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Cholinergic Regulation of Mood: From Basic and Clinical 
Studies to Emerging Therapeutics

Stephanie C. Dulawa, Ph.D.1,*, David S. Janowsky, M.D.1

1Department of Psychiatry, University of California at San Diego

Abstract

Mood disorders are highly prevalent and are the leading cause of disability worldwide. The 

neurobiological mechanisms underlying depression remain poorly understood, although theories 

regarding dysfunction within various neurotransmitter systems have been postulated. Over 50 

years ago, clinical studies suggested that increases in central acetylcholine could lead to depressed 

mood. Evidence has continued to accumulate suggesting that the cholinergic system plays a 

important role in mood regulation. In particular, the finding that the antimuscarinic agent, 

scopolamine, exerts fast-onset and sustained antidepressant effects in depressed humans has led to 

a renewal of interest in the cholinergic system as an important player in the neurochemistry of 

major depression and bipolar disorder. Here, we synthesize current knowledge regarding the 

modulation of mood by the central cholinergic system, drawing upon studies from human 

postmortem brain, neuroimaging, and drug challenge investigations, as well as animal model 

studies. First, we describe an illustrative series of early discoveries which suggest a role for 

acetylcholine in the pathophysiology of mood disorders. Then, we discuss more recent studies 

conducted in humans and/or animals which have identified roles for both acetylcholinergic 

muscarinic and nicotinic receptors in different mood states, and as targets for novel therapies.

INTRODUCTION

Mood disorders are the leading cause of disability worldwide. Two major categories of 

mood disorder, major depression and bipolar disorder, are estimated to occur in the general 

population at rates of 18% and 2–3%, respectively1–3. Dysfunction within various 

neurotransmitter systems, including the serotonergic, noradrenergic, dopaminergic, 

GABAergic, glutamatergic, and endorphinergic systems have been hypothesized to underlie 

mood disorders due to the mechanism of action of pharmacological treatments that target 

these systems, and biological findings4–6. The recent finding that the antimuscarinic agent, 

scopolamine, induces fast-onset and sustained antidepressant effects in depressed patients 

has renewed interest in understanding the role of the cholinergic nervous system in mood 

regulation7–11.
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As early as 1950, clinical research observations suggested that increases in central 

acetylcholine (ACh) could lead to depressed mood12–14. In the 1970s, this possibility was 

further elaborated as the adrenergic-cholinergic balance hypothesis of mania and 

depression15. As proposed by Janowsky et al. (1972), this hypothesis posited that depression 

involved a central predominance of acetylcholinergic to noradrenergic tone, while mania 

resulted from the converse15. This theory was then reformulated as the catecholaminergic-

cholinergic balance hypothesis of mania and depression, which integrated more recent 

findings incorporating the role of dopamine, a neurotransmitter integral to the regulation of 

mood16.

Since the role of catecholamines, and dopamine in particular, have been reviewed 

previously17–19, this review will primarily summarize current knowledge regarding the 

modulation of mood by the central cholinergic system. Human postmortem brain, 

neuroimaging, drug challenge, and animal model studies have examined the role of the 

cholinergic system in mood regulation. Here, we first describe an illustrative series of early 

discoveries which have suggested a role for acetylcholine in the pathophysiology of mood 

disorders. We will then discuss more recent studies conducted in humans and/or animals 

which have investigated the role of acetylcholinergic muscarinic and nicotinic receptors in 

different mood states, and as targets for therapeutics.

CHOLINERGIC REGULATION OF MOOD

Acetylcholinesterase Inhibitors, ACh receptor agonists, and ACh Precursor Effects on 
Mood in Humans

The earliest observations of a potential link between acetylcholine and depression were 

based on clinical observations of the effects of ACh receptor (AChR) agonists, which 

activate AChRs, and acetylcholinesterase inhibitors (AChEIs), which prevent the breakdown 

of ACh by acetylcholinesterases (AChEs). AChEIs compose a class of insecticides used in 

agriculture, and nerve agents used in wartime. Exposure to AChEIs increases acetylcholine 

levels in both the central nervous system and the periphery, causing toxic and potentially 

lethal respiratory, central nervous system, and cardiovascular effects.

Several early reports indicated that individuals exposed to AChEI insecticides or potential 

nerve agent weapons developed psychiatric symptoms including psychotic phenomena, 

anxiety, and most commonly, depression. In 1950, Rowntree et al. found that administration 

of the irreversible AChEI diisopropylflurophosphonate (DFP) to bipolar patients reduced 

manic symptoms and induced depression12. Furthermore, when administered to normal or 

depressed patients, DFP increased depressive symptoms and in some, activated psychotic 

symptoms. Gershon and Shaw (1961) reported that agricultural workers chronically exposed 

to AChEI insecticides became depressed or psychotic13. Bowers et al. (1964) tested the 

AChEI, EA 1701, in army volunteers and reported onset of depression14. Moreover, early 

animal behavioral pharmacological studies reported similar findings. For example, both the 

cholinergic muscarinic agonist arecoline and the AChEI physostigmine reduced rodent 

intracranial self–stimulation (ICSS), a measure of reward threshold20, 21.
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Subsequently, a number of investigators formally studied the psychiatric and behavioral 

effects of AChEI challenges (Table 1). Janowsky et al. (1973) reported that in patients with 

bipolar or major depressive disorder, an acute challenge with the centrally active and 

reversible AChEI, physostigmine, antagonized manic symptoms and induced depressive 

symptoms, including apathy, slowness of thought, and psychomotor retardation22. Similar 

studies replicated the antimanic effects of physostigmine in bipolar patients23, 24. 

Furthermore, an acute physostigmine challenge also precipitated depressive symptoms in 

psychiatric inpatients, especially those with a history of major depression22. Other reports 

indicated that physostigmine treatment also induces depressive symptoms in a minority of 

control subjects25–27. Recently, the AChEI donepezil was reported to induce more frequent 

relapse of depression in older patients with mild cognitive impairment28, 29. Furthermore, 

Altinyazer et al. (2016) showed that among individuals with major depression living in 

agricultural districts, red blood cell acetylcholinesterase activity levels negatively correlated 

with the number of past suicide attempts and hopelessness levels30. These reports are 

consistent with more recent SPECT imaging studies suggesting that levels of acetylcholine 

are increased throughout the brain in depressed unipolar and bipolar patients31. Thus, 

considerable evidence suggests that AChEIs reduce elevated mood during mania, increase 

depressive symptoms in depressed patients, and induce depression in euthymic individuals 

with a personal or family history of depression.

Acetylcholine precursors, such as deanol, choline, and lecithin, have also been reported to 

cause depression, and paradoxically hypomania in some cases. Tamminga et al. (1976) 

reported that choline precipitated depression in 2 out of 4 patients with tardive dyskinesia32, 

and Growdon et al. (1977) reported that 2 out of 20 patients with tardive dyskinesia became 

withdrawn and apathetic33. Casey (1979) reported that high doses of deanol caused severe 

depression in 5 out of 33 movement disorder patients, and 3 of the 33 became hypomanic34. 

Overall, patients who developed mood symptoms had a history of affective disorder. 

Subsequent studies with the AChergic precursor citicoline showed mixed effects, with either 

no mood effects or reduced depressive symptoms when given along with agents including 

rivastigmine, citalopram, or lithium35,36,37,38.

Procholinergic Agents Induce Biomarkers of Depression in Humans

Cholinergic agents including AChEIs and muscarinic agonists have also been reported to 

influence the expression of biomarkers linked to mood disorders, including effects on 

neuroendocrine measures, sleep, and pupillary size. Serum levels of adrenocorticotropic 

hormone (ACTH)39, 40, cortisol41–43, and beta endorphin44–46, have been reported to be 

increased in depressed patients, as has cortisol non-suppression by dexamethasone. 

Similarly, increasing acetylcholine levels with physostigmine treatment has been reported to 

increase serum ACTH, cortisol, and beta endorphin27, 47, 48. Furthermore, physostigmine-

induced increases in ACTH and beta endorphin were exaggerated in depressed patients 

compared to normal volunteers49. Physostigmine also induced non-suppression of cortisol 

by dexamethasone in normal adults50. Subsequently, a sex difference was reported in which 

low doses of physostigmine increased serum levels of ACTH and cortisol in females with a 

history of depression51, but not in males.
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Specific changes in sleep architecture are also endophenotypic markers of clinical 

depression observed in depressed patients and their asymptomatic relatives52. These changes 

include increases in rapid eye movement (REM) sleep duration, increases in REM density, 

reductions in REM latency, decreases in slow wave sleep, and disturbances in sleep 

continuity52, 53, 54, 55. These sleep alterations result in part from perturbations in the 

cholinergic system, with procholinergic influences inducing depression-relevant sleep 

effects56. Thus, the AChEI, galantamine, increases REM tonic activity and decreases REM 

latency57. Administration of procholinergic agents including physostigimine58, donepezil59, 

arecoline60–63, or pilocarpine64, 65 to controls reduces REM latency, and increases REM 

density. Furthermore, Laurer et al. (2004) found that the cholinergic muscarinic agonist RS 

86 induced REM latency super-shortening in high risk individuals without a history of 

depression, and this was a predictor of a subsequent first major depressive episode66. 

Similarly, Perlis et al. (2002) discriminated control versus depressed patients by their 

response to donepezil. Controls showed no REM latency changes following low dose 

treatment, whereas depressed patients showed decreased REM latency67. Similarly, 

asymptomatic relatives of depressed patients showed a parallel vulnerability to cholinergic 

stimulation67. Furthermore, vulnerability to physostigmine-induced REM hypersensitivity is 

highly correlated in monozygotic twins, suggesting a genetic component to this 

phenomenon68.

In contrast to the effects of cholinomimetic agents on sleep, several reports have indicated 

that the centrally active antimuscarinic, scopolamine, increases REM latency and suppresses 

REM density and duration in depressed patients69, 70. Furthermore, these scopolamine 

effects are evident following remission71. Thus, antagonizing muscarinic receptors produces 

effects on REM sleep that are opposite of those observed in depressed patients.

Another biomarker observed in depressed patients is pupillary sensitivity to cholinergic 

agonists. Depressed patients exhibited significantly greater reductions in pupillary diameter 

following administration of the muscarinic agonist pilocarpine than did controls, suggesting 

increased muscarinic sensitivity72. Conversely, a report by Sokolski and DeMet (2000) 

showed decreased pupillary sensitivity to pilocarpine in manic patients, a phenomenon 

which was reduced with lithium treatment73.

AChEIs and ACh Agonist Effects on Mood in Rodents

Similar to findings in humans, a number of rodent studies have also demonstrated that 

treatment with AChEIs or cholinergic agonists induce depression-like behaviors (Table 2). 

Picciotto and colleages, as well as others, have shown that systemic administration of 

physostigmine to mice increases depression-like behaviors including social avoidance 

following social defeat74, immobility in the forced swim test (FST)75–77, and immobility in 

the tail suspension test (TST)76, 78. Furthermore, some of these pro-depressive effects were 

more pronounced in male than female mice76, 77. The pro-depressive effects of systemic 

physostigmine treatment in the TST were blocked by acute treatment with either 

scopolamine, a broad muscarinic antagonist, or mecamylamine, a broad nicotinic 

antagonist74. Additionally, physostigmine treatment increased anxiety-like behavior in mice, 

including time spent in the dark side of the light/dark box, and time spent in the center of the 
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open field76, 77. Treatment with either physostigmine or pilocarpine also decreased rates of 

intracranial self-stimulation (ICSS) of the ventral tegmental area (VTA), reflecting increased 

anhedonia79. These depressogenic effects of physostigmine are observed despite tight 

regulation of AChE through negative feedback pathways at the mRNA, protein, and activity 

levels. For example, significant adaptation has been observed following knockout of AChE 

isoforms80, and exposure to AChEIs leads rapidly to upregulation of AChE mRNAs81. 

Furthermore, stress induces alternative splicing of AChE mRNAs and modulation of AChE 

activity82, 83.

Local intracerebral drug infusion studies in rodents have implicated several brain regions in 

the depressogenic effects of procholinergic drug treatments. For example, intra-VTA 

infusion of physostigmine increased immobility time in the FST75, decreased time spent on 

open arms in the elevated plus maze, and decreased sucrose preference84, indicating 

increased anxiety and anhedonia, respectively. Furthermore, intra-VTA infusion of 

pilocarpine produced similar effects84. Conversely, intra-VTA infusion of scopolamine or 

mecamylamine decreased baseline immobility time in the FST, indicating antidepressant-

like effects75.

Mineur et al. (2013) assessed the effects of chronic fluoxetine treatment on AChE activity in 

multiple brain regions, and found that chronic fluoxetine increased AChE activity, 

specifically in the hippocampus74. To test the hypothesis that signaling at Ach receptors 

could contribute to depression-like behavior, physostigmine was infused locally into the 

hippocampus and behavior in the TST was assessed. Consistent with this hypothesis, intra-

hippocampal physostigmine increased immobility, reflecting depression-like behavior74. 

Additionally, knockdown of AChE in the hippocampus using an adeno-associated virus 

(AAV) approach increased anxiety in the open field test and the light/dark test, and increased 

depression-like behavior in the FST, TST, and social defeat paradigm74. Additionally, 15 

days of treatment with fluoxetine prevented the effects of viral hippocampal AChE 

knockdown in the social defeat paradigm74.

Work by Chau et al. (2011) suggests that fluoxetine treatment produces antidepressant-like 

effects in the FST by reducing cholinergic activity in the nucleus accumbens (NAc)85. 

Specifically, intra-NAc infusions of fluoxetine reduced extracellular acetylcholine and 

increased active behavior in the FST85. Furthermore, exposure to the FST, a potent stressor, 

increased basal extracellular acetylcholine in the NAc shell for up to 14 days, while chronic 

fluoxetine treatment prevented this effect85. Similarly, intra-NAc infusions of the muscarinic 

acetylcholine receptor (AChR) agonist arecoline reduced active behavior86, and intra-NAc 

infusions of neostigmine produced a conditioned taste aversion 87. This depressant-like 

effect may be mediated in part through activation of muscarinic 1 acetylcholine receptors 

(M1-AChRs)88, since blocking these postsynaptic receptors with the specific M1-AChR 

antagonist pirenzepine increased swimming in the FST86. On the other hand, activation of 

M2 acetylcholine autoreceptors, which are Gi-coupled, reduces ACh release and has 

antidepressant-like effects. Accordingly, the acetylcholine M2-AChR antagonist gallamine 

induces pro-depressant effects86. Finally, intra-NAc infusion of scopolamine increases active 

behavior in the FST, indicating an antidepressant-like effect86. However, Warner-Schmidt et 

al. (2012) reported that silencing cholinergic interneurons in the NAc induced a depression-
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like phenotype in mice89. Since the cholinergic interneurons of the NAc synapse locally onto 

other neurons within the NAc, and are the only source of ACh in the striatum, these results 

appear to contrast with findings that intra-NAc scopolamine infusions produced 

antidepressant effects86. This inconsistency might be explained by the positioning of 

cholinergic interneurons within microcircuits of the NAc, which theoretically could 

preferentially influence M2-over M1-AChRs. In sum, AChRs in the VTA, hippocampus, and 

NAc appear to regulate depression-like behaviors in rodent models.

Muscarinic Effects of Physostigmine and Arecoline in Humans

Early studies suggested that muscarinic AChRs (M-AChRs) are important for the mood 

altering effects of acetylcholine. The depressogenic effects of low dose physostigmine were 

reversed by administration of atropine, a centrally active antimuscarinic agent90, or 

scopolamine91. Direct muscarinic agonists have also been reported to reduce mood. 

Specifically, the direct muscarinic agonists arecoline92, 93, and oxotremorine94 worsened 

mood state in both euthymic and bipolar patients. Similarly, the M1-AChR agonist, RS 86, 

was reported to have antimanic effects95.

Similarly, a series of studies specifically investigated whether the depression-like effects of 

physostigmine are mediated by muscarinic receptors, and whether these effects are mediated 

centrally or peripherally. Studies dissecting the mechanisms of action of physostigmine on 

behavioral, neuroendocrine, cardiovascular, and sleep measures have largely implicated 

central muscarinic receptors in these actions. Whereas centrally acting physostigmine causes 

significant behavioral, neuroendocrine, cardiovascular, and sleep effects in humans, 

equipotent doses of the non-centrally acting AChEI, neostigmine, does not91, 96, 97. 

Furthermore, these effects of physostigmine can be blocked by the centrally acting 

antimuscarinic agent, scopolamine91, which is a high affinity antagonist at the five known 

muscarinic receptors and does not act at nicotinic receptors98. The effects of physostigmine 

are not prevented by treatment with the peripherally acting antimuscarinic agent, 

methscopolamine91, suggesting a central effect.

Muscarinic Receptor Alterations in Mood Disorders

A body of research has explored central muscarinic receptor expression in controls, 

depressives and/or bipolar patients using in vivo imaging, positron emission tomography 

(PET), or radioligand binding in postmortem brain samples. Several reports have identified a 

reduction in M2-AChR and M4-AChR density in both bipolar and major depressive disorder 

patients. Activation of M2-AChRs or M4-AChRs, which are autoreceptors, reduces 

acetylcholine release from cholinergic terminals99. Thus, reduced expression of these 

receptors might increase Ach release. Cannon et al. (2006) used PET imaging to investigate 

central M2-AChR receptor density using [(18)F]FP-TZTP in unmedicated major depressive 

and bipolar disorder patients. They found that bipolar patients showed a lower distribution 

volume of M2-AChR in the anterior cingulate cortex (ACC) compared to both major 

depressive disorder and control groups100. This decrease in distribution volume could have 

resulted from reduced M2-AChR density or affinity, or increased endogeneous acetylcholine 

levels which could reduce radioligand binding to M2-AChRs. Indeed, increased central 

choline levels have been found in depressed patients101, 102. Studies applying the M2/4 
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receptor antagonist, [3H] AFDX-384, to post-mortem brain tissue from patients with major 

depressive or bipolar disorder also reported reduced M2-AChR and M4-AChR binding in 

Broadman’s area 46 of the dorsolateral prefrontal cortex103. Furthermore, a decrease in 

binding of the M3-AChR antagonist, [3H]4-DAMP, in Broadman’s area 10 indicated a 

decrease in M3-AChR expression in the rostral prefrontal cortex in bipolar patients103. More 

recently, Gibbons et al. (2016) measured M2-AChR and M4-AChR binding in Broadman’s 

Area 24 and 46 of the dorsolateral prefrontal cortex using post-mortem tissue from controls, 

bipolar disorder patients, or major depressive patients103. Results showed that both M2-

AChR and M4-AChR binding was lower in Broadman’s area 24 and 46 of the dorsolateral 

prefrontal cortex in mood disorder patients relative to controls.

However, other reports have not replicated muscarinic receptor density changes in 

depression or bipolar disorder. For example, Zavitsanou et al (2005) assessed [(3)H]AF-DX 

384 binding in the ACC to determine M2-AChR and M4-AChR binding in control, major 

depression, and bipolar patients104. However, no differences in receptor binding were found. 

Furthermore, an experiment using quantitative autoradiography to measure 

[(3)H]pirenzepine binding to M1-AChR and M4-AChR receptors in post-mortem tissue also 

found no difference in binding in bipolar and major depression groups compared to 

controls105. Additionally, a study using a [3H]4-DAMP radioligand binding assay which 

was modified to increase selectivity for the M3-AChR showed that cortical M3-AChR levels 

were not altered in major depression or bipolar disorder106. Heterogeneity in the etiology 

underlying mood disorders may be a factor leading to discrepant findings between 

studies107, 108.

ANTIMUSCARINIC TREATMENT STUDIES

Fast-onset Antidepressant Effects of Scopolamine in Humans

In the early 1980’s, Janowsky et al. (1983) proposed that centrally active anticholinergic 

drugs might be effective antidepressants109, 110. Although anticholinergics were reported to 

cause a “high” in recreational users111–113, and scopolamine was found to be effective in 

antagonizing the behavioral, cardiovascular, sleep, and neuroendocrine effects of AChEIs91, 

definitive proof that anticholinergics like scopolamine alleviated depression in humans 

remained elusive. In the next two decades, several randomized controlled trials (RCTs) 

assessed the effects of scopolamine or the antimuscarinic biperiden in depressed patients, but 

did not conclusively identify antidepressant effects of these drug treatments114, 115. 

However, Gillin et al. (1991) reported a small but significant antidepressant effect of 

scopolamine administered intramuscularly for three consecutive nights compared to 

placebo116.

Studies published beginning in the mid-2000s by the National Institute of Mental Health 

(NIMH) Intramural Mood and Anxiety Disorders Program demonstrated that when 

administered at a higher dosage by the intravenous (i.v.) route, 4 μg/kg scopolamine exerted 

fast-onset antidepressant effects. After an open placebo infusion, major depressive disorder 

and bipolar patients received a series of three 15 min infusions of placebo followed by a 

series of three infusions of scopolamine, or the reverse sequence, each infusion pulsed 3–5 

days apart. The placebo adjusted remission rate with scopolamine was 56%, with an onset of 
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3 days, persisting for at least 15 days7. Anti-cholinergic side effects were well tolerated. The 

same group replicated these findings in a major depressive group. Results showed that 

scopolamine also decreased anxiety, and produced larger reductions in anxiety symptoms in 

women than men9. Subsequent trials by the NIMH group have also shown the rapid-onset 

antidepressant effects of i.v. scopolamine, and identified characteristics of responders. 

Scopolamine induced antidepressant effects in treatment resistant major depressive and 

bipolar patients, and also produced larger antidepressant effects in treatment naïve 

patients11. Furthermore, scopolamine was more effective in patients with greater self-rated 

depressive symptoms at baseline10. In summary, i.v. infusion of scopolamine has been 

identified as a rapid-onset antidepressant with sustained effects for major depression and 

bipolar disorders. Also, one study by Khajavi et al. (2012) reported antidepressant effects of 

orally administered scopolamine. This study evaluated whether scopolamine could augment 

the effects of a classical antidepressant in major depressive disorder patients. In this RCT, a 

combination of the SSRI antidepressant citalopram (40 mg/day) plus oral scopolamine 

hydrobromide (1 mg/d) for six weeks was more effective (65% remission) than citalopram 

plus placebo (20% remission)117.

Although a number of RTCs have demonstrated fast-onset antidepressant effects of 

scopolamine infusion in patients with unipolar or bipolar depression, none have reported any 

effects on mania symptoms. Based on the catecholaminergic-cholinergic balance hypothesis 

of mania and depression, scopolamine treatment might be expected to not only reduce 

depression, but possibly increase mania symptoms. The catecholaminergic-cholinergic 

balance hypothesis is also supported by work in rodents showing antidepressant-like effects 

of scopolamine treatment in normal or stressed animals. Future RTCs should be designed to 

assess the effects of scopolamine infusion on manic or hypomanic symptoms in bipolar 

patients, including those with rapid cycling.

Fast-onset Antidepressant-like Effects of Scopolamine in Rodents

A number of recent studies in rats and mice have shed light on the mechanisms by which 

scopolamine induces fast-onset antidepressant-like effects118–121. Similar to ketamine, a 

single, low dose injection of scopolamine in rodents rapidly induces an antidepressant-like 

behavioral response in several paradigms, including the FST118–121, the chronic mild stress 

paradigm119, the novelty-induced feeding paradigm118, 120, the sucrose preference test119, 

and learned helplessness122, 123. Acute scopolamine treatment induces molecular changes in 

the medial prefrontal cortex (mPFC). These effects include induction of brain-derived 

neurotrophic factor (BDNF) release118, activation of mammalian target of rapamycin 

complex 1 (mTORC1), and increases in the number and function of spine synapses in layer 

V pyramidal neurons in the mPFC. These molecular changes induced by scopolamine have 

also been implicated in the fast-onset antidepressant effects of ketamine124–126. Pretreatment 

with a mTORC1 inhibitor or by a glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid (AMPA) receptor antagonist blocks the antidepressant effects of 

scopolamine121. Scopolamine has been reported to initiate this molecular cascade by 

antagonizing the M1-AChR in the mPFC. Although both GABAergic (GAD67+) 

interneurons and glutamatergic (CaMKII+) interneurons in the mPFC express M1-AChR, 

viral-mediated knockdown of M1-AChR in GABAergic, but not glutamatergic, neurons 
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diminishes the antidepressant-like effects of scopolamine120. Further immunohistological 

and electrophysiological studies have shown that somatostatin interneurons in the mPFC 

highly express M1-AChR, and receptor knockdown studies demonstrated that M1-AChR 

expression in these neurons is required for the rapid antidepressant-like effects of 

scopolamine120. In addition, the antagonism of M1-AChR on somatostatin interneurons in 

the mPFC results in disinhibition of pyramidal glutamatergic neurons, leading to a burst of 

glutamate and downstream molecular pathways thought to mediate the antidepressant 

response through synaptogenesis120. More details regarding the molecular mechanisms 

mediating the rapid-onset antidepressant-like effects of scopolamine in rodents has been 

reviewed elsewhere118.

The role of M2-AChRs in the mechanism of antidepressant action of scopolamine has also 

been investigated. Studies using M1-AChR or M2-AChR knockout mice treated with 

agonists that are preferentially selective for each of these receptors have shown that 

antagonists of M2 receptors, as well as M1 receptors, induce antidepressant-like effects127. 

Conversely, mice lacking M3-AChRs, M4-AChRs, or M5-AChRs do not show a reduced 

antidepressant-like response to scopolamine127. Thus, work to date suggests that M1-

AChRs, and likely M2-AChRs, mediate the antidepressant-like effects of acute scopolamine 

treatment.

NICOTINIC REGULATION OF MOOD:

Nicotinic Treatment Studies in Humans:

Evidence suggests that nicotinic receptors also contribute significantly to the regulation of 

mood. Nicotine withdrawal due to cigarette smoking cessation has been well established to 

induce depression, anxiety, and dysphoria, which may continue for as long as 10 

weeks128, 129. This especially occurs in subjects with a history of major depression130, 131. 

Furthermore, administration of nicotine using transdermal patches has been shown to 

alleviate depression during smoking cessation132. However, controlled studies assessing the 

effects of nicotine on depression in non-smokers are very rare. Of those, McClernon et al. 

(2006) found that chronic nicotine administration by patch produced antidepressant effects 

in non-smokers, compared to placebo133. Furthermore, Salin-Pascual et al. (1996) noted 

improvement in mood in major depression patients after only 2 days of treatment with 

nicotine patches134. Observations of improved mood following nicotine treatment134, 135, or 

smoking, have led to the hypothesis that smoking nicotine tobacco is sometimes used to self-

medicate symptoms of depression136.

A small number of controlled studies have examined the effects of nicotinic agents besides 

nicotine in depressed patients. One study assessed the ability of CP-601,927, an α4β2 

nicotinic acetylcholine receptor (nAChR) partial agonist, to augment a sub-optimal 

antidepressant response to SSRIs; however, no therapeutic effect was found137. Furthermore, 

a meta-analysis of six randomized-controlled trials including 2067 participants failed to 

confirm preliminary positive evidence for the efficacy of nAChR antagonists in treatment-

resistant depression138. For example, the non-selective, non-competitive antagonist of 

nAChRs, desmecamylamine (TC-5214) failed Phase III trials as a treatment for major 

depression139. Although no agents acting primarily at nicotinic receptors are currently in use 
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for the treatment of depression, it should be noted that many current antidepressants 

including tricyclics, SSRIs, and buproprion also act as α4β2 nAChR antagonists in cell-

based assays140, 141.

Nicotinic Treatment Studies in Rodents

Nicotine withdrawal-induced anhedonia in rodents provides a well validated model for 

aspects of major depression142. For example, the affective aspects of nicotine withdrawal 

can be assessed in rats and mice as elevations in brain-stimulation reward thresholds and 

conditioned place aversion. nAChR subtypes including the α5, α2, α3, and β4 subunits have 

been implicated in the aversive properties of nicotine withdrawal143–146. Furthermore, 

nicotine self-administration in rats results in an increase in the sensitivity of natural brain 

reward systems, detected by post-nicotine lowering of intracranial self-stimulation (ICSS) 

thresholds147. Surprisingly, nicotine-induced excitation of reward systems has been reported 

to persist for at least 36 days after cessation of nicotine self-administration had ceased147. 

Since nicotine increases serotonergic and noradrenergic neuronal activity and facilitates 

serotonin and noradrenaline release, the effects of coadministration of nicotine with SSRIs 

or noradrenaline reuptake inhibitors (NRIs) have been explored in preclinical studies. For 

example, nicotine enhances the antidepressant-like effects of low-dose citalopram or 

reboxetine in the FST in mice148. In addition, chronic mild stress-induced anhedonia can be 

alleviated by either nicotine or sertraline, but the two treatments did not have a synergistic 

effect149.

Human Studies of Nicotinic Receptors

Like muscarinic receptors, nicotinic receptor function has also been reported to be altered in 

depressed patients. Single-photon emission computed tomography (SPECT) studies have 

found a reduction of β2 subunit-containing nAChR (β2* nAChR) availability across all brain 

regions in major depression patients compared to healthy controls. Furthermore, acutely 

depressed patients in this study were also found to have lower β2* nAChR availability than 

remitted patients31. This reduction in β2* nAChR availability in depressed patients has been 

suggested to result from increased central acetylcholine levels, which reduce the number of 

receptors available for binding to a SPECT ligand. For example, a SPECT study by Esterlis 

et al. (2013) showed that increases in ACh levels induced by physostigmine challenge 

reduces SPECT ligand binding150. Furthermore, a negative correlation between lifetime 

number of depressive episodes and β2* nAChR availability in temporal cortex, occipital 

cortex, thalamus, and striatum was reported in patients with major depressive disorder31. 

Consistent with findings in patients with major depression, a SPECT imaging study using 

[(123)I]5IA-85380 to quantify β2* nAChR total volume of distribution found significantly 

lower β2* nAChR availability (20–38% less) in subjects with bipolar depression compared 

to euthymic patients and controls in frontal, parietal, temporal, anterior cingulate cortex, 

hippocampus, amygdala, thalamus, and striatum151. In contrast, post-mortem studies using 

acetylcholine washout showed identical β2* nAChR density in controls, major depression 

patients, and bipolar disorder patients. Therefore, depressed and bipolar patients likely have 

increased endogeneous acetylcholine levels but similar β2* nAChR expression levels 

relative to controls.
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Rodent Studies of Nicotinic Receptors

Rodent studies have also implicated nicotinic receptors in the regulation of depression-like 

behavior. However, differences between rats and mice have been found, with the 

antidepressant effects of nicotine being observed more frequently in rats. Nicotine treatment 

has antidepressant-like effects in several animal models of depression-like behavior, 

including the FST152, 153, the TST154 and the olfactory bulbectomy model155. Yet, the non-

selective, non-competitive nicotinic antagonist mecamylamine also produces antidepressant-

like effects in the FST in rodents148, 156, a result which was not due to a generalized 

stimulant effect157. Furthermore, in rats exposed to chronic restraint stress, mecamylamine 

blocked depression-like behaviors including reductions in sucrose preference, increased 

anxiety, and hypothalamic pituitary adrenal hyperactivity158. However, a meta-analysis 

including six randomized-controlled trials examining effects of nAChR antagonists in 

treatment-resistant depression found no antidepressant effects138.

Rodent studies suggest that targeting specific nAChR subtypes might provide a therapeutic 

strategy for treating depression159. Nicotinic antagonists at β2* or α7 nAChRs have been 

reported to have antidepressant-like effects in mice. The α7 nAChR antagonist 

methyllycaconite reduced immobility in the FST and TST, and decreased physostigmine-

induced c-fos immunoreactivity in the hippocampus. These effects were observed in male, 

but not female, mice76. The α4β2 nAChR partial agonist varenicline showed antidepressant-

like activity in the FST in two mouse strains, and also enhanced the effects of the SSRI 

sertraline160; α4β2 nAChR partial agonists may induce antidepressant-like effects by 

inducing dopamine release from VTA-NAc projections161. Furthermore, one small open-

label study of varenicline augmentation was associated with significant improvement in 

mood in outpatient smokers with persistent depression162. However, the α4β2 nAChR 

partial agonist, CP-601,927, which was derived from varenicline, was not found to be 

effective in mouse models of antidepressant efficacy163.

In a series of studies, Mineur et al. (2016) showed that viral-mediated knockdown of either 

the β2* or α7 nAChR subunit within specific brain regions induced robust antidepressant-

like effects in several behavioral tests. Specifically, α7 subunit knockdown in the amygdala 

produced antidepressant-like effects in the TST159, while β2* subunit knockdown produced 

antidepressant-like effects in the FST, TST, and the social defeat paradigm159. β2* subunit 

knockdown in the amygdala was also found to be critical for the antidepressant-like effects 

of the alpha2-noradrenergic receptor agonist guanfacine, while the antidepressant-like 

effects of the nicotinic partial agonist cytisine required noradrenergic signaling in the 

amygdala, highlighting an interaction between ACh and noradrenergic signaling in the 

regulation of depression-like behaviors in the mouse164. Furthermore, ACh signaling 

through α7 nAChRs in the hippocampus was reported to regulate depression-like behaviors 

when ACh levels are increased, which can occur under stressful conditions76. More work in 

humans and animals will be required to determine which nAChR subtypes provide the most 

promising targets for the treatment of mood disorders.
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DISCUSSION:

We have highlighted a number of experiments which suggest that increasing central 

acetylcholine causes depression in humans and depression-like behaviors in animals. These 

results are remarkably consistent across species, and suggest that blocking or lowering 

acetylcholinesterase activity, increasing central acetylcholine levels, or stimulating specific 

cholinergic receptors, all lead to depression15, 23, 24. Furthermore, depression can be rapidly 

alleviated in humans by the pan-muscarinic receptor blocking agent, scopolamine7, 9–11. 

Depression-like behavior is also rapidly reduced by acute scopolamine treatment in rodent 

models118–122. Preclinical studies in rodents have made progress in understanding the 

specific muscarinic receptors, neural circuits, and molecular mechanisms by which altering 

cholinergic neurotransmission regulates affect74, 76, 118–121, 159, and may provide novel 

therapeutics for mood disorders.

Work to date has also revealed an important role for nicotinic receptors in mood regulation. 

Extensive evidence has shown that nicotine withdrawal in both humans and animals 

produces a syndrome which includes symptoms of depression142. Furthermore, nicotine 

administration to rodents produces antidepressant-like effects149, and several small studies 

suggest that nicotine may be antidepressant in nonsmokers133, 135 in addition to those 

undergoing smoking cessation. Furthermore, nicotinic partial agonists and antagonists at 

β2* and α7 nAChRs, respectively, have antidepressant-like effects in mice76, 159, 160, and 

one small study reported that varenicline augmentation improved mood in outpatient 

smokers with persistent depression162. Yet, it remains unclear whether activation, 

desensitization, or interference with temporally precise ACh signaling is more important for 

the antidepressant effects of nicotinic agents165. More work in humans and animals will be 

required to dissect the specific nicotinic receptor subtypes and that mediate the effects of 

Ach on mood, and could lead to the development of novel therapeutics.

The finding that scopolamine exerts a fast-onset and sustained antidepressant effects in 

humans has led to a renaissance of interest in the cholinergic system as an important factor 

in the neurochemistry of major depression and bipolar disorder. Controlled studies have 

indicated that acute i.v. treatment with scopolamine induces fast-onset and sustained 

antidepressant effects, even in treatment resistant patients with depression7, 9–11. Yet over 

the last decade, a far greater number of basic and clinical studies have investigated the 

therapeutic effects and mechanism of action of the NMDA antagonist, ketamine, compared 

to scopolamine124–126. Since no relative disadvantage of scopolamine regarding efficacy or 

safety has been reported compared to ketamine, and some common mechanisms of action 

have been identified, further investigation of the fast-onset antidepressant effects of 

scopolamine are highly warranted. Possibly, a subpopulation of depressed patients might 

respond to treatment with scopolamine who do not respond to classical antidepressants, 

ketamine, or nonpharmacological treatments. Furthermore, a better understanding of the 

mechanism of action of scopolamine could lead to the development of novel fast-onset 

antidepressants with improved efficacy and fewer side effects.

The reviewed literature indicates that scopolamine treatment produces rapid-onset 

antidepressant-like effects in rodents by antagonizing M1-AChRs on somatostatin 
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interneurons in the mPFC, resulting in disinhibition of pyramidal glutamatergic neurons, a 

glutamate surge, and ultimately an increase in synapses120, 121. On the other hand, activating 

M1-AChRs increases depression-like behaviors in humans and animals86, 95, 166. 

Stimulation of presynaptic M2-AChRs and M4-AChRs decreases acetylcholine release when 

activated, and hence agonists at these receptors might decrease depressive symptoms by 

reducing acetylcholine availability99. More work is needed to determine a potential role for 

M3–5-AChRs in the regulation of mood.

Animal studies have suggested that co-treatment with scopolamine and other antidepressants 

such as venlafaxine or noradrenaline reuptake inhibitors may potentiate antidepressant-like 

effects167, 168. As discussed above, more selective muscarinic or nicotinic agents such as 

M1-AChR antagonists, and nicotinic α7 and β2* agents, also require further investigation as 

potential therapeutics for the treatment of depression. Both nicotinic and muscarinic 

receptors also regulate other neurotransmitter systems implicated in mood regulation, 

including noradrenergic169, 170, serotonergic171–173, dopaminergic84, 174, 

GABAergic175–177, glutamaniergic178–180 and cannabinoid181 neurotransmitter systems. 

Investigation into how the acetylcholine neurotransmitter system interacts with other 

neurotransmitters, neuromodulators, and epigenetic factors to modulate mood state will be 

an important direction for future research.

CONCLUSIONS

The catecholaminergic-cholinergic balance hypothesis of depression and mania proposes 

that a central predominance of acetylcholinergic to catecholaminergic tone underlies 

depression, while mania results from the converse15. Evidence to date implicates higher 

central acetylcholine levels in depression, and antagonism of M1-AChRs by scopolamine in 

fast-onset antidepressant effects. Blockade of α7 nAChRs receptors and partial agonism of 

β2* nAChRs are also implicated in antidepressant-like effects. Future studies are needed to 

identify optimal pharmacological strategies for treating depression by harnessing the 

acetylcholinergic system.
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Box 1

Future research directions

1. Further explore potential antidepressant effects of nAChR agents in humans 

and animals.

2. Further elucidate the similarities and differences in the mechanisms of 

antidepressant action of scopolamine versus ketamine using animal models.

3. Longitudinal imaging studies assessing M2-AChR receptor expression during 

illness and remission.

4. Further elucidate the mechanism of action of scopolamine to identify novel 

targets for antidepressant development.

5. Identify biomarkers that identify responders to scopolamine versus ketamine 

treatment.

6. Replicate oral and i.v. trials of scopolamine in affective disorder patients.

7. Use human imaging studies and animal models to identify the neural circuits 

involved in scopolamine’s fast-onset antidepressant effects.

Abbreviations: M2-AChR, muscarinic 2 acetylcholine receptor.
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Figure 1. 
Acetylcholine synthesis and degradation, and the actions of pharmacological interventions. 

Acetylcholine (ACh) is synthesized in neurons from choline and acetyl-coenzyme A by the 

enzyme acetyltransferase. ACh is protected from degradation by packaging within synaptic 

vesicles. ACh is released into the synaptic cleft where it acts upon pre- and postsynaptic 

muscarinic and nicotinic receptors, and degraded into choline and acetate by the enzyme 

acetylcholinesterase (AChE). Choline is recycled back into neurons. AChE inhibitors 

(AChEIs) such as physostigmine and donepezil prevent the breakdown of ACh. Precursors 

such as deanol and choline contribute to ACh synthesis. Abbreviations: AcCoA, acetyl 

coenzyme A; AChR, acetylcholine receptor.
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Figure 2. 
Sites of action of scopolamine’s rapid antidepressant-like effects within cholinergic circuitry. 

Rodent studies have shown that acute scopolamine treatment can induce fast-onset 

antidepressant effects when administered within the mPFC, nAC, and VTA (shown in 

yellow). Cholinergic innervation of the mPFC and VTA is supplied by the basal forebrain 

and brainstem cholinergic systems, respectively. The only source of acetylcholine within the 

nAC comes from local cholinergic interneurons (shown in red). Abbreviations: nAC, nucleus 

accumbens; mPFC, medial prefrontal cortex; VTA, ventral tegmental area; MS, medial 

septal nucleus; vDB, vertical diagonal band; NBM, nucleus basalis of Meynert; SI, 

substantia innominata; LDT, laterodorsal tegmental nucleus; PPT, pedunculopontine 

tegmental nucleus.
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Table 1.

Summary of pharmacological evidence for cholinergic regulation of mood

Illness Drug Mechanism of action Effect

Unipolar 
depression

Physostigmine AChEI Worsened depression22

Arecoline mAChR agonist Worsened depression182

Scopolamine Antimuscarinic Antidepressant7, 9–11

Nicotine nAChR agonist Antidepressant in depressed non-smokers134

Bipolar 
depression

Physostigmine AChEI Worsened depression22

Arecoline mAChR agonist Worsened depression182

Scopolamine Antimuscarinic Antidepressant7, 9–11

Bipolar mania Physostigmine AChEI Reduced mania22–24

RS 86 M1-AChR agonist Reduced mania95

Controls Physostigmine AChEI Induced depression in those with positive history25–27

Induced depression in marihuana-intoxicated controls90

Donepezil AChEI Induced depression in cognitively impaired with positive history28, 29

Deanol ACh precursor Induced depression or hypomania in those with positive history183

Choline ACh precursor Induced depression in tardive dyskinesia patients33

Arecoline mAChR agonist Induced depression in controls and euthymic bipolars patients92, and 
Alzheimers disease93

Oxotremorine ACh agonist Induced depression in Alzheimers disease94

Nicotine nAChR agonist Antidepressant in non-smokers133

Abbreviations: ACh, acetylcholine; AChEI, acetylcholinesterase inhibitor; nAChR, nicotinic acetylcholine receptor; mAChR, muscarinic 
acetylcholine receptor; M1-AChR, muscarinic 1 acetylcholine receptor.
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Table 2.

Effects of manipulations of the cholinergic system on depression-like behavior in rodents

Species Drug Mechanism Route Test Effect

Mice Physostigmine AChEI Systemic FST Depression-like76–78

TST Depression-like74, 78

Intra-VTA FST Depression-like75

Intra-Hipp TST Depression-like74

Social defeat Depression-like74

Scopolamine Antimuscarinic Systemic FST Antidepressant-like118–121

CMS Antidepressant-like119

LH Antidepressant-like,122

NSF Antidepressant-like118, 120

SP Antidepressant-like119

Nicotine nAChR agonist Systemic FST Antidepressant-like154, 156

TST Antidepressant-like154, 156

Mecamylamine nAChR antagonist Systemic FST Antidepressant-like148, 156

TST Antidepressant-like156

Methyllycaconite a7 nAChR antagonist Systemic FST Antidepressant-like76

Varenicline a4b2 nAChR partial agonist Systemic FST Antidepressant-like160

TST Antidepressant-like76

Rats Physostigmine AChEI Systemic FST Depression-like75

Intra-VTA SP Depression-like84

Pilocarpine mAChR agonist Intra-VTA FST Depression-like84

Scopolamine Antimuscarinic Intra-VTA FST Antidepressant-like75

Mecamylamine nAChR antagonist Intra-VTA FST Antidepressant-like75

Systemc FST Antidepressant-like158

CMS Antidepressant-like158

SP Antidepressant-like158

Arecoline mAChR agonist Intra-NAc FST Depression-like86

Pirenzepine M1-AChR antagonist Intra-NAc FST Antidepressant-like86, 88

Gallamine M2-AChR antagonist Intra-NAc FST Depression-like86

Scopolamine Antimuscarinic Intra-NAc FST Antidepressant-like86

Nicotine nAChR agonist Systemic FST Antidepressant-like152, 153

OBX Antidepressant-like155

Abbreviations: AChEI, acetylcholinesterase inhibitor; nAChR, nicotinic acetylcholine receptor; mAChR, muscarinic acetylcholine receptor; M1-
AChR, muscarinic 1 acetylcholine receptor; Intra-VTA, intra-ventral tegmental area; Intra-Hipp, intra-hippocampal; Intra-NAc, intra-nucleus 
accumbens; FST, forced swim test; TST, tail suspension test; SP, sucrose preference; CMS, chronic mild stress; LH, learned helplessness; NSF, 
novelty suppressed feeding.
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