
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Biologically Inspired Working Memory Framework for Robots

Permalink
https://escholarship.org/uc/item/6xd1d32g

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Author
Nokes, Timothy J.

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xd1d32g
https://escholarship.org
http://www.cdlib.org/


A Biologically Inspired Working Memory Framework for Robots

Joshua L. Phillips & David C. Noelle
({joshua.l.phillips,david.noelle}@vanderbilt.edu)

Department of Electrical Engineering and Computer Science
Vanderbilt University

Abstract

This work focuses on a particular neurocomputational
account of working memory function that has been used
to explain a wide range of working memory phenomena
in terms of interactions between the prefrontal cortex
and the mesolimbic dopamine system. Using the mech-
anisms prescribed by this theory, we have constructed a
software toolkit for creating working memory modules
for use in robotic control systems. The challenges faced
by embodied robots are similar to those experienced by
humans in everyday living, making this domain useful
for testing the utility and scalability of this computa-
tional theory of working memory. We report the results
of a feasibility study, involving a robotic version of the
delayed saccade task, and we discuss future plans to test
our working memory model in the context of robot con-
trol and learning.

Introduction

Research in the cognitive sciences has provided substan-
tial insight into the nature of working memory and the
biological mechanisms that produce it. Psychological
studies have provided evidence of capacity limitations
for working memory and have shown that working mem-
ory contents are immediately available for executive and
deliberative processing. Electrophysiological and neu-
roimaging studies have implicated regions of prefrontal
cortex (PFC) as being central to working memory func-
tion. These experimental findings have led to the devel-
opment of biologically-based theories of working mem-
ory, and some of these theories have been explicitly in-
stantiated in computational neuroscience models.

In the work reported here, we have focused on one par-
ticular computational account of working memory func-
tion, and we have endeavored to evaluate the ability of
this account to scale to the challenges faced by human
working memory systems every day. This working mem-
ory model has been previously used to explain a vari-
ety of laboratory findings, but it is uncertain whether
this model is capable of addressing real-world contin-
gencies (O’Reilly et al., 1999). Our approach to assess-
ing the power of our working memory model is some-
what unorthodox. We have begun the process of em-
bedding this working memory mechanism into robotic
control systems, with the goal of using robotic platforms
as challenging testbeds for our computational theory of
working memory function. We believe that the study of
working memory in robots can provide deeper insights
into working memory function in humans, because the

difficulties that arise when robots interact with the world
are representative of the tasks that humans encounter
daily. Thus, robotic tasks provide a rich and effective
domain for testing the scalability of our working mem-
ory model.

This paper reviews important properties of human
working memory processes, as well as our computational
approach to modeling those processes. The benefits that
such a working memory system might bring to robot
control are briefly discussed. We then introduce an
open source software library, called the Working Mem-
ory Toolkit, which provides an abstraction of our pre-
vious computational neuroscience models of prefrontal
cortex. Through a simulation study, we show that this
toolkit offers sufficient working memory functionality to
learn a behavior commonly used to examine the working
memory abilities of non-human primates: the delayed
saccade task. The paper closes with a discussion of the
more elaborate robot navigation and object manipula-
tion tasks that are currently being implemented using
our biologically inspired working memory system.

Background

The Nature of Working Memory

Working memory is what allows you to keep a particu-
lar book’s call number in mind while you search for it
in the library. Working memory is what allows you to
remember what phone number the operator told you,
just long enough to dial it. Working memory is what
allows you to remember information that is critical to
correct decision making in the current situation, but is
then discarded once it has served its purpose. Due to
its involvement in so many aspects of mental function,
working memory is a central component of almost all
theories of human cognition. Working memory is often
described in terms of its storage, manipulation, updat-
ing, and executive processing components (Baddeley and
Hitch, 1974). Perhaps more succinctly, working memory
has been described as a system that stores a small num-
ber of “chunks” of information, protecting them from
interference from other processing systems and position-
ing them so as to directly influence the generation of
behavior (Goldman-Rakic, 1987).

While many theories of working memory exist (Miyake
and Shah, 1999), they tend to agree on several key prop-
erties. One such property is the limited capacity of the
working memory system. Recent estimates of this ca-

1750



pacity suggest that the number of “chunks” that can be
stored and used by working memory is approximately
four (Cowan, 2001). Note that this is somewhat lower
than earlier estimates which suggested a capacity of
“seven plus-or-minus two” items (Miller, 1956). A sec-
ond key property of working memory is that its contents
are readily accessible to other cognitive processes. This
property, combined with the first, suggests that working
memory may be adapted to retain only the information
that is most important for influencing behavior. A re-
lated key property is the volatility of working memory
contents. The constituents of working memory may be
updated and manipulated very quickly. Thus, working
memory can allow new information to influence behavior
much faster than other memory systems, which change
at a slower rate (Waugh and Norman, 1965).

There is substantial evidence that regions of prefrontal
cortex (PFC) play an important role in working mem-
ory (Goldman-Rakic, 1987). Neurons in this brain re-
gion have been found to actively maintain high firing
rates in the absence of stimuli, encoding relevant bits of
information during delay periods. Many different kinds
of information appear to be actively maintained in the
PFC, including spatial locations (Funahashi et al., 1989),
recently viewed objects (Cohen et al., 1994; Miller and
Desimone, 1994), action rules (Wallis et al., 2001), and
even verbal information (Demb et al., 1995). Dense re-
current connections in PFC are thought to support ac-
tive maintenance of high firing rates through mutual ex-
citation (Camperi and Wang, 1998).

Recurrent excitation is not a sufficiently flexible mech-
anism to account for the fluidity of working memory
function. In some situations, working memory contents
must be actively maintained in the face of distractions.
In other situations, contents must be rapidly updated,
discarding old contents in favor of new contents. In or-
der to account for working memory performance, some
intelligent mechanism must be placed in control of mem-
ory updating. But how does the brain know what infor-
mation should be retained and what can be safely dis-
carded?

This issue of intelligent updating is the focus of our
computational model of working memory. Our model as-
serts that working memory is adaptive in the sense that
proper control of updating is learned from experience. If
the retention of a particular kind of informational chunk
in a given situation results in reward, the system will be
more likely to retain similar chunks in similar situations.
The question then becomes one of how such a reinforce-
ment learning scheme is implemented in the brain.

One candidate for a neural substrate for reinforce-
ment learning involves the mesolimbic dopamine system.
Recordings of dopamine cell firing in awake behaving
animals suggest that dopamine cells fire in response to
changes in expected future reward (Shultz et al., 1997).
Interestingly, such a measure of change in expected fu-
ture reward is a key component of a machine learn-
ing algorithm known as temporal difference (TD) learn-
ing (Sutton, 1988). This has led researchers to construct
computational models of neural reinforcement learning,

grounded in interactions between dopamine neurons and
circuits in other brain areas, such as the striatum (Barto,
1994; Montague et al., 1996). These models have been
able to account for biological and behavioral findings as-
sociated with conditioning and motor sequence learning.

It is important to note that midbrain dopamine neu-
rons also project broadly to the PFC, as well as to loop-
like circuits between PFC and the basal ganglia, medi-
ated by the thalamus. Thus, the midbrain dopamine
system is not only well positioned to assist in the learn-
ing of overt motor actions, but it may also contribute to
the learning of the appropriate timing for covert actions,
such as working memory updating (Braver and Cohen,
2000). This is the basis of the working memory model
explored here. A temporal difference learning algorithm,
implemented, in part, by the midbrain dopamine system,
learns to identify situations in which working memory
contents should be actively maintained and situations in
which working memory contents should be rapidly up-
dated. In this way, the working memory system adapts
to the reward contingencies of the organism’s environ-
ment. This model has been successfully used to account
for a variety of working memory phenomena, including
deficits seen in schizophrenia and under focal frontal le-
sions (Braver and Cohen, 2000; O’Reilly et al., 2002).

Temporal Difference Learning

The temporal difference (TD) learning algorithm (Sut-
ton, 1988) is a powerful method for learning to select
actions based on reinforcement signals: sporadic, scalar
measures of how “good” or “bad” the current situation
is. The algorithm uses these sparse measures of perfor-
mance to adjust behavior over time. The central com-
ponent of this algorithm is an estimator of future re-
ward, called the adaptive critic. The adaptive critic is
commonly a simple artificial neural network that takes
information about the current state of the animal and
maps it onto an estimate of how good or bad the current
situation is. Importantly, this mapping is not fixed, but
is learned through experience.

Every situation is assumed to be immediately evalu-
ated by the animal, assigning the situation with some
scalar amount of “reward”, labeled r(s) for situation
s. This scalar identifies things that are inherently good
(e.g., food) with positive values, inherently bad (e.g.,
pain) with negative values, and neutral situations with
a value of zero. The goal of the adaptive critic is not to
estimate this value, however, but to estimate the value
function, V (s), of the situation in terms of the likely
reward to be received in the future. In other words, a
situation’s worth is not measured entirely by the amount
of reward we receive at that instant. For example, when
playing chess it is sometimes desirable to sacrifice one
of your pieces (a pawn) in order to win the game. The
adaptive critic is to estimate expected future reward. If
(s + 1) is the situation that follows situation s in time,
this expected future reward may be formalized as:

V (s) = γ0r(s) + γ1r(s + 1) + . . . + γnr(s + n)

The value of the current situation, V (s), is the sum of

1751



all of the rewards we will receive over the next n time
steps. The rewards on each time step are “discounted”
by a factor, γ, in the range [0, 1]. This discounting factor
makes rewards that occur in the near future more “valu-
able” than those that occur much later. This equation
may be rewritten in a recursive form:

V (s) = γ0r(s) + γ1V (s + 1) = r(s) + γV (s + 1)

Any estimate of the value function that deviates from
this equality is inaccurate, and the magnitude of the
inaccuracy is captured by the temporal difference error :

δ(s) = (r(s) + γV (s + 1)) − V (s)

The TD learning algorithm incrementally updates the
adaptive critic’s estimate of V (s) in proportion to δ(s),
increasing the estimate if δ(s) is positive and decreasing
the estimate if δ(s) is negative.

In order for the adaptive critic to make value function
estimates for novel states, its estimate is computed as
a parameterized function of features of the current sit-
uation. A common parameterization is an affine trans-
formation of situation features. Thus, if the situation,
s, is encoded as a vector of real valued features, si, the
adaptive critic will estimate the value function as:

V (s) = w0 +

n∑

i=1

wisi

Thus, the adaptive critic may be implemented by a sin-
gle linear connectionist processing element. In order to
modify value function estimates according to the tempo-
ral difference error, weights are modified as follows:

∆wi = α δ(s) si ∆w0 = α δ(s)

. . . where α is a learning rate parameter. Many imple-
mentations of TD learning use a technique called absorb-
ing reward, in which V (s+1) is forced to zero when s is a
“goal” situation, marking the end of an episode or trial.
Often the gradient with respect to each weight is carried
over from one time step to the next, but exponentially
discounted according to a parameter λ which is in the
range [0−1]. This learning algorithm produces adaptive
critics that generate good estimates of expected future
reward in various situations.

Given a good estimate of the value of situations, the
learning algorithm can choose actions that lead to sit-
uations of high value. In many TD learning systems,
this action selection process is performed by a separate
component, called the actor (Barto, 1994), but such a
component is not needed if the situations resulting from
actions can be reliably simulated. In such a case, the
adaptive critic is used to estimate the values of all of
the situations that can be immediately reached from the
current situation, and the action that leads to the high-
est value situation is taken. This is the strategy taken
by our adaptive working memory system, where the dif-
ferent situations considered involve different collections
of chunks actively retained in working memory.

Methods

Our computational model of working memory updating,
grounded in interactions between PFC and the dopamine
system and implemented as a neural network version of
TD learning, has been found to match the performance
of humans and non-human primates on a variety of lab-
oratory tasks. We hope to demonstrate the utility of
such an adaptive working memory system in much more
complex task domains that reflect the constraints of ev-
eryday cognition. We believe that such a demonstra-
tion might be had by integrating our working memory
model into the control systems of autonomous robots,
using the embedded working memory system to assist in
the performance of such tasks as visual search in clut-
tered environments, tracking of moving and transiently
occluded target objects, retention and tracking of ob-
jects that make for good landmarks for navigation, and
localization of occluded objects during tool manipulation
tasks. We are currently in the process of constructing
such systems for both mobile robots and a stationary
humanoid robot.

Contemporary robot control systems are not con-
ducive to direct integration with computational neuro-
science models. Computational neuroscience simulation
software typically does not respond in real time, and the
interfaces expected by robot control systems typically do
not deal in the currency of neural firing rates. Thus, in
order to facilitate integration, we have generated an ab-
straction of our working memory model in the form of
an open source software library that may be embedded
in robot control software. As an initial demonstration
of the functionality of this library, we have simulated a
robotic version of a common neuroscientific test of spa-
tial working memory: the delayed saccade task.

The Working Memory Toolkit

We have developed a set of software tools for developing
working memory systems that can be easily and tightly
integrated into robotic control mechanisms. This set of
tools, called the Working Memory Toolkit (WMtk), is a
software library which is general and flexible enough to
be used on a variety of robotic platforms. The toolkit is
written in ANSI C++ and consists of a set of classes and
methods for constructing a working memory system that
uses TD learning to select working memory contents.

When using the WMtk, the first step in building a
robotic working memory system involves the creation of
a WorkingMemory object. This object is configured to
hold some limited number of chunks, with the capac-
ity specified by the designer. There is no limitation
on what kind of information may be grouped into a
chunk. Chunks are not restricted to a particular data
type, and the WorkingMemory object simply maintains
untyped pointers to the chunks stored within it. When
the robot encounters a new situation, its control systems
are expected to generate a list of candidate chunks. For
example, object recognition systems may detect the pres-
ence of a salient object, producing candidate chunks for
the existence of the object, its location, and other rele-
vant properties. Control systems may also produce can-

1752



didate chunks that correspond to actions or goals, such
as a desire to grasp a particular object. Importantly,
candidate chunks are not automatically stored in work-
ing memory. Instead, the list of candidates is passed to
the WorkingMemory object, and the object then uses the
TD learning algorithm to learn which chunks to retain
and which to discard.

In order to evaluate the retention of a chunk, the adap-
tive critic needs to be input real valued features of the
chunk that may be predictive of task success and, thus,
future reward. Since the WMtk does not limit the struc-
ture of chunks, however, it cannot automatically extract
meaningful features from the candidate chunks for this
purpose. Thus, the WMtk requires the designer to spec-
ify a function that maps any chunk into a vector of real
values that may be used by the adaptive critic to assess
the value of the chunk.

A chunk rarely has intrinsic value, however, but is
only worthy of retention in certain contexts. Thus, the
adaptive critic must have access to a representation of
the current context in which the robot finds itself. In
order to provide this information, the system designer
is required to specify another function which maps the
robot’s current situation (e.g., its sensory state) into a
vector of real values.

Finally, the TD learning mechanism of the working
memory system needs to be aware of the arrival of re-
ward. This is provided by the system designer in the
form of a reward function which returns the scalar re-
ward value associated with the current situation. At
each update cycle (i.e., next time step or new state), the
WorkingMemory object calls this function to get the in-
stantaneous reward associated with the current situation
in order to compute the TD error, which drives learning
in the adaptive critic.

The WMtk is designed to be easy to reconfigure but
proficient when used in the default configuration. For
example, the system designer may specify how the real
vectors encoding chunk features and the real vector en-
coding the current situation are combined and prepro-
cessed before presentation to the adaptive critic network.
By default, the vectors for the situation and for each
chunk being considered for retention are simply concate-
nated together to form the input to the adaptive critic.
Other input encoding options are available. For example,
there are cases in which the features of individual chunks
are unimportant as long as at least one of the retained
chunks possess a feature of interest. In these cases, the
vector representations for the considered chunks might
be combined using a logical OR operation, producing
a compact “OR code” of the collection of chunks that
may be presented to the adaptive critic for evaluation.
Similarly, a “NOISY-OR code” option is provided, which
combines considered chunk vectors using the information
theoretic NOISY-OR function.

Given this collection of designer-specified functions,
the WorkingMemory object executes the following rou-
tine. On each time step of the task, a new list of can-
didate chunks is given to the WorkingMemory object by
the robot control system. Initially, these chunks are com-

bined with the chunks that are currently stored in the
working memory. The working memory system is then
faced with the problem of deciding which chunks to re-
tain. The system examines every possible subset of the
collection of chunks that can fit within the limited ca-
pacity of the working memory. Each subset of chunks is
translated into vectors of real valued features, and these
are combined with the vector encoding of the robot’s cur-
rent situation to produce an input vector for the adaptive
critic. The combination of chunks that yields the highest
estimate of future reward is the one that is selected, and
all of the chunks in that subset are retained. All other
chunks are discarded. The temporal difference error is
then calculated, using the reward function value for the
previous time step, our estimated future reward from
the previous time step, and our estimated future reward
that was just calculated. This temporal difference error
is then used to adjust weights in the adaptive critic. In
order to encourage the adaptive critic to explore various
new memory combinations from time to time, a noise pa-
rameter (ε) is used to specify the probability with which
a random combination of chunks will be maintained in
preference to the optimal subset, as determined by the
adaptive critic.

Delayed Saccade Task

As an initial test of the utility of the WMtk, we imple-
mented a software simulation of a classic working mem-
ory task known as the delayed saccade task. In this task,
the robot is expected to fix its gaze on an object in the
center of the screen (a crosshair). Then another object
(a brightly colored dot) is presented in the periphery for
a brief period of time. Finally, once a “go” signal is
provided (the crosshair vanishing), the robot is expected
to shift its gaze to where the peripheral object had ap-
peared earlier. Rather than program the robot to per-
form this task, we required it to learn correct behavior
via a working memory system using the WMtk.

The spatial working memory system used for this task
used a simple configuration. The capacity was set to
three chunks, which was more than what was needed
for this task. We limited the number of screen loca-
tions at which objects could appear to five, allowing us
to encode the sensory state of the robot using fifteen bi-
nary features: five for the location (if any) of a displayed
crosshair, five for the location (if any) of a displayed dot,
and five for the current location of the robot’s gaze.

Three different kinds of chunks were considered for re-
tention. These chunk types were “remember the location
of the crosshair” (cross chunk), “remember the location
of the dot” (target chunk), and “remain fixated on what-
ever you’re looking at” (fixation chunk). Only the type
of the chunk was presented to the adaptive critic, en-
coded over a vector of three binary features, one for each
chunk type. Location information, while not available to
the adaptive critic, was stored in chunk data structures.
These chunks were generated by the robot control sys-
tem based on the current state of the environment. The
robot would sense whether there was a crosshair or a tar-
get present, and, for each object present, it would create

1753



a corresponding candidate chunk that recorded the lo-
cation of the object. Also, if the robot happened to be
looking at an object, a fixation chunk was generated for
consideration. Once generated, all of these chunks were
provided to the WorkingMemory object as candidates for
retention. (New chunks that duplicated current working
memory contents were not considered, however.)

With regard to the reward function, a scheme was used
that both matched standard practice in the primate lab-
oratory and matched reward functions found in the re-
inforcement learning literature. The robot was provided
with a scalar reward value of 0 for all situations until the
very end of a trial. If the robot’s behavior was perfect
for the trial — remaining centrally fixated until the “go”
signal was given and only then saccading to the location
of the previously presented target — the robot was pro-
vided with a reward of 20.1 If the robot did not perform
the trial correctly, a reward of 0 was provided at the end.

The final critical component of this demonstration was
the control system that made use of working memory
contents in order to select behaviors. This control sys-
tem contained two parts. The first corresponded to rela-
tively automatic processes that would be automatically
engaged unless actively blocked by working memory con-
tents. The second part implemented controlled behav-
iors driven by the presence of working memory chunks.
This division is consistent with models of the role of PFC
working memory circuits in cognitive control, with the
working memory actively maintaining chunks that focus
attention on particular goals in an effort to inhibit more
automatic behaviors (Braver and Cohen, 2000).

The automatic behaviors of the robot were very basic,
and they would not be able to reliably perform the de-
layed saccade task on their own. If there are no objects
displayed, the robot will look at a random location. If
objects are displayed, it will look at one of them, chosen
randomly, with high probability.2 These simple behav-
iors were sometimes useful for learning the task (e.g., en-
couraging the robot to look at the crosshair), but they
would not drive correct responding by themselves.

The controlled behaviors were only invoked by par-
ticular combinations of chunks. The fixation chunk had
the highest priority. If a fixation chunk was present,
and the robot was currently looking at either an object
or a location specified by another retained chunk, then
the robot would continue to gaze at the current location
with high probability. If a cross chunk or a target chunk
was being maintained, the robot would consider the set
of locations corresponding to all such retained chunks,
as well as the location of any object that the robot was
currently looking at, and randomly choose one of these
locations to look at, with high probability. In short, in
the absence of fixation chunks and focal visible objects,
the robot would look at a remembered location.

It is important to note that correct behavior would

1This value was selected because it produced good perfor-
mance when using default WMtk parameters.

2With low probability (0.001), the robot always had a
chance of ignoring the objects and its memory contents, opt-
ing to look at a random location, instead.

only be consistently produced if the working memory
system learned, from experience, to retain appropriate
considered chunks. Specifically, failure to remember the
location of a briefly presented target dot would make
it virtually impossible for the robot to saccade to the
correct location at the end of the trial. Conversely, the
spurious retention of a cross chunk would cause the robot
to prefer to look at the middle of the screen than at the
location of the previously presented target. Thus, the
robot was required to learn which chunks needed to be
remembered and which needed to be ignored.

Results

Each trial varied in length from thirteen to twenty time
steps. The first three time steps of each trial consisted of
a blank screen. Then the sequence of stimuli — crosshair
appearance, target dot flash, and crosshair removal —
was presented, with the onset time of each event vary-
ing randomly. The last time step always consisted of a
blank screen, corresponding to the point just after the
the disappearance of the crosshair. At this point, the
robot would either be rewarded for never looking away
from the crosshair and then looking at the proper loca-
tion or not rewarded for having looked away from the
crosshair too early or not looking at the correct location
on the last time step.

A simulation consisted of running trials back-to-back
until the system performed the task correctly for twenty
trials in a row. The weights of the adaptive critic were
initialized to random values in the range [−0.001, 0.001].
The learning rate (α) was set to 0.01, the discount rate
(γ) was set to 0.99, and the backup rate (λ) was set
to 0.7. The working memory noise parameter (ε) was
set to 0.05. The total number of trials taken to reach
the stopping criterion was recorded for 1000 simulations.
The average number of trials taken to reach criterion was
459.3 with a standard error of 25.4.

This number of trials is not unreasonable. It is much
less than the number of trials typically needed to train
monkeys on this task. Consider that the system must not
only learn to overcome its automatic search processes,
but it must also decide which informational chunks will
cause proper controlled processes to be activated. An
examination of the system’s learning trajectory showed
that it did not learn to go to the optimal solution im-
mediately. Several other options were available. For in-
stance, the robot sometimes simply remembered to look
at the crosshair and then chose a random location at
the end of the trial. This strategy produced a 20% suc-
cess rate. During learning, the system often appeared
to return to this strategy until it discovered the utility
of retaining the target location and forgetting the lo-
cation of the crosshair. Once it discovered the correct
strategy, it did not abandon it, with only random noise
affecting performance negatively, afterward. The system
performed very well given that its only feedback was the
reward or lack of reward at the end of the trial.

1754



Conclusion
Our theory of working memory function, based on the
biology of the PFC and midbrain dopamine system, has
been used to account for many phenomena observed in
the laboratory, but it has yet to be validated in the con-
text of more complex real-world working memory tasks.
In order to test this theory, we have begun to incor-
porate an associated computational neuroscience model
into robot control systems. We have demonstrated that
the robotic version of this model is functional and ca-
pable of simulating performance on a simple standard
spatial working memory task.

The next step will involve using the WMtk for more
complex aspects of robot control. We are currently in-
tegrating the WMtk with an object recognition system
embedded in a mobile robot. This working memory sys-
tem will be rewarded if it remembers the location of en-
vironmental objects that make for good landmarks —
objects that are easily reacquired and are useful for lo-
calization. We hope to show that the adaptive working
memory mechanisms of our model are capable of learning
to identify the features of good landmarks from experi-
ence. Such a result will provide further evidence of the
power and scalability of this computational account of
the neural basis of working memory.

Acknowledgments
This work has been supported by the National Science
Foundation under grant EIA-0325641. The authors ex-
tend their thanks to their collaborators on this NSF ITR
project, the members of the Computational Cognitive
Neuroscience Laboratory at Vanderbilt University, and
three anonymous reviewers.

References
Baddeley, A. D. and Hitch, G. J. (1974). Working mem-

ory. In Bower, G. A., editor, Recent Advances in
Learning and Motivation, volume 8, pages 47–90.
Academic Press, New York.

Barto, A. G. (1994). Adaptive critics and the basal
ganglia. In Houk, J. C., Davis, J. L., and Beiser,
D. G., editors, Models of Information Processing in
the Basal Ganglia, pages 215–232. MIT Press.

Braver, T. S. and Cohen, J. D. (2000). On the con-
trol of control: The role of dopamine in regulating
prefrontal function and working memory. In Mon-
sell, S. and Driver, J., editors, Control of Cognitive
Processes, volume 18 of Attention and Performance,
chapter 31, pages 713–737. MIT Press.

Camperi, M. and Wang, X.-J. (1998). A model of visu-
ospatial working memory in prefrontal cortex: Re-
current network and cellular bistability. Journal of
Computational Neuroscience, 5:383–405.

Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J.,
Servan-Schreiber, D., and Noll, D. C. (1994). Acti-
vation of prefrontal cortex in a nonspatial working
memory task with functional MRI. Human Brain
Mapping, 1:293–304.

Cowan, N. (2001). The magical number 4 in short-term
memory: A reconsideration of mental storage capac-
ity. Brain and Behavioral Sciences, 24(1):87–185.

Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya,
C. J., Glover, G. H., and Gabrieli, J. D. E. (1995).
Semantic encoding and retrieval in the left inferior
prefrontal cortex: A function mri study of task dif-
ficulty and process specificity. Journal of Neuro-
science, 15:5870–5878.

Funahashi, S., Bruce, C. J., and Golman-Rakic, P. S.
(1989). Mnemonic coding of visual space in the
monkey’s dorsolateral prefrontal cortex. Journal of
Neurophysiology, 61:331–349.

Goldman-Rakic, P. S. (1987). Circuitry of the prefrontal
cortex and the regulation of behavior by represen-
tational knowledge. In Plum, F. and Mountcastle,
V., editors, Handbook of Physiology, pages 373–417.
American Psysiological Society, Bethesda, MD.

Miller, E. K. and Desimone, R. (1994). Parallel neu-
ronal mechanisms for short-term memory. Science,
263:520–522.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for process-
ing information. Psychological Review, 63:81–97.

Miyake, A. and Shah, P., editors (1999). Models of
Working Memory: Mechanisms of Active Mainte-
nance and Executive Control. Cambridge University
Press, Cambridge.

Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996).
A framework for mesencephalic dopamine systems
based on predictive hebbian learning. Journal of
Neuroscience, 16:1936–1947.

O’Reilly, R. C., Braver, T. S., and Cohen, J. D. (1999). A
biologically based computational model of working
memory. In (Miyake and Shah, 1999), chapter 11,
pages 375–411.

O’Reilly, R. C., Noelle, D. C., Braver, T. S., and Cohen,
J. D. (2002). Prefrontal cortex and dynamic cate-
gorization tasks: Representational organization and
neuromodulatory control. Cerebral Cortex, 12:246–
257.

Shultz, W., Dayan, P., and Montague, P. R. (1997). A
neural substrate of prediction and reward. Science,
275:1593–1599.

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning, 3:9–44.

Wallis, J. D., Anderson, K. C., and Miller, E. K. (2001).
Single neurons in prefrontal cortex encode abstract
rules. Nature, 411:953–956.

Waugh, N. C. and Norman, D. A. (1965). Primary mem-
ory. Psychological Review, 72:89–104.

1755




