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Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has
shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts
generated by liquid/gas saturation variability. In contrast to deterministic inversion approaches, probabilistic in-
version provides the full posterior probability density function of the saturation field and accounts for the uncer-
tainties inherent in the petrophysical parameters relating the resistivity to saturation. In this study, the data are
from benchtop ERT experiments conducted during gas injection into a quasi-2D brine-saturated sand chamber
with a packing thatmimics a simple anticlinal geological reservoir. The saturation fields are estimated byMarkov
chainMonte Carlo inversion of themeasured data and compared to independent saturationmeasurements from
light transmission through the chamber. Different model parameterizations are evaluated in terms of the recov-
ered saturation and petrophysical parameter values. The saturation field is parameterized (1) in Cartesian coor-
dinates, (2) bymeans of its discrete cosine transform coefficients, and (3) by fixed saturation values in structural
elementswhose shape and location is assumed known or represented by an arbitrary Gaussian Bell structure. Re-
sults show that the estimated saturation fields are in overall agreementwith saturationsmeasured by light trans-
mission, but differ strongly in terms of parameter estimates, parameter uncertainties and computational
intensity. Discretization in the frequency domain (as in the discrete cosine transform parameterization) provides
more accurate models at a lower computational cost compared to spatially discretized (Cartesian) models. A
priori knowledge about the expected geologic structures allows for non-discretized model descriptions with
markedly reduced degrees of freedom. Constraining the solutions to the known injected gas volume improved
estimates of saturation and parameter values of the petrophysical relationship.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Geophysical monitoring of subsurface processes is a requirement for
the effective management of hydrocarbon and geothermal resources,
and to assess the integrity of storage units for sequestrated CO2 or nucle-
ar waste (e.g., Bhuyian et al., 2012; Chadwick et al., 2005; Li, 2003;
Orange et al., 2009; San Andres and Pedersen, 1993). Adequate moni-
toring tools provide time-lapse data that allow changes in subsurface
properties to be detected and analyzed. Recovering the subsurface
properties involves geophysical inversion, that is, the inference of a set
of model parameters m from a set of data d. In this study, the focus is
on geophysical monitoring of geologic CO2 sequestration, where
ühler).
niversity of California Berkeley,
electrical resistivity tomography (ERT) has shown great potential
(al Hagrey, 2011; al Hagrey et al., 2013; Bergmann et al., 2012;
Carrigan et al., 2013; Christensen et al., 2006; Doetsch et al., 2013;
Nakatsuka et al., 2010). The benefits of ERT arise from the sensitivity
of electrical resistivity upon liquid/gas saturation and from well-
established and cost-efficient techniques for sensor installations at
the surface and within boreholes (Ramirez et al., 2003; Slater et al.,
2000).

Inverse problems can be tackled deterministically (e.g., Menke,
1989) or probabilistically (e.g., Tarantola, 2005). We herein use a prob-
abilistic approach, namely Markov chain Monte Carlo (MCMC) sam-
pling of the posterior probability density function (pdf) (Mosegaard
and Tarantola, 1995; Sambridge and Mosegaard, 2002). Obtaining a
full marginal pdf for each model parameter is especially beneficial
when the interest is not solely on the estimated parameter value itself
but also on its uncertainty. If, for example, the objective is to locate pos-
sible leakage of injected CO2, one singlemodel as obtained by determin-
istic inversion is not enough to assess the risk that leakage takes place.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2014.05.013&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2014.05.013
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http://dx.doi.org/10.1016/j.jappgeo.2014.05.013
http://www.sciencedirect.com/science/journal/09269851


Fig. 1. The fully assembled chamber containing saturated quartz sand, reproduced from
Breen et al. (2012). The red square near the bottom of the chamber indicates the gas injec-
tion point. Electrode connections can be seen on the left and right sides, and inlet/outlet
tubing on top and bottom. The anticlinal transition from the coarser sand on bottom to
the finer sand on top was designed to imitate a caprock barrier, while finer layering
throughout the chamber imitated natural micro layering in sedimentary formations.
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Geophysical inversion results are dependent on the entire modeling
process, including the formulation and accuracy of the forward prob-
lem, the data quality and processing, and the formulation and parame-
terization of the inverse problem. Adequate analysis of these possible
sources of error and bias is an active field of research (e.g., Hansen
et al., 2014; Kalscheuer and Pedersen, 2007; Ory and Pratt, 1995;
Scales and Tenorio, 2001; Trampert and Snieder, 1996). A better under-
standing of these error sources will improve the resulting inverse
models or at least help to better characterize model resolution and un-
certainty. In this study, we probabilistically invert ERT data to recover
the spatial saturation field in 2D. While the forward formulation and
the data remain unchanged, the inversions are repeated for different pa-
rameterizations of the spatial water saturation distribution. This allows
us to highlight benefits and limitations of differentmodel parameteriza-
tions in terms of the estimates of the saturation field and petrophysical
parameters, as well as their computational requirements and depen-
dence on additional information.

This research builds on thework by Breen et al. (2012). They record-
ed time-lapse ERTdata for a brine-saturated sand chamber during injec-
tion of air, a reasonable surrogate for supercritical CO2. The sand was
arranged to mimic a geologic formation targeted for CO2 storage in
the form of an anticlinal trap, the sand chamber can thus be seen as a
reservoir analog. They inverted for resistivity models using standard
smoothness-constrained deterministic inversion before translating
them into saturation models assuming a known petrophysical relation.
The resulting 2D saturation models were compared to high-resolution
saturation images obtained with a CCD (charge-coupled device) cam-
era. These ERT data are here inverted within a probabilistic framework
and the obtained models are compared to the inversion results and
the CCD images by Breen et al. (2012).

The ERTdatawere acquired in a laboratory environment, which con-
stitutes a compromise between data from real field experiments and
data from entirely numerical studies. Unlike synthetic data, the avail-
able lab data allow investigatingmeasurement-related issues and possi-
blemodel bias, since synthetic data are usually contaminatedwith zero-
mean randomnoise only. At the same time, the laboratory environment
provides full control and knowledge of the underlying ‘geology’ and the
resulting saturation field which enables a detailed quality assessment of
the inverse models. Examples of recent bench-scale analogs of ERT
monitoring experiments include the work of Wagner et al. (2012) and
Pollock and Cirpka (2012).

2. Methods

2.1. The forward problem

The principle of ERT surveys is the sequential injection of electrical
currents between many pairs of electrodes distributed on the surface
or within boreholes. Simultaneously, resulting potential differences
away from the injection pairs are measured across other electrode
pairs in the array. These voltages are a function of the local electrical re-
sistivity distribution (unknown), the source current magnitude
(known), and the electrode geometries (known). The forward problem
in ERT thus consists of calculating the electrical potential differences for
all pairs of measurement and current injection electrodes for a given re-
sistivity model, where the electrodes are considered as point-
electrodes. This involves solving Poisson's equation for the electrical po-
tential, here performed on a finite difference grid (Binley and Kemna,
2005).

The two experimental relations of Archie (1942) provide a
petrophysical link between the bulk resistivity field ρ and the spatial
distribution of fluid saturation Sw for partially saturated porous
media:

ρ ¼ ρwφ
−mS−n

w ; ð1Þ
where ρw is the resistivity of the pore fluid (here, water), φ is the po-
rosity, m and n are the cementation and saturation exponents, re-
spectively. The dimensions of ρ and Sw are given by Nx × Nz, with
Nx and Nz being the grid dimensions. Eq. (1) is valid when φ, m and
n are constant throughout the domain and when surface conductiv-
ity is ignored (Waxman and Smits, 2003). Replacing φ−m by the for-
mation factor F yields

ρ ¼ ρw F S−n
w : ð2Þ

The product ρw F is the bulk resistivity at full saturation, often re-
ferred to as ρb. The basic assumption behind this relationship is that
all resistivity changes are related to changes in saturation. This means
that at full saturation ρ ¼ ρb1Nx�Nz , where 1 is a matrix filled with
ones. Simultaneous estimation of ρb and n allows inverting for Sw direct-
ly. The model vector is then

m ¼ Sw;ρb;nf g ð3Þ

of dimension Nx × Nz + 2 and the forward problem is

d ¼ g mð Þ þ ε; ð4Þ

where g(m) is the forward response ofm and ε is an error term summa-
rizing all measurement and modeling errors.

2.2. Experimental setup

A full description of the experiment and themeasurement system is
given by Breen et al. (2012). We only summarize the main elements of
the experimental setup here (see also Fig. 1).
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A translucent sand chamber with dimensions of 57 cm height ×
28 cm width × 1 cm depth was constructed to allow for measurement
of saturation with ERT and light transmission concurrently. Along both
long sides, twenty-one stainless steel electrodes were inserted 2–
3 mm into the sand, through a non-conducting plastic gasket. The
chamber was filled with two quartz sands of different sizes (d50 of
0.29 mm and 0.53 mm), with finer on top. Micro-layering was generat-
ed within each layer by pouring the sand through a series of screens in
discrete intervals,with the intention ofmimicking a typical sedimentary
formation. The sand-filled chamber wasmounted vertically in front of a
uniform, well-controlled light source. A 12-bit CCD camera took images
of the sand chamberwith its focal plane 1.5maway, yielding a pixel res-
olution of 0.2 mm × 0.2 mm. Saturation fields were calculated from
grayscale pixel intensities using a well-established method proposed
by Tidwell and Glass (1994) and further developed by Niemet and
Selker (2001).

In a single ERT scan, the data acquisition system generated 1536
four-pole data points, predominantly in a rotating dipole–dipole orien-
tation. The sand/fluid system was held in steady state between injec-
tions for the ERT scan, which took approximately eight minutes. ERT
data were inverted according to the deterministic Occam's inversion
methodology (Constable et al., 1987), with a differencing scheme to im-
prove the performance of time-lapse inversion (LaBrecque and Yang,
2001). Archie's 2nd law was used with a priori estimates of parameter
values to convert resistivity to saturation. The background fluid was a
potassium-chloride solution with 1.6 Ωm resistivity, similar to brine
found in CO2 sequestration reservoirs. Because the translucent sand
chamber is unable to withstand reservoir pressures and temperatures,
air was used as a resistive, non-wetting surrogate for supercritical CO2.
The air was injected at 1 ml/min from a small tube near the bottom of
the chamber and allowed to migrate buoyantly toward the fine sand
barrier, where a plume developed over time. In this study, we evaluate
a representative ERT data set taken after 28 ml had been injected.

2.3. Markov chain Monte Carlo inversion

In probabilistic inversions, the space of possible models is randomly
sampled. The objective is to find an ensemble of models that are in
agreement with the observed data and with available a priori informa-
tion. The probability of a model to be part of the posterior ensemble,
p(m|d), is given by Bayes rule (e.g., Tarantola, 2005)

p mjdð Þ ¼ cp mð Þp djmð Þ; ð5Þ

where c is a normalization constant, p(m) is the prior distribution
and p(d|m) ≡ L(m |d) is the likelihood function. The prior quantifies
the probability of a model based on a priori knowledge about the
model that is independent of the data. This includes knowledge
about expected parameter ranges, the shape of the parameter distri-
butions, or expected model morphologies (e.g., Hansen et al., 2012;
Mariethoz et al., 2010). The likelihood term describes the probability
that the observed data are a result of a proposed model, it is thus a
function of the data misfit between observed data, d, and the data
predicted by the model, dpred. If we assume that the data residuals
are uncorrelated and normally distributed, the likelihood function,
L(m|d), is given by

L mjdð Þ ¼ ∏
N

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i

q exp −1
2

dpredi mð Þ−di
� �2

σ2
i

2
64

3
75; ð6Þ

where N is the number of data points and σi denotes the standard
deviation of the i-th data point.

Metropolis sampling (Metropolis et al., 1953) offers a means to effi-
ciently explore the posterior pdf, since regions in the solution space
with high posterior probability are sampled with a higher frequency
than regions of low probability. If proposal states are drawn from uni-
form prior distributions as we do herein, the probability of accepting a
proposed model, mprop, and moving away from the present model
state, m, is given by (Mosegaard and Tarantola, 1995)

α ¼ min 1;
L mpropjd
� �
L mjdð Þ

8<
:

9=
;: ð7Þ

Generation of a new model state mprop requires perturbation of the
present state m. The magnitude and the type of perturbation, which
signifies the step in the randomwalk, strongly controls the performance
of MCMC sampling. While large perturbations potentially sample the
entire solution space, convergence can be slow. Small perturbations
promise faster convergence, but risk missing possible solutions and
getting stuck in local optima (e.g., Gelman and Rubin, 1992). For low di-
mensional problems, themodel update can be based on adding random
perturbations to each individual parameter (e.g., Metropolis et al.,
1953). In applied geophysics, the dimensionality of the inverse problem
is usually rather high since we are interested in spatially distributed
property values. A means to perturb the present model state in high
dimensions is the geostatistical approach, where groups of randomly
distributed cells or blocks of cells are resimulated in each iteration
while honoring the underlying geostatistical spatial dependencies
(Cordua et al., 2012; Hansen et al., 2012; Mariethoz et al., 2010). This
method, however, requires explicit knowledge about the expected
two- ormultiple-point statistical relations and the geostatistical simula-
tions can be CPU-expensive.

An alternative way to tackle high dimensional MCMC problems is to
store past model states in an archive and to generate new states by
recombination of old ones. This is the basic idea of the DREAM(ZS)
algorithm (ter Braak and Vrugt, 2008; Vrugt et al., 2008, 2009), which
has been enhanced with multi-try sampling to simultaneously create
multiple different proposals in each chain and thus to speed up the
search efficiency on a distributed computing network (MT-DREAM(ZS),
Laloy and Vrugt, 2012). MT-DREAM(ZS) has been successfully used to
estimate hundreds of independent parameters (Laloy and Vrugt, 2012;
Rosas-Carbajal et al., 2014). In the algorithm, K (K N 2) chains are run
in parallel and proposals in each chain are generated by adding to the
present state the difference of two or more past states sampled from
an archive. Furthermore, subspace sampling is implemented, where
the choice of updated dimensions (indexed j in Eq. (8)) is based on a
geometric series of crossover values and bounded between 1 and the
dimensionality D. A proposal jump within the i-th chain is then

Δi
j ¼ 1D0 þ eð Þγ D0� �

zr1j −zr2j
h i

þ ϵ; ð8Þ

where D′ is the number of updated dimensions, 1D′ is a unit vector of
dimensionD′ and zjr1 and zjr2 (r1≠ r2≠ i) are samples from the archive
of old states, Z. Ergodicity is ensured by e ~UD′ (−b, b) and ϵ ~ND′ (0, b⁎),
where b and b⁎ are small compared to thewidth of the target distribution.
Based onRandomWalkMetropolis, the jump rate gamma is derived from
γ D0� �

¼ 2:4=
ffiffiffiffiffiffiffiffi
2D0

p
, but periodically set to one to enable sampling of dis-

connected posterior modes. For all elements of D unequal to j, Δi = 0.
The proposal state is then calculated using

mi
prop ¼ mi þ Δi

; ð9Þ

where mi denotes the present state of the i-th Markov chain. For a
detailed description of the algorithm and the algorithmic parameters
we refer to Laloy and Vrugt (2012).

To assess whether the algorithm has converged, we use the conver-
gence diagnostics presented by Gelman and Rubin (1992), where the
change of certain characteristics of the target distribution is monitored
within a chain and across parallel chains. As proposed by the authors,
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convergence is assumed to be reached when the R̂-value (see original
publication) is below a value of 1.2.

2.4. Error description

Since the purpose of this paper is to analyze possible errors related to
the model parameterization, we seek to reduce all other error sources.
To do so, we separated the error term in Eq. (4), ε, into a part that is sys-
tematic, εsys, and a part that depends on the modeling, the setting and
that includes any random error, εl. The systematic error εsys contains
all errors independent of saturation, parameterization and repetition.
They will repeat in each inversion run, for example, measurement bias
due to damaged electrodes, errors due to inaccuracies in the forward
problem or numerical errors. The second error term, εl, describes errors
related to the saturation, to themodel parameterization and all random
measurement errors. This error will change in each inversion run. We
can then rewrite the forward problem

d ¼ g mlð Þ þ εsys þ εl; ð10Þ

where l is a case index.
In a preliminary inversion, we calculated the posterior distribution

of the uniform background resistivity when the chamber is entirely
water saturated. This is a well-posed problem since we use all 1536
data to estimate only one parameter, and its distribution is therefore
very narrow. From this posterior, we extract the mean background re-
sistivity, ρb (which is an estimate of ρb), and its standard deviation,
σρb. Adjusting Eq. (10) to the saturated, uniform case (indexed sat)
yields

dsat ¼ g ρbð Þ þ εsys þ εsat ; ð11Þ

where the data residuals are (e.g., Doetsch et al., 2010; LaBrecque and
Yang, 2001)

r ¼ dsat−g ρbð Þ ¼ εsys þ εsat : ð12Þ

In subsequent inversion runs, we do not invert for d, but for d′ =
d − r so that Eq. (10) becomes

d0 ¼ g mlð Þ þ εl−εsatð Þ; ð13Þ

where εsys is eliminated.

2.5. Model parameterization

Geophysical forward problems are typically solved by approximate
numerical formulations on finite element or finite difference grids. The
model is parameterized by grid cells at a discretization that depends
on the desired resolution and the available computational resources.
In inverse modeling, the parameterization is typically identical to that
of the forward problem. This is not a necessity. In many cases it is com-
putationally beneficial to reduce thenumber ofmodel parameters in the
inverse model. Reduction of the model dimensions is particularly
important for Bayesian inversion, since with growing number of free
parameters the solution space becomes increasingly void and MCMC
sampling very inefficient (Curtis and Lomax, 2001).

Models can be represented by an expansion of base functions such
that (e.g., Linde, 2014; Sambridge et al., 2013)

m xð Þ ¼
Xk
i¼1

miϕi xð Þ; ð14Þ

meaning that the model m at location x is given by the coefficients mi,
where i denotes the parameter index, and the base functions ϕi. In a
Cartesian parameterization, for example, ϕi are boxcar functions
(or, polynomials of degree zero) that are one at the i-th cell and zero
elsewhere andmi are the parameter values. Base function parameteriza-
tions require spatial or spectral discretization of themodel space so that
the discretized units are weighted by their coefficients mi. Their poten-
tial in terms of model space reduction is thus limited if an adequate
resolution is to bemaintained. Generally, no prior information is needed
about expected structures to formulate such parameterizations.

Alternatively, models can be parameterized by objects of fixed or ar-
bitrary shape and size (e.g., Ramirez et al., 2005). Such non-discretized,
‘object-based’ parameterizations allow for very sparse parameter
spaces, but require at least some prior knowledge about the expected
geological structures. In this study, we use localized (Cartesian) and
frequency-based base functions, as well as two kinds of object-based
parameterizations.

The free parameters in this study are the parameters that define the
saturation field Sw, the background resistivity ρb, the saturation expo-
nent n and the relative error level σrel where σreldi = σi. The chamber
is discretized by 91 × 44 cells, which corresponds to a cell size of
about 0.6 cm in both directions. Note that even though the model is
discretized and parameterized in different ways in this study, it is
always retransformed to this fine Cartesian grid before the forward
problem is solved.

To allow for the widest possible uncertainties, we assume uniform
prior distributions for all parameters. This means that each parameter
value is equally probable a prioriwithin its respective range. The satura-
tion parameters depend on the model parameterization, as described
below. In cases where we directly invert for saturation values, these
are assumed to follow a uniform distribution between 0.1 and 1. The
distribution of the background resistivity is approximately known
from preliminary inversion (see previous section), and it is kept a free
parameter allowed to vary within the interval ρb−3 σρb

;ρb þ 3 σρb
�

�
.

The saturation exponent n is sampled between 1 and 3 (e.g., Donaldson
and Siddiqui, 1989; Suman and Knight, 1997). The relative error level
σrel is assumed to follow a Jeffreys prior (Tarantola, 2005), with range
between 0.25 and 10%. Thus, the error levels are distributed uniformly
on a logarithmic scale between these bounds. Estimating the measure-
ment errors amounts to hierarchical Bayesian inference (e.g., Bodin
et al., 2012; Malinverno and Briggs, 2004).

2.5.1. Cartesian parameterization
A simple way to reduce the parameter space of the inverse model is

to coarsen the grid of the forward problem. Here, we represent the sat-
uration field by a regular grid of 19 × 9 rectangular cells, thus reducing
the model space from 4004 to 171 parameters. To solve the forward
problem, the coarse grid is linearly interpolated to the uncoarsened,
fine grid. Despite the relatively coarse discretization, the number of pa-
rameters is still sufficiently large to be challenging for MCMC simula-
tion. Note that for probabilistic inversions using Cartesian parameters
the effective number of degrees of freedom is typically reduced by
regularization (e.g., Rosas-Carbajal et al., 2014) or by the use of
constrained priors (e.g., Hansen et al., 2012) to maintain an acceptable
CPU-intensity.

2.5.2. Discrete cosine transform
The use of orthogonal base functions in the frequency–amplitude

domain and their coefficients is becoming increasingly popular
in geophysics to represent fields of spatially distributed properties
(e.g., Jafarpour, 2011; Linde and Vrugt, 2013). Base functions such as
the wavelet and the cosine transform exploit the spatial correlation
between subsurface properties which allows for efficient model space
compression. For instance, a subsurfacewith constant or gradually vary-
ing properties is adequately represented with just a few terms of an
appropriate base function. Many different base functions have been de-
veloped and applied to particular problems, mainly in the field of image
processing. In geophysics, the most widely used functions are the
discrete cosine transform (DCT, Jafarpour et al., 2009, 2010; Linde and
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Vrugt, 2013) and the wavelet transform (e.g., Davis and Li, 2011;
Jafarpour, 2011). Model compression is performed by setting the coeffi-
cients of the base function terms beyond a certain threshold equal to
zero. The choice of this threshold level is a trade-off between the desired
resolution and the dimensionality of the model parameter space. If
strong prior information on the expected model structures is available,
compression can be based on determination of dominant (most infor-
mative) transform coefficients (Jafarpour, 2011; Jafarpour et al., 2009).
Without prior information, the typical procedure is to truncate the
high-frequency terms of the corresponding transform and to maintain
a fixed number of low-frequency terms (e.g., Linde and Vrugt, 2013).
In this study, we use the DCT. This approach exhibits superior compres-
sion power over the wavelet transform as its base functions are not
spatially localized.

For a uniformly discretized saturation model S∈ℝNx�Nz , the DCT-II
representation in 2D is given by (Ahmed et al., 1974)

B kx; kzð Þ ¼ αkx
αkz

XNx−1

x¼0

XNz−1

z¼0

S x; zð Þcosπ 2xþ 1ð Þkx
2Nx

cos
π 2zþ 1ð Þkz

2Nz
; ð15Þ

where

αkx
¼

1ffiffiffiffiffiffi
Nx

p ; kx ¼ 0ffiffiffiffiffiffi
2
Nx

s
;1≤kx≤Nx−1

8>>><
>>>:

and

αkz
¼

1ffiffiffiffiffiffi
Nz

p ; kz ¼ 0ffiffiffiffiffiffi
2
Nz

s
;1≤kz≤Nz−1:

8>>><
>>>:

where the DCT coefficients in B constitute the unknown model
parameters.

We tested two different choices for truncation of coefficients, with
different frequency content in the set of maintained coefficients. In the
first case, we kept the n = 100 coefficients of a 10 × 10 box in the low
frequency corner of the transform space as free parameters in the inver-
sion, whereas the other coefficients were set to zero and thus discarded
(c.f., DCT-A in Fig. 2). Given that the original Cartesian grid has 4004
cells, the compression is 97.5%. In the second case, we considered as pa-
rameters the 105 low-frequency coefficients arranged in a triangular
block of the transform space (c.f., DCT-B in Fig. 2). This latter choice
a) Cartesian Grid c) DCT  c) DCT  -  A

Distance kx kx

D
ep

th

k zk z

Fig. 2. (a–e) Different parameterizations used for inverse modeling. Discrete cosine transform
uration (top), 2) pathway saturation (top), 3) background saturation (bottom), 4) pathway sa
layer (one more layer in the Gaussian Bell parameterization), 16)–19) correspond to a, b, c and
has the advantage of containing more high-frequency coefficients in
the x- and z-directions. Both are reasonable choiceswhen noprior infor-
mation about the expected frequency content in the inverse models is
available. The prior range of the DCT coefficients was chosen such that
saturation values in the expected range between 0.1 and 1 can be
adequately represented. Random sampling of the DCT coefficients can
lead to physically unrealistic saturation values when the individual
transform terms are added. We therefore expressed the saturation as

Sw ¼ logit−1ðT −1
DCT Bð ÞÞ; ð16Þ

where T −1
DCT denotes the inverse DCT. The inverse logit-transform en-

sures that the saturation values stay within physical bounds since the
logit-transform logit Swð Þ ¼ log Sw

1−Sw

� �
is only defined for Sw ∈ [0, 1].

2.5.3. Structural Prior parameterization
Geological targets subject to monitoring have typically undergone

geophysical (seismic) pre-investigations to map the main geological
units (al Hagrey et al., 2013). If the main geological structures are
known, then a direct parameterization can be used and a pixel- or
frequency-based parameterization is unnecessary. We can instead as-
sume the location and the dimensions of the anticlinal geological trap
to be known (c.f., ‘Structural Prior’ in Fig. 2). The regions above and
below the cap are parameterized as zones of uniform saturation crossed
by thin zones that represent possible gas pathways. Within the trap,
we estimate the saturation in the cap top, Sw,captop, and the saturation
difference for each row of grid cells in the fine Cartesian discretization,
ΔSw ≥ 0, such that in each i-th row, the saturation is

Sw;i ¼ Sw;captop þ
Xi

k¼1

ΔSw;k: ð17Þ

This parameterization allows for different saturation gradients with-
in the cap, including constant and zero gradients. By considering only
positive values of ΔSw physically unrealistic saturation gradients are
prevented since then Sw is monotonic increasing from the top of the
cap to the bottom. This parameterization involves 14 parameters only:
the background water saturation above and below the cap structure,
the saturation within the pathway zones, the water saturation within
the cap top, and the saturation change for the individual model rows
within the cap.

2.5.4. Gaussian Bell parameterization
Geological reservoirs or storage units are often formed by anticlinal

trap structures. We can describe the geological interface as a convex
-  B d) Structural Prior e) Gaussian Bell
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is abbreviated as DCT. The enumerated parameters in (d–e) are 1) background water sat-
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2D shape using a Gaussian Bell curve. By shifting the center of the bell's
peak horizontally and vertically andby varying the height and thewidth
of the curve, anticlines of arbitrary shape can be represented. The curve
is given by

f xð Þ ¼ aexp − x−bð Þ2

2c2

" #
þ d; ð18Þ

where a, b, c, and d are additional parameters to be estimated jointly
with the water saturation above and below the anticline, in the cap
top and by the saturation changes within the cap as described in the
previous section. In this case the height of the cap is not fixed. We are
parameterizing the region within the cap by ten horizontal layers and
invert for the saturation change in each layer. Depending on the height
of the cap, the thicknesses of the ten layers are squeezed or stretched
and the values of saturation change are projected on the fine grid of
the forward problem by linear interpolation.

3. Results

We performed three different inversion series, and ran different tri-
als for all considered model parameterizations. The series are based on
the injection experiment by Breen et al. (2012), and the objective is to
estimate the saturation field after the injection of 28 ml air. To bench-
mark the applicability of the methodology presented herein, we first
apply our method to synthetically generated data. Then, the method is
applied to real data measured by Breen et al. (2012). In all inversions
we used the standard settings of the algorithmic parameters of MT-
DREAM(ZS) (Laloy and Vrugt, 2012). Three different chains are run
jointly in parallel and in each chain five different proposals are created
at each iteration and evaluated simultaneously on a distributed comput-
ing network to speed up convergence to a limiting distribution. This
requires the use of 15 CPUs.

The quality of the inverse saturation models is assessed by compar-
ing the estimated saturation field, Sw with the reference field Sw,ref,
which is the known saturation field in the synthetic study and the
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Fig. 3. Saturation fields for the synthetic study: (a) Saturation fromCCD imaging used to calcula
(g–k) Standarddeviations of the estimated saturation fields. (b and g) Cartesian parameterizatio
Prior parameterization, (f and k) Gaussian Bell parameterization (see Fig. 2 for details on the d
saturation field inferred from CCD imaging for the real data studies.
We formulate the saturation error, Esat as a pixel-by-pixel difference
criterion

Esat ¼
1ffiffiffiffiffiffiffiffiffiffiffi
NxNz

p Sw−Sw;ref

� ������
�����
2

: ð19Þ

As a global criterion for model adequacy, we use the estimated
volume of total injected gas, Vgas,

Vgas ¼ V totφ 1−SwÞ;
�

ð20Þ

where Vtot denotes the total volume of the sand chamber and Sw is the
mean saturation of all model cells. The porosity φ is assumed to be con-
stant and known a priori. Adequatemodels should provide a gas volume
estimate close to the true value of 28 ml.

3.1. Synthetic study

A synthetic test study was conducted to investigate the effect of dif-
ferent model parameterizations when the true saturation field, the true
petrophysical parameters and the actual measurement errors are
known. Electrical potential differences were calculated for the satura-
tion field after the 28 ml injection. The saturation was taken from the
corresponding CCD image (Fig. 3 and Fig. 3 (bottom) in Breen et al.
(2012)). We defined ρw = 1.6 Ωm, φ = 0.38, m = 1.45 and n = 2
and used the petrophysical relation given in Eq. (1) to derive the resis-
tivity field for which the forward problem was solved. The synthetic
data were contaminated with heteroskedastic Gaussian noise with a
standard deviation equal to 0.5% of the measurement value.

The posterior mean values of the estimated saturation fields are
shown in Fig. 3. Due to the coarse discretization, the Cartesian posterior
mean model (Fig. 3b) provides a very blocky description of the satura-
tion field. The saturation error (Table 2) is large, indicating that
the true saturation cannot be adequately represented by the coarse
Cartesian parameterization. The estimated saturation fields of the DCT
S
at

ur
at

io
n 

[−
]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
)          

)          

12.5 25

e)          

j)          

12.5 25

f)          

k)          

12.5 25

st
an

da
rd

 d
ev

ia
tio

n 
[−

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

te synthetic data. (b–f) Posteriormean saturation fields inferred from theMCMC inversion.
n, (c and h)DCT-A parameterization, (d and i)DCT-B parameterization, (e and j) Structural
ifferent parameterizations).



86 T. Lochbühler et al. / Journal of Applied Geophysics 107 (2014) 80–92
parameterizations feature overly smooth interfaces with small inver-
sion artifacts above and below the cap. These deviations are a result of
the truncation of the DCT representation (Fig. 3c, d). The DCT parame-
terized models are much closer to the true field than the Cartesian
models, which are also reflected in the 20 to 30 times smaller saturation
error (Table 2).

Results from the object-based parameterizations (Fig. 3e, f) are visu-
ally closer to the true saturation field, due to the use of prior information
on the expected structures. They exhibit a similar saturation error as
the DCT parameterized models (Table 2). Note that in the case of the
Gaussian Bell parameterization the estimated shape and location of
the trap is very similar to the true shape imposed by the Structural
Prior parameterization. Lower estimated saturation values in the central
regions below the cap indicate that there is some sensitivity to the
saturation change caused by the gas pathway between injection point
and the trap structure.

All parameterizations overestimate the volume of injected gas
(Table 2), which is not surprising due to the underestimation of the sat-
uration within the plume. This problem is quite profound for the DCT-B
parameterizedmodels,whichprovide rather poor gas volume estimates
of almost 50 ml. On the contrary, for the Structural Prior parameteriza-
tion the overestimation of the gas volume is negligible (estimates
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around 30 ml). Detailed prior knowledge about the structural composi-
tion of the subsurface thus helped to improve the estimates of this vol-
umetric parameter. The vast differences in the gas volume estimates
highlight a strong dependency of the modeling outcome on the choice
of the parameterization.

Uncertainties of the estimated saturation values are represented by
their standard deviation of the saturation estimate in each pixel. They
are largest in the corners of the Cartesian parameterization with maxi-
mum values up to 0.4, reflecting low sensitivities in these regions
(Fig. 3g). The sharper interfaces between high and low saturation for
DCT-B compared to DCT-A are accompanied by higher uncertainties
(Fig. 3c, d and h, i). Considerable saturation uncertainty with values
around 0.4 is also associated with the depth of the upper cap boundary
in the Gaussian Bell parameterization (Fig. 3k). The generally small pa-
rameter uncertainties are reflected in the individual posterior realiza-
tions with differences between realizations that are very small (Fig. 4).
This demonstrates that the inverse problem is well-constrained by the
relatively large number of data.

Estimated data error levels are higher than the contamination error
of 0.5% and vary between the different parameterizations (Fig. 5a–e).
Since the parameterization is the only possible error source that
differs between the shown cases, these results demonstrate that the
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parameterization constitutes a significant source of error (Trampert and
Snieder, 1996). The error estimates are lowest for the DCT parameteri-
zations (Fig. 5b, c) and higher for the object-based parameterizations
(Fig. 5d, e). Despite owning the most degrees of freedom, the Cartesian
models exhibit higher data error estimates than the DCT parameterized
models. This shows that the coarse grid does not provide a suitable
model representation. The bimodal distribution of error level estimates
for the Gaussian Bell case is consistent with the presence of two domi-
nant modes of the posterior models with different heights of the cap
(c.f., Figs. 3k and 4e).
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The estimates of the saturation exponentn are close to the true value
of 2 for all parameterizations except for DCT-B (Fig. 6a–e). The underes-
timation of n for this case correspondswell to the clear underestimation
of the saturationwithin the cap, since these parameters values counter-
balance each other (c.f., Eq. (1)) and produce resistivity models with
reasonable data predictions.

As expected, the number of iterations required to reach convergence
depends on the dimensionality of the parameter space (Table 1).
The lower the number of parameters, the faster the convergence of
MT-DREAM(ZS) to a limiting distribution. Indeed, prior information
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Table 1
Number of model parameters and required iterations to reach convergence for the
synthetic study.

Parameterization Parameters Iterations (×103)

Cartesian grid 174 235
DCT-A 103 90
DCT-B 108 100
Structural Prior 17 6
Gaussian Bell 22 37
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about the subsurface structure used in the object-based parameteriza-
tion drastically reduces the CPU requirements.

3.2. Real data study

We now present the results for the experimental data measured by
Breen et al. (2012). We focus our attention on the saturation data mea-
sured after the injection of 28 ml of gas. Breen et al. (2012) presented
the results of a deterministic least-squares inversion, which are used
herein for comparative purposes. Fig. 7b, taken from Breen et al.
(2012), displays the resulting model for the deterministic inversion.
This model is overly smooth and features typical inversion artifacts in
form of anomalies in the corners of the domain, where the parameter
estimates are primarily controlled by the smoothness regularization
due to the low sensitivities in these regions. These anomalies are clearly
artifacts as they are not detected by the CCD imaging (Fig. 7a).

Overall, the resulting models from probabilistic inversion provide a
sharper image of the saturation distribution (Fig. 7a–g). As in the syn-
thetic study, the Cartesian grid is too coarse to adequately represent
the gas plume (Fig. 7c, Table 2). This demonstrates the limitations of
Cartesian parameterizations for MCMC inversions. As in the synthetic
study, the DCT parameterized models are visually closer to the satura-
tion field derived from CCD imaging and their saturation errors are
around 20 times lower than for the Cartesian models (Fig. 7d, e,
Table 2). The DCT-B parameterization allows for somewhat sharper in-
terfaces but exhibits spectral artifacts in the horizontal direction. Both
object-based parameterizations produce saturation models with a
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Fig. 7. Saturation fields for the real data study: (a) saturation from CCD imaging, (b) saturation fi

mean saturation fields inferred from the MCMC inversion. (h–l) Standard deviations of the esti
ization, (e and j) DCT-B parameterization, (f and k) Structural Prior parameterization, (g and l)
plume that is slightly smaller than observed in the CCD image (Fig. 7f,
g). In the case of the Gaussian Bell models, this underestimation of the
plume dimensions leads to saturation errors that are about 60% higher
than those of the Structural Prior parameterizations (Table 2).

Parameter uncertainties are generally higher than in the synthetic
data study. The uncertainty is largest for the saturation estimates of
low-sensitivity cells in the Cartesian parameterized models (Fig. 7h),
in the size of the plume for the DCT-B parameterization (Fig. 7j) and
in the cells defining the upper boundary of the plume in the Gaussian
Bell parameterized models (Fig. 7l).

The relative data errors range between 3.5 and 9% (Fig. 5f–j) and are
significantly higher than those observed earlier for the synthetic study.
With the exception of the Cartesian models, the error estimates gener-
ally decrease with increasing dimensionality of the parameter space
(MacKay, 2003). The estimates of the saturation exponent vary widely
between the different parameterizations (Fig. 6f–j). High and low esti-
mates (as observed for theDCT-B and the Structural Prior parameteriza-
tions) can be explained by under- and overestimation of the saturation
within the plume, respectively. Note that the true value of n is unknown
for the real data study.

It is worth noting that the results are in general agreement with the
findings of the synthetic study. This inspires confidence in the ability of
the proposed parameterization and inversion approach to provide rea-
sonable models, even if the true saturation, petrophysics, and modeling
errors are unknown.

3.3. Constraining models with the total injected gas volume

In CO2 storage facilities, the total volume of injected gas is a well-
monitored quantity. Assuming that all of the injected gas has been
captured in the resolved model domain, this volume provides a strong
constraint for the inversion. This assumption is quite realistic in the
present case study, as the geometry of the model domain is equivalent
to that of the sand chamber. The relationship between the estimated
saturation field and the estimated volume of gas within the system,
Vgas, is given in Eq. (20). This dependency can be imposed as a constraint
in twodifferentways: (i) as a hard constraint,meaning that onlymodels
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Gaussian Bell parameterization (see Fig. 2 for details on the different parameterizations).



Table 2
Saturation errors and estimates of total injected gas volume for the posterior saturation fields derived by MCMC inversion (true value: 28 ml).

Parameterization Saturation error [–] Gas volume estimate [ml]

Mean (×10−2) Std. dev. (×10−3) Mean Std. dev.

Synthetic study
Cartesian grid 166.3 3.9 34.2 2.7
DCT-A 5.3 1.0 38.0 0.7
DCT-B 8.6 1.3 49.4 0.3
Structural Prior 5.5 0.5 29.8 0.5
Gaussian Bell 7.0 4.6 38.4 1.8

Real data w/o gas volume constraint
Cartesian grid 165.5 4.9 37.2 1.7
DCT-A 7.0 2.6 36.7 1.3
DCT-B 7.8 3.6 46.3 1.0
Structural Prior 9.8 1.6 21.2 1.2
Gaussian Bell 15.6 3.0 24.1 2.9

Real data with gas volume constraint
Cartesian grid 165.1 8.2 32.7 0.5
DCT-A 7.2 2.1 28.2 0.3
DCT-B 6.4 2.0 28.5 0.3
Structural Prior 9.5 1.1 27.9 0.3
Gaussian Bell 15.7 2.4 27.9 0.3
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for which Vgas = Vinj are drawn as proposal states, where Vinj signifies
the known volume of injected gas; or (ii) as a soft constraint, where de-
viations between Vgas and Vinj are penalized. We adopt (ii), such that a
poor agreement can be taken as an indicator that gas has left the domain
and that the above-mentioned assumption is violated. We hence treat
Vinj as an additional observation, and extend the likelihood function to
account for differences between the observed, Vinj, and simulated,
Vgas(m), gas volume. The standard deviation of the measured injected
gas volume is assumed to be known and equal to 1% of Vinj.

We now discuss the results of this new inversion, which hereafter
we refer to as constrained inversion. The explicit use of the injected
gas volume in the likelihood function has a positive effect on the inver-
sion results. The resulting posterior means of the saturation estimates
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Fig. 8. Saturation fields for the gas volume constrained real data study: (a) Saturation from CCD
et al., 2012). (c–g) Posteriormean saturation fields inferred from theMCMC inversion. (h–l) Stan
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parameterizations).
are closer to the saturation field retrieved by the CCD image compared
to the unconstrained case, in that some of the inversion artifacts in the
Cartesian and DCT parameterized models are reduced (Fig. 8c–e), and
saturation within the plume is better represented for the Structural
Prior parameterization (Fig. 8f).While the saturation errors remain sim-
ilar to the unconstrained study, the estimated gas volumes are nowvery
close to their true value of 28ml, with posteriormean estimates ranging
between 27.9 and 32.7 ml (Table 2). The estimated uncertainties are
generally reduced compared to the unconstrained case, with a particu-
larly strong uncertainty reduction for the DCT parameterizations
(Fig. 8h–l). Fig. 9 shows for the DCT-A parameterization how the distri-
bution of the saturation in the center of the cap structure changes from
the prior to the constrained posterior. The prior distribution (light gray)
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meterization, (g and l) Gaussian Bell parameterization (see Fig. 2 for details on the different
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contains saturation values over the entire range between values of 0 and
1. The higher densities close to the bounds is due to the applied logit-
transform used to map the sampled DCT coefficients into saturation
values. The MCMC inversion of the ERT data yields posterior saturation
values which are concentrated around a mean of 0.37 (dark gray). If we
constrain the inversion with the measured total volume of injected gas,
then the posterior saturation values increase, and reach amean value of
about 0.49 which is very close to the measured saturation value of 0.46
inferred from CCD imaging.

The estimated data error levels are similar to those for the uncon-
strained case (Fig. 5k–o). Large differences in the estimates of this
parameter could be an indicator of gas migration out of the model
domain, because larger error estimates would suggest a violation of
our assumptions regarding the total volume of injected gas. Results for
all model parameterizations yield an estimate of the saturation expo-
nent, n of around 2. The gas volume constraint thus clearly helped to
obtain a more coherent estimate of this petrophysical parameter as it
is similar regardless of the chosen model parameterization (Fig. 6k–o).

4. Discussion

We show that probabilistic inversion of ERT data is a feasible
approach to monitor geologic storage of CO2. Unlike deterministic in-
versions, the probabilistic approach produces an ensemble of possible
models that enables assessment of the uncertainty on themodel param-
eter estimates. This information is key to risk assessment and decision
making, as it allows for probabilistic analysis of reservoir leakage.

A general problem with sampling in transformed spaces such as the
DCT used herein, is that retransformation of the sampled parameters to
the original domain often leads to physically unrealistic parameter
values due to summation of the transform terms. The inverse logit-
transform, when used as shown here, proved a simple but effective
tool to ensure that the saturation values produced by retransformation
of the sampled DCT coefficients stay within physically realistic bounds.
However, the logit-transform is not a linear operator, which means
that theDCT coefficients, though sampled froma uniformprior distribu-
tion, produce saturation fields that tend to overrepresent values close to
the bounds of 0 and 1. In the present case study, this helps to adequately
represent the high saturation regions above and below the trap
structure, but the inverse models tend to underestimate the saturation
within the trap.

The measured ERT data are sensitive to the saturation changes
below the trap structure that mark the gas pathway between the injec-
tion point and the reservoir. Due to the lower data error level, this
feature is detected much clearer in the synthetic case, but nevertheless
clearly indicated by the inversions of the real data. Even though the
saturation contrast is rather weak, there is a distinct difference in the
saturation above and below the trap. This marks an important improve-
ment compared toOccam's inversion result, for which it is impossible to
distinguish the inversion artifact above the cap from the actual feature
below the cap (Figs. 7 and 8).

The results illustrate to some extent the expectation that the data fit
improves with increasing number of model parameters (MacKay,
2003), but this is not a general rule. If the model parameterization is
particularly inadequate to represent the subsurface, more model pa-
rameters do not necessarily result in models with a reduced data misfit.
We observe this for the Cartesian parameterization, where the coarse
discretization cannot resolve the trap structure in great detail, thereby
producing models with comparatively high data misfits.

As in every inverse problem, the choice of the model parameters
depends on the type and amount of available data, but also on the
goal of the modeling. Since the interest in the present contribution is
on the distribution of water saturation, we inverted for saturation
values and linked them to resistivities by simultaneously estimating
the bulk resistivity under full saturation and the saturation exponent.
Alternatively, the fluid resistivity could be assumed known from geo-
physical logging and the bulk resistivity replaced by the formation fac-
tor which then serves as an additional degree of freedom. Explicit
inference of the petrophysical parameters allows for careful assessment
of the assumed petrophysical model. Unfortunately, poor saturation
estimates can be compensated for by poor estimates of the saturation
exponent, as encountered in the Cartesian and DCT-B parameteriza-
tions. This pitfall can be resolved to some extent by imposing additional
constraints on the models as is demonstrated here by applying the gas
volume constraint. Similar findings were reported by Laloy et al.
(2012) when imaging a tracer plume.

The data inverted in this study were acquired in a quasi-2D sand
chamber in a laboratory environment.What implications from these re-
sults can be transferred to real-world reservoirs? The general finding
that the model parameterization has a strong effect on the required
CPU resources and on the fidelity of the inverse models is as valid for
a true reservoir as for the analog investigated in this study. Furthermore,
adding gas volume constraints on the inverse models will also improve
the results if the inversemodels are formulated as 3D representations. If
the same data are to be inverted using 3D model descriptions, the in-
crease in free parameters and thus the decrease in sampling efficiency
differs strongly for the differentmodel parameterizations. The Cartesian
and DCT parameterized models grow linearly with the number of cells
(coefficients) in the y-direction if the same discretization (frequency in-
formation) is to be maintained. The object-based parameterizations
allow the description of 3D structures with only few additional param-
eters. If the 3D structure of the geological trap is known, no additional
parameters are necessary for the Structural Prior parameterization to
represent the saturation distribution in 3D. If the trap is to be described
by a 3D Gaussian Bell, only two additional parameters (the spread and
the lateral shift in y-direction) are required. Given that solving the
forward problem in 3D will significantly increase the computational
burden, the object-based parameterizations are expected to prove
even more beneficial in 3D. Furthermore, it is of general relevance that
having an idea about the structural subsurface composition (as in the
Structural Prior parameterized cases) markedly improves the estimates
of saturation. This finding supports the results of al Hagrey et al. (2013),
who found that the true subsurface resistivity can be reproduced much
better if geological unit boundaries are known a priori from seismic in-
vestigations. As in any probabilistic approach, the prior information
must be assessed with care as wrong hypotheses may produce illusive
results. The Gaussian Bell parameterization can be seen as a compro-
mise relevant for real-world reservoirs: Possible shapes of geological
structures are imposed in the model, but parameter values and the
exact locations of the geological interfaces are allowed to vary.
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5. Conclusions

In a previous study by Breen et al. (2012), ERT data were measured
during injection of air into a brine-saturated quasi-2D sand chamber.
We here present the results of probabilistic inversion of these data,
using different parameterizations of the saturation field. Object-based
parameterizations generally require some prior knowledge about the
expected geological structures, but allow description of the saturation
fields with relatively few parameters. As an example, we found that
the anticlinal trap encountered in this study is well-represented by a
Gaussian Bell. Concerning the discretized parameterizations used here-
in, the DCT formulation clearly outperforms classical Cartesian formula-
tion of the model parameters in terms of resemblance to the actual
saturation field as well as in terms of the inverse models' performance
in predicting the measured data. Furthermore, the models can be
constrained further if the total volume of injected gas is included in
the likelihood function. This results in much better estimates of the
saturation estimates and the saturation exponent.
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