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Research Article
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Basal breast cancer subtype is the worst prognosis subtypes among all breast cancer subtypes. Recently, a new tumor stemness
index-mRNAsi is found to be able to measure the degree of oncogenic differentiation of tissues. The mRNAsi involved in a
variety of cancer processes is derived from the innovative application of one-class logistic regression (OCLR) machine learning
algorithm to the whole genome expression of various stem cells and tumor cells. However, it is largely unknown about mRNAsi
in basal breast cancer. Here, we find that basal breast cancer carries the highest mRNAsi among all four subtypes of breast
cancer, especially 385 mRNAsi-related genes are positively related to the high mRNAsi value in basal breast cancer. This high
mRNAsi is also closely related to active cell cycle, DNA replication, and metabolic reprogramming in basal breast cancer.
Intriguingly, in the 385 genes, TRIM59, SEPT3, RAD51AP1, and EXO1 can act as independent protective prognostic factors, but
CTSF and ABHD4B can serve as independent bad prognostic factors in patients with basal breast cancer. Remarkably, we
establish a robust prognostic model containing the 6 mRNAsi-related genes that can effectively predict the survival rate of
patients with the basal breast cancer subtype. Finally, the drug sensitivity analysis reveals that some drug combinations may be
effectively against basal breast cancer via targeting the mRNAsi-related genes. Taken together, our study not only identifies
novel prognostic biomarkers for basal breast cancers but also provides the drug sensitivity data by establishing an mRNAsi-
related prognostic model.

1. Introduction

Breast cancer is the most serious primary malignant tumor
type in women, and its incidence rate is about 1.3 million,

and the death rate is about 0.5 million worldwide [1, 2].
Some certain factors, such as mental pressure, large amount
of estrogen secretion, and late childbearing, have led to the
onset of breast cancer in younger women with the sustained
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economic and social development [1, 2]. Currently, the main
treatment measures of breast cancer are surgery combined
with radiotherapy, chemotherapy, endocrine therapy, and
targeted drug therapy, but the curative effect and prognosis
for patients are not satisfactory [3, 4]. Breast cancer is a
highly heterogeneous tumor. Especially, according to immu-
nohistochemical markers, breast cancer patients can be
divided into four subtypes: luminal A, luminal B, HER2,
and basal. Among them, the basal subtype is commonly
referred to as triple-negative breast cancer (PR-, ER-,
HER2-), which usually has the worst prognosis [3, 5]. In fact,
the basal subtype also contains multiple different molecular
patterns. A study demonstrated that the basal subtype could
be composed of at least two clinically distinct groups, i.e.,
poor or better survival rate [6]. Another study revealed the
basal subtype could be divided into two types (basal-like 1,
basal-like 2). The basal 1 contains abundant cell cycle and
cell division components, but the basal 2 includes growth
factor signaling, glycolysis, and gluconeogenesis pathways
[7]. Alternatively, the basal subtype was further defined the
Basal-Like Immune-Suppressed (BLIS) and the Basal-Like
Immune-Activated (BLIA) subtype [8]. All these above stud-
ies indicated that the basal subtype is a very heterogeneous
breast tumor. Therefore, clearly distinguishing molecular
subtype is crucially essential to elucidate the biological and
clinical characteristics of the basal subtype as well as to
establish the personalized treatment measures for breast
cancer patients.

The tumor microenvironment is complex and diverse,
which is composed of relatively differentiated cancer cells,
tumor stem cells, endothelial cells, tumor-related fibroblasts,
invasive immune cells, and other cell types or components
[9]. Notably, not all cells play a role in the occurrence,
metastasis, and recurrence of tumor in the tumor microenvi-
ronment. Only a few tumor cells could be endowed with
stem cell characteristics and invasive ability, and these cells
not only have strong tumorigenicity but can escape the rec-
ognition of the body’s immune system, thereby inducing
innate resistance to external killing. These cells are called
cancer stem cells (CSCs) which can be induced by some cer-
tain environmental factors. The CSCs are an important part
of the tumor microenvironment, which not only have the
characteristics of continuous proliferation of cancer cells
but have the characteristics of self-renewal and multidirec-
tional differentiation [10, 11].

Many studies have revealed that breast cancer stem cells
can produce a large number of primary tumors, thereby
driving tumor occurrence and metastasis to lead to the poor
prognosis for breast cancer patients [12, 13]. Especially, a
recent study has determined that the undifferentiated cell
population with stem cell like characteristics is the main fac-
tor affecting the recurrence and progression of breast cancer
[14]. Remarkably, several breast cancer CSC markers, such
as CD44, CD24, ALDH1, CD133, CD29, CD61, DLL1,
PROCR, MUC1, THY1, and GATA3, have been identified
[12, 15]. In particular, CD44, CD24, and ALDH1 have been
considered to have potential prognostic effects in triple-
negative breast cancer (TNBC) subtypes [16, 17] and may
act as certain clinical metrics, such as recurrence, distant

metastasis, disease-free survival, and overall survival [18].
Fascinatingly, a new method of describing tumor stem cells
called as tumor stemness features has been established by
using artificial intelligence and deep learning algorithms
[19, 20]. Tumor stemness features can be used to quantify
the gradual loss of differentiated phenotypes and the acqui-
sition of progenitor cells and stem cell-like features during
the progression of cancer [19, 20]. For example, Malta
et al. have innovatively applied one class logistic regression
(OCLR) machine learning algorithm to various types of stem
cells and tumor cells to extract the expression profile charac-
teristics between them [19]. Especially, they have used the
algorithm and features to the genome-wide expression data
of tens of thousands of TCGA samples for quantifying the
degree of tissue carcinogenic differentiation [19]. This work
eventually led them to propose a new tumor stemness index
mRNAsi for describing the degree of similarity between
tumor cells and stem cells [19]. The mRNAsi value range
is from 0 to 1, and the mRNAsi score is significantly corre-
lated with tumor dedifferentiation level and biological pro-
cess of tumor stem cells [19]. Studies have suggested that
mRNAsi might serve as an effective index for the survival,
classification, and disease progression of tumor patients
[21–24]. Taken together, these studies provide a new insight
for further revealing the mechanism of breast cancer stem
cell of the basal-like subtype.

In this study, we firstly determined the mRNAsi of each
breast cancer subtype and found that the mRNAsi value of
the basal subtype was the highest among all subtypes. We
thereby determined to investigate the role of mRNAsi in
the patients with the basal subtype. We used the WGCNA
to screen key genes related to mRNAsi in the patients with
the basal subtype. We next explored the potential functions
of these mRNAsi-related genes in the basal breast cancer
patients. Our results demonstrated that cell cycle might have
an important role in the occurrence and development of
breast cancer patients of the basal subtype. Especially, we
developed a prognostic model based on mRNAsi for breast
cancer patients of the basal subtype. The robust prognostic
model consists of 6 genes and has a good predictive perfor-
mance. In conclusion, our work revealed that mRNAsi is
highly correlated with the basal subtype; in particular, these
mRNAsi-related genes can be hoped to serve as biomarkers
for clinical prognosis and therapy of breast cancer patients
of the basal subtype.

2. Materials and Method

2.1. The Acquisition and Processing of Data. The mRNAsi of
breast cancer based on pluripotent stem cell samples was
obtained from the work of Malta et al. [19]. Gene expression
profiles of the basal subtype samples and corresponding
clinical information were originated from UCSC Xena data-
base (http://xena.ucsc.edu/). The selected samples were
adopted by following criteria: (1) clinical data such as overall
survival days and survival status are complete; (2) normal
samples were selected only for the matching pairs of cancer
tissue. After filtering, 185 breast cancer samples and 17 nor-
mal tissue samples with both normalized expression

2 Disease Markers

http://xena.ucsc.edu/


fragments per kilobase million (FPKM) and clinical data
were retained for next analysis. Differentially expressed
genes (DEGs) were screened using the limma R package
[25]; the filtering criteria were ∣log 2FC ∣ >1 and FDR <
0:05. The drug sensitivity data of the candidate prognostic
marker came from GSCALite database (http://bioinfo.life
.hust.edu.cn/web/GSCALite/). The modified database has
integrated the genome-wide drug sensitivity test data of
CTRP and GDSC and provides a good resource for explor-
ing the sensitivity of genes to drugs.

2.2. The Establishment of WGCNA. The Weighted Gene
Coexpression Network Analysis (WGCNA) is a system biol-
ogy method of describing gene association expression pat-
terns among different samples and has been widely used to
identify highly collaborative gene sets and alternative bio-
marker genes or therapeutic targets according to the connec-
tivity of gene sets and the association between gene sets and
phenotypes [26]. Here, we selected differentially expressed
genes between breast cancer and normal samples for
WGCNA R package for gene module analysis [27]. The spe-
cific analysis process was as follows: (1) removing outlier
samples, (2) calculating soft thresholds to fit the best scale-
free network, (3) constructing a gene dissimilarity matrix,
and (4) identifying coexpression modules and calculating
module feature vectors. After we obtained the different gene
module, we selected mRNAsi as the clinical phenotypes and
then analyzed the module in combination with the clinical
phenotype; the absolute value of correlation coefficient
greater than 0.3 is considered to be correlated, and a P value
< 0.05 indicates that the correlation is statistically significant.

2.3. Tumor Immune Infiltration Cell Transformation. The
single sample gene set enrichment analysis (ssGSEA) strat-
egy was used to evaluate genome-wide expression and tumor
immune cell infiltration distribution based on 782 marker
genes of 28 tumor immune infiltrating cells (TIICs) [28].
Herein, we used the GSVA package to convert mRNA
expression data into the enrichment score of 28 tumor
immune infiltrating cells (TIICs) of patients [29].

2.4. Somatic Mutation Analysis. The somatic mutation map
of the basal breast cancer patients based on the whole exome
sequencing platform was downloaded from GDC (https://
portal.gdc.cancer.gov/), and the R package maftools was
used to summarize and analyze the data [30]. Genome
mutation types include missense mutation, frame shift dele-
tion mutation, nonsense mutation, frame shift insertion
mutation, splice site, in-frame insertion and in-frame sam-
ples with deletion, transcription start site, and stop codon
mutation that were considered mutation positive.

2.5. Function Analysis of Methylation-Driven Genes. Both
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were carried out to reveal
these functional roles of genes associated with mRNAsi by
clusterProfiler R package [31], and P < 0:05 is considered
significant unless otherwise noted.

2.6. The Establishment of Prognosis Model. MRNAsi-related
genes were used to construct a prognostic model, and the
construction method was as follows: the univariate cox
regression was used to further evaluate survival-related
mRNAs, and only mRNA with P < 0:05 was selected as the
candidate biomarker. Next, the multivariate cox regression
was performed on these candidate mRNAs to identify inde-
pendent prognostic mRNAs, and a risk value was calculated
to construct a predictive model for each mRNAs. Based on
the above results, the survivalROC R software package was
used to plot the receiver operating characteristic (ROC)
curve, and the classification model was evaluated according
to the area under the curve (AUC). The t-test was used to
analyze the relationship between candidate prognosis genes
and clinical and biological characteristics.

2.7. Data Statistics and Visualization. All data analyses were
performed using the R software version 3.5.2. The STRING
(https://string-db.org/) and the Cytoscape software were
used to construct PPI network. The survival curve was
drawn by Kaplan-Meier, and the difference significance
was evaluated by log-rank test. P < 0:05 is considered as sta-
tistically significant.

3. Results

3.1. Basal Breast Cancer Patients Have Higher mRNAsi
Values. The mRNAsi as the quantization value of stemness
index can characterize the similarity degree between tumor
cells and stem cells. We here obtained the mRNAsi value
of 190 basal, 82 Her2, 566 luminal A, and 214 luminal B
patient samples as well as136 normal controls and found
that significant differences exist in the mRNAsi value of dif-
ferent breast cancer subtypes. Our results indicated that the
mRNAsi values of various breast cancer subtypes are signif-
icantly increased than the control group (Figure 1(a)),
implying that the cells in tumor tissues are more similar to
stem cells than the control group. Obviously, the source of
the increase in stemness index is tumor cells. Especially,
the basal subtype has the highest mRNAsi, followed by lumi-
nal B, Her2, and luminal A (Figure 1(a)). Remarkably, the
luminal A patient with the best prognosis has the lowest
mRNAsi, but the other three subtype patients with poorer
prognosis have higher mRNAsi (Figure 1(a)). Furthermore,
we sorted the basal breast cancer patients from low to high
according to their mRNAsi values and found that patients
with high mRNAsi are usually accompanied by high expres-
sion of tumor stem-related genes such as KDM5B, BMI1,
MYC, and EZH2 (Figure 1(b)). These results implied that
tumor stem cells might play an important role in the occur-
rence and development of the basal breast cancer patients.

3.2. Identification of mRNAsi-Related Gene Modules. Because
the mRNAsi value of the basal subtype patients is the highest
among all five breast cancer subtypes, our study thus focused
on the basal subtype patients. Herein, we calculated and
acquired 1,785 differentially expressed genes containing 880
upregulated and 905 downregulated genes (Figure 2(a)). These
genes were further clustered to similar modules by using the
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WGCNA. We chose β value = 5 to establish the proximity
matrix so that gene distribution conforms to the scale-free net-
work (Figure 2(b)). After determining β value, we continued
to test whether the network under the selected β value was
in line with the scale-free network distribution standard.
Remarkably, the number of linked genes varies exponentially
in the scale-free topology, so the distribution in the log chart
is linear. Our results demonstrated that the closer the fitting
value R2 is to 1, the better the correlation between genes is
(Figure 2(b)), indicating that the network is more compliance
with the scale-free network distribution. Additionally, we
found that the constructed network K is significant negative
correlation with P (K) (R2 = 0:93), which revealed that the
selected β value can establish the gene scale-free network
(Figure 2(b)). We next used the cluster dendrogram to group
coexpressing genes into various modules shown in different
colors (Figure 2(c)). After cutting and merging by the hybrid
dynamic cutting tree algorithm in Figure 2(c), we further
extracted the 10 effective modules (Figure 2(d)) and evaluated
the significance values of 10 modules through the correlation
between each module and mRNAsi (Figure 2(d)). Interest-
ingly, we found that the most significant positive correlation
exists between the turquoise module and mRNAsi (r = 0:72,
P < 0:0001), whereas the highest negative correlation exists
between the blue module and mRNAsi (r = −0:83, P <
0:0001) (Figure 2(d)). We thus selected the genes of the tur-
quoise module for in-depth study. In the turquoise module,
we found that a total of 385 differentially expressed genes are
highly correlated with mRNAsi. We next performed protein
network analysis on the 385 genes and found that extensive
protein interactions exist in the turquoise module
(Figure 2(e)). We further extracted the top 10 hub proteins
such as CDK1, CDC20, CCNB2, CCNB1, CDCA8, BUB1,

CCNA2, PKL1, BUB1B, and AURK from the PPI network
(Figure 2(e)). Interestingly, these proteins are intensively
involved in the cell cycle and mitosis process [32–34], imply-
ing that the cell cycle might be related to the higher tumor
stemness of the basal subtype patients.

3.3. GO and KEGG Enrichment Analysis of mRNAsi-Related
Modular Genes. To understand the roles of these mRNAsi-
related genes in the basal subtype, we used GO and KEGG
functional analysis to explore how these genes influence
the occurrence and development of the basal subtype
patients. We here subdivided these genes into upregulated
and downregulated genes. GO results demonstrated that
these upregulated genes are mainly enriched in biological
processes (BP) such as chromosome segregation, nuclear
division, organelle fission, sister chromatid separation,
DNA replication, and cell cycle checkpoint (Figure 3(a)),
while KEGG analysis results indicated that these upregulated
genes can participate in the cell cycle, cell aging, DNA repli-
cation, p53 signaling pathway, mismatch repair, homolo-
gous recombination, and so on (Figure 3(b)). The network
diagram displayed the top 5 signal pathways containing
upregulated genes (Figure 3(c)). Especially, the upregulated
expressions of many genes of the top 5 signal pathways, such
as CCNB1, CDC20, CDK1, CDC25C, CHEK2, MYBL2, E2F1,
E2F2, and FOXM1 (Figure 3(c)), have been reported to be
related to breast cancer occurrence [35–38], implying that
the upregulated genes might be related to the more vigorous
proliferation of tumors and stem cell as well as deterioration.
In contrast, these downregulated genes are mainly enriched
in fatty acid metabolism, liposome metabolism, protein
kinase activity biological processes (Figure 3(d)) and PPAR,
AMPK, insulin, and fatty acid metabolism signaling
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Figure 1: The distribution of tumor stemness index mRNAsi in the basal subtype breast cancer patients. (a) The box plot shows the
distribution of tumor stemness index mRNAsi in different breast cancer subtypes and adjacent normal tissues. (b) The expression heat
map shows the relationship between tumor stemness index mRNAsi and tumor stem cell markers in patients with the basal breast cancer.

4 Disease Markers



0

10

20

30

−4 −2 0 2 4

Down
Not
Up

log2 (fold change)

lo
g2

(F
D

R)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−2.0

−1.5

−1.0

−0.5

Threshold, power = 5 scale free R2 = 0.93,
slope = −1.51, trunc.R2 = 0.99

log10 (k)

lo
g1

0 
(p

(k
))

(b)

0.5

0.6

0.7

0.8

0.9

1.0
Cluster dendrogram

H
ei

gh
t

Dynamic tree cut

Merged dynamic

(c)

Module-trait relationships

−1

−0.5

0

0.5

1
MEblue

MEbrown
MEgreen

MEred
MEmagenta

MEturquoise
MEpink

MEblack
MEyellow

MEgrey

−0.83
(9e−48)
−0.69

(3e−27)
−0.4

(1e−08)
0.091
(0.2)
0.47

(1e−11)
0.72

(7e−31)
0.48

(6e−12)
0.16

(0.03)
0.28

(1e−04)
−0.05
(0.5)

mRNAsi

(d)

Figure 2: Continued.
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pathways (Figure 3(e)), while the KEGG network diagram
showed that these downregulated genes involved in these
signaling pathways are mainly PRKAR2B, SLC27A1, SCD,
ACADS, and FASN (Figure 3(f)). This seemed to imply that
these downregulated genes could lead to cancer stem cells to
weaken high-energy metabolism and turn to low-energy
anaerobic metabolism. Taken together, our results suggested
that the high tumor stemness in the basal subtype patients
might be driven by the abnormal cell cycle, activation of cell
division, and metabolic reprogramming.

3.4. Identifying Prognostic-Related Genes in the mRNAsi-
Related Modules. In order to identify which of the
mRNAsi-related genes can be used for prognostic prediction
of patients, we further used a two-step analysis to identify
candidate genes. We firstly used the univariate cox regres-
sion analysis to screen 21 potential candidate genes
(Figure 4(a)). Remarkably, only CTSF and ABHD4B of them
are risk factors (HR > 1), whereas the rest 19 genes are all
protective factors (HR < 1) (Figure 4(a)). We next used the
multivariate cox regression analysis to find that TRIM59,
SEPT3, RAD51AP1, and EXO1 can act as independent prog-
nostic protective factors, as well as CTSF and ABHD4B can
serve as independent prognostic bad factors. Especially, the
survival curves of these 6 prognostic genes demonstrated
that the basal patients with highly expressed TRIM59,
SEPT3, RAD51AP1, and EXO1 have a higher survival rate
than ones with low expression, but the basal patients with
highly expressed CTSF and ABHD14B have a lower survival

rate than ones with low expression (Figures 4(b)–4(g)). Our
findings revealed that the 6 genes might be related to cancer
stem cells and serve as the prognostic markers for the basal
breast cancer patients.

3.5. Establishing the Prognostic Model for the Basal Patients.
Herein, we further detected whether the multigene model
composed of the above 6 mRNAsi-related prognostic genes
can effectively predict the survival rate of the basal patients.
Our results demonstrated that as the increase of the basal
patient’s risk score, the death density of the basal patients
is correspondingly increased (Figure 5(a)), especially the
expression levels of genes as protective factors are gradually
decreased, but the expressions of genes as risk factors are
gradually increased (Figure 5(a)). Furthermore, we divided
patients into the high-risk group and the low-risk group
and found that the survival rate of patients in the high-risk
group is nearly 2 times lower than that in the low-risk group
(P < 0:0001) (Figure 5(b)). In order to verify the accuracy of
the model, we herein drew the ROC curve based on the 6
genes as a signature. Generally, an AUC value greater than
0.6 means that the model has a certain prognostic value,
and the larger the value is, the more accurate it is, but an
AUC value less than 0.5 means that the model is meaning-
less. Our results demonstrated average 3-, 5-, and 8-year
AUC values for 0.797, 0.850, and 0.801, respectively
(Figure 5(c)), indicating that the prognostic model has a
good predictive effect on the survival rates of the basal
patients. Remarkably, we further constructed the nomogram
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Figure 2: Gene modules are related to tumor stemness index mRNAsi in patients with basal subtype. (a) The volcano map shows the
distribution of differentially expressed genes in the adjacent normal tissues of patients with basal subtype. (b) Linear fitting curve under
certain soft threshold conditions. The soft threshold β = 5 is used to realize the scale-free topology criterion of the network. (c) The
clustering dendrogram of differentially expressed genes is based on the tumor stemness index mRNAsi. Each branch represents a gene,
each color represents a coexpression module, and gray represents genes that cannot be clustered into modules. (d) The heat map shows
the correlation between the different modules and the tumor stemness index mRNAsi. (e) Protein interaction network analysis of
mRNAsi-related genes. The size of the circle represents the centrality of the gene that refers to the number of other genes connected to
the gene. The larger the number, the larger the circle.
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Figure 3: Functional enrichment analysis of tumor stemness index mRNAsi-related genes. (a) Enrichment analysis of biological processes
involved in upregulated tumor stemness index-related genes. (b) Enrichment analysis of KEGG signaling pathway involved in upregulated
tumor stemness index-related genes. (c) The top 5 KEGG network graphs enriched by the upregulated tumor stemness index-related genes.
(d) Enrichment analysis of the biological processes involved in downregulated tumor stemness index-related genes. (e) Enrichment analysis
of KEGG signaling pathway involved in downregulated tumor stemness index-related genes. (f) The top 5 KEGG network graphs enriched
by downregulated tumor stemness index-related genes.
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Figure 4: Identification of prognostic-related genes related to tumor stemness index. (a) The forest plot shows the prognostic-related genes
screened by single factor cox regression analysis. (b–g) Graphs of overall survival rate of 6 independent prognostic tumor stemness index-
related genes. The 6 genes are TRIM59, SEPT3, RAD51AP1, EXO1, CTSF, and ABHD14B.
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model based on these 6 genes to predict the survival rate of
patients (Figure 5(d)). Interestingly, we can get the score
sum corresponding to each gene according to the expression
of the 6 genes in the basal patients through this prediction
model, which can be used to predict the survival rate of
patients in different time periods, and be helpful for the clin-
ical monitoring and management of the basal patients.

3.6. Relationship between 6 Prognostic Genes and Clinical
Factors. In order to explore how these 6 genes affect the clin-
ical indicators of the basal patients, we further investigated
the relationship within the 6 genes and the patient’s age, T
stage, American Joint Committee on Cancer (AJCC) stage,
lymph nodes present (N stage), and tumor bearing status.
As shown in Table 1, SEPT3, RAD51AP1, and EXO1 are
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Figure 5: The prognostic value of a prognostic model based on 6 mRNAsi-related genes. (a) The high- and low-risk graph shows the
relationship between the expression of prognostic genes and the death density of patients with basal subtypes and the risk value. (b) The
overall survival rate curve of basal patients in the high- and low-risk groups. (c) The receiver operating characteristic curve (ROC) shows
the accuracy of the model for different years. (d) The nomogram shows how the 6-gene model predicts the overall survival rate of
patients at different ages.
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more highly expressed in older patients than young ones, but
TRIM59, CTSF, and ABHD4B have no significant changes
between them. The expression of RAD51AP1 is also higher
in patients with high T stage than ones with low T stage,
but the expression of ABHD14B is lower in patients with
high T stage, as well as no significant changes in other genes.
Similarly, the expressions of SEPT3, RAD51AP1, and EXO1
are significantly increased in patients with higher AJCC
stage and N stage than ones with lower AJCC stage and N
stage, and the rest genes are no significant. While the expres-
sion levels of SEPT3, RAD51AP1, and EXO1 are higher in
tumor-bearing patients, while ABHD14B is lower. These
results revealed that the 6 prognostic genes are related to
the clinical indicators of the basal patients to varying
degrees, implying that the 6 genes might play a crucial role

in the development and progression of the basal breast
cancer.

3.7. The Landscape of Immune Infiltrating Cells of High- and
Low-Risk Groups. Here, we further explored the underlying
factors that cause the difference in the survival rate between
the high-risk group and the low-risk group. Because muta-
tions and immune cell infiltrations play very important roles
in the treatment and prognosis monitoring of cancer
patients, we therefore analyzed mutations and immune cell
infiltration of the high-risk group and the low-risk group
in the basal patients. Our results demonstrated that the most
frequently mutated genes are TP53, TTN, MUC16, SPTA1,
FAT3, SYNE1, USH2A, and so on in the basal subtype
patients, but they have no significant mutation difference

Table 1: The relationship between 6 independent prognostic genes and clinical indicators of the basal breast cancer patients.

(a)

Parameters N
TRIM59 SEPT3 RAD51AP1

M± SD P value M± SD P value M± SD P value

Age (n = 185)
≤50 73 1:70 ± 0:55

0.151
2:79 ± 1:34

0.044
3:28 ± 0:96

0.022
>50 112 1:86 ± 0:51 3:30 ± 1:16 3:58 ± 0:56

T (n = 184)
T3-T4 23 1:75 ± 0:55

0.103
2:94 ± 1:25

0.152
3:40 ± 0:90

0.010
T1-T2 161 1:57 ± 0:53 2:45 ± 1:69 2:89 ± 0:92

Stage (n = 182)
III-IV 29 1:74 ± 0:53

0.333
2:98 ± 1:30

0.010
3:38 ± 0:91

0.012
I-II 153 1:61 ± 0:59 2:21 ± 1:35 2:89 ± 0:86

N (n = 185)
N2-N3 21 1:74 ± 0:55

0.459
3:00 ± 1:28

0.002
3:38 ± 0:93

0.040
N0-N1 164 1:65 ± 0:55 2:10 ± 1:33 3:02 ± 0:79

Status (n = 179)
With tumor 25 1:74 ± 0:52

0.093
2:96 ± 1:32

0.019
3:36 ± 0:86

<0.001
Tumor free 154 1:48 ± 0:69 2:16 ± 1:45 2:92 ± 1:17

(b)

Parameters N
EXO1 CTSF ABHD14B

M± SD P value M± SD P value M± SD P value

Age (n = 185)
≤50 73 2:89 ± 0:76

0.001
4:21 ± 1:03

0.138
3:95 ± 0:72

0.300
>50 112 3:37 ± 0:65 3:96 ± 0:76 4:07 ± 0:54

T (n = 184)
T3-T4 23 3:00 ± 0:73

0.139
4:14 ± 0:98

0.225
3:92 ± 0:71

0.049
T1-T2 161 2:73 ± 0:90 4:40 ± 1:05 4:16 ± 0:55

Stage (n = 182)
III-IV 29 3:02 ± 0:72

0.025
4:17 ± 1:02

0.709
3:94 ± 0:72

0.218
I-II 153 2:59 ± 0:87 4:24 ± 0:89 4:10 ± 0:59

N (n = 185)
N2-N3 21 3:02 ± 0:73

0.031
4:12 ± 0:99

0.128
3:94 ± 0:72

0.170
N0-N1 164 2:64 ± 0:83 4:44 ± 0:98 4:10 ± 0:53

Status (n = 179)
With tumor 25 3:03 ± 0:76

0.001
4:13 ± 1:00

0.261
3:90 ± 0:69

0.045
Tumor free 154 2:43 ± 0:66 4:38 ± 0:96 4:24 ± 0:74

The abbreviations are as follows, which are derived from the identification of the patients according to the guidelines of the American Joint Committee on
Cancer (AJCC). Age: the age of the patient at the time of first diagnosis; T: extent of the primary cancer when the patient was first diagnosed; stage: the
extent of a cancer that whether the disease has spread from the original site to other parts of the body; N: extent of the regional lymph nodes present for
the cancer at the time of initial diagnosis; status: the neoplasm cancer status when the patient was first diagnosed. For specific clinical staging information
of basal breast cancer samples, please refer to Supplementary Table S1.
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between the high-risk and low-risk group (Figure 6(a)). This
implied that the difference in survival rate between them is
not mainly driven by gene mutation differences. We thereby
further calculated the infiltration of 28 kinds of immune cells
in tumor tissues. We found that most immune cells have no
significant differences, except for type 2 T helper cells, natu-
ral killer T cells, and activated CD4 T cells in the high- and
low-risk groups; in particular, the infiltration of type 2 T
helper cells, natural killer T cells, and activated CD4 T cells
in the tumor tissues of patients in the low-risk group is sig-
nificantly increased than the high-risk group (Figure 6(b)).
This implied that these three types of immune infiltrating
cells might serve as a protective effect on patients in the
low-risk group, thereby increasing the survival rate.

3.8. Drug Sensitivity Analysis of Potential mRNAsi-Related
Markers. The 21 potential prognostic markers above are
closely related to mRNAsi and play very important roles in
cancer stem cells of the basal patients. Therefore, finding
drug susceptibility data targeting these genes can be helpful
for the treatment of the basal breast cancer patients. We
herein only obtained drug susceptibility data for 15 potential
prognostic genes in the GSCALite database (Figure 7). Inter-
estingly, the three independent prognostic-related genes

(RAD51AP1, EXO1, CTSF) have drug susceptibility data; in
particular, both RAD51AP1 and EXO1 present high drug
resistance to PD-0325901, RDEA119, trametinib, selumeti-
nib, and so on (Figure 7). Remarkably, these drugs are all
inhibitors that target MEK signaling [39–41], which sug-
gested that these drug might not be suitable for the treat-
ment of the basal breast cancer patients. On the contrary,
the most sensitive drugs for RAD51AP1 and EXO1 are Navi-
toclax, NPK76-II-72-1, and Vorinostat (Figure 7). Espe-
cially, Navitoclax is an effective Bcl-2 inhibitor, while
NPK76-II-72-1 is a kinase inhibitor, as well as Vorinostat
is an HDAC inhibitor [42, 43]. We thus suggested that the
basal breast cancer patients should be able to obtain good
therapeutic effect via using these drugs. Additionally, these
insensitive drugs for CTSF gene include AZD7762, PHA-
793887, TPCA-1, and so on (Figure 7). AZD776 is an
ATP-competitive checkpoint kinase inhibitor, and PHA-
793887 is a new effective inhibitor of CDK2, CDK5, and
CDK7, as well as TPCA-1 can target signals such as IKB/IKK.
It is worth noting that CTSF seems to be resistant to most
drugs, except for PLX4720 and Dabrafenib that are Raf inhib-
itors. Our findings suggested that these drug sensitivity data
for cancer stem-related genes could be helpful for improving
the efficacy and prognosis of the basal subtype patients.
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infiltrating immune cells in the basal patients in the high- and low-risk groups.
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4. Discussion

Breast cancer is a kind of tumor with high heterogeneity [44].
Especially, the basal breast cancer is the subtype with the worst

prognosis due to factors such as rapid progression, high
metastasis, high recurrence, and drug resistance [45, 46].

Tumor stem cells are the source of unlimited prolifera-
tion and recurrence of malignant tumors. Tumor stem cells
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play very crucial roles in a variety of malignant phenotypes,
such as the proliferation, invasion, and invasion of tumor
cells. Tumor stem cells have the characteristics of helping
tumor metastasis and drug resistance. Tumor stem cells have
become the research hotspot in the field of cancer in recent
years [47]. Tumor stem cells provide a new understanding
on elucidating the occurrence and development of cancer
and a new idea for targeted therapy for cancer [18]. Cur-
rently, although cancer stem cells are yet not reported to
be an important component of the basal breast cancer, they
have been demonstrated to be related to the occurrence,
development, drug resistance, recurrence, and metastasis
[18, 48, 49]. However, due to the lack of a unified description
on cancer stem cells, the clinical application of cancer stem cell
therapy has still to be developed, and the personalized treat-
ment of the basal breast cancer has made slow progress. Inter-
estingly, mRNAsi as an index to quantify the tumor stemness
of tumor patients has recently been developed through com-
putational biology and bioinformatics [19, 20], which makes
it convenient to explore genes related to tumor stemness.

In this study, we found that patients with the basal sub-
type breast cancer have higher tumor stemness (mRNAsi
score) (Figure 1(a)), implying that mRNAsi might be related
to the poor prognosis of patients with the basal subtype. We
identified 358 genes with highly positive correlation with
mRNAsi (Figure 2(d)), and many genes of them exist in
strong interaction from the PPI network (Figure 2(e)), as
well as these hub gproteins CDK1, CDC20, CCNB1,
CDK1, CDC20, and CCNB1 are, respectively, significantly
associated with cell cycle (Figure 2(e)). Remarkably, previous
studies have revealed that the upregulated expressions of
CDK1 and CCNB1 are correlated with the worse OS in the
basal subtype breast cancer, while CDC20, CCNB1, and
CDK1 could act as diagnostic and prognostic markers in
breast cancer. Especially, FOXM1 and E2F1 have also been
demonstrated to be significantly associated with CSCs in a
variety of tumors [50–52]. Taken together, we suggested that
the mRNAsi-related genes could play very important roles in
the occurrence and development as well as prognosis of the
basal breast cancer patients.

Herein, we found that the upregulated mRNAsi-related
genes are significantly enriched in the cell cycle, cell division,
DNA replication, and p53 signaling pathway (Figure 3).
Many studies have revealed that abnormality of these path-
ways can be the basis for tumor stem cells to maintain rapid
proliferation and invasion [53–56]. Interestingly, some genes
involved in these processes and signal pathways, such as
CCNB1, CDK1, CHEK2, and MYBL2, have been widely
reported as oncogenes and used in the clinical diagnosis
for breast cancer patients [35, 38]. Especially, studies have
demonstrated that some transcription factors (e.g., E2F1,
E2F2, and FOXM1) could serve as oncogenes to drive the
development and progression of multiple cancers [36, 37].
In our work, we also found that some mRNAsi-related onco-
genic transcription factors, such as E2F1, E2F2, and FOXM1,
might play an important role in cell cycle activation of the
basal subtype (Figure 3(c)), implying that repressing the
expression of these oncogenic transcription factors may be
beneficial for treating patients with the basal subtype. In

contrast, the downregulated mRNAsi-related genes are
mainly enriched in metabolic processes and metabolic path-
ways, such as PPKAR2B, SLC27A1, SCD, FASN, and ACADS.
Tumor cells, especially tumor stem cells, need to provide
themselves with a large amount of ATP and other energy
substances through metabolic reprogramming, which is
one of the characteristics of tumor deterioration [57, 58].
This indicated that the downregulated mRNAsi-related
genes can play a key role in the metabolism of cancer stem
cells in patients with the basal subtype.

In this study, we identified 21 potential markers for the
survival and prognosis of patients with the basal subtype
(Figure 4). Especially, we found that TRIM59, SEPT3,
RAD51AP1, and EXO1 can serve as independent protective
factors and CTSF and ABHD14B as the risk factors
(Figure 4), and they are also closely related to the clinical
indicators of patients with the basal subtype (Table 1). Sur-
prisingly, the prediction model containing the 6 mRNAsi-
related genes as a signature could act as an effectively
prognostic factor to promote the survival (Figures 5(b) and
5(c)) and could effectively predict the 3-year, 5-year, and
8-year survival rates of patients with the basal subtype
(Figures 5(b)–5(d)). More importantly, our findings reveal
the survival differences of patients between the high-risk
group and low-risk group are mainly driven by differences
in immune infiltrating cells (e.g., type 2 helper T cells, acti-
vated CD4 T cells, and NKT cells), rather than differences
in gene mutations (Figure 6). Remarkably, we here found
that 15 mRNAsi-related genes could be helpful for the treat-
ment of the basal subtype patients. Our results revealed that
the 15 genes are resistant to multiple drugs such as Navito-
clax, NPK76-II-72-1, and Vorinostat (Figure 7). These
genetically sensitive drugs include BX-912, Navitociax, and
NPK76-II-72-1. Especially, this CTSF gene as a risk factor
is resistant to a variety of tested drugs, except for selumeti-
nib, SB590885, PLX4720, and Dabrafenib (Figure 7). We
thereby suggested that the widespread resistance of this
CTSF gene may be a potential reason impacting the treat-
ment effect of the basal breast cancer patients, and selumeti-
nib, SB590885, PLX4720, and Dabrafenib can be considered
as potential therapy or adjuvant therapy drugs because it has
a good effect on the basal breast cancer patients.

In summary, our study has revealed that the basal
subtype breast cancer has a higher mRNAsi score, which
indicates that this subtype can be driven by cancer stem cells.
Our results demonstrate mRNAsi-related modular genes
mainly involved in cell cycle activation and metabolic repro-
gramming, which may be internal factors that maintain the
survival of the basal breast tumor malignant stem cells. We
construct a prediction model containing the 6 mRNAsi-
related prognostic genes, which can be used to predict the sur-
vival rate of the basal breast cancer patients. We provide the
drug sensitivity data of 15 genes related tomRNAsi, which will
be helpful for the treatment of the basal breast cancer patients.
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