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2Department of Physics, Sapienza – University of Rome, 5 P. le Aldo Moro, 00185 Rome, Italy

3Istituto Pasteur - Fondazione Cenci Bolognetti – University of Rome, 5 P. le Aldo Moro, 00185 
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Abstract

This paper provides a report on the state-of-the-art in the prediction of intra-molecular residue-

residue contacts in proteins based on the assessment of the predictions submitted to the CASP11 

experiment. The assessment emphasis is placed on the accuracy in predicting long-range contacts.

Twenty-nine groups participated in contact prediction in CASP11. At least eight of them used the 

recently developed evolutionary coupling techniques, with the top group (CONSIP2) reaching 

precision of 27% on target proteins that could not be modeled by homology. This result indicates a 

breakthrough in the development of methods based on the correlated mutation approach. 

Successful prediction of contacts was shown to be practically helpful in modeling three-

dimensional structures; in particular target T0806 was modeled exceedingly well with accuracy 

not yet seen for ab initio targets of this size (>250 residues).
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INTRODUCTION

Contact prediction has been a focus area in CASP since 19961–9. Much of the research in 

this area originates from the co-evolution hypothesis suggesting that pairs of residues 

mutating in a coordinated manner are likely to be in contact. Already in 1994, about the time 

CASP started, the first papers exploring the possibility of predicting contacts from 

evolutionary information were published10,11, but for almost two decades the results were 

rather disappointing, typically with over 80% false positives9. A revival of interest in contact 

prediction came with a realization that earlier methods were methodologically flawed by not 

distinguishing direct sequence covariance signals from indirect effects12. Once this 

shortcoming was recognized, a number of groups developed improved approaches12–28.

*To whom the correspondence should be addressed: Andriy Kryshtafovych Genome Center, University of California, Davis 415 Health 
Sciences Dr., Davis, CA 95616, USA akryshtafovych@ucdavis.edu Tel/Fax: (+1) 530-754-8977. 
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Unfortunately, none of the new evolutionary coupling approaches made a mark in the 

previous round of CASP held in 2012. In 2014, though, the situation changed and some new 

co-variation techniques achieved quite spectacular results. This came as a surprise to many, 

as in CASP11, similarly to CASP10, no targets with particularly deep sequence alignments 

were available.

Here we analyze the results obtained by all contact predictors participating in CASP11, and 

quantify progress in the area by comparing the results with those obtained in the most recent 

CASP experiments.

MATERIALS AND METHODS

The definitions, formats and procedures in CASP11 did not change significantly since the 

previous experiment and therefore we provide here only the basic information, encouraging 

readers to refer to our CASP10 assessment paper9 for more detailed explanations.

Participants were requested to predict contacts in target proteins and assign to each contact a 

probability score p [0;1] reflecting confidence of the assignment. A pair of residues is 

defined to be in contact when the distance between their Cβ atoms (Cα in case of glycine) is 

smaller than 8.0 Å.

The main evaluation was carried out on the free modeling (FM) target domains, for which 

structural templates could not be identified even by a-posteriori structure similarity search. 

Some of the analyses were also performed on the extended (FM+TBM_hard) target set, 

which additionally included the TBM_hard domains, for which templates did exist but were 

relatively difficult to identify29. In CASP11, the FM set included 45 domains, and the 

extended FM+TBM_hard set additionally included 10 domains (see the CASP11 domain 

definition paper in this issue30). The complete list of CASP11 domains with their 

classifications is available at http:/predictioncenter.org/casp11/domains_summary.cgi.

We concentrated our assessment on the long-range contacts (separation of the interacting 

residues of at least 24 positions along the sequence) as these are the most valuable for 

structure prediction. Five CASP11 FM domains – T0775-D1, T0775-D3, T0775-D6, T0799-

D2 and T0804-D1 (all parts of non-globular bacteriophage proteins) – had no long-range 

contacts and were therefore excluded from the analysis, leaving 40 domains for the 

assessment. Some statistics on CASP11 FM targets, including their length, number of long-

range contacts and difficulty for contact prediction are provided in Figure S1 of 

Supplementary Material.

To ensure fairness of the comparison, all participating groups should be evaluated on the 

same number of contacts. To achieve this, we employed two different approaches. In the first 

approach, the lists of predicted contacts were truncated to the same number of contacts (e.g. 

to L/5 contacts per target, where L is the length of the domain); in the second, these lists 

were “padded” with zero-probabilities for pairs of residues that were not predicted as being 

in contact. We call the datasets used in the first approach “reduced lists” (RL), and those in 

the second - “full lists” (FL).
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As far as the RL evaluation is concerned, this paper mainly discusses the results on the L/5 

long-range contact lists. The results for the two shorter lists (L/10 and Top5), as well as for 

other contact ranges (e.g., medium range contacts or long+medium range contacts) are 

available on the web31 (http:/predictioncenter.org/casp11/rr_results.cgi).

The CASP11 assessment addresses the following questions: (1) how good are methods in 

identifying the most reliable predicted contacts (using the RL analysis), (2) how accurate are 

the methods in predicting contacts with the highest reliability (RL), and (3) how accurate are 

all submitted contact predictions, including those predicted with lower reliability (FL).

In the RL analysis, the two main evaluation measures are9

For the calculation of precision, the true positives (TP) and false positives (FP) values are the 

numbers of correctly and incorrectly predicted contacts regardless of the associated 

probabilities. To calculate the Xd score, we first filter all residue pairs in the target and in the 

prediction according to the sequence separation threshold for the analyzed type of contact 

(e.g., for the long-range contact analysis, we discard all pairs with the separation along the 

sequence shorter than 24 residues). We then compartmentalize all the qualified residue pairs 

in the target and, separately, all qualified contacts in the prediction into 15 bins based on the 

inter-residue spatial distance. The bins are numbered from 1 to 15 and include ranges of 

distances incremented by 4 Å, i.e. bin No. 1 contains pairs of residues separated by 0–4 Å in 

space, bin No. 2 – 4–8Å, …, bin No. 15 – 56–60Å. The upper limit of 60Å allows to 

accommodate the vast majority of distances in monomeric PDB proteins32*. Pai and Ppi are 

the percentages of pairs included in the ith bin for the whole target and predicted contacts, 

respectively. The Xd measure quantifies how different the distributions of inter-residue 

distances are in the target structure and the predicted contacts, with values greater than zero 

indicating a higher proportion of shorter distances among the predicted contacts, as it is 

naturally expected from an effective method.

In the FL analysis, the main estimators of binary classifiers are the Matthews correlation 

coefficient

and the area under the precision-recall curve (AUC_PR). The threshold for separating 

contacts from non-contacts is selected at the p=0.5 level, thus a contact was considered as 

correctly predicted (TP) if it was included in the prediction with a probability of 0.5 or 

higher.

*In a typical PDB protein, the gyration radius of 30Å corresponds to a protein of around 1000 residues, according to the R=2.77L0.34 

formula provided in the cited reference31.
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The precision, Xd and MCC scores for each group were calculated on a per-target basis and 

subsequently averaged. The AUC_PR score was calculated on the dataset containing 

contacts from all targets pulled together. The groups were ranked according to the 

cumulative z-scores from these four evaluation measures. For each measure, the z-scores 

were calculated in accordance with the procedure for calculating the corresponding raw 

scores, i.e. on the per-target basis for the precision, Xd and MCC, and on all targets together 

for the AUC_PR. After the initial computation, the z-scores were recalculated on the outlier-

free datasets, with outliers defined as those with a score lower than the mean minus two 

standard deviations. For the per-target measures, these adjusted z-scores were averaged over 

all domains predicted by the group. Finally, before adding the z-scores from different 

measures, all negative z-scores were set to zero in order not to penalize too severely groups 

underperforming with respect to some of the scores†.

To establish the significance of the differences between the scores for best groups, we 

performed t-tests and “head-to-head” comparisons9 on the per-target measures (i.e., 

precision, Xd and MCC) and bootstrapping tests on all measures33. For the bootstrapping, 

we randomly sampled (with replacement) the list of targets predicted by each group, and re-

calculated the evaluation scores on the resampled target sets. The 95% confidence intervals 

were established using the two-tailed bootstrap percentile method34 on 1000 resampling 

trials. The statistical significance of the differences in group performance was inferred based 

on the comparison of the corresponding confidence intervals35.

RESULTS

Twenty-nine groups participated in the prediction of intra-molecular contacts in CASP11. 

Figure 1 shows the numbers of evaluated domains for each participating group. Only groups 

that submitted qualified predictions for at least half of the 40 evaluated domains were 

included in the analysis. Thus, we evaluated 26 groups in the FL mode and 24 groups in the 

RL mode. The list of the evaluated groups in the RL mode is shorter because two groups 

failed to submit at least L/5 long-range contacts on at least 20 FM domains. Groups not 

evaluated are marked in red in the figure.

According to method descriptions in the CASP11 Abstract book (http://predictioncenter.org/

casp11/doc/CASP11_Abstracts.pdf) at least eight groups - CONSIP2 (MetaPSICOV 

method20), Shen-group, RaptorX-contact, ICOS, CNIO, Pcons-net, myprotein-me and 

IASL-COPE - used recently developed coevolution-based methods in their approaches, 

while others tested sophisticated machine learning-based techniques. Table I presents a brief 

overview of the contact prediction methods participating in CASP11.

Similarity of the predicted contact sets

Methods that rely on similar mathematical approaches and protein features may predict 

similar sets of contacts and, subsequently, obtain similar evaluation scores. It may also 

†Please note the two differences in this evaluation procedure from that used in our assessment presented at the CASP11 meeting. First, 
here we perform the MCC analysis on the per-target basis to provide a perspective different from that of the PR-analysis. Second, in 
the RL analysis, we set the negative z-scores to 0 only after the averaging, so as not to under-penalize the individual badly predicted 
targets.
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happen that similar evaluation scores are assigned to conceptually different methods that 

predict different sets of contacts. To differentiate between these two scenarios and help 

identify methods providing potentially complementary information we performed the 

analysis described below.

To check how often different CASP11 methods predict the same top contacts, we calculated 

the pair-wise Jaccard distance (J-score42) for each pair of methods. The J-score ranges from 

0 if a pair of methods generates identical contacts to 1 if methods produce non-overlapping 

sets of contacts.

Figure 2 shows a color-coded matrix of J-scores calculated on the union of the predicted top 

L/5 long-range contacts for each pair of groups. It can be seen that all scores in the matrix 

are above 0.8 thus indicating that there were no overwhelmingly similar methods in 

CASP11. The high level of dissimilarity between different groups follows from the fact that 

almost 3/4 of the top predicted contact pairs are predicted by a single group. Nevertheless, 

the dendrogram associated with the J-score matrix shows the existence of at least one cluster 

of 13 methods (MLiD down to CONSIP2) where methods demonstrate a higher level of 

similarity between themselves than to other techniques. This cluster encompasses four of the 

eight evolutionary coupling methods (CONSIP2, Shen-group, RaptorX-contact and ICOS). 

Figure S2 in Supplementary Material shows similar data calculated on predicted true 

contacts only, and identifies an additional smaller cluster of somewhat similar groups 

(CNIO, Pcons-net, and so forth). This cluster is not present in the main Figure 2 as only less 

than 10% of predictions used for the generation of this figure are true contacts; the similarity 

that is apparent in Figure S2 could be revealed only by looking deeper into the lists of 

predicted contacts.

RL assessment

Results of the assessment on the reduced lists (L/5 top long-range contacts) are presented in 

Figure 3. The graphs show that the CONSIP2 group (G021) outscores all the other groups 

according to both the precision (panel A) and Xd (panel B) measures. On the FM domains, 

CONSIP2 reaches an average precision of 27% and Xd of 12.5, while the runners-up only 

reach a level of 21% and 10.9, respectively. In 14 out of 40 cases, the CONSIP2’s precision 
exceeded 30%, and in 11 cases - 40%. On the other hand, even for this best group, the 

contact prediction is not very satisfactory (precision below 20%) on half of the targets, 

indicating that much more work is required to improve the consistency and accuracy of 

contact prediction in general. On the FM+TBM_hard domains, the CONSIP2 reaches an 

average precision of 31% (Figure S3, Supplementary Material), while the next group attains 

only 24%. It is worth mentioning that the group that follows CONSIP2 in the RL rankings, 

the Shen-group (G124), also used evolutionary coupling information. Error bars in Figure 3 

illustrate the 95% confidence intervals obtained from the bootstrapping tests (see Materials). 

Their comparison shows that, for example, the precision-based confidence interval for 

CONSIP2 significantly overlaps with that of only one group – the Shen-group – and only 

slightly overlaps with those of other groups, thus confirming the better performance of the 

CONSIP2 group.
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To estimate the statistical significance of the differences in the performance of the best 

CASP11 methods in more detail, we applied the t-tests and head-to-head tests for the top 12 

groups. Tables II and III show the results of the comparisons according to the precision 
score, whereas Tables S1 and S2 (Supplementary material) - according to the Xd score. The 

t-tests suggest that the top-ranked group G021 performs significantly better than all other 

groups but G124 (on both precision and Xd) and G420 (on Xd). The head-to-head 

comparisons highlight the CONSIP2’s superiority over all groups (more than 50% wins) 

according to both evaluation measures.

FL assessment

Figures 4 and 5 provide a different perspective on methods’ performance based on the 

analysis of the full, non-truncated lists of submitted contacts.

The MCC analysis shows the efficiency of methods in assigning probabilities above 0.5 to 

the correctly predicted contacts. In this analysis, the leading role is played by the Multicom-

cluster group, followed by the CONSIP2 group (Figure 4A). It should be mentioned that 

absolute MCC values for all groups are quite low mainly due to the imbalanced nature of the 

dataset containing just a small fraction of contacts among all possible pairs of residues and a 

low ratio of true positives (correctly predicted contacts) to false negatives (non-predicted 

contacts). Specifics of the prediction (and evaluation) procedures apparently contribute to 

this result as contact prediction methods in CASP are not expected to identify all contacts in 

the proteins, but rather to identify those pairs of residues that are believed to be in contact 

with high probability.

The PR-curve analysis tests the ability of predictors to correctly rank the predicted contacts, 

and clearly identifies CONSIP2 (G021) as the top performing group with an AUC_PR score 

of 0.086 (Fig 4B). The next three groups in the ranking show considerably lower AUC 
scores (in the 0.050–0.057 range). The shape of the PR curve for CONSIP2 (Figure 5) 

indicates that this group is particularly successful in assigning high confidence scores to the 

correct contacts (i.e., it has a higher fraction of correct contacts among those predicted with 

high confidence). For all groups, the high percentage of wrongly predicted contacts among 

those predicted with high probability causes sharp drop of the curves in the recall-precision 

coordinates and, subsequently, low values of the area under the curve.

Statistical significance of the differences in performance of the best groups in the FL 

analyses is estimated by comparing their 95% confidence intervals (shown as error bars in 

Figure 4, both for the MCC and AUC_PR), and additionally verified with t-tests and head-

to-head comparisons on the MCC- based results. As the confidence intervals overlap for a 

considerable number of participants (including the top performing groups), their comparison 

does not allow reliable conclusions to be derived at the selected level of statistical 

significance. The results of the t-tests on the MCC scores are clearer and suggest that the 

Multicom-cluster group is indistinguishable from CONSIP2 (G021) and SAM-T06-server 

(G086), and significantly better than all the others (Table S3 in Supplementary Material). 

The leading group also won the majority of per-target head-to-head MCC comparisons with 

other groups (see Table S4 in Supplementary Material).
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Since both MCC and PR analyses account for the accuracy of predictors as two-class 

classifiers, their results are expected to be similar. The comparison of the data in the two 

panels of Figure 4 tells that some groups do show comparable results according to both 

measures (e.g., G021, G420), while others demonstrate striking differences. In particular, 

group G479, is in the 8th place according to the AUC_PR and at the very bottom according 

to the MCC. The explanation of this discordance rests on the fact that not all predictors 

calibrated their methods to use the 0.5 probability cutoff for separating contacts from non-

contacts. Figure 6 shows that some CASP11 groups (including G479, G231 and G160) 

assigned probabilities below 0.5 to almost all predicted contacts, thus causing the number of 

positively predicted contacts (both true and false) to be very close to 0, and subsequently 

driving the MCC scores towards 0 (see the MCC formula in the Materials).

Overall group rankings according to the RL + FL analyses

The relative performance of the CASP11 groups in each of the four analyses (described 

above) was expressed in terms of z-scores.

Figure 7 shows the rank of the groups assessed in both RL and FL modes according to the 

sum of their z-scores computed for all the evaluation measures. The CONSIP2 group is a 

clear leader being in the top position in three out of the four analyses of our assessment. The 

ability to correctly rank the predicted contacts (green bar) and the superior performance for 

targets with deeper alignments contribute considerably to the overall success of this group. 

The Multicom-cluster and UCI-IGB-Cmpro groups showed relatively good performance in 

both the RL-based and the FL-based analyses, and are clearly in the second and third places 

in the overall ranking. The Shen-group, a reasonable performer in the RL analyses (2nd on 

precision and 3rd on Xd), showed only average results in the FL-based analyses (11th on the 

MCC and 7th on the AUC) and therefore fell to the 5th place in the cumulative ranking.

Position of the first correct and incorrect contact

The analysis of the position of the first correct and incorrect contacts in the predicted contact 

lists was first performed in CASP10. In CASP11 we repeated this analysis for the long-

range contacts in the FM targets.

Figure 8 shows, for each group, the percentage of times where the first correctly predicted 

contact (panel A) and the first incorrectly predicted contact (panel B) are found in a given 

position. Group CONSIP2 (G021) is again on the top of the ranked result tables. It has the 

highest percentage of cases where a correct prediction is in the first position (49%), and also 

the lowest percentage of cases where an incorrect prediction is on top (51%). 

Disappointedly, the numbers show that the most confidently predicted contact has 

approximately the same chance of being correct as incorrect even in the predictions of the 

best group.

As groups in Figure 8 are sorted according to the decreasing percentage of correct 

predictions in the first position, one can notice that the data in both panels are inversely 

coordinated. This indicates that groups with the higher percentage of correct predictions in 

the first position have a lower percentage of wrong predictions in the same position. Even 

though such a behavior is naturally expected (and therefore may not be recognized as a 
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positive feature of the methods), we want to mention that it cannot be taken for granted. For 

example, in CASP10 there were several cases where the same group demonstrated high 

percentages for both correct and incorrect predictions due to its assigning of the same 

probability to a set of contacts, some correct and some incorrect. The fact that this is not the 

case in CASP11 is certainly a positive development.

Dependence of group performance on the depth of alignment

Our analysis in the previous sections has shown that the best results in CASP11 were 

obtained by a method using a new co-variation technique. As these methods are known to be 

demanding on the number and diversity of homologous sequences, we analyzed the 

dependency of the methods’ performance on the number of diverse sequences for the 

CASP11 RR targets.

As there is no agreed upon approach for calculating the effective number of diverse 

homologous sequences N_eff, and different researchers use different alignment methods and 

different definitions of the diversity of the aligned sequences, we estimated the number of 

not-too-redundant sequences that were available for each target using PSI-BLAST43 and 

HHblits39 searches (Figure 9). In CASP11 there were no targets having more than 500 

PSIBLAST hits, and only one target (T0806-D1) that had more than 500 HHblits hits. At the 

same time, eight targets had both more than 250 PSIBLAST hits and more than 140 HHblits 

hits. As numbers of hits from the PSIBLAST runs were better spread in terms of similarity 

than those from the HHblits runs, we defined the depth of alignment N_eff as the number of 

hits retrieved in the PSIBLAST runs.

Figure 10 shows that CASP11 methods, overall, demonstrated better performance on targets 

with deeper alignments as the regression line for the average precision of the top 12 methods 

goes up from 10% at the lower end of the alignment depth to 25% at the upper end. If we 

concentrate our attention on the four methods (in the top 12) that used the new co-variation 

approach, we find that the dependency of the precision on the alignment depth becomes 

twice as large with the regression line rising by 30% - from 10% to 40%. The fit line for the 

leading group (CONSIP2) is the highest one, rising with approximately the same slope as 

that of the four EC methods, but reaching higher absolute values, going up from ~17% to 

~47%. Even though it is generally true that the more sequences are available, the better the 

performance of the EC methods, the CASP11 data suggest that it is sometimes possible to 

obtain quite successful contact predictions (precision exceeding 40%) even when fewer than 

200 N_eff sequences are available (4 cases from CONSIP2 in CASP11). It should be 

mentioned, though, that such data must be interpreted with caution, as it is not guaranteed 

that all predictions from the new co-variation methods were generated using ab initio 

approaches exclusively. Indeed, two of the four targets with high precision and low N_eff 
(763-D1 and 767-D2) were predicted by the CONSIP2 group with the help of template-

based approaches (private communication). Out of the 13 domains with N_eff>200, only 

two (T0826-D1 and T0775-D5) were predicted by CONSIP2 with low precision (due to 

domain splitting error), while seven were predicted with quite high precision (over 40%). In 

general, out of the 16 CASP11 domains predicted by the CONSIP2 group using a purely co-

variation based de novo approach44, half were predicted with a precision above 30%. This is 
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an interesting observation, as it has been believed that the EC methods need at least 500 

sequences, as a rule, to perform well45, whereas there were no targets in CASP11 with more 

than 500 N_eff sequences.‡ It should be mentioned, though, that exceptions to the rule are 

known14, and in this paper we concentrate on assessing the accuracy of the submitted top-

ranked contacts and do not take into account the question, key in the field, of whether a 

sufficient number of correct pairs to assist protein folding in silico are predicted.

Another interesting observation is that the Jones-UCL tertiary structure prediction group 

(which used contact predictions from the CONSIP2 group) was at least second best on all 

human/server domains, where alignment was relatively deep (>200 N_eff sequences) and 

where their own contact predictions were of good quality (>40%). This suggests that 

applying contact prediction to 3D modeling of FM targets is worthwhile. This is also 

confirmed by the exceptionally good models [Ref: FM assessment paper by Kinch/Grishin et 

al, THIS ISSUE] obtained by another structure predictor, the Baker group, on two FM 

targets with deep alignments - T0806 and T0824. Even though this group did not participate 

in the CASP11 RR category, they did generate distance restraints for their structure 

modeling using the GREMLIN21 method (private communication). We asked the Baker 

group to share their contact predictions with us, and it appeared that the contacts on these 

two targets were indeed predicted with a very high precision (64% on T0824-D1 and 77% 

on T0806-D1, similar to the high values obtained by the CONSIP2 group - see Figure 10) 

thus definitely making an impact on the quality of their structure prediction.

Inter-domain contact predictions

Assessing inter-domain contact predictions provides an estimate of the ability of predictors 

to recognize proper packing of the constituent domains in multi-domain proteins. We tested 

the precision with which groups predicted contacts between residues belonging to different 

domains. The results for the inter-domain long-range contacts from L/5 lists on the CASP11 

FM targets are summarized in Table S5.

It can be seen that the accuracy of predicting inter-domain contacts is much lower than that 

for intra-domain contacts. The highest precision achieved by a CASP11 group is below 6%, 

which is likely insufficient for the relevant practical application of using the contacts to help 

predicting relative orientation of the domains. This is somewhat disappointing and shows 

essentially no improvement over the previous CASP results. It could be speculated that 

predictors do not use the alignment of the separate domains and this might impact the 

quality of results. And, surely, inter-domain contacts are likely to be more distant along the 

sequence and therefore more difficult to predict. The relevance of predicting the inter-

domain contacts might be worth of special emphasis in the next experiment.

Progress in CASP contact prediction

Measuring progress in contact prediction is more complex than a simple comparison of the 

best scores in different rounds of CASP. Targets and databases change in time, and 

‡Note that different procedures for calculating the number of effective sequences in the alignment may give somewhat different results 
(as, for example, shown in Figure 9).
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background effects from these changes blend with the effects of real improvements in the 

methods. Separating methodological and non-methodological improvements is not trivial, 

but here we take a step in this direction by relating the results of the methods that are 

apparently under development to the results of a method that did not change in time. Such a 

comparison in different rounds of CASP can provide an estimate of progress, if any, 

independent of other non-method related factors. A good candidate for the reference method 

is the SAM-T08-server46, which has been participating in CASP since CASP8 (2008), and 

whose methodology did not change since.

Figure 11 shows the results of the very best methods in the latest 3 CASPs according to the 

precision and Xd scores, and compares these results with the scores of the reference method 

in the corresponding CASPs. While the Xd–based results remained largely unchanged, the 

precision-based results turned favorably in CASP11. The best CASP11 method outscored 

the best CASP10 and CASP9 methods in the precision-based analysis both in absolute terms 

(CASP11 precision=27% vs 20% in CASP10, and 21% in CASP9), and with respect to the 

reference method (CASP11 Best-to-Reference precision ratio of 2.01 vs 1.30 in CASP10 

and 1.06 in CASP9), indicating a methodological progress.

CONCLUSIONS

CASP11 was a success story for the CONSIP2 group (leader – David Jones, UCL) and the 

evolutionary coupling methods in general. Much attention and credit were given to this type 

of methods in the past five years, and they finally came out of shade, showing the first 

practical signs of their applicability to a range of targets. The precision achieved by the 

leading CASP11 group on the set of the most difficult prediction targets (27%) significantly 

exceeded that of the second best group and those seen in recent CASPs. Successful 

prediction of contacts was shown to be practically helpful in structure modeling, and for one 

target in particular (T0806) it resulted in template free-modeling success well beyond what 

has been seen in previous CASPs. The new methods are still limited in their application, 

because of a need for deep and robust sequence alignments, but as witnessed in CASP11, the 

recent theoretical improvements are extending their range of application. CASP will 

continue to focus on the developments in this area, expecting further progress in the 

immediate future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FM free modeling

TBM template-based modeling
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RR residue-residue (contacts)

MCC the Matthews correlation coefficient

RL/FL reduced/full list

MSA multiple sequence alignment
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Figure 1. 
The number of FM domains per group for which the L/5 lists (darker color) and full lists 

(lighter color) of long-range contacts were evaluated. Several groups (G235, G287, G454, 

G216 and G283 in the RL mode; G287, G216 and G283 in the FL mode – marked red) 

submitted too few qualified predictions and were not included in the subsequent analyses. 

The correspondence between groups’ CASP IDs (Gxxx in the graph’s x-axis) and their 

names can be obtained from http://predictioncenter.org/casp11/docs.cgi?

view=groupsbyname.
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Figure 2. 
A color-coded dissimilarity matrix and a dendrogram illustrating the similarity among 

different methods as judged by the number of common predicted contacts for all targets. The 

J-scores used in the matrix are calculated on the union of the predicted top L/5 long-range 

contacts for each pair of groups.

Monastyrskyy et al. Page 15

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Precision (panel A) and Xd score (panel B) for the participating groups on the FM domains. 

The data are shown for the top L/5 long-range contacts (a.k.a. reduced lists). Groups in both 

panels are ordered according to the decreasing score. The error bars indicate the boundaries 

of the 95% confidence intervals for each measure.
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Figure 4. 
Matthews’ correlation coefficient (panel A) and area under the precision-recall curve (panel 

B) for the participating groups on the FM domains. The data are shown for all predicted 

long-range contacts (a.k.a. full lists). Groups in both panels are ordered according to the 

decreasing score. The error bars indicate boundaries of the 95% confidence intervals for 

each measure.
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Figure 5. 
Precision-recall curves for all predicted long-range contacts on FM domains.
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Figure 6. 
A boxplot showing statistics on the submitted probabilities for pairs of residues in contact. 

Box boundaries correspond to the Q1=25th (bottom) and Q3=75th (top) percentiles in the 

data; the horizontal line inside the box corresponds to the median (Q2). The height of the 

box defines the interquartile range (IQR = Q3 − Q1). The height of the whiskers shows the 

range of the values outside the interquartile range, but within 1.5*IQR. The red dots 

correspond to outliers, i.e. values outside the 1.5*IQR range. The black horizontal line 

across the plot shows the cutoff (0.5) separating confidently predicted contacts from the 

others. It can be seen that some groups submitted only confident contacts (p>0.5), while 

others likely misinterpreted the format submitting almost all of the contacts with 

probabilities below 0.5.
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Figure 7. 
Cumulative ranking of CASP11 contact prediction groups according to the sum of z-scores 

calculated from the distributions of precision, Xd, MCC and AUC_PR scores (see 

Materials).
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Figure 8. 
Percentage of cases where the first correct (panel A) and first incorrect (panel B) prediction 

is in the reported position for each group. Rows are ordered according to the percentage in 

the first column of panel A. The data are shown for the top L/5 long-range contacts in FM 

domains.
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Figure 9. 
Number of diverse homologous sequences (depth of alignment) for the CASP11 FM targets. 

The effective number of sequences was calculated with the PSIBlast and HHblits programs 

on similar databases with similar parameters (provided in the panel).
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Figure 10. 
Precision of the top L/5 long-range contacts as a function of the depth of alignment (# of 

PSIBLAST hits versus the UNIREF90 database). Each point corresponds to one domain. 

Data points are shown for the CONSIP2 group and also for two contact predictions from the 

Baker structure prediction group on targets T0806-D1 and T0824-D1 (not part of the 

CASP11 contact prediction experiment). Linear trend lines are fitted through the data points 

for the CONSIP2 group (blue), for the average of the top 12 groups (red, individual values 
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not shown) and for the average of the four evolutionary coupling groups in the top 12 

(CONSIP2, Shen-group, Pcons-net and CNIO – orange, individual values not shown).

Monastyrskyy et al. Page 24

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Comparison of highest precision and Xd scores in CASP9, 10 and 11 (panel A: absolute 

values; panel B: relative to the reference SAM-T08 method).
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Table I

Brief description of the methods participating in CASP11.

CNIO* G067 Combination of five co-evolution-based methods, including PSICOV18, 
plmDCA22, PconsC24 and two in-house developed methods.

CONSIP2* (MetaPSICOV34) G021 A neural network method incorporating models of three predictors inferring co-
evolution signal from MSA (PSICOV18, GREMLIN20 and DCA/FreeContact27).

Distill G349 2D-Recursive Neural Networks for predicting contact maps.

FLOUDAS_A1, _A2, _A3 G157, G326, G235 A family of methods based on the consensus of contacts in templates. Particular • • 
• • • • • • • • • • • • • • • • • •-sheet topology.

FoDTcm G283 A method combining decision tree classifiers. The feature vector includes local 
and global context information.

IASL-COPE* G402 A co-evolution-based method built on a Random Forests machine-learning 
technique for partial MSA.

ICOS* G455 A machine-learning method using local information from sequences around 
specific residues, segments connecting the residues, and correlated mutations.

MLiD G105 Deep Networks trained with dropout technique. For every residue pair the 
information is extracted from two 15-residue windows.

MULTICOM-cluster (DNcon35) G420 A deep networks method empowered by GPUs and CUDA parallel computing. 
Uses pair-wise potentials, local sequence features and information from segments 
connecting the contacting residues

MULTICOM-construct (SVMcon) G008 An SVM method incorporating 5 categories of features: local window, pairwise 
information, residue type, central segment window, and protein information.

MULTICOM-novel (NNcon36) G041 A 2D-Recursive Neural Network method for general contact prediction and 
prediction of inter-strand contacts in beta sheets.

myprotein-me* (gplmDCA26) G216 A gap-enhanced pseudo maximum-likelihood direct contact analysis method using 
jackHMMer38 MSAs.

Pcons-net* (PconsC225) G410 A deep learning approach combining PSICOV18 and plmDCA22 predictions built 
on 8 different HHblits37 and jackHMMer38 alignments.

raghavagps-paaint G047 Extracts residue-residue contacts from in-house 3D protein structure prediction. 
The TS method is based on the prediction of dihedral angles.

RaptorX-Contact* (PhyCMAP39) G057 An approach integrating evolutionary and physical constraints using machine 
learning (Random Forests) and integer linear programming.

RBO_Aleph40, RBO-Human G479, G287 A machine learning method that uses graph-based features of contact 
physicochemical environment (without the need for deep sequence alignments).

SAM-T08-server, SAM-T06-server G073, G086 Neural networks and information about correlated mutations in the MSAs, and 
distance constraints extracted from best alignments.

Shen-Group* G124 Combination of a co-evolution approach (inversion of the sample covariance 
matrix) with learning-based approaches (five SVM classifiers).

*
New methods that use correlated mutations approaches
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