (SYK) model, described by Kitaev

[1] building on an earlier construction of Sachdev and Ye [2]. The model consists of N

fermions with a random (disordered) multi-fermion interaction. The free fermion system

in the UV flows to an IR fixed point with emergent conformal symmetry in the strongly

coupled planar limit [1, 3]. While the conformal symmetry is, strictly speaking, broken away

from the IR limit, it turns out that the gapless modes capture some of the essential physics,

which furthermore, bears close resemblance to that of black holes in holographic systems.

The sub-sector of the theory (essentially a single mode, the Schwarzian field) controlling the

emergent conformal symmetry and its breaking is dual to a two dimensional dilaton gravity

theory, the Jackiw-Teitelboim (JT) theory [3, 4]. A key intriguing feature is that the system

saturates the chaos bound [5], which indicates that it is maximally scrambling just as black

holes in situations with dynamical gravity. All told, the relative simplicity coupled with

intricate dynamical behaviour with features that resemble more conventional gauge/gravity

duals, makes the model a compelling study. For a selection of literature, see [2, 6, 7] for

early works on disordered systems which led up the SYK model, [8–13] for generalizations

to models with global (flavor) symmetries, and [14–20] for supersymmetric generalizations.

The spectrum and higher point-couplings are analyzed in [21–23]. The bulk duals of these

are further explored in [4, 24–31] and a detailed discussion of the Schwarzian theory and near

AdS2 dynamics can be found in [32–34].

It is interesting to examine if the SYK model is unique in its ability to capture features

of holographic dualities. One reason for seeking generalizations is to ascertain if we can find a

genuine quantum system sans disorder.1 Consequently, other models have been constructed

with similar physics in the large N limit without any disorder. These constructions take

1 Disordered systems are classical superpositions of different realizations of a quantum system and therefore

preclude a well-defined Hilbert space in the theory (after disorder averaging).
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inspiration from models examined in the context of triangulations of manifolds in higher

dimensions [35, 36], and broadly fall into one of two classes: the class of colored tensor models

exemplified by the Gurau-Witten (GW) model [35, 37], and the class of uncolored models

exemplified by the Carrozza-Tanasa-Klebanov-Tarnopolsky model [36, 38]. These models are

further explored in [39–55]; a recent review of the subject is [56]. We will collectively refer to

these as melonic tensor models.

In their simplest incarnations, these models comprise of O(N) tensor-valued fermionic

fields with a particular class of multi-fermion vertices that ensure melonic dominance in the

large N limit. This ensures that the leading behaviour of the theory shares features such

as the emergent near-conformal symmetry at low energies, and the saturation of the chaos

bound. However, thanks to the large symmetry group2 the low energy theory also comprises

of other light degrees of freedom and peculiar thermodynamics [49, 50].

From a holographic perspective though a curious feature is that these quantum mechani-

cal systems are devoid of supersymmetry. Let us first note that it is a debatable proposition as

to whether supersymmetry is necessary for field theory to have classical gravity holographic

duals. While non-supersymmetric AdS vacua with low curvature on the string or Planck

scale, `AdS � `s, `P , suffer from pathologies prompting conjectures that they are perhaps

forbidden [57], there is no a-priori argument precluding theories with classical higher spin

or stringy duals.3 Indeed, the SYK model beyond the Schwarzian mode dynamics would be

expected to be dual to a stringy bulk theory. However, the simplest quantum mechanical

system that one hopes would capture gravitational dynamics of string/M-theory is the D0-

brane quantum mechanics with sixteen supercharges [60]. It is therefore intriguing to ask

if inclusion of supersymmetry reveals some further simplification to the analysis of melonic

quantum mechanical models. Various groups have addressed aspects of this question earlier:

for instance a supersymmetric version of SYK model was analyzed first in [14, 15] (with four,

one and two supercharges). This was extended to two dimensions in search of melonic 2d

CFTs in [16]. Analysis of correlation functions in the model with two supercharges was car-

ried out in [18, 20]. Supersymmetric tensor models were proposed in [41] – these involve some

additional augmentation involving ‘mesonic’ operators in the theory. In the SYK case the

essential features are preserved with the inclusion of supersymmetry (though there is signal

of supersymmetry breaking in the one supercharge theory [15]).

We undertake an analysis of supersymmetric tensor models with the aim of ascertaining

whether any simplification may be attained. Philosophically our models are different from

the aforementioned (see below) and involve a simple generalization involving tensor-valued

2 The symmetry group is roughly O(N)M for some M depending on the specifics of the model (one may

consider gauging it or part thereof).
3 Several examples of non-supersymmetric large N field theories with classical master fields involving some

form of gravitational interactions exist: eg., the classical higher spin theories dual to vector models, or stringy

duals of the symmetric orbifold CFT in two dimensions. We should also note that a non-supersymmetric

theory could potentially capture some features of the supersymmetric model, say the high temperature ther-

modynamics, as exemplified by the ungauged D0-brane quantum mechanics theory, cf., [58, 59].
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superfields with suitable superpotential couplings. We find several peculiarities with the

main result being that supersymmetry does not appear to aid in the very least! While we

will explicitly analyze the theory with two supercharges N = 2 we do find that increasing the

amount of supersymmetry does not materially affect the story (if anything it makes it worse).

The issue will turn out to be the dynamical bosonic fields that are present in the multiplets,

which induce an effective UV divergence in the theory (despite it being quantum mechanics).

The essential feature may already be seen in a simple bosonic tensor model which we revisit

to provide some intuition [16, 38, 47, 61].4

Let us summarize some of the salient features of our analysis: we start with a quantum

mechanical theory with tensor-valued N = 2 real superfields Ψa1 ··· aq−1 transforming in the

fundamental representation of O(N)q−1 (with q ≥ 4). Apart from a canonical kinetic term we

will include a single q-body superpotential term given by the melonic contraction, uplifting

the fermion model of [38] (who already mention our model as a potential generalization).

While the fermionic theory has a q-fermion vertex, our model has a melonic Yukawa term

with fermions appearing at most bilinearly (and coupled thence to q − 2 bosons). Despite

this change, we find that the system admits a (suitably regulated) RG flow that ends up at

a non-trivial IR fixed point with emergent conformal invariance. The IR fixed point that

we find however breaks supersymmetry – the spectrum of singlet excitations does not fit

into a supermultiplet. This is in contrast to the finite N theory where we have unbroken

supersymmetry (the theory has a non-trivial Witten index).

Supersymmetry breaking at large N is of course possible as first illustrated in [62]. One

potential rationale has to be the emergence of a continuum in the spectrum owing to N →∞.

A plausible mechanism may be attributed to the presence of O(N2) light excitations in the

theory arising from the global O(N)q−1 rotations of the tensor indices.5 This feature was

illustrated explicitly for the fermionic uncolored tensor model in [50] with the light-modes

being described by a non-linear sigma model with target space being the group manifold for

O(N)q−1. It seems natural to conjecture that the supersymmetric theory will lead to a similar

situation.

In our discussion however, it appears that there is an inherent tension between melonic

dominance and supersymmetry. We will see that the origins of supersymmetry breaking lie

in having to explicitly regularize bosonic and fermionic degrees of freedom independently,

lending credence to the idea that supersymmetry is broken explicitly along the RG flow

rather than dynamically in the IR. This appears to be consistent with our analysis of the low

energy spectrum which does not reveal the presence of a goldstino as would be the case with

spontaneous breaking [63].

We undertake a careful analysis of the model arguing for a particular regularization

scheme that attains the IR fixed point identified from a naive solution of the truncated

4 A theory of bosonic tensors with melonic vertices has a Hamiltonian that is unbounded from below. This

feature while problematic will not affect the analysis we will undertake. Of course, this issue is mitigated in

the supersymmetric context since the Hamiltonian being built from the supercharges will be bounded.
5 We thank Steve Shenker for this suggestion.
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Schwinger-Dyson equations. Having established the existence of a non-supersymmetric fixed

point, we turn to the spectrum of composite operators in the theory focusing on the singlet

sector. In contrast to earlier studies of related systems we have both bosonic and fermionic

composite operators. We work out the spectrum of excitations for both kinds of operators;

doing so requires some new technical machinery to analyze fermionic excitations. Represent-

ing the four-point function in the bose-fermi OPE channel involves a new set of conformal

eigenfunctions. They can be viewed as SL(2,R) wavefunctions with twisted boundary condi-

tions or equivalently wavefunctions that are Hermitian with respect to a modified norm (we

are not aware of this having been discussed in the literature before).

Outline of the paper: The paper is organized as follows. We begin in §2 by reconsidering

the bosonic tensor model. While this is not a viable quantum system as the potential has

negative directions of N > 2 (footnote 4), it serves to illustrate the issues with the RG flow.

We use it to argue for our regularization scheme of the UV divergences (present all along the

flow) that are present for melonic tensor models with dynamical bosons. We regulate the UV

divergences by fine-tuning a bare mass in the UV theory. This also serves to address issues

discussed in [16, 47, 61] and noted in [38] for such theories.

In §3, we turn to our primary exhibit: the N = 2 supersymmetric tensor model. We

demonstrate that supersymmetry is unbroken for finite N and then turn to the RG flow. We

compute in §4 the renormalized self-energy of the theory at large N using the regularization

scheme from §2 and exhibit a strong coupling IR fixed point where supersymmetry is broken.

We also compute a set of 4-point functions for theory in §5, taking the opportunity to gener-

alize some results relating to generic external states. In particular, as we have both fermionic

and bosonic fields, we will need SL(2,R) wavefunctions with twisted boundary conditions; we

derive these explicitly in the course of our analysis.

The appendices contain some additional observations about supersymmetric SYK and

tensor models. In Appendix A we explore tensor models with different supersymmetries and

in each case we find some tension with melonic dominance. Appendices B and C collect tech-

nical details relevant for the 4-point function computations. The former details the SL(2,R)

wavefunctions that we require for our analysis, while the latter summarizes a useful basis of

integrals that enter into our computations.

2 Bosonic tensor model revisited

Let us consider bosonic tensors φa1a2...aq−1 with distinguishable indices ai = 1, · · · , N and the

(Euclidean) action6

S =

ˆ
dτ

(
1

2
∂τφ

a1...aq−1∂τφ
a1...aq−1 +

1

q
g [φq]

)
, (2.1)

6 We will denote Euclidean time by τ and refer to real-time by t.
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where [φq] denotes the special type of index contraction, where each pair of fields has exactly

one index contracted between them. 7 For q = 4 we have the tetrahedral index contraction:

[φ4] = φa1a2a3φa1b2c3φd1a2c3φd1b2a3 . (2.2)

As noted earlier the vertex [φq] results in a Hamiltonian that is not bounded from below.

We will proceed for now ignoring this issue. It will be helpful to often simplify notation and

suppress the tensor indices except when we need to illustrate particular contractions. To this

end, let us collectively denote the tenor indices by an index Aq and write φAq for our basic

field.8

φAq ≡ φa1...aq−1 (2.3)

G = +

G

...

G

G

Figure 1: The leading order large N contribution to the boson propagator which leads to

the Schwinger-Dyson equation (2.6).

In the large N limit, the theory is dominated by melon diagrams (see Fig. 1) with the

dimension one effective coupling

J ≡ g
2
q+2 N

(q−1)(q−2)
2(q+2) . (2.4)

Consider the two-point function〈
T
(
φAq(τ1)φBq(τ2)

)〉
= G(τ1 − τ2) δAq Bq

≡ G(τ1 − τ2) δa1b1 · · · δaq−1bq−1 .
(2.5)

The Green’s function G(τ) can be solved by aid of the Schwinger-Dyson equation

G̃(ω) =
1

ω2 − Σ̃(ω)
, Σ(τ) = Jq+2G(τ)q−1, (2.6)

where G̃(ω) =
´
dτ eiωτG(τ) is the Fourier transform of G(τ) and similarly for Σ̃(ω).

In the strong coupling limit or equivalently the low energy limit, the Schwinger-Dyson

equation reduces to

G̃c(ω)Σ̃c(ω) = −1, Σc(τ) = Jq+2Gc(τ)q−1, (2.7)

7 For q > 6, this choice of index contraction structure is not unique (see [55] for a detailed analysis).

However, every interaction of this type has the same large N limit so we choose one such interaction for our

model. We thank Grigory Tarnopolsky for discussions on this point.
8 We hope it is not overly confusing to keep track of the fact that φAq only has (q − 1) tensor indices.
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which exhibits the reparametrization symmetry

Gc(τ1 − τ2)→
[
f ′(τ1)f ′(τ2)

] 1
q Gc(f(τ1)− f(τ2)),

Σc(τ1 − τ2)→
[
f ′(τ1)f ′(τ2)

] q−1
q Σc(f(τ1)− f(τ2)).

(2.8)

Consider the conformal ansatz

Gc(τ) =
b

|τ |2∆
. (2.9)

The equations (2.7) are solved by (we used (C.1))

∆ =
1

q
, bqJq+2π =

(
1

2
− 1

q

)
cot

(
π

q

)
. (2.10)

There is an apparent contradiction of this simple solution [61]. The conformal ansatz

(2.9) is manifestly positive everywhere, so the Fourier transforms G̃c(ω) and Σ̃c(ω) should

both be positive functions. However, this contradicts the first equation in (2.7).

The contradiction is due to the divergences in the Fourier integral of the conformal

Green’s function Gc(τ) and self-energy Σc(τ). The Fourier transform of Gc(τ) suffers from a

long distance divergence, while the Fourier transform of Σc(τ) suffers from a short distance

divergence. The long distance divergence can be easily regularized with an IR cut-off, e.g.,

by turning on a non-zero temperature.

The conformal ansatz has a thermal regulator given by a reparametrization (2.8) which

compactifies the real Euclidean time line to a circle. Using f(τ) = tan πτ
β ,

Gc(τ) = b

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
2∆

. (2.11)

The Fourier integral of G̃c(ω) is over a finite range τ ∈ [−β
2 ,

β
2 ] and therefore converges now.

However, the Fourier transform of Σc(τ) at finite temperature

Σ̃c(ωn) = Jq+2bq−1

ˆ β
2

−β
2

dτ cos(ωnτ)

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
2(q−1)∆

, ωn =
2πn

β
, (2.12)

still suffers the short distance divergence at τ = 0. One can regularize the integral by first

performing the integral for 2(q − 1)∆ < 1, and then analytic continuing the result to ∆ = 1
q .

In this regularization scheme, the function Σ̃c(ωn) is everywhere negative, and the Schwinger-

Dyson equations in the conformal limit (2.7) are satisfied.

The solution we find at strong coupling has the following salient features. First, the

self-energy at zero frequency gives an IR effective mass; using (C.2),

m2
eff = −Σ̃c(0) = Jq+2bq−1π

2∆(q−1)− 1
2 Γ
(
(1− q)∆ + 1

2

)
β2∆(q−1)−1Γ((1− q)∆ + 1)

=
(βJ)

1+ 2
q

β2

[
2q tan π

q

π(q − 2)

] 1
q π

1
2 Γ
(
q−1
q

)
Γ
(

1
2 −

1
q

) .
(2.13)
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This self-energy correction vanishes in the zero temperature limit β →∞. Second, since the

classical potential in the action (2.1) is not bounded from below the classical vacuum φAq = 0

is an unstable critical point of the classical potential. The induced IR effective mass converts

the point at φAq = 0 to a metastable vacuum of the theory.

As pointed out by other authors [47, 61], the Schwinger-Dyson equation (2.6) is still

problematic away from the strong coupling limit. By unitarity, G̃(ω) should be real and

strictly positive. By the second equation in (2.6), Σ̃(0) should also be positive. However, the

first equation in (2.6) at ω = 0 requires G̃(0)Σ̃(0) = −1. Relatedly, earlier attempts to solve

the Schwinger-Dyson equation (2.6) by numerical iteration also consequently fail [16].

One can take inspiration from the strong coupling IR limit and enquire if one can con-

tinue to attribute this tension to a divergent self-energy Σ(τ) even away from the conformal

limit. We however need a different regularization scheme, for the analytic continuation of the

conformal dimension ∆ is only defined in the conformal limit.

To resolve the contradiction, we need to fine tune the UV action (2.1). Since the bosonic

tensor field φAq has mass dimension −1
2 , the action (2.1) admits a relevant mass deformation

Smass =

ˆ
dτ

1

2
m2

bare φ
Aq φBq δAqBq . (2.14)

Under the renormalization group flow, the bare mass mbare would be renormalized. For the

RG flow to end on a conformal fixed point, we would like to fine tune the bare mass such that

in the low energy (strong coupling) limit the renormalized mass approaches the IR effective

mass meff ,

lim
βJ→∞

(βJ)
−1− 2

q

[
m2

bare − Σ̃(0)
]

=
m2

eff

(βJ)
1+ 2

q

=
1

β2

[
2q tan π

q

π(q − 2)

] 1
q π

1
2 Γ
(
q−1
q

)
Γ
(

1
2 −

1
q

) . (2.15)

There are many choices of the bare mass mbare as a function of the dimensionless coupling

βJ such that the renormalization condition (2.15) is satisfied. Different choices correspond to

different UV theories which all flow to the same IR fixed point with the conformal two-point

function (2.11).

We pick the simplest possibility for the bare mass

m2
bare = Σ̃(0) +m2

eff , (2.16)

which gives the renormalized Schwinger-Dyson equation

G̃(ω) =
1

ω2 +m2
eff −

[
Σ̃(ω)− Σ̃(0)

] , Σ(τ) = Jq+2G(τ)q−1. (2.17)

Since only the difference of the self-energy Σ̃(ω)−Σ̃(0) appears in the equation, the Schwinger-

Dyson equation is free from the short distance divergences in the Fourier integral.

To validate our renormalization condition (2.15) (or equivalently (2.16)), we numerically

solve the renormalized Schwinger-Dyson equation (2.17), and compare the numerical solution

– 8 –



βJ = 50

βJ = 200

0.5 1.0 1.5 2.0 2.5 3.0

2 π τ

β

0.002

0.004

0.006

0.008

0.010

β-1G(τ)

Figure 2: Comparison of numerical (red) and analytic (blue) solutions of the regularized

bosonic Schwinger-Dyson equations (2.17) for two different values of βJ as indicated. The

numerical simulation is carried out with the imaginary time circle discretized by a lattice with

200 points (see footnote 9).

of large βJ with the analytic solution in the conformal limit (2.11). The result is shown in

Fig. 2.9 As is clear from the plot the regulated Schwinger-Dyson equation converges clearly

onto the anticipated IR fixed point, lending support for our procedure.

Note that the problem is unique to bosonic degrees of freedom. Fermionic tensor models

are much better behaved; indeed, the self-energy integral suffers from no UV divergence

issues either in the conformal limit or along the flow. The reason can be traced to the Fermi

statistics which in the IR limit give rise to a conformal propagator Gc(τ) = b
|τ |2∆ sgn(τ) at

zero temperature. The sign function ends up ensuring the self-energy is free of divergences.

We will take inspiration from this analysis for the case of the supersymmetric tensor model

we introduce shortly.

3 The N = 2 supersymmetric tensor model

We now turn to the main model we wish to analyze, a quantum mechanical supertensor

model with N = 2 supersymmetry. This amount of supersymmetry turns out to provide an

interesting interaction term. Similar attempts to construct a theory with one supercharge lead

to an interaction involving an odd number of fermions, while higher number of supercharges

lead to derivative couplings between the component fields (see Appendix A).

We will start by introducing the model. It will be convenient to start out in superspace

R1|2 with coordinates t, θ, θ̄ (t is the real time coordinate). The basic superfield ΦAq will be

tensor-valued as in the bosonic model, so much of the structure is actually quite straightfor-

ward to intuit if we stick to superspace.

9 We have checked that increased resolution by working with say O(104) grid points as opposed to 200 grid

points in Fig. 2 does not show any discernible qualitative difference. We thank Douglas Stanford for raising

this issue.
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3.1 The model

We consider an N = 2 supersymmetric model in (0 + 1)-dimensions with superfields ΦAq

transforming in the (q − 1)-fundamental representation of O(N)q−1 for q ≥ 4 even. These

superfields can be written in terms of component fields on superspace as

ΦAq(t, θ, θ̄) = φAq(t) + i θ ψ̄Aq(t) + i θ̄ ψAq(t) + θθ̄ FAq(t), (3.1)

where φAq , FAq are bosonic and ψAq , ψ̄Aq are fermionic.

The action will be given as a superspace integral with canonical kinetic terms along with

a superpotential W (ΦAq). Taking inspiration from the non-supersymmetric tensor models,

the superpotential will be taken to be the q-point interaction [Φq], the index contraction for

the tensors being identical to the case of the bosonic model discussed in §2. Such a model

was first proposed in [38]. The action then is given by

S =

ˆ
dt dθ̄ dθ

(
1

2
DθΦ

Aq Dθ̄Φ
Aq +

1

q
g [Φq]

)
, (3.2)

where Dθ = ∂θ − i θ̄ ∂t and Dθ̄ = ∂θ̄ − i θ ∂t are the superderivations. In terms of component

fields, the action can be evaluated to be

S =

ˆ
dt

1

2

(
i ψ̄Aq ∂tψ

Aq − i ∂tψ̄Aq ψAq + (∂tφ
Aq)2 + (FAq)2

)
+

1

q
g

( ∑
perms.

[φq−2ψ̄ψ] +
∑

perms.

[φq−1F ]

)
,

(3.3)

where the sums run over all possible rearrangements of the ψ̄, ψ fields and the F field, re-

spectively, within the special contraction structure indicated by the square brackets. At this

point, we could integrate out the auxiliary field. This will however induce scalar interaction

terms with tensor contraction structure differing from the chosen one to ensure melonic dom-

inance. While the end result will be equivalent, we prefer to leave the auxiliary field in place

to make the melonic dominance manifest in the analysis to follow.

The supersymmetry generators are

Q = ∂θ + i θ̄ ∂t Q̄ = ∂θ̄ + i θ ∂t (3.4)

with corresponding supersymmetry transformations

δφAq = i (ε̄ ψ̄Aq + ε ψAq) , δFAq = ε̄ ∂tψ̄
Aq − ε ∂tψAq ,

δψAq = ε̄ (i FAq − ∂tφAq) , δψ̄Aq = ε (−i FAq − ∂tφAq) .
(3.5)

Using the Noether procedure, we obtain the corresponding conserved supercharges,

Q = ∂tφ
Aq ψ̄Aq +

ig

q

∑
perms.

[ψ̄φq−1]

Q̄ = ∂tφ
AqψAq − ig

q

∑
perms.

[ψφq−1].

(3.6)
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The Hamiltonian is, of course, H = 1
2{Q, Q̄} and it now has a bounded spectrum (unlike the

bosonic tensor model considered in §2).

The theory has a U(1) R-symmetry under which ψAq has charge +1 and ψ̄Aq has charge

−1, while φAq and FAq are uncharged. The supercharges are normalized such that Q and Q̄

have R-charge −1 and +1, respectively.

3.2 Hilbert space at finite N

We first turn to an examination of the theory at finite N where we expect usual behaviour

as a supersymmetric quantum mechanical theory. First, let us examine the Witten index to

determine whether or not supersymmetry is broken and get a sense for the BPS sector of the

theory. Since the Witten index is invariant under deformations of the theory, we can compute

it in the free theory where g = 0 [64]. This is easy to do for we can evaluate the free partition

function on a Euclidean circle with periodic fermions, which ensures that we are evaluating

Tr
(
(−1)F e−βH

)
, with the Boltzmann factor providing a suitable regulator. Integrating out

the auxiliary field, we obtain (suppressing tensor indices for convenience)

Tr (−1)F =

ˆ
DφDψDψ̄|P e−SE [φ,ψ,ψ̄]

=

[ˆ
Dφ e−

1
2

´ β
0 dt φ(−∂2

t )φ

ˆ
DψDψ̄|P e−

´ β
0 dt ψ̄(∂tψ)

]Nq−1

= (−1)N 6= 0 .

(3.7)

In the final expression we have used the fact that the parity of N q−1 equals the parity of N

for any even q. From the non-vanishing Witten index, we can conclude that supersymmetry

is not broken in the theory at finite N .

One can check this computation by explicitly constructing the BPS sector. From the

canonical quantization of the fermions ψAq , ψ̄Aq , we have the Hilbert space for a given ψAq

(i.e., with fixed tensor components):

HAq = L2(R,C) |0〉Aq ⊕ L
2(R,C) ψ̄Aq |0〉Aq , ψAq |0〉Aq = 0. (3.8)

Thus, the full Hilbert space of the theory is obtained by summing over all possible tensors

H =

N⊗
a1,...,aq−1=1

(
L2(R,C) |0〉Aq ⊕ L

2(R,C) ψ̄Aq |0〉Aq

)
. (3.9)

To determine the Q-cohomology, we seek states |χ〉 such that Q|χ〉 = Q̄|χ〉 = 0. One can

show that there exists only one such state

|χ〉 = exp

(
−
q−1∑
i=1

N∑
ai=1

g

q

ˆ
dφAq

d

dFAq
[F φq−1]

)
N⊗
ai=1

ψ̄Aq |0〉Aq , (3.10)

The statistics of the state is determined by the parity of N q−1 as can be see from the fermion

creation operator count. This agrees with the Witten index computation and we conclude
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that, at finite N , there exists one supersymmetric ground state whose parity depends on the

parity of N .

However, the arguments used above in the computation of the Witten index and Q-

cohomology can potentially break down as N → ∞. Usually this is associated with the

appearance of a new continuum in the spectrum or the vacuum running away to infinity, as

is well documented in large N quantum mechanical models [62]. To understand potential

issues arising in the large N limit, it will suffice to examine the spectrum of the theory as

carried out in [49, 50, 54]. These authors find that the theory admits O(N2) light modes

in the spectrum generically. One way to intuit their presence is to realize that the theory

in the absence of the kinetic term actually admits a large global symmetry group O(N)q−1.

Away from the IR limit, the irrelevant kinetic term breaks this explicitly and leaves behind

a set of Goldstone fields which may be associated with time-dependent O(N)q−1 rotations.

The presence of these modes has the potential to open up a continuum in the large N limit,

spoiling our analysis of the Witten index (by invalidating the localization argument used to

set g = 0 in the Witten index computation [64]). We also see another sign of trouble in the

norm of the supersymmetric ground state (3.10) vanishing in the large N limit. In fact, soon

we will find that the low energy fixed point obtained by assuming melonic dominance prefers

to be non-supersymmetric.

4 Melonic dominance and low energy conformal symmetry

We now have all the ingredients at hand to analyze the dynamical behaviour of the model (3.2)

as a function of the coupling g. To this end we will first compute the two-point functions for

the fundamental fields φ, ψ and F for general q. Since it will be helpful to work in superspace

directly, let us denote by X the supercoordinate X ≡ (τ, θ, θ̄).

Consider then the two-point function of the superfield ΦAq(X) ≡ Φa1...aq−1(X)

G(X1, X2) =
1

N q−1

N∑
ai=1

〈T (ΦAq(X1)ΦAq(X2))〉, (4.1)

which can be expanded in terms of two-point functions of the component fields as

G(X1, X2) = Gφφ(τ12) + θ̄1θ2G
ψψ̄(τ12) + θ1θ̄2G

ψ̄ψ(τ12) + θ1θ̄1θ2θ̄2G
FF (τ12), (4.2)
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where Gφφ(τ12), Gψψ̄(τ12), and GFF (τ12) are

Gφφ(τ12) =
1

N q−1

N∑
ai=1

〈T (φAq(τ1)φAq(τ2))〉,

Gψψ̄(τ12) =
1

N q−1

N∑
ai=1

〈T (ψAq(τ1)ψ̄Aq(τ2))〉,

Gψ̄ψ(τ12) =
1

N q−1

N∑
ai=1

〈T (ψ̄Aq(τ1)ψAq(τ2))〉,

GFF (τ12) =
1

N q−1

N∑
ai=1

〈T (FAq(τ1)FAq(τ2))〉.

(4.3)

G = +

G

...

G

G

Figure 3: Supergraph representation of the super-Schwinger-Dyson equation.

An advantage of working directly with the superfields is that it is obvious that the large N

counting works in a manner similar to the bosonic model discussed in §2. We can immediately

write down the super-Schwinger-Dyson equations satisfied by the super-propagator:

1

2
[Dθ1 , Dθ̄1

]G(X1, X3)−
ˆ
dX2 Σ(X1, X2)G(X2, X3) = δ(τ13)δ2(θ1 − θ3) , (4.4)

which is given in the large N limit by an iterated sum over melon diagrams Fig. 3, viz.,

G(X1, X2) = G0(X1, X2) +

ˆ
dX3 dX4 G0(X1, X3) Σ(X3, X4)G(X4, X2) ,

Σ(X1, X2) = Jq G(X1, X2)q−1 , J ≡ g
2
qN

(q−1)(q−2)
2q .

(4.5)

In the above the free super-propagator G0(X1, X2) is given by

G0(X1, X2) = −1

2
|τ12 − θ̄1θ2 − θ1θ̄2| (4.6)

and can be obtained from solving the free equation of motion 1
2 [Dθ1 , Dθ̄1

]G0(X1, X2) =

δ2(θ12)δ(τ12).
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Expanding out the super-Schwinger-Dyson equations gives three coupled Schwinger-

Dyson equations for the component fields:

−∂2
τ1G

φφ(τ12) = δ(τ12) +

ˆ
dτ3 Σφφ(τ13)Gφφ(τ32),

∂τ1G
ψψ̄(τ12) = δ(τ12) +

ˆ
dτ3 Σψψ̄(τ13)Gψψ̄(τ32),

−GFF (τ12) = δ(τ12) +

ˆ
dτ3 ΣFF (τ13)GFF (τ32),

(4.7)

or equivalently,

Gφφ(τ1, τ2) = Gφφ0 (τ1, τ2) +

ˆ
dτ3 dτ4G

φφ
0 (τ1, τ3)Σφφ(τ3, τ4)Gφφ(τ4, τ2)

Gψψ̄(τ1, τ2) = Gψψ̄0 (τ1, τ2) +

ˆ
dτ3 dτ4G

ψψ̄
0 (τ1, τ3)Σψψ̄(τ3, τ4)Gψψ̄(τ4, τ2)

GFF (τ1, τ2) = GFF0 (τ1, τ2) +

ˆ
dτ3 dτ4G

FF
0 (τ1, τ3)ΣFF (τ3, τ4)GFF (τ4, τ2) .

(4.8)

The explicit form for the self-energy functions is given by:

Σφφ(τ) = Jq
(

(q − 1)(q − 2)Gφφ(τ)q−3Gψψ̄(τ)Gψ̄ψ(τ) + (q − 1)Gφφ(τ)q−2GFF (τ)
)
,

Σψψ̄(τ) = Jq(q − 1)Gψψ̄(τ)Gφφ(τ)q−2,

ΣFF (τ) = JqGφφ(τ)q−1.

(4.9)

4.1 The conformal fixed point and IR symmetries

These equations can be solved by standard techniques. For start, we transform to frequency

space and pass to the IR limit, or equivalently the strong coupling limit, to obtain the sim-

plified Schwinger-Dyson equations

G̃φφc (ω)Σ̃φφ
c (ω) = G̃ψψ̄c (ω)Σ̃ψψ̄

c (ω) = G̃FFc (ω)Σ̃FF
c (ω) = −1, (4.10)

where the overhead ∼ denotes the Fourier transform and the subscript c denotes the conformal

limit.

The fixed point solution: We can now attempt to solve the truncated equations assuming

a flow to a conformal fixed point by picking an ansätze10

Gφφc (τ) =
bφ

|τ |2∆φ
, Gψψ̄c (τ) =

bψ sgn(τ)

|τ |2∆ψ
, GFFc (τ) =

bF
|τ |2∆F

. (4.11)

This implies that Gψψ̄c (τ) = Gψ̄ψc (τ). Plugging (4.11) into (4.10) gives the constraints on the

conformal dimensions

(q − 2)∆φ + 2∆ψ = 1 and (q − 1)∆φ + ∆F = 1, (4.12)

10 Note that the coefficients bφ, bψ and bF are dimensionful, and the dimensionless combinations are

bφJ
2∆φ+1, bψJ

2∆ψ and bFJ
2∆F−1.
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along with an additional constraint

1−(q − 1)
sin2(π∆φ)Γ(1− 2∆φ)Γ(2∆φ − 1)

sin2(π(q − 1)∆φ)Γ(2(q − 1)∆φ − 1)Γ(1− 2(q − 1)∆φ)
=

(q − 2)
Γ(1− 2∆φ)Γ(2∆φ − 1) sin2(π∆φ)

Γ((q − 2)∆φ)Γ((2− q)∆φ) sin2(π2 (q − 2)∆φ)
.

(4.13)

The solutions of (4.13) for various values of q are given in Table 1. It is clear from the relation

between conformal dimensions (4.12), even without inspecting the explicit solutions, that the

low energy fixed point breaks supersymmetry.

q ∆φ ∆ψ ∆F

4 1
6

1
3

1
2

6 0.109 0.282 0.456

8 0.081 0.258 0.436

100 0.006 0.196 0.386

∞ 0 0.191 0.382

Table 1: Conformal dimensions of fields for various values of q.

The low energy equations (4.10) are invariant under a scaling symmetry:

Gφφ(τ1, τ2)→ λ4Gφφ(τ1, τ2), GFF (τ1, τ2)→ λ4(1−q)GFF (τ1, τ2),

Gψψ̄(τ1, τ2)→ λ2(2−q)Gψψ̄(τ1, τ2), Gψ̄ψ(τ1, τ2)→ λ2(2−q)Gψ̄ψ(τ1, τ2).
(4.14)

Hence, the coefficients bφ, bψ, bF are not determined completely. Only the products bq−2
φ b2ψ

and bq−1
φ bF are fixed

bq−2
φ b2ψJ

q =
(q − 2) (∆F − 1) cot

(
π(q−2)(∆F−1)

2(q−1)

)
2π(q − 1)2

,

bq−1
φ bFJ

q =
1

2π
(1− 2∆F ) cot (π∆F ) .

(4.15)

Note that a similar statement holds for the supersymmetric SYK model discussed in [15],

though there one can further use supersymmetry to fix this additional parameter. We do not

have this additional freedom.

Local symmetries in the IR: In the low energy limit, the truncated Schwinger-Dyson

equations have a large set of local symmetries. These are typically broken by the kinetic term

which we ignore in the deep infrared. Let us record the symmetries that are visible in the

truncated theory for future reference:
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• The time reparametrization symmetry discussed in the bosonic model, (2.8) continues to

apply in the supersymmetric Schwinger-Dyson equations. The breaking of this symme-

try by the UV dynamics leads to the Schwarzian action [3] for the lone reparametrization

mode.

• In the deep infrared we have an U(1) affine algebra arising as a low-energy version of

the U(1)R symmetry. This acts on the bilinear-propagator fields as

Gψψ̄(τ1, τ2)→ eia(τ1)−ia(τ2)Gψψ̄(τ1, τ2), Gψ̄ψ(τ1, τ2)→ e−ia(τ1)+ia(τ2)Gψ̄ψ(τ1, τ2).

(4.16)

The reality condition Gψ̄ψ(τ1, τ2) = Gψψ̄(τ1, τ2)∗ implies that a(τ) is a real function.

The effective action for a(τ) can be inferred from standard analysis and is similar to

the discussions of the charged SYK model [10].

• The theory has in addition a scaling symmetry identified in (4.14) which entails that we

only have enough information to fix two of the three parameters in the Green’s function.

cf., (4.15). This symmetry acts locally in the IR as:

Gφφ(τ1, τ2)→ [λ(τ1)λ(τ2)]2Gφφ(τ1, τ2), GFF (τ1, τ2)→ [λ(τ1)λ(τ2)]2−2q GFF (τ1, τ2),

Gψψ̄(τ1, τ2)→ [λ(τ1)λ(τ2)]2−q Gψψ̄(τ1, τ2), Gψ̄ψ(τ1, τ2)→ [λ(τ1)λ(τ2)]2−q Gψ̄ψ(τ1, τ2).

(4.17)

Unlike the reparametrization symmetry and U(1) affine symmetry, the global part of the

local scaling symmetry does not leave the low energy solution (4.11) invariant. Following

[15] we expect an effective action of the form J
´

(λ(τ) − 1)2dτ , which suppresses the

deviation from the value of λ determined by the UV.

4.2 The RG flow and supersymmetry breaking

As with the bosonic model discussed in §2 the attainment of the conformal fixed point is

predicated upon suitable fine-tuning in the system. The issue again is to due to divergences

arising in the bosonic sector which remain despite the presence of supersymmetry. This is

another sign that the melonic structure in this class of supertensor theories does not gel with

the supersymmetry. Inspired by our bosonic model discussion we will now present the mass

counter-terms we include to ensure that the flow starting from the free UV theory lands on

the fixed point we picked out from the truncation of the Schwinger-Dyson equations.

At finite temperature, the boson φ and auxiliary field F acquire IR effective masses given
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by the self-energies at zero frequency11

(mφ
eff)2 = −Σ̃φφ

c (0) =
1

G̃φφc (0)
=

(βJ)2∆φ+1Γ(1−∆φ)

β2(bφJ
2∆φ+1)π2∆φ− 1

2 Γ
(

1
2 −∆φ

) ,
(mF

eff)2 = −β−2Σ̃FF
c (0) =

1

β2G̃FFc (0)
=

(βJ)2∆F−1Γ(1−∆F )

β2(bFJ2∆F−1)π2∆F− 1
2 Γ
(

1
2 −∆F

) , (4.19)

which go to zero in the zero temperature limit β →∞ while fixing the dimensionless combi-

nations βJ , bφJ
2∆φ+1, and bFJ

2∆F−1.

Similar to the bosonic tensor model, for the theory to flow to the conformal fixed points,

we need to add bare mass terms to the UV action (3.2), and fine tune the masses such that

the following renormalization conditions are satisfied,

lim
βJ→∞

(βJ)−2∆φ−1
[
(mφ

bare)
2 − Σ̃φφ(0)

]
=

(mφ
eff)2

(βJ)2∆φ+1
=

Γ(1−∆φ)

β2(bφJ
2∆φ+1)π2∆φ− 1

2 Γ
(

1
2 −∆φ

) ,
lim

βJ→∞
(βJ)−2∆F+1

[
(mF

bare)
2 − β−2Σ̃FF (0)

]
=

(mF
eff)2

(βJ)2∆F−1
=

Γ(1−∆F )

β2(bFJ2∆F−1)π2∆F− 1
2 Γ
(

1
2 −∆F

) .
(4.20)

The bare mass terms explicitly break supersymmetry. We cannot find a supersymmetry-

preserving regulator that flows to the conformal fixed point, which is consistent with the

analytic result that supersymmetry is broken for the conformal solution. With this regular-

ization scheme we can numerically solve the full Schwinger-Dyson equations (4.5) (with the

bare mass term included) all along the flow. The results are plotted in Fig. 4 and we see

reasonable convergence in the strong coupling limit to the fixed point solution determined

earlier. The coefficients bφ and bF explicitly appear in our renormalization conditions. Hence,

the bare masses break the scaling symmetry (4.14) and determine the values of the coefficients

bφ, bψ, and bF .

There are a couple of fringe situations that deserve some additional commentary:

• For q = 4 the conformal dimension of the auxiliary field F a1a2a3 is equal to its classical

scaling dimension ∆F = 1
2 from Table 1.12 By (4.15) and (4.19), we find that the

11 The self-energy of fermion ψ has no zero frequency limit because the frequency is half-integer quantized.

The effective mass of the auxiliary field F is defined such that the renormalized action contains the mass term

ˆ β

0

dτ
1

2
β2 (mF

eff)2 (FAq )2, (4.18)

where the explicit β is included to preserve the classical dimension of F .
12 For ∆F = 1

2
, one may consider a different ansatz

GFFc (τ) = b′F δ(τ). (4.21)

However, by the limit representation δ(τ) = lim
ε→0

1

2
ε

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
1−ε

, this is equivalent to the original ansatz

(4.11) with bF = 1
2
ε b′F and ∆F = 1

2
(1− ε).

– 17 –



βJ = 20

βJ = 50

0.5 1.0 1.5 2.0 2.5 3.0

2 π τ

β

0.01

0.02

0.03

0.04

0.05

0.06

β-1Gϕϕ(τ)

βJ = 20

βJ = 50

0.5 1.0 1.5 2.0 2.5 3.0

2 π τ

β

0.05

0.10

0.15

Gψ ψ
_
(τ)

βJ = 20

βJ = 200

0.5 1.0 1.5 2.0 2.5 3.0

2 π τ

β

0.01

0.02

0.03

0.04

0.05

βGFF (τ)

Figure 4: Comparison of numerical (red) and analytic (blue) solutions of the supersym-

metric Schwinger-Dyson equations for q = 6 and bφ J
2∆φ+1 = 1 (for different choices of the

dimensionless coupling βJ as indicated). The numerical calculation is still with a discretized

temporal grid with 200 points (see footnote 9 for comments on increasing the resolution). For

GFF we have specifically chosen a larger value of βJ to separate out the curves for ease of

visualization.

effective mass mF
eff diverges with the dimensionless coefficient bφJ

2∆φ+1 keeping fixed.

Hence, the auxiliary field decouples due to the infinitely large mass.

• There is potentially a different supersymmetric solution to (4.13) given by ∆φ = 0,

∆ψ = 1/2, and ∆F = 1. If this solution is indeed supersymmetric, the coefficients bφ,

bψ and bF must be related by bF = (2∆φ + 1)bψ = 2∆φ(2∆φ + 1)bφ. Equations (4.15)

then implies that

bqφJ
q =

1

4π2(q − 1)∆2
φ

+O(∆−1
φ ), (4.22)

which diverges at ∆φ = 0. We can expand the boson propagator as

Gφφc (τ) =
bφ

|τ |2∆φ
= bφ − b̃φ log |τ |+ · · · , (4.23)
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where b̃φ = 2bφ∆φ. The coefficient of the logarithmic term goes to zero as well as the

coefficients bψ and bF , i.e. b̃φ ∼ bψ ∼ bF ∼ ∆
1− 2

q

φ .

Comments on supersymmetry breaking: As noted earlier, the origins of supersymme-

try breaking in our model have to do with the need to regularize the boson self-energy piece.

While it may be intuitively hard to grasp why a quantum mechanical system has UV diver-

gences, the origins of the same, of course lie in the fact that the critical dynamics drives the

boson dimension too low. One can check that as long as ∆boson >
1
2 there is no divergence

in the boson self-energy. However, from Table 1 we see that this does not pertain in our

conformal limit for any choice of q.

One way to think about the supersymmetry breaking is to first ask what are the solutions

to the truncated IR Schwinger-Dyson equations. We have a-priori seen that solutions cannot

be found respecting the constraints arising from supersymmetry, which would demand ∆ψ =

∆φ + 1
2 and ∆F = ∆φ + 1 in §4.1. This observation then prompts us to explore regularization

schemes that will attain the fixed point solution, without preserving supersymmetry along

the RG flow. Put different, our choice of supersymmetry breaking regularization is predicated

upon the attainment of non-trivial fixed point in the IR. Had we refrained from doing so the

flow would have drifted away and we guess that the result would be similar to the observations

made in the context of bosonic models in [16, 47, 61]. A consequence of this explicit breaking

is that we do not expect a goldstino in the low energy spectrum; the analysis of operator

spectrum in §5 will confirm this intuition.

One might wonder whether the supersymmetry breaking phenomenon is peculiar to the

melonic dominance. In the context of quiver quantum mechanical theories, the authors of

[14] noticed a similar feature.13 These models are qualitatively similar to the SYK family

of theories (with q = 2, i.e., random Gaussian couplings for fermions) as already noted in

their discussion. The low energy Schwinger-Dyson equations in that case admit solutions

which preserve supersymmetry as well as those that break it. Arguments were given in

favour of the former circumstance being relevant in that context. At a cursory level this is

similar to our discussion where a-prioiri there does exist a solution with ∆φ = 0. As argued

above we believe this solution is unphysical since the physical Green’s function diverges. Our

numerical explorations also support the absence of a supersymmetric low energy fixed point;

the Schwinger-Dyson equations do not converge and at best could be suggesting the existence

of a trivial gapped phase.

5 Four-point functions and operator spectrum

We have seen that the strong coupling limit (β J � 1) has emergent conformal invariance

with non-trivial anomalous dimensions for the fields as given in Table 1. We now turn to

analyzing a part of the low-energy spectrum of the theory, organizing it in terms of conformal

13 We thank Juan Maldacena for recalling this reference to our attention.
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dimensions in the IR effective field theory. Our analysis will be based on looking at four-

point functions of the elementary fields in the model, following similar analyses in the SYK

model literature [3]. For the fermionic channels, we will derive some new results on fermionic

SL(2,R) wavefunctions that we will need for the corresponding four-point functions.

5.1 Resumming ladder supergraphs

Let us consider the four-point function of superfields ΦAq ≡ Φa1...aq−1 ,

1

N q−1

N∑
ai,bi=1

〈
T
(
ΦAq(X1) ΦAq(X2) ΦBq(X3) ΦBq(X4)

) 〉
= N q−1G(X1, X2)G(X3, X4) + F(X1, X2, X3, X4) +O(N−1).

(5.1)

The leading term is a product of free super-propagators and is given by a disconnected

diagram. The sub-leading correction term F can be computed by summing over ladder

diagrams

F(X1, X2, X3, X4) =

∞∑
n=0

Fn(X1, X2, X3, X4), (5.2)

where Fn is the contribution from the ladder diagram with n rungs.

GΦ Φ

GΦ Φ

+

GΦ

GΦ

G· · ·G

G Φ

G Φ

+

GΦ

GΦ

G· · ·G

G

G

G· · ·G

G Φ

G Φ

+ · · ·

Figure 5: The leading 1/N correction to the four-point function of superfield ΦAq .

Φ Φ

Φ Φ

Fn =

GΦ

GΦ

G· · ·G Fn−1

Φ

Φ

Figure 6: The recurrence relation of the ladder diagram Fn.

The ladder diagrams with n rungs are related to the ladder diagrams with n − 1 rungs

by a recurrence relation

Fn(X1, X2, X3, X4) =

ˆ
dXdX ′ K(X1, X2;X,X ′)Fn−1(X,X ′, X3, X4), (5.3)
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where the kernel K(X1, X2;X3, X4) is

K(X1, X2;X3, X4) = (q − 1) Jq G(X1, X3)G(X2, X4)G(X3, X4)q−2. (5.4)

Since supersymmetry is broken in the IR, it is more convenient to work with component fields,

and expand the four-point function and the kernel as

F(X1, X2, X3, X4) = Fφφφφ(τ1, τ2, τ3, τ4) + θ1θ̄2F ψ̄ψφφ(τ1, τ2, τ3, τ4) + · · · ,

K(X1, X2, X3, X4) = Kφφ,φφ(τ1, τ2, τ3, τ4) + θ1θ̄2K
ψ̄ψ,φφ(τ1, τ2, τ3, τ4) + · · · .

(5.5)

The recurrence relation (5.3) can be written for the components in a compact notation

using a variable σ to designate the fields, i.e., σ ∈ {φ = φ̄, ψ, ψ̄, F = F̄}. We have:

Fσ1σ2σ3σ4
n (τ1, τ2, τ3, τ4) =

∑
σ,σ′

ˆ
dτdτ ′Kσ1σ2,σ̄σ̄′(τ1, τ2; τ, τ ′) Fσσ

′σ3σ4
n−1 (τ, τ ′, τ3, τ4) . (5.6)

Let us denote (Fσ3σ4)σ1σ2 = Fσ1σ2σ3σ4 as a vector and (K)σ1σ2,σ3σ4 = Kσ1σ2,σ3σ4 as a matrix.

The recurrence relation (5.6) can be written in matrix notation as

Fσ3σ4
n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′ K(τ1, τ2; τ, τ ′) Fσ3σ4

n−1 (τ, τ ′, τ3, τ4). (5.7)

The sum of all ladder diagrams is a geometric series, which can be resummed and formally

written as

Fσ3σ4 =
∞∑
n=0

KnFσ3σ4
0 = (1−K)−1Fσ3σ4

0 . (5.8)

Let us consider the conformal limit, and add a subscript c to the four-point functions and

kernels. Denote the eigenvectors of the kernel Kc by Ψi
h, where the dimension h is related

to the eigenvalue of the Casimir operator that will be discussed later, and i denotes other

quantum numbers. The eigenequation is
ˆ
dτdτ ′Kc(τ1, τ2; τ, τ ′) Ψi

h(τ, τ ′, τ3, τ4) = ki(h)Ψi
h(τ1, τ2, τ3, τ4), (5.9)

where ki(h) are the eigenvalues. The equation (5.8) can be rewritten in the basis of the

eigenvectors Ψi
h as

Fσ3σ4
c =

∑
i,h

Ψi
h

1

1− ki(h)

〈Ψi
h,F

σ3σ4
c,0 〉

〈Ψi
h,Ψ

i
h〉

. (5.10)

In the following subsections, we discuss various ingredients that appear in the above

formula, and make this formal expression explicit. In §5.2, we discuss the eigenvectors of the

kernel Kc, which are organized by the conformal eigenfunctions of the IR conformal algebra.

In §5.3, we compute the eigenvalues ki(h) of the kernel Kc, and extract the spectrum of

operators that appear in the σ1×σ2 OPE. In §5.4, we compute the inner products between the

tree-level four-point functions Fσ1σ2σ3σ4
c,0 and the conformal eigenfunctions, and give explicit

expressions for the four-point functions.
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5.2 Conformal eigenfunctions

As in the case of the SYK model studied in [1, 3, 21], the kernel Kc(τ1, τ2; τ3, τ4) commutes

with an IR SL(2,R) algebra, whose generators D̂, P̂ and K̂ are

D̂ = −τ∂τ −∆, P̂ = ∂τ , K̂ = τ2∂τ + 2τ∆. (5.11)

This implies that the kernel also commutes with the Casimir operator built from the sum of

the SL(2,R) generators acting on τ1 and τ2

C1+2 = (D̂1 + D̂2)2 − 1

2
{K̂1 + K̂2, P̂1 + P̂2}. (5.12)

The SL(2,R) invariance of the kernel implies that the four-point function only depends

on the conformal invariant cross-ratio χ = τ12τ34
τ13τ24

and the ordering of the points (τ1, τ2, τ3, τ4).

In particular, after partially fixing to the ordering τ1 < τ3 < τ4 and τ2 < τ4, the four-point

function takes the form as a function of χ times a suitable conformal factor.14 We will make

a convenient (but somewhat non-traditional) choice for the prefactor and define:

Fσ1σ2σ3σ4
c (τ1, τ2, τ3, τ4) =

√
bσ1bσ2bσ3bσ4sgn(τ12)|σ1||σ2|sgn(τ34)|σ3||σ4|

× Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Fσ1σ2σ3σ4
c (χ) ,

Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) ≡ 1

|τ12|∆1+∆2 |τ34|∆3+∆4

∣∣∣∣τ23

τ14

∣∣∣∣ 1
2

(∆12−∆34) ∣∣∣∣τ24

τ13

∣∣∣∣ 1
2

(∆12+∆34)

.

(5.13)

where ∆ij = ∆i −∆j and |σ| is an even (odd) integer if σ is a boson (fermion). The Casimir

operator acting on this parametrization of the four-point function reduces to a simple second

order differential operator in terms of the cross-ratio:

C1+2Fσ1σ2σ3σ4
c (τ1, τ2, τ3, τ4) =

√
bσ1bσ2bσ3bσ4sgn(τ12)|σ1||σ2|sgn(τ34)|σ3||σ4|

× Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) CFσ1σ2σ3σ4
c (χ),

C ≡ χ2(1− χ)∂2
χ − χ2∂χ +

4∆12∆34χ− (∆12 + ∆34)2χ2

4(1− χ)
.

(5.14)

We will continue to refer the differential operator C as the Casimir operator.

It is convenient to expand the four-point function in the basis of the eigenfunctions of

the Casimir operator C. The eigenfunctions of the Casimir operator are solutions to the

hypergeometric equation

CΨh(χ) = h(h− 1)Ψh(χ). (5.15)

To pick out the wavefunctions of interest we need to ensure that the operator C is Her-

mitian. This however depends on the choice of norm imposed on the wavefunctions. We will

14 For the other orderings, the four-point function takes the same form as (5.13) but the function

Fσ1σ2σ3σ4c (χ) may be different.
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discuss Hermiticity with respect to four different norms, indexed by a pair m,n = 0, 1. The

norms are chosen to be:

〈f, g〉m,n =
1

2

ˆ ∞
−∞

dχ

χ2
sgn(χm(χ− 1)n) f∗(χ)g(χ) . (5.16)

Most of the discussion in the literature concerns itself with the 〈·, ·〉0,0 norm, which is the

natural inner product we can impose on bosonic wavefunctions. Two of the other norms

〈·, ·〉1,1 and 〈·, ·〉1,0 become relevant when we have fermionic intermediate states in the 4-point

function. For each of the norms (5.16) and for a fixed eigenvalue of the Casimir operator, there

are two linearly independent solutions to the Casimir equation (5.15). They are summarized

in Appendix B. The dimension h can be continuous h ∈ 1
2 + iR+, or discrete h ∈ Z+ and

h ∈ Z+ + 1
2 . For continuum states, the eigenfunctions have integral representations (B.24),

(B.33), (B.42), and (B.51).

Let us introduce the conformal three-point functions:

〈σ1(τ1)σ2(τ2)Oh(τ0)〉m,n,p =
sgn(τ10)m sgn(τ20)n sgn(τ12)p

|τ10|∆1+h−∆2 |τ20|∆2+h−∆1 |τ12|∆1+∆2−h , (5.17)

in terms of which the integrals (B.24), (B.33), (B.42), and (B.51) can be rewritten in the
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shadow representation (after reinstating the conformal factors), using

Ψs
h(τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψs

h(χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,0,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,0,0 ,

Ψa
h(τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψa

h(χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,1,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,1,1 ,

Ψ12
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ12

h (χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,1,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,0,0 ,

Ψ34
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ34

h (χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,0,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,1,1 ,

Ψ14
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ14

h (χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,0,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,1,1 ,

Ψ23
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ23

h (χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,1,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,0,0 ,

Ψ13
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ13

h (χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,0,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,0,0 ,

Ψ24
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ24

h (χ)

=

ˆ
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,1,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,1,1 .

(5.18)

The eigenvectors of the kernel Kc(τ1, τ2; τ, τ ′) are vectors, whose components are the

conformal eigenfunctions Ψs
h(τ, τ ′, τ3, τ4), Ψa

h(τ, τ ′, τ3, τ4), · · · . We would like to compute the

action of the kernel Kc on the conformal eigenfunctions. For the continuum states, it suffices

to consider the kernel acting on the integrand of the conformal three-point functions that

appear in the shadow representation (5.18). The eigenvalues of the discrete states can be

obtained by analytic continuing the eigenvalues of the continuum states.

5.3 Spectrum of operators

As discussed in [1, 3, 21], the solutions to the equation ki(h) = 1 correspond to the spectrum

of operators that appear in the σ1 × σ2 OPE. Depending on the statistics and the U(1)R
charges of the component fields σ1 and σ2, the operators that appear in the OPE can be

charged bosons, neutral bosons, or charged fermions. In Table 2, we summarize the spectrum

of the first few low dimension operators for q = 4, 6, and 100.
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Let us make a few observations about the spectrum:15

• Among the neutral bosons in the spectrum, we universally find an operator with h = 2,

corresponding to the emergent conformal (time-reparametrization) symmetry as in (2.8)

in the IR. Away from the strict IR limit where the kinetic term is relevant, as in the

SYK model, it will acquire Schwarzian dynamics. In the dual theory this is the part

captured by the JT theory in the emergent near- AdS2 region.

• The are additionally two operators with h = 1 in the neutral boson channel. One of

these corresponds to the conserved R-current which operates as a local phase rotation

in the IR, cf., (4.16). This symmetry appears in the presence of additional charges as

noted in earlier discussions [9, 10, 15]. The second h = 1 operator corresponds to the

local scaling symmetry (4.17) which is additionally present in our model. We comment

on these modes below.

• A slightly more peculiar operator is the h = 1 charged boson mode which arises in the

ψ×ψ OPE. A similar operator was found in [49]; its existence appears to be accidental

and we do not anticipate it being part of a new IR symmetry and will argue below that

it decouples from the spectrum.

• We also expect the theory to have O(N2) light-modes corresponding to the time-

dependent O(N)q−1 rotations ΦAq →
∑

Bq
[M(t)]

Aq
Bq

ΦBq ; however, these are not singlets

so we do not expect to see them in the OPE for the channels that we consider.

Let us discuss the h = 1 modes in the theory, which we have three of, with two being

neutral and one carrying a U(1)R charge. To understand their role one can work out the

OPE coefficient for this mode along the lines of [3].

• For the charged boson sector we find that the OPE coefficient is proportional to cot(π2h).

As this vanishes for h = 1, we infer that the mode in question decouples from the

spectrum – similar observations were made in [9].

• One of the h = 1 neutral bosons behaves similarly. Naively one would like therefore

to argue that it too decouples from the spectrum. However, in this case as alluded to

above we have a local scaling symmetry (4.17) which was related to the fact that we had

a one-parameter family of conformal solutions, cf., (4.15). We believe that while this

mode decouples in the strict IR it returns to the spectrum once we step back and include

the kinetic term. This would be consistent with the interpretation offered in [15] for

the scaling symmetry to correspond to a redefinition of the supersymmetry generators

along with an effective action of the form J
´

(λ(τ)− 1)2dτ .

15 We are grateful to Igor Klebanov for raising important questions regarding the spectrum, especially the

stability of the conformal limit and the decoupling of certain modes (with h = 1) from the spectrum.
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• The third neutral h = 1 mode corresponds to the local phase rotations (4.16). This

symmetry is local only in the strict IR limit for the truncated low-energy Schwinger-

Dyson equations (2.7). Away from the conformal limit, it gets broken (as for the h = 2

reparametrization mode) to a global transformation, leaving behind the correspond-

ing pseudo-Nambu-Goldstone modes in the spectrum. The affine U(1) R-symmetry is

broken down to a global phase rotation with soft dynamics.

Before moving on to the details on obtaining the spectrum, let us also remark here that

we have checked that there are no bosonic composite operators with complex dimensions on

a wide domain of the complex h plane. In particular, the presence of such modes along the

principal continuous series line of SL(2,R), viz., h = 1
2 + is would correspond to states that

violate the unitarity bound in the IR (or equivalently the Breitenlohner-Freedman bound [65]

in the AdS2 geometry), and affects the stability of the fixed point. Such complex modes were

seen in earlier analysis of bosonic tensor models [48] in various dimensions as well as in the

bosonic SYK model in d = 2 [16]. It is reassuring to note that the model is indeed free of

such pathologies.

Furthermore, the bosonic states can be matched directly with composite operators:

• Composite charged bosons are identified with primary operators of the form ∂mψ∂nψ

with m+n > 0 odd. The spectrum of states roughly has dimensions 2k+1+2 ∆ψ+ε(q)

with k > 0 where ε(q)→ 0 as q →∞.

• Composite neutral bosons in the singlet channel are primaries of the form ∂mψ̄∂nψ with

m+ n > 0 even (as the singlet channel is symmetric under τ1 ↔ τ2). Their dimensions

are 2k + 2 ∆ψ + ε(q) with k > 0 and ε(q)→ 0 as q →∞.

• Composite neutral bosons in the triplet channels come in three sets: (a) ∂mψ̄∂nψ, (b)

∂mφ∂nφ, and (c) ∂mF∂nF . For the first case, the derivatives are antisymmetrically

distributed between the two fermions, while in the latter two cases we symmetrize the

derivatives. The conformal dimensions approach 2k+1+2∆ψ, 2k+2 ∆φ and 2k+2 ∆F ,

respectively, with k > 0, in the large q limit. For q = 4 the last set involving the auxiliary

field is not present due to F decoupling.

It is easy to check the presence of states corresponding to every one of these primaries in the

spectrum (we only list the leading few in Table 2).

The story for fermionic excitations in contrast is a bit more confusing. We have also

able to identify many of the fermionic excitations with primaries of the form ∂mφ∂nψ and

∂mF ∂nψ, respectively. For instance the solution with h = 0.57 is a ψF composite, while the

solution with h = 1.19 well approximates ψ∂φ (it is the one state that converges really well

at large q).

There are however other solutions which seem to fall outside this set. For instance,

we find some states with complex dimensions but these are off the 1
2 + is line. The precise

locations for different choices of q do not seem to have any particular significance (for instance
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the lowest such solutions are at h = 1.37 ± 0.37i for q = 6 and h = 1.31 ± 0.55 i for q = 100

(there is no complex solution for q = 4). We believe these to be benign and not part of the

spectrum. While we have not carefully analyzed the decomposition of the 4-point function in

the shadow representation to see if these states would contribute, we believe that the contour

deformation arguments used for example in [3] can be used to show that such modes do not

correspond to physical states of the low energy theory. Let us also note that the decoupling

of the auxiliary field leaves a strong impact on the fermion spectrum – for q = 4 we have only

two degenerate operators with real dimension. Overall the fermion spectrum deserves to be

understood better.

5.3.1 Charged bosons

We first consider the four-point function Fψψψ̄ψ̄c (τ1, τ2, τ3, τ4). The ψ×ψ OPE contains bosonic

operators of U(1)R charge 2 and decouples from other sectors. The recurrence relation (5.6)

specialized to this case is

Fψψψ̄ψ̄c,n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′Kψψ,ψ̄ψ̄

c (τ1, τ2; τ, τ ′) Fψψψ̄ψ̄c,n−1 (τ, τ ′, τ3, τ4), (5.19)

where the kernel Kψψ,ψ̄ψ̄
c is

Kψψ,ψ̄ψ̄
c (τ1, τ2; τ3, τ4) = (q − 1) Jq Gψψ̄c (τ13)Gψψ̄c (τ24)Gφφc (τ34)q−2. (5.20)

Due to the fermion statistics, the four-point function Fψψψ̄ψ̄c is odd under exchanging τ1

and τ2. We consider the eigenfunction of the kernel (5.20),

sgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h
. (5.21)

The eigenvalue is computed by

ˆ
dτ3dτ4K

ψψ,ψ̄ψ̄
c (τ1, τ2; τ3, τ4)

sgn(τ34)

|τ30|h|τ40|h|τ34|2∆ψ−h
= kCB(h)

sgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h
,

kCB(h) = (q − 1) b2ψb
q−2
φ Jq k2(2∆ψ, 2− h− 2∆ψ) k1(2∆ψ, 1− h),

(5.22)

where the functions k1(A,B, τ) and k2(A,B, τ) are given in (C.3).

The spectrum of the charged bosons, that appears in the ψ × ψ OPE, is then given by

the solutions h = hCB to the equation

kCB(h) = 1. (5.23)

The first few solutions to this equation are summarized in Table 2. As noted earlier, there is

a peculiar marginal mode in this sector whose origin is mysterious.
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5.3.2 Neutral bosons

We next turn to the four-point functions Fσ1σ2σ3σ4
c with (σ1, σ2) ∈ {(φ, φ), (F, F ), (ψ, ψ̄), (ψ̄, ψ)}.

The (σ3, σ4) should also belong to the set {(φ, φ), (F, F ), (ψ, ψ̄), (ψ̄, ψ)}, but the precise nature

of the (σ3, σ4) operators will not materially affect the discussion below. The σ1×σ2 OPE now

contains bosonic operators of zero U(1)R charge. The recurrence relation (5.6) specialized to

this case gives

Fφφσ3σ4
c,n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′

[
Kφφ,φφ
c (τ1, τ2; τ, τ ′)Fφφσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

+Kφφ,FF
c (τ1, τ2; τ, τ ′)FFFσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

+Kφφ,ψ̄ψ
c (τ1, τ2; τ, τ ′)

(
Fψψ̄σ3σ4
c,n−1 (τ, τ ′, τ3, τ4) + F ψ̄ψσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)
)]
,

Fψψ̄σ3σ4
c,n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′

[
Kψψ̄,φφ
c (τ1, τ2; τ, τ ′)Fφφσ3σ4

n−1 (τ, τ ′, τ3, τ4)

+Kψψ̄,ψ̄ψ
c (τ1, τ2; τ, τ ′)Fψψ̄σ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

]
,

F ψ̄ψσ3σ4
c,n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′

[
Kψψ̄,φφ
c (τ1, τ2; τ, τ ′)Fφφσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

+Kψ̄ψ,ψψ̄
c (τ1, τ2; τ, τ ′)F ψ̄ψσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

]
,

FFFσ3σ4
n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′KFF,φφ

c (τ1, τ2; τ, τ ′)Fφφσ3σ4
c,n−1 (τ, τ ′, τ3, τ4) . (5.24)

The primary kernels relevant to our computation and appearing in the above are

Kψψ̄,ψ̄ψ
c = −(q − 1)Jq Gψψ̄c (τ13)Gψψ̄c (τ24)Gφφ̄c (τ34)q−2,

Kφφ,ψ̄ψ
c = (q − 1)(q − 2)Jq Gφφc (τ13)Gφφc (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kψψ̄,φφ
c = −(q − 1)(q − 2)Jq Gψψ̄c (τ13)Gψψ̄c (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kφφ,FF
c = (q − 1)Jq Gφφc (τ13)Gφφc (τ24)Gφφc (τ34)q−2,

KFF,φφ
c = (q − 1)Jq GFFc (τ13)GFFc (τ24)Gφφc (τ34)q−2,

Kφφ,φφ
c = (q − 1)(q − 2)(q − 3)Jq Gφφc (τ13)Gφφc (τ24)Gψψ̄c (τ34)2Gφφc (τ34)q−4

+ (q − 1)(q − 2)Jq Gφφc (τ13)Gφφc (τ24)GFFc (τ34)Gφφc (τ34)q−3 .

(5.25)

The remaining kernels are determined by the relations

Kφφ,ψψ̄
c = Kφφ,ψ̄ψ

c , Kψ̄ψ,φφ
c = Kψψ̄,φφ

c , Kψ̄ψ,ψψ̄
c = Kψψ̄,ψ̄ψ

c . (5.26)

Using the relations (5.26), it is convenient to organize the four-point functions as a triplet

and a singlet  Fφφσ3σ4
c

Fψψ̄σ3σ4
c + F ψ̄ψσ3σ4

c

FFFσ3σ4
c

 , Fψψ̄σ3σ4
c −F ψ̄ψσ3σ4

c . (5.27)
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The kernels are organized as a 3×3 matrix Kφφ,φφ
c Kφφ,ψ̄ψ

c Kφφ,FF
c

2Kψψ̄,φφ
c Kψψ̄,ψ̄ψ

c 0

KFF,φφ
c 0 0

 , (5.28)

which acts on the triplet, and the kernel Kψψ̄,ψ̄ψ
c acts on the singlet.

Triplet four-point function Let us first focus on the 3 × 3 matrix (5.28). The first

and third components of the triplet are even under the exchange τ1 ↔ τ2, while the second

component is odd under this exchange. Hence, we consider the vector
bφ

|τ10|h|τ20|h|τ12|2∆φ−h

bψsgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h

bF
|τ10|h|τ20|h|τ12|2∆F−h

 . (5.29)

The 3× 3 kernel matrix (5.28) acts on the vector (5.29) as the matrix

ktNB(h) ≡

 kφφ,φφt (h) kφφ,ψ̄ψt (h) kφφ,FFt (h)

2kψψ̄,φφt (h) kψψ̄,ψ̄ψt (h) 0

kFF,φφt (h) 0 0

 , (5.30)

in which

kψψ̄,ψ̄ψt (h) = −(q − 1)b2ψb
q−2
φ Jq k2(2∆ψ, 2− h− 2∆ψ) k1(2∆ψ, 1− h),

kφφ,ψ̄ψt (h) = (q − 1)(q − 2)b2ψb
q−2
φ Jqk0(2∆φ, 2− h− 2∆φ) k0(2∆φ, 1− h),

kψψ̄,φφt (h) = −(q − 1)(q − 2)b2ψb
q−2
φ Jq k2(2∆ψ, 2− h− 2∆ψ) k1(2∆ψ, 1− h),

kφφ,FFt (h) = (q − 1)bF b
q−1
φ Jq k0(2∆φ, 2− h− 2∆φ) k0(2∆φ, 1− h),

kFF,φφt (h) = (q − 1)bF b
q−1
φ Jq k0(2∆F , 2− h− 2∆F ) k0(2∆F , 1− h),

kφφ,φφt (h) = (q − 1)(q − 2)
[
(q − 3)b2ψb

q−2
φ + bF b

q−1
φ

]
Jq k0(2∆φ, 2− h− 2∆φ) k0(2∆φ, 1− h).

(5.31)

We would like to solve for the dimensions h = htNB such that any of the eigenvalues of

ktNB(h) equals to unity. This is equivalent to the equation det(ktNB(h) − 1) = 0. The first

few solutions are listed in Table 2. Amongst them we note the presence of two light degrees

of freedom corresponding to the local U(1) symmetry and the emergent conformal symmetry

with h = 1 and h = 2, respectively.

Singlet four-point function Next, we consider the kernel Kψψ̄,ψ̄ψ
c that acts on the singlet

in (5.27). The singlet is symmetric under the exchange τ1 ↔ τ2. Hence, we consider the

symmetric eigenfunction
bψ

|τ10|h|τ20|h|τ12|2∆ψ−h
. (5.32)
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The eigenvalue is

ksNB(h) = −(q − 1)b2ψb
q−2
φ k1(2∆ψ, 2− h− 2∆ψ) k2(2∆ψ, 1− h). (5.33)

The first few solutions h = hsNB to the equation ksNB(h) = 1 are listed in Table 2. As noted

earlier we have a single light mode with h = 1 in this sector corresponding to a local scaling

symmetry.

5.3.3 Charged fermions

Finally, we consider the four-point functions Fσ1σ2σ3σ4
c with (σ1, σ2) = {(ψ, φ), (φ, ψ), (ψ, F ), (F,ψ)}.

The (σ3, σ4) should belong to the set {(ψ̄, φ), (φ, ψ̄), (ψ̄, F ), (F, ψ̄)}, but the precise operators

will be immaterial for what follows. The σ1 × σ2 OPE contains fermionic operators of U(1)R
charge 1. The recurrence relation (5.6) now gives

Fψφσ3σ4
c,n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′

[
Kψφ,φψ̄(τ1, τ2; τ, τ ′)Fψφσ3σ4

c,n−1 (τ ′, τ, τ3, τ4)

+Kψφ,ψ̄F (τ1, τ2; τ, τ ′)FψFσ3σ4
c,n−1 (τ, τ ′, τ3, τ4)

]
,

Fφψσ3σ4
n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′

[
Kφψ,ψ̄φ(τ1, τ2; τ, τ ′)Fψφσ3σ4

n−1 (τ, τ ′, τ3, τ4)

+Kφψ,F ψ̄(τ1, τ2; τ, τ ′)FFψσ3σ4
n−1 (τ, τ ′, τ3, τ4)

]
,

FψFσ3σ4
c,n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′KψF,ψ̄φ(τ1, τ2; τ, τ ′)Fψφσ3σ4

c,n−1 (τ, τ ′, τ3, τ4),

FFψσ3σ4
n (τ1, τ2, τ3, τ4) =

ˆ
dτdτ ′KFψ,φψ̄(τ1, τ2; τ, τ ′)Fφψσ3σ4

n−1 (τ, τ ′, τ3, τ4),

(5.34)

where the kernels are given explicitly as

Kψφ,φψ̄
c (τ1, τ2; τ3, τ4) = (q − 1)(q − 2)Jq Gψψ̄c (τ13)Gφφc (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kφψ,ψ̄φ
c (τ1, τ2; τ3, τ4) = −(q − 1)(q − 2)Jq Gφφc (τ13)Gψψ̄c (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kψφ,ψ̄F
c (τ1, τ2; τ3, τ4) = (q − 1)Jq Gψψ̄c (τ13)Gφφc (τ24)Gφφc (τ34)q−2,

KψF,ψ̄φ
c (τ1, τ2; τ3, τ4) = (q − 1)Jq Gψψ̄c (τ13)GFFc (τ24)Gφφc (τ34)q−2.

Kφψ,F ψ̄
c (τ1, τ2; τ3, τ4) = (q − 1)Jq Gφφc (τ13)Gψψ̄c (τ24)Gφφc (τ34)q−2,

KFψ,φψ̄
c (τ1, τ2; τ3, τ4) = (q − 1)Jq GFFc (τ13)Gψψ̄c (τ24)Gφφc (τ34)q−2.

(5.35)

The kernels form a 4× 4 matrix
0 Kψφ,φψ̄ Kψφ,ψ̄F 0

Kφψ,ψ̄φ 0 0 Kφψ,F ψ̄

KψF,ψ̄φ 0 0 0

0 KFψ,φψ̄ 0 0

 . (5.36)
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We consider the vectors

√
bψbφsgn(τ10)

|τ10|∆ψ+h−∆φ |τ20|∆φ+h−∆ψ |τ12|∆φ+∆ψ−h√
bψbφsgn(τ20)

|τ10|∆φ+h−∆ψ |τ20|∆ψ+h−∆φ |τ12|∆φ+∆ψ−h√
bψbF sgn(τ20)sgn(τ12)

|τ10|∆ψ+h−∆F |τ20|∆F+h−∆ψ |τ12|∆ψ+∆F−h√
bψbF sgn(τ10)sgn(τ12)

|τ10|∆F+h−∆ψ |τ20|∆ψ+h−∆F |τ12|∆ψ+∆F−h


,



√
bψbφsgn(τ20)sgn(τ12)

|τ10|∆ψ+h−∆φ |τ20|∆φ+h−∆ψ |τ12|∆φ+∆ψ−h√
bψbφsgn(τ10)sgn(τ12)

|τ10|∆φ+h−∆ψ |τ20|∆ψ+h−∆φ |τ12|∆φ+∆ψ−h√
bψbF sgn(τ10)

|τ10|∆ψ+h−∆F |τ20|∆F+h−∆ψ |τ12|∆ψ+∆F−h√
bψbF sgn(τ20)

|τ10|∆F+h−∆ψ |τ20|∆ψ+h−∆F |τ12|∆ψ+∆F−h


.

(5.37)

The kernel matrix (5.36) acts on the vector as the matrices

k1
F(h) ≡


0 kψφ,φψ̄1 (h) kψφ,ψ̄F1 (h) 0

kφψ,ψ̄φ1 (h) 0 0 kφψ,F ψ̄1 (h)

kψF,ψ̄φ1 (h) 0 0 0

0 kFψ,φψ̄1 (h) 0 0

 ,

k2
F(h) ≡


0 kψφ,φψ̄2 (h) kψφ,ψ̄F2 (h) 0

kφψ,ψ̄φ2 (h) 0 0 kφψ,F ψ̄2 (h)

kψF,ψ̄φ2 (h) 0 0 0

0 kFψ,φψ̄2 (h) 0 0

 ,

(5.38)

where the components are

kψφ,φψ̄1 (h) = −(q − 1)(q − 2)b2ψb
q−2
φ Jq k2(2∆ψ, 2− h−∆φ −∆ψ) k0(2∆φ, 1− h−∆φ + ∆ψ),

kφψ,ψ̄φ1 (h) = −(q − 1)(q − 2)b2ψb
q−2
φ Jq k1(2− h−∆φ −∆ψ, 2∆φ) k2(2∆ψ, 1− h+ ∆φ −∆ψ),

kψφ,ψ̄F1 (h) = −(q − 1)
√
b2ψbF b

2q−3
φ Jq k2(2∆ψ, 2− h−∆φ −∆ψ) k0(2∆φ, 1− h−∆φ + ∆ψ),

kψF,ψ̄φ1 (h) = (q − 1)
√
b2ψbF b

2q−3
φ Jq k1(2∆ψ, 2− h−∆F −∆ψ) k1(1− h+ ∆φ −∆ψ, 2∆F ),

kφψ,F ψ̄1 (h) = (q − 1)
√
b2ψbF b

2q−3
φ Jq k1(2− h−∆φ −∆ψ, 2∆φ) k2(2∆ψ, 1− h+ ∆φ −∆ψ),

kFψ,φψ̄1 (h) = −(q − 1)
√
b2ψbF b

2q−3
φ Jq k0(2− h−∆F −∆ψ, 2∆F ) k1(2∆ψ, 1− h−∆φ + ∆ψ),

kψφ,φψ̄2 (h) = (q − 1)(q − 2)b2ψb
q−2
φ Jq k1(2∆ψ, 2− h−∆φ −∆ψ) k1(1− h−∆φ + ∆ψ, 2∆φ),

kφψ,ψ̄φ2 (h) = (q − 1)(q − 2)b2ψb
q−2
φ Jq k0(2− h−∆φ −∆ψ, 2∆φ) k1(2∆ψ, 1− h+ ∆φ −∆ψ),

kψφ,ψ̄F2 (h) = (q − 1)
√
b2ψbF b

2q−3
φ Jq k1(2∆ψ, 2− h−∆φ −∆ψ) k1(1− h−∆φ + ∆ψ, 2∆φ),

kψF,ψ̄φ2 (h) = −(q − 1)
√
b2ψbF b

2q−3
φ Jq k2(2∆ψ, 2− h−∆F −∆ψ) k0(2∆F , 1− h+ ∆φ −∆ψ),

kφψ,F ψ̄2 (h) = −(q − 1)
√
b2ψbF b

2q−3
φ Jq k0(2− h−∆φ −∆ψ, 2∆φ) k1(2∆ψ, 1− h+ ∆φ −∆ψ),

kFψ,φψ̄2 (h) = (q − 1)
√
b2ψbF b

2q−3
φ Jq k1(2− h−∆F −∆ψ, 2∆F ) k2(2∆ψ, 1− h−∆φ + ∆ψ),

(5.39)
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We denote the solutions to the equation det(k1
F(h)−1) = 0 and det(k2

F(h)−1) = 0 by h = h1
F

and h = h2
F, respectively. The first few solutions are listed in Table 2.

5.4 Four-point functions

In this section, we collect all the ingredients and write down explicit formulae of the four-point

functions. First, the nontrivial tree-level four-point functions are

Fφφφφc,0 (χ) = |χ|2∆φ +

∣∣∣∣ χ

χ− 1

∣∣∣∣2∆φ

, FFFFFc,0 (χ) = |χ|2∆F +

∣∣∣∣ χ

χ− 1

∣∣∣∣2∆F

,

Fψψ̄ψψ̄c,0 (χ) = −sgn

(
χ

χ− 1

) ∣∣∣∣ χ

χ− 1

∣∣∣∣2∆ψ

, F ψ̄ψψψ̄c,0 (χ) = −sgn(χ)|χ|2∆ψ ,

Fψψψ̄ψ̄c,0 (χ) = −sgn(χ)|χ|2∆ψ − sgn

(
χ

χ− 1

) ∣∣∣∣ χ

χ− 1

∣∣∣∣2∆ψ

,

Fφψφψ̄c,0 (χ) = −|χ|∆φ+∆ψ , Fψφφψ̄c,0 (χ) = −
∣∣∣∣ χ

χ− 1

∣∣∣∣∆φ+∆ψ

,

FψFψ̄Fc,0 (χ) = −|χ|∆F+∆ψ , FFψψ̄Fc,0 (χ) = −sgn(1− χ)

∣∣∣∣ χ

χ− 1

∣∣∣∣∆F+∆ψ

.

(5.40)

The inner products of them and the conformal eigenfunctions are

〈Ψs
h,F

ψψψ̄ψ̄
c,0 〉0,0 = −1

2
k2(2∆ψ, 2− h− 2∆ψ)k1(2∆ψ, 1− h),

〈Ψs
h,F

φφφφ
c,0 〉0,0 =

1

2
k0(2∆φ, 2− h− 2∆φ)k0(2∆φ, 1− h),

〈Ψs
h,FFFFFc,0 〉0,0 = 〈Ψs

h,F
φφφφ
c,0 〉0,0

∣∣
∆φ→∆F

,

〈Ψs
h,F

ψψ̄ψψ̄
c,0 + F ψ̄ψψψ̄c,0 〉0,0 = 〈Ψs

h,F
ψψψ̄ψ̄
c,0 〉0,0,

〈Ψa
h,F

ψψ̄ψψ̄
c,0 −F ψ̄ψψψ̄c,0 〉0,0 =

1

2
k1(2∆ψ, 2− h− 2∆ψ)k2(2∆ψ, 1− h),

〈Ψ23
h ,F

φψφψ̄
c,0 〉1,0 = −1

2
k1(2− h−∆φ −∆ψ, 2∆φ) k2(2∆ψ, 1− h+ ∆φ −∆ψ),

〈Ψ13
h ,F

ψφφψ̄
c,0 〉1,1 = 〈Ψ23

h ,F
φψφψ̄
c,0 〉1,0,

〈Ψ23
h ,F

ψFψ̄F
0 〉1,0 = −1

2
k1(2− h−∆ψ −∆F , 2∆ψ)k2(2∆F , 1− h+ ∆ψ −∆F ),

〈Ψ13
h ,F

Fψψ̄F
0 〉1,1 =

1

2
k2(2− h−∆F −∆ψ, 2∆F )k0(1−∆F −∆ψ + h, 2∆ψ).

(5.41)
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Let us define the linear functionals

Is : f 7→
ˆ ∞

0
ds

4h− 2

π tanπh
f(h)

∣∣∣
h= 1

2
+is

+
∑
h∈2Z+

4h− 2

π2
f(h),

Ia : f 7→
ˆ ∞

0
ds

4h− 2

π tanπh
f(h)

∣∣∣
h= 1

2
+is

+
∑

h∈2Z+−1

4h− 2

π2
f(h),

IF : f 7→
ˆ ∞
−∞

ds
2− 4h

π cotπh
f(h)

∣∣∣
h= 1

2
+is

+
∑

h∈Z++ 1
2

4h− 2

π2
f(h).

(5.42)

The four-point functions are written explicitly as

Fψψψ̄ψ̄c (χ) = Is
〈Ψs,Fψψψ̄ψ̄c,0 〉0,0

1− kCB
Ψs(χ), Fφφσ3σ4

c (χ)

Fψψ̄σ3σ4
c (χ) + F ψ̄ψσ3σ4

c (χ)

FFFσ3σ4
c (χ)

 = Is
[
1− ktNB

]−1

 〈Ψs,Fφφσ3σ4
c,0 〉0,0Ψs(χ)

〈Ψs,Fψψ̄σ3σ4
c,0 + F ψ̄ψσ3σ4

c,0 〉0,0Ψs(χ)

〈Ψs,FFFσ3σ4
c,0 〉0,0Ψs(χ)

 ,

Fψψ̄ψψ̄c (χ)−F ψ̄ψψψ̄c (χ) = Ia
〈Ψa,Fψψ̄ψψ̄c,0 −F ψ̄ψψψ̄c,0 〉0,0

1− ksNB

Ψa(χ),
Fψφφψ̄c (χ)

Fφψφψ̄c (χ)

FψFφψ̄c (χ)

FFψφψ̄c (χ)

 = IF

[
1− k1

F

]−1


〈Ψ13,Fψφφψ̄c 〉1,1Ψ13(χ)

〈Ψ23,Fφψφψ̄c 〉1,0Ψ23(χ)

0

0

 ,


Fψφψ̄Fc (χ)

Fφψψ̄Fc (χ)

FψFψ̄Fc (χ)

FFψψ̄Fc (χ)

 = IF

[
1− k2

F

]−1


0

0

〈Ψ13,FFψψ̄Fc 〉1,1Ψ13(χ)

〈Ψ23,FψFψ̄Fc 〉1,0Ψ23(χ)

 ,

(5.43)

where the matrices ktNB(h), k1
F(h), k2

F(h) and the functions kCB(h), ksNB(h) are given explicitly

in the previous subsection.

On the second and third equations of (5.43), the h = 2 and h = 1 terms in the sum over

discrete states diverge, because det(ktNB(2)− 1) = 0 and ksNB(1) = 1. They correspond to the

soft modes associated to the emergent time-reparametrization symmetry and the local U(1)

R-symmetry. The proper treatment of the contribution from the soft modes to the four-point

functions requires moving slightly away from the conformal limit [3, 11].

6 Discussion

The primary thrust of our analysis was to examine the interplay between melonic dominance

in a class of supersymmetric quantum mechanical models with dynamical bosons and su-

persymmetry. Somewhat curiously we find that these theories do not exhibit any particular
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simplification with the inclusion of supersymmetry and in fact non-trivial low energy vacua

are non-supersymmetric. One might somewhat facilely characterize the situation as melonic

supertensors not wanting to be be supermelonic. Modulo this peculiarity, we find that they

behave for all intents and purposes like the melonic tensor models analyzed in the literature.

More specifically, there is a non-trivial conformal fixed point with a spectrum of singlet opera-

tors that can be computed. The low energy dynamics has an emergent time-reparametrization

symmetry and an affine U(1) R-symmetry, in addition to a peculiar local scaling symmetry.

The latter symmetry has also been noticed in other supersymmetric constructions [15].

The origins of supersymmetry breaking in our system are in the regularization scheme

we employ to attain the low energy conformal fixed point. In this sense the IR theory has

explicitly broken supersymmetry and therefore no associate goldstino modes in the spectrum.

Supersymmetry restoration occurs only in the deep UV where the kinetic term dominates over

the interaction term. We did note that there exists a formal solution to the Schwinger-Dyson

equations with spectrum appearing to preserve supersymmetry. Upon closer examination

we find that the Green’s function actually diverges in this limit, leading us to discard this

solution. The situation we encounter here is analogous to earlier observations made in quiver

quantum mechanical models [14] as noted at the end of §4, where also one finds supersym-

metric and non-supersymmetric low-energy vacua. In that context, however, the authors

argue the supersymmetry preserving vacuum to be the appropriate one, in contrast to our

discussion, where this seems to be untenable.

Along with establishing the existence of a non-supersymmetric fixed point, we have also

computed the spectrum of composite operators in the theory in the singlet sector. The

spectrum is free of any pathologies (all bosonic composite operators have real conformal

dimension) and shows the low energy fixed point to be stable. We do find some curious

features involving fermion composite operators – there are some solutions to the eigenvalue

equation with complex dimensions, but these we believe are not part of the spectrum as they

do not propagate in the intermediate channels. In the process of computing the spectrum, we

have also derived explicitly the expressions for the four-point functions of the fundamental

tensor fields of our model. This information suffices for instance to read off the chaos correlator

as in [3] and note that the leading contribution comes from the reparametrization mode as

expected. This observation further lends support to the argument of [50] who noted that

the out-of-time-order four-point function that captures the growth of chaos in the system

continues to be exponential and saturates the chaos bound, despite the presence of O(N2)

light non-singlet states.

One can also engineer disordered SYK models where we encounter similar behaviour. For

instance, we can take a N = 2 N -component real vector superfield Φi and construct a SYK

action with random couplings, viz.,

S =

ˆ
dτdθdθ̄

(
1

2
DθΦ

iDθ̄Φ
i + ji1...iqΦ

i1 · · ·Φiq

)
, (6.1)

where q must be an even integer for the action to be bosonic. The couplings ji1...iq are
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independent Gaussian random variables with mean zero and variance 〈j2
i1...iq
〉 = 1

qJ
qN1−q.

By a similar argument as in [37, 38], one can show that the leading large N limit of this theory

is dominated by the same set of melon diagrams as in the N = 2 tensor model introduced in

§3. This suffices to infer the existence of a supersymmetry breaking vacuum.

One can also attempt to relate the construction of the N = 2 SYK model studied in [15]

to our analysis. Consider a Fermi superfield Υ and its complex conjugate Υ which satisfy the

conditions

Dθ̄Υ = 0 , DθΥ = 0 . (6.2)

The Fermi superfield Υ can be expanded in terms of component fields as

Υ = ψ + θF + θθ̄∂τψ, (6.3)

where ψ is a complex fermion and F is a bosonic auxiliary field. We could take a model of

N Fermi superfields Υi having an action

S =

ˆ
dτdθ̄Υ

i
DθΥ

i + i
q−1

2

ˆ
dτ

[ˆ
dθ ji1...iqΥ

i1 · · ·Υiq +

ˆ
dθ̄ j∗i1...iqΥ

i1 · · ·Υiq
]
. (6.4)

The couplings ji1...iq are independent complex Gaussian random variables with mean zero and

variance 〈ji1...iqj∗i1...iq〉 = 1
qJN

1−q. In this situation q must be an odd integer for the action

to be bosonic, and it is therefore unclear how to promote this to a melonic tensor model.

We have primarily analyzed models with two supercharges, so one might wonder if the

situation can be improved, vis-a-vis supersymmetry preservation, by working with a different

number of supercharges. While our analysis has not been exhaustive, we find that extended

supersymmetry fails to help (a preliminary analysis is reported in Appendix A). The trouble

here is that a superfield interaction term which one naively one expects to be melonic, results

in derivative couplings. In addition we do not anticipate the bosonic sector of the theory to

behave any better than in the N = 2 case. More importantly, all extended multiplets will

generically contain dynamical bosons which, as we have seen, is problematic. This suggests

a general lesson that melonic dominance is intrinsically at tension with supersymmetry. One

might wonder if this is further suggestive of such theories not naturally being embeddable

into string theory.

Another natural question is whether the melonic tensors can be used to construct novel

fixed points in higher dimensions.16 Analysis of bosonic models in [48] reveals some intricate

interplay, and potentially suggests the existence of a fixed point in the neighbourhood of

d = 3 dimensions at large N . Analysis of the q = 4, N = 2 model uplifted to d = 3 similarly

reveals a weakly coupled large N fixed point in the ε-expansion. In attempting to gauge the

large global symmetry of these tensor models, one might wonder if in d = 3, a suitable Chern-

Simons tensor model would lead to a new class of conformal field theories. It is easy to see

that the Chern-Simons couplings will lead to interactions that are non-melonic (for instance,

the so-called pillow vertices arise after integrating out the gauge field or auxiliary fields).

16 We thank Igor Klebanov and Shiraz Minwalla for interesting discussions on this issue.
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Taming these appears to drive one towards the weak-coupling limit of the Chern-Simons

gauging, suggesting the absence of a non-trivial fixed point. We hope to report further on

these constructions in the near future.

Finally, let us note an interesting corollary of our analysis which could potentially have

bearing in more familiar contexts of the AdS/CFT correspondence.17 The fact that we have a

theory with two supercharges with a supersymmetry broken vacuum could have implications

for counting black hole entropy count for 1
16 BPS black holes in AdS5×S5. The current status

quo for these black holes is that they are supersymmetric solutions of Type IIB supergravity

with O(N2) entropy. But field theory analysis reveals both the index [66] and explicit enu-

meration of states (preserving 2 supercharges) at small N [67] to have far fewer states falling

short of the black hole entropy. The analogy to draw here would be the potential for super-

symmetry breaking effects due in the 1/N expansion (either perturbatively beyond leading

order or non-perturbatively) could make the supergravity solutions fail to be supersymmetric

in the full quantum theory. Whether this is really the case, remains to be explored, but the

class of models discussed here and in [14] leave open this intriguing possibility.
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A Tensor models with various supercharges

We undertake a quick examination of tensor models with different amounts of supersymmetry

to demonstrate that the model considered in the main text was the ideal starting point. In

particular, we will show that with N = 1 supersymmetry we do not get a reasonably quantum

theory with melonic couplings. Likewise increasing the supersymmetry to N = 4 fails to help

for we end up with non-linear interactions that prevent the solvability of the large N theory.

First, consider an N = 1 supersymmetric model with fermionic superfield (along the lines

of [15])

ΨAq(t, θ) = ψAq(t) + θ bAq(t) , (A.1)

that transforms in the (q − 1)-fundamental representation of O(N)q−1 with q ≥ 4 even. As

we want melonic dominance we should ensure that the index contraction follows the all-body

coupling described in the text. It is easy to see that the only way to do this is to have a

superpotential term W (ΨAq) = [Ψq]. Integrating this over superspace will give us the desired

action, which including the kinetic term takes the form:

S =

ˆ
dt dθ

(
− 1

2
ΨAqDΨAq + g

1

q
[Ψq]

)
=

ˆ
dt

(
i

2
ψAq∂tψ

Aq − 1

2
bAqbAq + g

1

q

∑
perms. σ

(−1)sgn(σ)[bψq−1]

) (A.2)

where D = ∂θ + iθ∂t is the superderivative and the sum runs over all permutations σ ∈ Sq
of b. However, since q is even, this gives a potential with an odd number of fermions, which

does not lead to a sensible theory.

Alternatively, we can consider higher supersymmetry, for instance, N = 4 supersymme-

try. Focusing for simplicity on q = 4 we have the bosonic superfield

Φabc = φabc + θα ψ̄abcα − θ̄α
(
ψabc

)α
+ θαθ̄β (Babc)βα

+
i

4
(θθ)θ̄α∂t

(
ψ̄abc

)α − i

4
(θ̄θ̄)θα∂tψ

abc
α +

1

16
(θθ)(θ̄θ̄)∂2

t φ
abc,

(A.3)

where φabc is a bosonic field, (Babc)βα = (σi)
β
αBabc

i are three auxiliary bosonic fields, and

(ψabc)α, (ψ̄abc)α are four fermionic fields. Naively, this model seems very interesting since

the expansion of the superfield with tetrahedral contractions, Φa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1

in terms of component fields includes interactions of the form ψa1b1c1ψ̄a1b2c2ψa2b1c2ψ̄a2b2c1 ,

which is analogous to the original interaction of the fermionic tensor model [38]. However,

interactions of the form: φa1b1c1φa1b2c2φa2b1c2∂2
t φ

a2b2c1 and (ψa1b1c1)α(∂tψ̄
a1b2c2
α )φa2b1c2φa2b2c1 ,

which are present lead to pathologies.

Attempts to write down models using non-linear σ-model intuition (cf., [68]) fails owing

to having to engineer melonic index contraction of the tensors. As such it is not clear how to

proceed to write down models with higher amounts of supersymmetry that lead to solvable

Schwinger-Dyson equations. Based on these arguments it should be transparent that this

problem is only exacerbated for higher supersymmetry.
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B SL(2,R) invariant wavefunctions

The solutions to the Casimir equation (5.15) take the general form

Ψh(χ) = (1− χ)
1
2

(∆12−∆34)

[
A(h)χh 2F1(h+ ∆12, h−∆34; 2h;χ)

+B(h)χ1−h
2F1(1− h+ ∆12 , 1− h−∆34; 2− 2h;χ)

]
,

(B.1)

where A(h) and B(h) are integration constants. Demanding that the Casimir operator C has

real eigenvalues, the dimension h can take the value in h ∈ R or h ∈ 1
2 + iR. Due to the

obvious symmetry h → 1 − h of the Casimir equation (5.15), we can restrict the possible

values of dimension h to be h ≥ 1
2 or h ∈ 1

2 + iR+.

The eigenfunction Ψh(χ) is not analytic at χ = 0, 1 and ∞, which correspond to the

points τ2 = τ1, τ3 and τ4, respectively.18 Consider the three regions χ < 0, 0 < χ < 1, and

1 < χ. The constants A(h) and B(h) in different regions are in general different. A set of

matching conditions, that relates the A(h) and B(h) in different regions, can be derived from

the Casimir equation at χ = 0, 1,∞ and the hermiticity condition of the Casimir operator.19

On functions f(χ) and g(χ), the hermiticity condition reads

0 = 〈Cf, g〉m,n − 〈f, Cg〉m,n =
1

2

ˆ ∞
−∞

dχ sgn(χm(1− χ)n) ∂χ [(1− χ)(f∗∂χg − g∂χf∗)] , (B.2)

where the integrand is a total derivative. The integral has “boundaries” at χ = 0±, 1±,±∞.

We need to ensure that the boundary terms all cancel. We will first analyze the three different

limits and then assemble the eigenfunctions used in the main text. For technical reasons, we

will assume |∆12|, |∆34| < 1
2 . We leave the analysis for general ∆12,∆34 to future work.

B.1 Matching conditions

We examine the Casimir equation in the neighborhood of the boundaries of the three domains

discussed above. As with any Schrödinger equation we will see that the matching conditions

will relate the expansion coefficients across domains, and potentially could give a quantization

condition for the eigenvalue h.

B.1.1 χ = 1

In the limit χ→ 1, the Casimir equation (5.15) reduces to

∂χ
[
(1− χ)∂χΨh(χ)

]
− δ2

4(1− χ)
Ψh(χ) = 0, (B.3)

where δ = ∆12 −∆34. The field redefinition,

Ψh(χ) = |1− χ|−
1
2
|δ|φh(χ) , (B.4)

18 Recall that we chose a time ordering τ1 < τ3 < τ4 and τ2 < τ4 which has three possible coincidence limits

as listed.
19 We thank Douglas Stanford for a useful discussion on the matching conditions.
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results in φh(χ) satisfying the following equation near χ = 0:

∂χ
[
(1− χ)∂χφh(χ) + |δ|φh(χ)

]
= 0. (B.5)

The solutions are simply:

δ 6= 0 : φh(χ) =

{
a1−(h)(1− χ)|δ| + b1−(h) for χ→ 1−,

a1+(h)(χ− 1)|δ| + b1+(h) for χ→ 1+.

δ = 0 : φh(χ) =

{
a1−(h) + b1−(h) log(1− χ) for χ→ 1−,

a1+(h) + b1+(h) log(χ− 1) for χ→ 1+.

(B.6)

To obtain the matching between the coefficients a1± and b1± we can first integrate the

Casimir equation (B.5) from χ = 1− ε to χ = 1 + ε for ε > 0. In the limit ε→ 0, we find

b(h) ≡ b1−(h) = b1+(h). (B.7)

The hermiticity condition (B.2) for f = Ψh and g = Ψ̃
h̃

implies

(1− χ)(Ψ∗h∂χΨ̃
h̃
− Ψ̃

h̃
∂χΨ∗h)

∣∣∣
χ→1+

= ±(1− χ)(Ψ∗h∂χΨ̃
h̃
− Ψ̃

h̃
∂χΨ∗h)

∣∣∣
χ→1−

, (B.8)

which further constrains

a1−(h) = ±a1+(h) + cb(h), (B.9)

where c is a real number, the + sign is for the norms 〈·, ·〉0,0 and 〈·, ·〉1,0, and the − sign is for

the norms 〈·, ·〉0,1 and 〈·, ·〉1,1 defined in (5.16). The zero-rung four-point function Fσ1σ2σ3σ4
0

has no discontinuity at τ2 = τ3, so we would use the conformal eigenfunctions with c = 0. We

will refer to the matching condition with the + sign as the “standard matching condition”,

and with the − sign as the “twisted matching condition”.

B.1.2 χ→ ±∞

The analysis in the limit χ → ±∞ is parallel to the above. First, note that the Casimir

equation reduces to

χ2∂2
χΨh(χ) + χ∂χΨh(χ)− δ̃2

4
Ψh(χ) = 0, (B.10)

where δ̃ = ∆12 + ∆34. The redefinition

Ψh(χ) = |χ|1+
|δ̃|
2 ϕh(χ) , (B.11)

results in a simple equation for the function φh(χ) as χ→ ±∞, viz.,

∂χ

[
χ2∂χϕh(χ) + (1 + |δ̃|)χϕh(χ)

]
= 0. (B.12)
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The solutions to (B.12) are easily determined to be

δ̃ 6= 0 : ϕh(χ) =

{
A+∞(h)χ−1−|δ̃| + B+∞(h)χ−1 for χ→ +∞,
A−∞(h)χ−1−|δ̃| + B−∞(h)χ−1 for χ→ −∞,

δ̃ = 0 : ϕh(χ) =

{
A+∞(h)χ−1 + B+∞(h)χ−1 log(χ) for χ→ +∞,
A−∞(h)χ−1 + B−∞(h)χ−1 log(−χ) for χ→ −∞.

(B.13)

We integrate the Casimir equation (B.12) along the region χ ∈ (−∞,−Λ] ∪ [Λ,+∞) for

Λ > 0. In the limit Λ→ +∞, we obtain the condition

B(h) ≡ B−∞(h) = B+∞(h). (B.14)

The hermiticity condition (B.2) implies

χ(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→+∞

= ±χ(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→−∞

, (B.15)

which further constrains

A−∞(h) = ±A+∞(h) + cB(h), (B.16)

where c is a real number, the + sign is for the norms 〈·, ·〉0,0 and 〈·, ·〉1,1, and the − sign is for

the norms 〈·, ·〉0,1 and 〈·, ·〉1,0 defined in (5.16). The zero-rung four-point function Fσ1σ2σ3σ4
0

has no discontinuity at τ2 = τ4, so we would use the conformal eigenfunctions with c = 0. We

will refer to the matching condition with the + sign as the “standard matching condition”,

and with the − sign as the “twisted matching condition”.

B.1.3 χ = 0

The Casimir equation at χ = 0 does not give any useful condition. In the χ → 0 limit, the

solution to the Casimir equation takes the form as

Ψh(χ) =

{
A0+(h)χh +B0+(h)χ1−h for χ→ 0+,

A0−(h)(−χ)h +B0−(h)(−χ)1−h for χ→ 0−.
(B.17)

The hermiticity condition (B.2) implies

(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→0+

= ±(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→0−

. (B.18)

Plugging (B.17) into the above equation gives

B0+(h) = 0 = B0−(h) when h >
1

2
, (B.19)

which will end up picking out h ∈ Z+ or h ∈ Z+ + 1
2 . The condition (B.18) does not give any

constraints when h ∈ 1
2 + iR+.
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B.2 Solutions

In this subsection, we use the matching conditions discussed in the previous subsection to

determine the bases of conformal eigenfunctions with respect to the four different norms

(5.16).

B.2.1 Bosonic wavefunctions

〈·, ·〉0,0 norm: Let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunctions

as in (B.1). To wit,

Ψs
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)χh2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− cosπ∆12 secπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)
]
,

Ψa
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1 + cosπ∆34 secπh)χh2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− cosπ∆12 secπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)
]
.

(B.20)

Applying the standard matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψs
h and Ψa

h in the region χ > 1,

Ψs
h(χ) = −

π(χ− 1)
1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

2Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

2Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψa
h(χ) =

π(χ− 1)
1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

2Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

−
π(χ− 1)

1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

2Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) .

(B.21)
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Applying the standard matching condition at χ → ±∞, we obtain the conformal eigenfunc-

tions Ψs
h and Ψa

h in the region χ < 0,

Ψs
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)(−χ)h2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− cosπ∆12 secπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)
]
,

Ψa
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− cosπ∆34 secπh)(−χ)h2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + cosπ∆12 secπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)
]
.

(B.22)

The conformal eigenfunctions Ψs
h and Ψa

h satisfy the equations

Ψs
1−h(χ) =

(cosπ∆12 + cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 + cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψs
h(χ),

Ψa
1−h(χ) =

(cosπ∆12 − cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 − cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψa
h(χ).

(B.23)

Hence, we can restrict the possible values of dimension h to be h ≥ 1
2 or h ∈ 1

2 + iR+. When

h > 1
2 , the matching condition at χ = 0 constrains the dimension to be h ∈ Z+. We will refer

to the conformal eigenfunctions with dimension h ∈ Z+ as discrete states, and the conformal

eigenfunctions with dimension h ∈ 1
2 + iR+ as continuum states.

For the continuum states, the conformal eigenfunctions Ψs
h and Ψa

h have integral repre-

sentations as

Ψs
h(χ) =

1

2

ˆ ∞
−∞

dy
|χ|h

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Ψa
h(χ) = −1

2

ˆ ∞
−∞

dy
|χ|hsgn(y)sgn(χ− y)sgn(1− y)sgn(χ)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.24)

The inner products of the continuum states are

〈Ψs
h,Ψ

s
h′〉0,0 = Ns(h)× 2πi δ(h− h′),

〈Ψa
h,Ψ

a
h′〉0,0 = Na(h)× 2πi δ(h− h′),

〈Ψs
h,Ψ

a
h′〉0,0 = 0,

(B.25)

where the functions Ns(h) and Na(h) are

Ns(h) =
tanπh

2(2h− 1)π
(cosπ∆12 − cosπh)(cosπ∆34 + cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34),

Na(h) =
tanπh

2(2h− 1)π
(cosπ∆12 + cosπh)(cosπ∆34 − cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.26)

– 43 –



For the discrete states, the conformal eigenfunctions Ψs
h and Ψa

h are proportional to each

other

tan

(
π∆34

2

)
Ψs
h(χ) = − tan

(
π∆12

2

)
Ψa
h(χ) for h ∈ 2Z+,

tan

(
π∆12

2

)
Ψs
h(χ) = − tan

(
π∆34

2

)
Ψa
h(χ) for h ∈ 2Z+ − 1.

(B.27)

When ∆12 = 0 and ∆34 6= 0, Ψa
h is non-normalizable when h ∈ 2Z+, and Ψs

h is non-

normalizable when h ∈ 2Z+ − 1. When ∆12 6= 0 and ∆34 = 0, Ψa
h is zero when h ∈ 2Z+, and

Ψs
h is zero when h ∈ 2Z+ − 1. The inner products of the discrete states are given by

〈Ψs
h,Ψ

s
h′〉0,0 =

dNs(h)

dh
δh,h′ . (B.28)

〈·, ·〉0,1 norm: Let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunctions

as in (B.1). To wit,

Ψ12
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− cosπ∆12 secπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

Ψ34
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1 + cosπ∆34 secπh)χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− cosπ∆12 secπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
.

(B.29)
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Applying the twisted matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψ12
h and Ψ34

h in the region χ > 1,20

Ψ12
h (χ) = −

π(χ− 1)
1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψ34
h (χ) = −

π(χ− 1)
1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

(B.30)

Applying the twisted matching condition at χ→ ±∞, we obtain the conformal eigenfunctions

Ψ12
h and Ψ34

h in the region χ < 0,21

Ψ12
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)(−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− cosπ∆12 secπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

Ψ34
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− cosπ∆34 secπh)(−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + cosπ∆12 secπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

(B.31)

The conformal eigenfunctions Ψ12
h and Ψ34

h satisfy the equations

Ψ12
1−h(χ) =

(cosπ∆12 − cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 + cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψ12
h (χ),

Ψ34
1−h(χ) =

(cosπ∆12 + cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 − cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψ34
h (χ).

(B.32)

Hence, we can restrict the possible values of dimension h to be h ≥ 1
2 or h ∈ 1

2 + iR+. When

h > 1
2 , the matching condition at χ = 0 constrains the dimension to be h ∈ Z+. We will refer

to the conformal eigenfunctions with dimension h ∈ Z+ as discrete states, and the conformal

eigenfunctions with dimension h ∈ 1
2 + iR+ as continuum states.

20 Without loss of generality, we have assumed ∆34 ≤ ∆12.
21 Without loss of generality, we have assumed ∆12 ≤ −∆34.
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For the continuum states, the conformal eigenfunctions Ψ12
h and Ψ34

h have integral repre-

sentations as

Φ12
h (χ) = −1

2

ˆ ∞
−∞

dy
|χ|hsgn(y)sgn(χ− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Φ34
h (χ) =

1

2

ˆ ∞
−∞

dy
|χ|hsgn(χ)sgn(1− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.33)

The inner products of the continuum states are

〈Ψ12
h ,Ψ

12
h′ 〉0,1 = N12(h)× 2πi δ(h− h′),

〈Ψ34
h ,Ψ

34
h′ 〉0,1 = N34(h)× 2πi δ(h− h′),

〈Ψ12
h ,Ψ

34
h′ 〉0,1 = 0,

(B.34)

where the functions Ns(h) and Na(h) are

N12(h) =− tanπh

2(2h− 1)π
(cosπ∆12 + cosπh)(cosπ∆34 + cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34),

N34(h) =− tanπh

2(2h− 1)π
(cosπ∆12 − cosπh)(cosπ∆34 − cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.35)

For the discrete states, the conformal eigenfunctions Ψ12
h and Ψ34

h are proportional to each

other

Ψ12
h (χ) = cot

(
π∆12

2

)
cot

(
π∆34

2

)
Ψ34
h (χ) for h ∈ 2Z+,

Ψ12
h (χ) = tan

(
π∆12

2

)
tan

(
π∆34

2

)
Ψ34
h (χ) for h ∈ 2Z+ − 1.

(B.36)

Their inner products are given by

〈Ψ12
h ,Ψ

12
h′ 〉0,1 =

dN12(h)

dh
δh,h′ . (B.37)

B.2.2 Fermionic wavefunctions

〈·, ·〉1,0 norm: Let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunctions
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as in (B.1). To wit,

Ψ14
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1− sinπ∆34 cscπh)χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + sinπ∆12 cscπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

Ψ23
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + sinπ∆12 cscπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

(B.38)

Applying the standard matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψ14
h and Ψ23

h in the region χ > 1,

Ψ14
h (χ) =

π(χ− 1)
1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

−
π(χ− 1)

1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψ23
h (χ) = −

π(χ− 1)
1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) .

(B.39)

Applying the twisted matching condition at χ→ ±∞, we obtain the conformal eigenfunctions

Ψ14
h and Ψ23

h in the region χ < 0,22

Ψ14
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + sinπ∆34 cscπh)(−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + sinπ∆12 cscπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

Ψ23
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)(−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− sinπ∆12 cscπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
.

(B.40)

22 Without loss of generality, we have assumed ∆12 ≤ −∆34.
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The conformal eigenfunctions Ψ14
h and Ψ23

h are related by the equation

Ψ14
1−h(χ) = −(sinπ∆34 + sinπh)Γ(1− h−∆34)Γ(1− h+ ∆34)

(sinπ∆12 + sinπh)Γ(1− h−∆12)Γ(1− h+ ∆12)
Ψ23
h (χ). (B.41)

Hence, we only need to consider the conformal eigenfunction Ψ23
h with the range of dimension

h ∈ R or h ∈ 1
2 + iR. When h ∈ R, the matching condition at χ = 0 constrains the dimension

to be h ∈ Z + 1
2 . We will refer to the conformal eigenfunctions with dimension h ∈ Z + 1

2

as discrete states, and the conformal eigenfunctions with dimension h ∈ 1
2 + iR as continuum

states.

For the continuum states, the conformal eigenfunctions Ψ14
h and Ψ23

h have integral repre-

sentations as

Ψ14
h (χ) = −1

2

ˆ ∞
−∞

dy
|χ|hsgn(χ)sgn(y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Ψ23
h (χ) =

1

2

ˆ ∞
−∞

dy
|χ|hsgn(χ− y)sgn(1− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.42)

The inner product of the continuum states is

〈Ψ23
h ,Ψ

23
h′ 〉0,1 = N23(h)× 2πi δ(h− h′), (B.43)

where the function N23(h) is

N23(h) =
cotπh

2(2h− 1)π
(sinπ∆12 + sinπh)(sinπ∆34 − sinπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.44)

For discrete states, the conformal eigenfunction Ψ23
h satisfies

Ψ23
h (χ) =

Γ(1− h+ ∆12)Γ(h+ ∆34)

Γ(h+ ∆12)Γ(1− h+ ∆34)
Ψ23

1−h(χ). (B.45)

Hence, we can further restrict the range of the dimension as h ∈ Z+ + 1
2 . The inner products

of the discrete states are

〈Ψ23
h ,Ψ

23
h′ 〉0,1 =

dN23(h)

dh
δh,h′ . (B.46)

〈·, ·〉1,1 norm: Let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunctions
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as in (B.1). To wit,

Ψ13
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + sinπ∆12 cscπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

Ψ24
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1− sinπ∆34 cscπh)χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + sinπ∆12 cscπh)χ1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
.

(B.47)

Applying the twisted matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψ13
h and Ψ24

h in the region χ > 1,23

Ψ13
h (χ) =

π(χ− 1)
1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψ24
h (χ) =

π(χ− 1)
1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) .

(B.48)

Applying the standard matching condition at χ → ±∞, we obtain the conformal eigenfunc-

tions Ψ13
h and Ψ24

h in the region χ < 0,

Ψ13
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)(−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− sinπ∆12 cscπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
,

Ψ24
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)
[Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + sinπ∆34 cscπh)(−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + sinπ∆12 cscπh)(−χ)1−h

2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)
]
.

(B.49)

23 Without loss of generality, we have assumed ∆34 ≤ ∆12.
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The conformal eigenfunctions Ψ13
h and Ψ24

h are related by the equation

Ψ24
1−h(χ) = −(sinπ∆12 + sinπh)Γ(h−∆12)Γ(h+ ∆12)

(sinπ∆34 − sinπh)Γ(h−∆34)Γ(h+ ∆34)
Ψ13
h (χ). (B.50)

Hence, we only need to consider the conformal eigenfunction Ψ13
h with the range of dimension

h ∈ R or h ∈ 1
2 + iR. When h ∈ R, the matching condition at χ = 0 constrains the dimension

to be h ∈ Z + 1
2 . We will refer to the conformal eigenfunctions with dimension h ∈ Z + 1

2

as discrete states, and the conformal eigenfunctions with dimension h ∈ 1
2 + iR as continuum

states.

For the continuum states, the conformal eigenfunctions Ψ13
h and Ψ24

h have integral repre-

sentations as

Ψ13
h (χ) = −1

2

ˆ ∞
−∞

dy
|χ|hsgn(y)sgn(1− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Ψ24
h (χ) =

1

2

ˆ ∞
−∞

dy
|χ|hsgn(χ)sgn(χ− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.51)

The inner product of the continuum states is

〈Ψ13
h ,Ψ

13
h′ 〉1,1 = N13(h)× 2πi δ(h− h′), (B.52)

where the function N13(h) is

N13(h) =− cotπh

2(2h− 1)π
(sinπ∆12 − sinπh)(sinπ∆34 − sinπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.53)

For discrete states, the conformal eigenfunction Ψ13
h satisfies

Ψ13
h (χ) =

Γ(1− h+ ∆12)Γ(h+ ∆34)

Γ(h+ ∆12)Γ(1− h+ ∆34)
Ψ13

1−h(χ). (B.54)

Hence, we can further restrict the range of the dimension as h ∈ Z+ + 1
2 . The inner products

of the discrete states are

〈Ψ13
h ,Ψ

13
h′ 〉1,1 =

dN13(h)

dh
δh,h′ . (B.55)

C Useful integrals

In this appendix, we list some useful integrals.

• First consider some basic Fourier transforms that enter into the zero-temperature com-

putations: ˆ ∞
−∞

dτ eiωτ
1

|τ |2∆
= 2 sin(π∆)Γ(1− 2∆)|ω|2∆−1. (C.1)

which converges for ∆ ∈ (0, 1
2).
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• We also need the integral for the zero-frequency mode at finite temperature

ˆ β
2

−β
2

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
2∆

dτ =
π2∆− 1

2β1−2∆Γ
(

1
2 −∆

)
Γ(1−∆)

. (C.2)

which converges in the domain ∆ < 1
2 .

• Let us also define a class of integrals that enter into our computation for the four-point

function:
ˆ ∞
−∞

dτ ′
1

|τ ′|A|τ ′ − τ |B
=
k0(A,B)

|τ |A+B−1
,

ˆ ∞
−∞

dτ ′
sign(τ ′)

|τ ′|A|τ ′ − τ |B
=
k1(A,B)sgn(τ)

|τ |A+B−1
,

ˆ ∞
−∞

dτ ′
sign(τ ′)sign(τ ′ − τ)

|τ ′|A|τ ′ − τ |B
=
k2(A,B)

|τ |A+B−1
,

ˆ ∞
−∞

dτ0
1

|τ10|A|τ20|B|τ30|2−A−B
=

k0(A,B)

|τ12|A+B−1|τ13|1−B|τ23|1−A
,

ˆ ∞
−∞

dτ0
sgn(τ10)sgn(τ20)

|τ10|A|τ20|B|τ30|2−A−B
=

k2(A,B)sgn(τ13)sgn(τ23)

|τ12|A+B−1|τ13|1−B|τ23|1−A
,

(C.3)

where the functions k0(A,B), k1(A,B), k2(A,B) are explicitly given by

k0(A,B) =
1

π
Γ(1−A)Γ(1−B)Γ(A+B − 1) [sin(πA) + sin(πB)− sin(π(A+B))] ,

k1(A,B) =
1

π
Γ(1−A)Γ(1−B)Γ(A+B − 1) [sin(πA)− sin(πB)− sin(π(A+B))] ,

k2(A,B) =
1

π
Γ(1−A)Γ(1−B)Γ(A+B − 1) [sin(πA) + sin(πB) + sin(π(A+B))] .

(C.4)

They satisfy the relations

k0(A,B) = k0(A, 2−A−B) = k0(B, 2−A−B),

k2(A,B) = k1(A, 2−A−B) = k1(B, 2−A−B).
(C.5)
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• Other useful integrals are

ˆ
dτdτ ′

sgn(τ1 − τ)sgn(τ2 − τ ′)sgn(τ − τ ′)
|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
sgn(τ12)

|τ12|A+B+C−2
k2(A,C)k1(B,A+ C − 1),

ˆ
dτdτ ′

1

|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C
=

1

|τ12|A+B+C−2
k0(A,C)k0(B,A+ C − 1),

ˆ
dτdτ ′

sgn(τ1 − τ)sgn(τ − τ ′)
|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

= − 1

|τ12|A+B+C−2
k2(A,C)k0(B,A+ C − 1),

ˆ
dτdτ ′

sgn(τ1 − τ)

|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C
= − 1

|τ12|A+B+C−2
k1(A,C)k1(A+ C − 1, B),

ˆ
dτdτ ′

sgn(τ1 − τ)sgn(τ2 − τ ′)
|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
1

|τ12|A+B+C−2
k1(A,C)k2(B,A+ C − 1),

ˆ
dτdτ ′

sgn(τ − τ ′)
|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
sgn(τ12)

|τ12|A+B+C−2
k1(C,A)k1(A+ C − 1, B).

(C.6)
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