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ABSTRACT OF THE DISSERTATION

Essays in Public and Health Economics

by

Maria Victoria Barone

Doctor of Philosophy in Economics

University of California, Los Angeles, 2023

Professor Maurizio Mazzocco, Chair

This dissertation studies the design and effectiveness of public policies that aim to improve

population health. This dissertation is divided into three chapters. In chapter one, I study

the design of an optimal paid sick leave system. To do so, I combine individual-level data on

paid sick leave claims from Chile with a sick pay insurance model. First, I show that workers

respond to the monetary incentives induced by the benefit scheme, and their behavior varies

with the day they fall sick. I use these patterns to inform and estimate a model of sick pay

insurance. In the model, risk-averse workers face health shocks and decide how many days

to be on leave. Workers are insured by a risk-neutral social planner who chooses the optimal

contract to maximize social welfare. I leverage the estimated model to derive the optimal

sick pay contract and estimate the welfare gains from its implementation. Relative to the

current system, the optimal system provides more insurance for short-term sickness and less

insurance, i.e., lower replacement rates, for longer sickness spells. Workers are willing to give

up 1.53% of their earnings to be insured under the optimal policy.

The second chapter focuses on the origins and effects of the opioid crisis. Drawing on

unsealed records from litigation against Purdue Pharma, I uncover rich quasi-exogenous

variation in the marketing of OxyContin, to causally connect supply-side factors to the

ii



origin of this epidemic. My results indicate a strong causal link between Purdue Pharma’s

promotional targeting and future increases in prescription opioids. The rise in access to

potent prescription opioids is responsible for a dramatic increase in opioid mortality, declines

in the quality of life, increases in fertility, and deterioration of birth outcomes.

The third chapter examines the effect of non-price interventions on smoking exploiting

the 2011 Argentinean anti-smoking national law. I interact state-level legislation with the

national law to identify the effect of incorporating graphic tobacco warnings and implement-

ing clean indoor air policies on smoking prevalence and cigarette consumption. I explore

whether alcohol and tobacco are consumed as complements or substitutes to assess the side

effects of tobacco policies.
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Introduction

The first chapter of this dissertation studies the optimal design of social insurance programs.

These programs offer valuable protection against a broad range of risks that could be detri-

mental to individuals’ well-being, such as health deterioration that limits one’s ability to

work. In particular, paid sick leave provides income replacement for workers who suffer

from short-term impairments caused by non-work-related sickness (e.g., common flu). If ad-

equately designed, paid sick leave can be greatly beneficial. It allows workers to meet their

personal health needs and smooth consumption. In "On the Design of Paid Sick Leave: A

Structural Approach", I ask: What is the optimal paid sick leave system? To answer this

question, I combine individual-level data on paid sick leave claims with a model of sick pay

insurance provision. Then, I leverage the estimated model to derive the optimal sick pay

contract and estimate the welfare gains from its implementation.

This research exploits a unique dataset that includes administrative records of the Chilean

paid sick leave system. I observe the universe of workers insured by the government eligible to

file a sick leave claim between 2015 and 2019 and their utilization of sick leave benefits. This

database includes rich demographic information at the worker and sick leave claim levels. In

particular, I observe the exact beginning and end dates and the primary diagnosis related to

a sick leave claim at the International Classification of Diseases’ four-digit level. Importantly,

this paper is the first to use such rich administrative data on sick leave claims. This dataset

offers two advantages. First, the data are less prone to measurement error present in the
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survey data used by other papers. The use of survey data raises the usual measurement

error issues with self-reported recall data and prevents researchers from distinguishing the

incidence of absences from their length. Second, the data allow me to study daily leave-taking

behavior and estimate individual demand for sick pay.

I model the incentive problem created by paid sick leave provision. In the model, a risk-

averse expected utility–maximizing worker chooses her sick leave utilization and labor supply.

This choice is a function of the generosity of sick pay and the worker’s preferences for the

valuation of time outside work and propensity to engage in moral hazard behavior. A risk-

neutral social planner offers a sick pay contract to maximize aggregate welfare. The optimal

level of benefits depends on workers’ behavioral responses, the costs of sick work, workers’

risk preferences, and production losses. I quantify these elements by exploiting the data

on paid sick leave utilization linked to medical assessments of recovery times. This model

incorporates two unique features. First, in contrast to the previous literature, the proposed

framework focuses on how sickness affects the absence behavior of employed individuals.

Second, the model allows workers’ behavior to vary with the day of the week that a sick

leave claim is filed. Previous literature has shown that the temptation for shirking varies

with the day of the week. I explicitly incorporate this mechanism in the model of workers’

behavior.

The main empirical challenge is to recover the underlying distribution of health and

workers’ preferences. I propose a novel strategy to overcome this challenge. First, I combine

individual-level data on sick pay utilization with detailed medical assessments of recovery

times associated with each health condition. This allows me to construct the underlying

distribution of health without imposing parametric assumptions on this distribution. Second,

I exploit variation in the incentives for shirking behavior induced by the day of the week

when workers fall sick and file sick leave claims to estimate workers’ preference parameters.

The main result of this research is to determine the optimal paid sick leave system—the
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system that maximizes aggregate welfare—and the corresponding replacement rates. The

optimal policy has three main features. First, it offers a partial replacement for claims of up

to three days. This shift increases the utility of workers who would not take sick leave under

the current system but do under the optimal policy. Second, the optimal policy eliminates

the discontinuity feature in the current system. Doing so curbs the cost of the behavioral

responses to the program incentives. Third, the average replacement rate is increasing. I

estimate that workers are willing to give up 1.53% of their earnings to be insured under the

optimal policy.

Risky health behaviors such as smoking, drinking alcohol, and drugs’ use and abuse

are major sources of preventable deaths. The second part of this dissertation contributes

to understanding the costs and consequences of these behaviors. In addition, it provides

evidence of the effectiveness of government interventions to curb the consumption of addictive

goods.

Opioid misuse is one of the most substantial and long-lasting public health crises faced by

the United States. In the second chapter of this dissertation, "A Manufactured Tragedy: The

Origins and Deep Ripples of the Opioid Epidemic" (joint with Carolina Arteaga), we shed

new light on the origins and effects of the opioid crisis, emphasizing the critical role played by

the pharmaceutical industry. Understanding the origins of this epidemic and its consequences

is challenging since the variation in the use of prescription opioids across geographies and over

time is not random. To overcome this challenge, we exploit detailed features of the initial

marketing of prescription opioids, which we obtained from unsealed court records drawn

from litigation against Purdue Pharma, the manufacturer of OxyContin—a prescription

opioid at the center of the epidemic. Drawing on these records, we document a strong causal

link between Purdue Pharma’s promotional targeting and future increases in the level of

prescription opioids. We then exploit this variation to quantify the epidemic’s effects.

We find three main results. First, we estimate that easier access to potent prescription
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opioids was responsible for a dramatic increase in mortality. Increasing the supply of opioids

from the 25th to the 75th percentile caused an 89% increase in prescription opioid deaths,

corresponding to approximately 200,000 deaths. Second, we document far-reaching declines

in quality of life: for example, the number of individuals participating in social safety net

programs, such as SNAP, increased with opioid supply. Finally, while the epidemic primarily

affected individuals in early adulthood through mid-life, it has potential costs beyond the

generation directly affected by it. We study the intergenerational impacts of the opioid epi-

demic and estimate a 10% increase in fertility rates driven entirely by increases in nonmarital

births and concentrated among women aged 25–29.

Governments can preserve population health by implementing policies that directly re-

strict the availability of unhealthy products or raise the time costs of using them. In partic-

ular, tobacco regulation has been a major component of health policy in both developed and

developing countries. The third chapter of this dissertation, "Tobacco Consumption Habits in

Argentina: Causal Evidence from a New Regulation" (reject & resubmit at Journal of Health

Economics) assesses the effectiveness of antismoking nonprice policies—such as place-based

bans and warning labels—in low- and middle-income countries, where 80% of tobacco smok-

ers worldwide live. Unlike other studies on the effects of nonprice policies in the context

of middle- and low-income countries that have relied on cross-country or before-and-after

comparisons, my paper employs an identification strategy that provides causal estimates of

the impacts of this policy on smoking, drinking, and health outcomes.

I study the case of Argentina’s law that banned smoking in public spaces—e.g., bars

and restaurants—and mandated graphic tobacco warnings in 2011. To estimate the causal

effect of this regulation, I exploit state-level differences in the strength of the regulation of

tobacco products before the national law was passed. States with more lenient restrictions

were more exposed to the effects of the new regulation than states with stricter regulations. I

compare smoking and drinking behavior and health outcomes of individuals in lenient states
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(treated states) with those of individuals in strict states (comparison states). I obtain two

key results. First, I document that the antitobacco regulation effectively reduced smoking

participation. Second, I document that the rate of hospital discharges due to diagnoses of

chronic obstructive pulmonary disease decreased in the short run, suggesting an improvement

in population health as a result of stricter regulation of tobacco products.
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Chapter 1

On the Design of Paid Sick Leave: A

Structural Approach

1. Introduction

Social insurance programs offer valuable protection against a broad range of risks that could

be detrimental to individuals’ well-being, such as health deterioration that limits one’s ability

to work. In particular, paid sick leave provides income replacement for workers who suffer

from short-term impairments caused by non-work-related sickness (e.g., common flu).1 If

adequately designed, paid sick leave can be greatly beneficial. It allows workers to meet

their personal health needs and smooth consumption. Nonetheless, the availability of sick

pay could induce workers to request more sick days than should be assigned based on their

health. This response could partially offset the welfare gains of sick pay. This raises the

question: What is the optimal paid sick leave system?

1While closely related to worker’s compensation programs, which provide income replacement and med-
ical benefits in case of work-related sickness, and disability insurance programs, which provide income re-
placement in case of permanent or long-term impairments to working ability, paid sick leave programs offer
protection against the risk of contracting a disease that impairs workers for a short period and has a fore-
seeable recovery.
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The main contribution of this paper is to answer this question. To do so, I proceed in

three steps. First, I use detailed data on paid sick leave claims to document how workers’

characteristics and the institutional details of the sick pay system—e.g., the presence of

deductibles—determine sick pay utilization. Second, I propose and estimate a model of sick

pay provision. This exercise gives me key inputs to derive the optimal paid sick leave system:

the value of risk protection, the costs of insurance provision in terms of moral hazard, the

production cost of time off, and the underlying distribution of health shocks.2 Finally, I use

these estimates to determine the replacement rates that characterize the optimal sick paid

system. I find that the optimal system features a low replacement rate for short claims, i.e.,

up to three days long claims are partially insured, with most of the cost on the worker side.

Longer sickness spells are covered at a higher rate and the replacement rate is increasing with

sick leave duration. I estimate that workers are willing to give up 1.53% of their earnings to

be insured under the optimal policy.

I study this question in Chile, which is an ideal setting for this research for several reasons.

First, it has a comprehensive paid sick leave system that covers all workers and features only

one plan designed by the central government. Thus, workers do not choose their sick leave

coverage.3 The Chilean system provides no coverage for sickness lasting three days or fewer.

This nonpayable period works like a deductible that resets with every new sick leave spell

and is a common mechanism among sick leave programs.4 Starting on the fourth day, there

is full coverage of each missed day, i.e., the replacement rate is one. If the sick leave spans 11

days or more, the nonpayable period is reimbursed; this implies that the average replacement

2In this paper, moral hazard refers to the responsiveness of workers’ demand for sick leave to changes in
the generosity of sick leave benefits.

3This alleviates adverse selection concerns. If workers could choose their sick pay coverage, we could
expect individuals with preferences for more absences to self-select into plans with more generous provisions.
The presence of adverse selection would result in an upward bias in the estimates of the moral hazard
responses.

4These resettable deductibles are similar to those used in automobile or homeowners insurance: Separate
deductibles apply to each loss. Many European paid sick leave systems have a similar deductible. See Marie
and Castello (2022) on the case of Spain and Pollak (2017) on the French experience. Table A.20 summarizes
sick pay systems for a sample of OECD countries with available data.
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rate varies with the duration of a claim and jumps discretely at 11 days.5

The second advantage of this setting is that Chile has greatly detailed administrative

data. I observe the universe of workers insured by the government eligible to file a sick

leave claim between 2015 and 2019 and their utilization of sick leave benefits. This group

accounts for about 70% of the Chilean workforce. This database includes rich demographic

information at the worker and sick-leave claim levels. In particular, I observe the exact

beginning and end dates and the primary diagnosis related to a sick leave claim at the

International Classification of Diseases 10th revision (ICD-10) four-digit level. I combine

the claims data with medical assessments from the Peruvian Handbook of Recovery Times

(EsSalud, 2014). This handbook specifies the average recovery times for 2,763 unique disease

codes at the ICD-10 four-digit level. These recommendations are adjusted based on workers’

gender, age, and occupation.

Exploiting these data, I document three facts that provide qualitative motivation for the

model and serve as quantitative targets in the estimation. First, workers’ sick leave claim

utilization varies with age and occupation. For example, on average, workers aged between

55 and 64 use an extra 2.72 days per year relative to their younger counterparts. Similarly,

compared to white-collar workers, workers in blue-collar occupations use, on average, 1.15

more days. These patterns could reflect differences in the underlying distribution of health

shocks and differences on their preferences. In the estimation of the model, I allow the

distribution of health shocks to vary with age and occupation.

Second, I provide evidence that workers respond to the financial incentives induced by

the benefit scheme. Specifically, I test whether workers bunch around the discontinuity in

the replacement rate. To do so, I construct an underlying distribution of recovery times,

leveraging the handbook’s recommendation of how many rest days a worker needs to recover

from a disease. I compare this distribution with the observed distribution of requested days
5Panel (a) of Figure 1.1 presents days paid as a function of days on leave for claims of different duration.

Panel (b) shows the average replacement rate.
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and estimate that 11-day-long sick leave claims are 4.55 percentage points more likely than

what the underlying distribution of health predicts. I rely on this empirical fact to assess

the model performance and find that the proposed model can reproduce the excess mass

observed at 11 days.

Third, I show that workers respond to nonmonetary shifts in the temptation to extend

their leaves. To do so, I exploit the data on exact dates when sick leave claims are filed. I

argue that the temptation to extend a sick leave claim varies with the day of the week when

a worker falls sick. For example, the incentives to file a two-day-long sick leave claim on a

Thursday differ from those to file a two-day claim on a Tuesday. I consider the following

exercise: I fix the duration of a sick leave claim and inspect the share of claims filed on each

day of the week. I find an excess mass on combinations of days of the week and durations

that allow the worker to extend her leave through the weekend. I refer to such combinations

of durations and start days as “weekend-streak combinations”. I document that workers are,

on average, 12.33% more likely to file a weekend-streak claim than to file a sick leave claim

of the same duration on any other day of the week. To capture this empirical regularity, the

model allows workers’ behavior to vary with the day of the week of a sick leave claim.

I use this evidence to develop and estimate a model of sick pay provision. The model

has two agents: the workers and a social planner. Workers are risk-averse expected utility

maximizers and choose their sick leave utilization. When choosing the demand for sick

days, the worker trades off the utility of time off with the consumption loss from taking

up sick leave. The latter depends on sick leave generosity. The former is a function of two

key parameters: (i) workers’ relative valuation of time outside work to recover from health

shocks or engage in leisure and (ii) workers’ propensity to overstate their sickness. Utility

varies with the day of the week when a sick leave claim is filed to capture the empirical fact

that the temptation to extend leaves varies at this level. In this setting, sick pay coverage

lowers the cost of a day away from work and (weakly) increases sick pay utilization. This is

9



the traditional moral hazard effect of insurance provision.

Sickness negatively impact workers’ productivity. This reduction is justified by two forces.

First, a pure productivity effect: a worker is less productive when she is sick relative to her

healthy state. Second, individuals may be contagious at work, creating a negative externality.

In the model, I capture this by allowing workers’ productivity to vary with their health

status. If the wage rate does not depend on the health-related productivity, this reduced

productivity gives rise to a production externality.6 Some workers find optimal to show up

to work sick to avoid the consumption losses associated with an absence. Additionally, some

workers find optimal to skip work even if their productivity is “high enough”, e.g. some

workers return to work too late. This production externality affects the main trade-off faced

by the planner.

The optimal contract balances the benefits of risk protection with the cost associated

with moral hazard and production losses. A more generous sick pay scheme would increase

workers’ well-being by offering more risk protection. Workers would respond to this policy

change increasing sick pay utilization—moral hazard response. This response increase the

pool of workers taking sick leave—more absences—and reduces production externalities—less

individuals working sick. Thus, moral hazard is not necessarily welfare decreasing. The op-

timal level of benefits depends on risk preferences, workers’ behavioral responses, production

losses, and the distribution of risks. The principal empirical focus of this paper is to quantify

these elements.

To determine the optimal system, I proceed in two steps. The first step concerns workers’

sick pay utilization choices. In this step, I recover a vector of preference parameters—time

valuation and compliance costs—from workers’ observed leave-claiming behavior. The second
6I assume that wages are not conditioned on workers’ health-related productivity. This assumption is

consistent with an information asymmetry between the firm and the worker—the worker knows her health
state but the firm cannot observe it—and with contracting frictions—even if the firm could observe workers’
health, it might not be able to offer a contract that induces worker to report their health state. The focus
of this paper is on the consequences of this production externalities and not to model the reason why wages
are independent of health-related productivity.
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step I find the replacement rates that maximize total welfare. The validity of this approach

relies on the fact that the worker’s problem can be viewed as a two-stage problem. Once the

health shock is realized, workers optimally choose their sick pay utilization. Risk preferences

do not affect the utilization decision since the uncertainty has been resolved when this

decision is made. Thus, the focus of the first step. Nonetheless, workers’ expected utility

depends on their risk preferences: more risk-averse workers would prefer a contract with

more coverage. This is accounted for in the second step. The main strength of this approach

is that I only rely on workers’ observed decisions to estimate the model and do not need to

assume that the current sick pay plan is optimal.

I estimate the model of workers’ behavior by the simulated method of moments (SMM).

The main empirical challenge is to disentangle the underlying distribution of health from the

distribution of workers’ preferences. To overcome this challenge, I build the underlying dis-

tribution of health exploiting the Peruvian Handbook of Recovery Times recommendations

and the observed diagnoses. This approach has two advantages: (i) it provides an objective

measure of recovery times constructed outside the structure of the Chilean system, and (ii)

it does not impose parametric assumptions on this distribution. The empirical distribution

of health states incorporates observed heterogeneity across workers: I allow for variation in

age and occupation. That is, the same diagnosis has age- and occupation-specific associated

recovery times. On average, older workers and workers employed in blue-collar occupations

are assigned longer recovery times. In estimating the model, I also allow an arbitrary corre-

lation between health states and workers’ income to capture that wealthier workers tend to

have better health and could require shorter absences.

To recover the distribution of workers’ preference parameters, I employ the day of the

week when a sick leave claim is filed as a quasi-exogenous shifter of the temptation to extend

sick leave claims as the main source of variation. First, the excess of weekend-streak sick

leave claims informs how workers’ utility from a sick leave claim of the same duration varies
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with the day of the week on which the claim is filed. Second, I consider workers with similar

characteristics and the same assigned recovery time—i.e., I hold workers’ health, age, and

occupation fixed—and compare their demand for sick pay across days of the week. I start by

computing the share of claims filed for a duration that matches the assigned recovery time

and compare this figure with the share of claims filed for an extra day. This difference is

informative on how costly it is for individuals to ask for an extra day of leave. I restrict this

comparison to claims filed for a combination of durations and days of the week representing a

weekend streak. For example, I compare the share of two-day-long claims filed on a Thursday

with that of three-day-long claims filed on a Wednesday for workers assigned two days of

recovery. The larger the difference is, the more costly it is for workers to ask for an extra day

of leave. Comparing these shares keeps the incentives for extending sick leave claims fixed

since every combination implies that workers would be on leave through the weekend. These

comparisons inform the distribution of compliance costs. Lastly, to learn the distribution of

workers’ time valuation, I construct the ratio of leisure to (a measure of) consumption from

the claims data.

The estimation of the model incorporates observed heterogeneity across workers in the

valuation of time outside work and the propensity for overstating sickness. Heterogeneity

across the valuation of time outside work reflects variation in opportunity costs from missing

work to recover from a disease—e.g., due to workers’ role in the firm—or variation in tastes for

leisure relative to consumption. Heterogeneity in the propensity for moral hazard behavior

reflects variation in workers’ preferences over behaving as expected or revealing their “true”

health status. Additionally, the model of workers’ behavior allows for heterogeneity in how

workers perceive their sickness. That is, workers who suffer the same health shock can be

affected by it differently. While the parameter that governs this perception is not separately

identified, the derivation of the optimal policy does not require its identification. This

derivation rather relies on workers’ responses to the incentives generated by the provision of
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sick pay.

The estimated model provides a good fit for the targeted and nontargeted moments. I

exploit the discontinuity at 11 days—a nontargeted moment—to assess the model perfor-

mance. The model predicts that if a worker realizes a health state just under 11 days, she

will take advantage of the proximity to the full-coverage region and fake her type to gain

full coverage. The proposed model can reproduce the excess mass at 11 days quite well. I

estimate that, in the data, the 11-day duration accumulates an additional 4.50% mass than

its neighbors. Using the model-simulated sample, I estimate an additional 4.03%.

I use the estimated model to derive the optimal sick pay policy, i.e., to determine the

replacement rates that maximize aggregate welfare. The optimal policy differs from the

current system in three key ways. First, it offers partial replacement, with an average

replacement rate of 0.36, for claims of up to three days. This shift increases the utility

of sick workers who would not take sick leave under the current system but do under the

optimal policy. At the same time, partial coverage constrains moral hazard since most of

the cost of those absences is faced by workers.

Second, the optimal policy eliminates the discontinuity at 11 days and exhibits a higher

average replacement rate between 4 and 10 days. Doing so curbs the cost of the behavioral

responses to the program incentives and provides more risk protection. Implementing the

optimal scheme would shift the distribution of sick leave duration: workers would be more

likely to file sick leave claims of between 8 and 10 days and less likely to file claims for 11

days relative to the corresponding probabilities under the current Chilean system.

Third, the optimal policy does not offer full replacement for sick leave claims longer than

11 days. The average replacement rate is increasing, as in the current system, but it is less

generous for longer claims. Taken together, these changes in the replacement rate reflect

that the workers value a contract that offers more protection for shorter claims to smooth

consumption across different health states. I estimate that workers are willing to give up
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1.53% of their earnings to be insured under the optimal policy.

This paper contributes to several areas of the economics literature. First, it contributes

to a large body of literature on public insurance programs. This literature has modeled the

trade-offs between protection against risk and moral hazard present in unemployment risks

(Hopenhayn and Nicolini, 1997; Chetty, 2008; Hendren, 2017), disability and retirement

risks (Gruber, 2000; Low and Pistaferri, 2015), healthcare risks (Cutler and Zeckhauser,

2000; Einav, Finkelstein and Cullen, 2010; Handel, Hendel and Whinston, 2015; Ho and

Lee, 2020; Marone and Sabety, 2022) , and work-related injuries (Powell and Seabury, 2018;

Cabral and Dillender, 2020). This paper contributes to this literature by being the first

study to propose a theoretical framework for designing the provision of paid sick leave and

quantifying the welfare gains from its implementation.

The closest programs to paid sick leave are disability insurance and workers’ compen-

sation. These three programs condition benefits on a difficult-to-verify state: the true im-

pairment of working ability due to health deterioration. Thus, the trade-offs considered

in the design of disability insurance and workers’ compensation are relevant to the design

of paid sick leave. Nonetheless, disability insurance and workers’ compensation programs

target specific groups of workers—elderly people and workers especially vulnerable to acci-

dents—and provide protection for different set of health shocks—more permanent and more

severe shocks. The nature of the health shock insured by paid sick leave provision—short

spells of non–work-related illness—implies that virtually every worker could benefit from the

risk protection under the program and demand paid sick leave.

This paper is close to Maclean, Pichler and Ziebarth (2020), who evaluate the labor

market effects of sick pay mandates in the United States and extend the Baily–Chetty

framework of optimal social insurance to assess the welfare consequences of mandating sick

pay. Their framework allows researchers to study the effects of policies that vary the share

of employees eligible for the benefit. This paper differs in two critical dimensions. To begin
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with, I propose a structural approach to conducting welfare analysis. This approach does

not rely on the assumption that policy changes are marginal.7 Relaxing this assumption is

important since it allows the optimal policy to differ freely from the actually implemented

policy, i.e., it allows for non-marginal policy changes.

Second, this paper relates to the empirical literature on sick pay insurance. Exploiting

arguably exogenous variations, the literature has documented a positive response of sick

pay utilization to increases in benefit levels (Johansson and Palme, 2005; Ziebarth, 2013;

De Paola, Scoppa and Pupo, 2014; Ziebarth and Karlsson, 2014; Pollak, 2017;Böckerman,

Kanninen and Suoniemi, 2018; Cronin, Harris and Ziebarth, 2022; Marie and Castello, 2022).

This paper goes beyond workers’ responses to policy changes and proposes a framework and

an empirical strategy to quantify the welfare effects of these policy changes.

Additionally, this paper is the first to use administrative data on sick leave claims at the

individual level.8 These data allow me to study daily leave-taking behavior and estimate

an individual demand for sick pay. In addition, these data are less prone to measurement

error. Many papers have used survey questions that ask respondents how many days of

work they have missed due to illness in a reference period. The use of survey data raises

the usual measurement error issues with self-reported recall data and prevents researchers

from distinguishing the incidence of absences from their length. Observing the length of

absences is a crucial input for quantifying moral hazard responses, as workers could extend

their absences to obtain more sick pay.

This paper also contributes to the literature on variation in leave claiming behavior

across days of the week. Card and McCall (1996) and Campolieti and Hyatt (2006) provide
7For the validity of the sufficient statistics approach, the analyzed policy changes should be infinitesimal

or at least close enough to infinitesimal for first-order approximations to be precise Kleven, 2021.
8Cronin, Harris and Ziebarth (2022) constructs a similar dataset for the Scott County School District

(SCSD) in Kentucky, which allows a detailed study of teachers’ use of paid sick leave. While the data
structure is similar to the one used in this paper, I observe sick leave utilization regardless of workers’
occupations. Marie and Castello (2022) also exploit administrative data for Spain, though their data are at
the spell rather than the individual level. The data in this paper capture the sick leave choices of 70% of the
universe of Chilean workers.
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evidence of a “Monday effect”—which refers to a spike in back injury and sprain claims on

Mondays—among workers’ compensation claimants. Thoursie (2004) shows that Swedish

men were likelier to call in sick the day after popular skiing competitions were broadcast at

night during the Winter Olympics in Calgary. Implementing a similar test, Cronin, Harris

and Ziebarth (2022) document that teachers in Kentucky are not more likely to use sick

leave while Keeneland is in session, on Mondays following Super Bowls, or on days when the

University of Kentucky men’s basketball team plays in the NCAA tournament. I provide

new evidence regarding workers’ behavior across weekdays by exploiting the exact dates of

sick leave spans.

This paper proceeds as follows. Section 2. describes the empirical setting that I study

and the data. Section 3. presents the theoretical framework and discusses the optimal design

of a paid sick leave system. Section 4. presents the empirical implementation of the model.

Section 5. presents the model estimates and main results. Section 6. discusses the optimal

policy. Section 7. concludes.

2. Background and Data

In this section, I discuss the Chilean healthcare and sickness insurance systems, focusing on

the institutional features relevant to my analysis. I then present the data and patterns in

the data that motivate my modeling choices.

2.1 The Chilean Health Insurance System

In Chile, healthcare insurance providers serve two functions: (i) to offer healthcare insurance

contracts and (ii) to administer the paid sick leave system. The healthcare insurance system

is composed of a government-run healthcare insurance provider and a handful of private
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insurers.9 Workers are mandated to purchase health insurance, allocating at least 7% of

their salary to a healthcare plan offered by an insurer of their choice.

The government-run healthcare insurance provider offers four plans, whose eligibility is

based on monthly salary and household composition. The lowest-tier plan provides coverage

for individuals with no income at no cost in public system hospitals. As income increases,

workers qualify for a higher-tier plan. This plan provides healthcare coverage in public system

hospitals with low copays and access to private healthcare institutions with high copays.10

Private insurance companies, on the other hand, provide tiered plans with financially verti-

cally differentiated coverage levels—similar to the Gold, Silver, and Bronze plans offered by

Affordable Care Act exchanges in the US. The plans offered by private insurance companies

allow beneficiaries to obtain healthcare from private healthcare institutions, which provide

a higher quality of care than public institutions.

The mandatory contribution would allow workers to enrolled in a plan offered by the

government-run healthcare insurance with no need to make voluntary contributions.11 To

select one of the private providers, workers might need to contribute a higher proportion of

their salary to qualify for the healthcare plan of their choice.12

In 2017, 73% of workers enrolled in plans offered by the government-run healthcare

insurance system; the remaining 27% enrolled in plans offered by one of the private providers

(see Panel A of Table A.19). Workers enrolled in the government-run plans have observable

characteristics that would predict that they are more costly to insure: they are older, more

9These are called FONASA and ISAPRES, respectively, for their names in Spanish (Fondo Nacional de
Salud and Instituciones de Salud Previsional).

10Plans are indexed by letters, where A is the lowest-tier plan and D the highest-tier plan. The highest-tier
plan has a 20% copay in public system hospitals and vouchers to use healthcare providers who participate
in the plan’s network at a discounted price.

11Workers would be enrolled in one of the four plans based on their monthly salary and household
composition. For example, a single worker who earns USD$693 a month—the median salary in 2017—and
chooses the government-run insurance system will be enrolled in the highest-tier plan and cannot choose any
of the lower-tier plans with lower copays.

12Plans offered by private insurers are highly regulated. These insurers can set prices based on observable
characteristics—including age and (until April 2020) sex—and risk factors.
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likely to be women, and have lower salaries.

The second function of healthcare insurance providers is to administer the paid sick leave

system. Insurers are in charge of receiving and screening sick leave claims and disbursing

sick leave benefits. Insurers cannot design sick pay plans and must follow the rules set by

the central government regarding eligibility criteria and benefits. Nonetheless, there are

differences in how each provider applies these rules in practice. For example, panel B of

Table A.19 shows that the rejection rate by private insurers is almost three times that of

the government-run insurer. I argue that these differences in leniency are suggestive ev-

idence that private insurers might have different motives—such as minimizing sick leave

payments—when screening sick leave claims. My empirical analysis focuses sick pay uti-

lization of workers enrolled in the government-run health insurance system—they represent

about 73% of all Chilean workers. The main reason for this choice is that this paper focuses

on the provision of paid sick leave as a social insurance system, which is closer to the behavior

of the government-run healthcare provider.

2.2 The Chilean Paid Sick Leave System

The Chilean paid sick leave system gives employees the right to call in sick and receive

sick pay due to short-term, non–work-related sickness—e.g., the common flu or back pain.13

Workers can use sick leave to meet their own health needs but not to care for family members.

The eligibility criteria for claiming paid sick leave requires that workers (i) have been enrolled

in the social security system for six months and (ii) have made contributions to the health

insurance system for three months. The paid sick leave system is financed through these

mandatory contributions. That is, the 7% of workers salary that is contributed towards the

healthcare system. Between 2015 and 2019, the paid sick leave portion of the system was

13The sickness insurance system aims to provide risk protection from impairments to working ability that
are temporary and from which full recovery is foreseeable. A separate program provides disability insurance
to workers in case of permanent impairments to working ability.
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financed with 2.6% of the contributions (see table A.19).

Upon falling sick, workers must obtain a physician’s certification of their sickness stating

the primary diagnosis and the number of days that the physician considers the worker will

need to recover from the disease. This certificate is necessary to justify the absence from

work and must be requested regardless of the duration of the sick leave claim. This certificate

is reviewed by an insurance office, which decides whether the sick leave claim is (i) approved

with no changes, (ii) approved with a reduction in its length, or (iii) denied.

Sick leave payments are a function of sick leave duration subject to a maximum salary.14

For workers with a salary below the maximum, benefits are computed as follows: The benefit

scheme exhibits a nonpayable period of 3 days; i.e., the replacement rate for the first three

days of a sick leave spell is zero.15 This nonpayable period works like a deductible that

resets for every new sick leave span.16 Starting on the fourth day, there is full coverage of

each additional missed day—i.e., the replacement rate is one. If the sick leave lasts 11 days

or more, the nonpayable period is reimbursed. That is, claims with an 11-day or longer

duration are fully covered.17 Panel (a) of Figure 1.1 presents days paid as a function of

days on leave for claims of different duration. Reimbursement of the nonpayable period after

11 days implies that the average replacement rate jumps discretely at 11 days, and it is

nonconstant (see Panel (b) of Figure 1.1).

Chile constitutes an ideal setting to study the design of optimal sick pay systems for

several reasons. First, its paid sick leave system is comprehensive, covers all workers, and

features only one plan designed by the central government. This implies that workers do

14In my sample, less than 1% of workers earn above this threshold; see Figure A.27. I exclude these
workers from the analysis.

15Cid (2006) documents that the origin of the 3-day nonpayable period dates to a regulation implemented
in 1952 that aimed to prevent abusive behavior, which has not been revised since.

16These resettable deductibles are similar to those used in automobile or homeowners insurance: Separate
deductibles apply to each loss.

17If a worker files two (or more) consecutive claims, they are treated as one claim for the computation of
benefits. To be consistent, I treat these claims as one in the analysis. Appendix Table A.22 presents counts
and summary statistics of sick leave claims and sick leave spells.
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not choose their sick leave plan and alleviates adverse selection concerns. If workers could

choose their sick pay coverage, we could expect sicker individuals to choose plans offering

more generous insurance coverage. While this mechanism could be at play in the choice of

healthcare insurance provider, conditional on this decision, sicker and healthier individuals

face the same sick pay coverage.

The design of the Chilean system is similar to many European paid sick leave systems

that use resettable deductibles. Table A.20 compares the design on 22 countries. Twelve

of the systems are “bracket systems”. These are characterized by (i) a first bracket with a

low or zero replacement rate and (ii) two or three brackets with a higher replacement rates.

Specifically, in 9 of these 12 countries the replacement rate for the first days is zero.

The second advantage of this setting is that Chile has greatly detailed administrative

data which I describe in the next section.

2.3 Data

I exploit unique administrative data on sick leave claims matched to enrollment data for

workers insured by the government-run healthcare system. These restricted-access data were

provided directly by the government-run healthcare insurance office and cover the period

2015–2019.

The enrollment dataset covers the universe of individuals enrolled in government-run

healthcare insurance regardless of whether they have filed a sick leave claim. I observe

individuals’ demographic and economic characteristics: sex, age, annual earnings, and health

indicators for chronic conditions.18 Additionally, I observe individuals’ residence postal codes

and the health insurance plan assigned to them. The latter allows me to exclude individuals

enrolled in the lowest-tier plan from the analysis, as these individuals are not active in the

18These conditions are cerebral vascular accident, Alzheimer’s, juvenile arthritis, rheumatoid arthritis,
bronchial asthma, lung cancer, diabetes, chronic obstructive pulmonary disease, chronic kidney disease,
arterial hypertension, acute myocardial infarction, leukemia, lymphoma, multiple myeloma, and HIV.
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labor market.

In the claim dataset, I observe detailed information about each sick leave claim: start

and end dates, prescribed days on leave, primary diagnosis (coded following the ICD-10),

physician identifiers, and amount received for paid sick leave. I also observe the occupation

in which the worker is employed at the moment of filling the sick leave claim.

I combine these data with medical assessments from the Peruvian Handbook of Recovery

Times. I rely on these assessments to construct the underlying distribution of health; this is

a key input in characterizing workers responses and in the estimation of the model. The Pe-

ruvian Handbook of Recovery Times (EsSalud, 2014) specifies the average recovery times for

2,763 unique disease codes at the ICD-10 four-digit level. Crucially, these recommendations

are adjusted based on workers’ sex, age, and occupation. Table A.21 provides an example

of the average recovery times for three common diagnoses—lumbago with sciatica, common

cold, and infectious gastroenteritis—and the correction factors proposed by the handbook.

The main advantage of exploiting this external source of data is that it provides an objective

measure of recovery times constructed outside the structure of the Chilean system. That is,

it is not affected by the brackets used in the paid sick leave benefit function.

Based on these three sources, I construct a claim-level dataset with detailed information

on workers’ demographic characteristics and leave-taking behavior and the average recovery

time. My primary measure of leave-taking behavior is the duration of a sick leave claim

filed on a given day of the week. I assign a benchmark recovery time to each sick leave

claim exploiting the disease code and the suggestions of the Peruvian Handbook of Recovery

Times. I construct these measures at the sick leave spell level; i.e., I consider consecutive

claims as one claim. Thus, the unit of analysis is the same as the one used to compute sick

leave benefits. Appendix Table A.22 presents counts and summary statistics of sick leave

claims and spells.

To construct the analysis sample, I impose two restrictions. First, the estimation sample
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includes claims from private-sector male workers aged 25 to 64. This is a demographic group

with high labor market participation rates. Although women’s sick leave–taking behavior is

of high interest for the design of sick leave programs, women have much lower participation

rates than men. For example, in Chile, women’s labor force participation rates are more

than 20 percentage points lower—52.6% for women at the beginning of the sample period

and 73.2% for men. Thus, a model of sick leave–taking behavior that explains women’s

choices would also require incorporating their decision to participate in the labor market.

Abstracting from the participation decision simplifies the model estimation.

Second, the estimation sample includes claims associated with a subset of diseases. I

exclude mental-health diagnoses because their filing process is more cumbersome than the

one for non–mental health claims.19 That is, in this paper, I focus on non–mental health

sick leave claims. Among non–mental health diagnoses, I exclude diagnoses for which it is

hard to assign a recovery time. For example, I exclude claims with codes corresponding to

neoplasms. Table A.23 lists the conditions included in the analysis and the share of claims

recorded under each diagnosis. 2.3 provides additional details. The final sample includes

90.19% of all non–mental health sick leave claims.

2.4 Descriptive Evidence

Summary statistics. Table 1.1 presents summary statistics for all the workers in the

sample and for those who used sick pay during 2017. I split the last group based on the

type of disease and duration of the sick leave claim. Almost 20% of Chilean workers filed a

non–mental health-related sick leave claim in 2017. The average worker in the sample is 44

years old, and the average worker who used sick pay is approximately the same age (column

1 vs. column 2). Nonetheless, the average claimant has a higher salary than the average

worker, and this difference is statistically and economically significant.
19For example, these claims must be certified by a psychiatrist and require a comprehensive medical

assessment at the time of filing.
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To better clarify the differences between workers who filed sick leave claims and those

who did not, Table 1.2 presents characteristics of workers who used sick leave benefits based

on the duration of their claims. I group workers who filed (i) at least one claim with a

duration of up to 3 days, (ii) at least one claim with a duration of between 4 and 10 days,

and (iii) at least one claim with a duration of 11 days or longer. Shorter sick leave claims

are associated with younger workers with higher average wages, who are also less likely to

have chronic conditions. This pattern is compatible with the 3-day waiting period, reducing

the likelihood that lower-earning workers file a sick leave claim. Additionally, the association

between workers’ age and prevalence of chronic conditions is consistent with older workers

experiencing more severe conditions than their younger counterparts.

Sick leave duration. Figure 1.2 shows the distribution of sick leave claims of up to 29

days. Two main patterns characterize the distribution of days on leave. First, approximately

26.54% of sick leave claims have a duration of up to 3 days. This provides evidence that

workers are completing the filling process to justify their absences even when not paid for

them. Sick leave claims lasting between 4 and 10 days account for 41.06% of claims. Thus,

32.40% of claims have a duration between 11 and 29 days.20

Second, some durations accumulate more mass than others. For example, three days on

leave is the most common duration representing 15.54% of claims, follow by five and seven

days (accounting for 13.56% and 13.64%, respectively). This pattern could be explained

by the underlying distribution of recovery times or behavioral responses to the incentives

provided by the sick leave benefit scheme; disentangling these is one of the papers’ aims.

Figure 1.3 compares the underlying distribution of recovery times with the observed

distribution of days on leave. It shows that three rest days are the most recommended
20Claims filed for 30 days are used either by workers with illness requiring a longer recovery or those

transitioning to disability insurance. I do not have access to data that would allow me to differentiate
between these outcomes. Thus, my analysis focus on claims of up to 29 days. This restriction approximates
the universe of workers that suffer conditions with foreseeable recovery.
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recovery time, consistent with 3-days-long sick leave claims being the most frequent duration.

In contrast, there is a broader gap when comparing the share of claims with five and seven

days as suggested recovery time and the observed claims of such duration. This pattern is

consistent with physicians being more likely to write recovery times that correspond to a

workweek—five days—or a calendar week and multiples of these. Panel (b) of Figure 1.3

shows the ratio of the difference between the share of sick leave claims for a given duration

and the share implied by the underlying distribution to the latter. This figure illustrates

that the greater gaps are at 5, 7, and 11 days.

Finally, the excess of mass or bunching at 11 days coincides with the most significant

jump in the average replacement rate: starting at 11-day-long claims, workers are fully re-

imbursed for the time off. This jump incentivizes workers to extend their leaves to enter

the “full” insurance region. Panel (b) of Figure 1.3 shows missing mass in durations just

below the eleven-day jump: eight, nine, and ten days. I estimate that 11-day-long sick leave

claims are 4.55 percentage points more likely than what the underlying distribution of health

predicts. I interpret these patterns as suggestive evidence that workers respond to the dis-

continuity in the replacement rate at 11 days.21

Sick leave duration by workers’ characteristics. Figure A.31 shows the histogram of

sick leave claim duration by worker characteristics. I group workers into eight groups or

bins defined based on age and occupation type: blue-collar and white-collar occupations.22

Conditional on worker occupation, older workers require a higher proportion of long sick

leave claims. Their distribution of sick leave claims is shifted toward the right relative to

21Missing mass at eight, nine, and ten days could also be explained by the rounding at seven days. In
the model, I allow for a rounding process that rounds up (down) sick leave claims with durations in three
days neighbor.

22A blue-collar worker refers to an individual who performs manual labor. For example, operators,
assemblers, and laborers are considered blue-collar workers. A white-collar worker refers to an individual
who performs professional, desk, managerial or administrative work. For example, sales representatives are
considered white-collar workers. Table A.25 details the occupations classified as blue-collar and white-collar.
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the distribution for younger workers (comparing across rows in Figure A.31). This pattern

is consistent with workers requiring more time to recover from the same conditions as they

age and with older workers suffering more severe underlying conditions.

Comparisons across occupations for workers in the same age group indicate that claims

made by blue-collar workers are longer on average, with a smaller share of claims of up to

3 days. This comparison suggests that differences in the underlying distribution of health

could be correlated with occupation type. Motivated by these results, I allow the underlying

distribution of health to vary with workers’ age and occupation in the estimation of the

model.

Workers’ behavior by day of the week. Incentives to take time off vary with the day

of the week when a worker falls sick. For example, the incentives to file a two-day-long

sick leave claim on a Thursday differ from the incentives to file a two-day-long claim on

a Tuesday. The first combination implies four continuous days on leave while the second

combination implies two days. I refer to the first case as a “weekend-streak combination”.

Figure 1.5 shows the share of sick leave claims filed on each day of the week. For each

day of the week, I compute the share of sick leave claims, indexed by j, of duration s that

are filed that day day . That is:

sharedays =
∑
j 1{dowj = day, sj = s}∑

j 1{dowj = day}
.

Consider 1-day-long sick leave claims: the share of claims filed on Friday is about three times

higher than the share of claims filed on any other day of the week (see Panel (a) of Figure

1.5). Similarly, two-days long claims are more likely to be filed on a Thursday than any other

day of the week.23 This pattern is present for one- to five-day-long claims. Crucially, when

23In the data, less than 6% of sick leave claims are filed on weekends. Thus, in the rest of the paper I
focus on claims filed between Monday and Friday.
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inspecting 7-day-long claims, the share is constant across days of the week.24 I document

that workers are 12% more likely to file a weekend-streak claim than a claim of comparable

duration on any other day of the week. To capture this empirical regularity, the model allows

workers’ behavior to vary with the day of the week of a sick leave claim.

3. Theoretical Framework

In this section, I present the model of paid sick leave provision that I use to derive the optimal

sick leave insurance contract. First, I model the choices of an expected utility–maximizing

worker who faces uncertainty about her health and her ability to work and outline a definition

of moral hazard that applies to this setting. Second, I describe how workers’ choices and

provision of sick pay affect production. Third, I discuss the social planner’s problem. In the

rest of this section, I omit i subscripts to simplify notation and present the baseline version

of the model. I later describe how individuals might vary across (i) their distribution of

health shocks, (ii) preferences over time outside work, and (iii) preferences over extending

absences.

3.1 Workers

Workers are subject to a stochastic health shock (θ, dow), drawn from a distributionG(θ, dow),

where θ represents the number of days that a worker is sick and dow indicates the day of

the week when a worker falls sick. I assume that θ is discrete and bounded between zero

and M and that higher values of θ are associated with longer sickness spells.25 The sickness

distribution G(θ) accumulates positive mass in the no-sickness realization; i.e., the value of
24Claims of durations longer than six days exhibit a similar pattern. I use seven days as a reference point

since the share of these claims in the data is greater than the share of 6-day-long claims. Appendix Figure
A.29 presents the distribution of the share of sick leave claims by day of the week for claims with a duration
of between 8 and 15 days, pooled in 2-day groups.

25The sickness level is bounded to capture the fact that paid sick leave insurance aims to provide risk
protection from impairments to working ability when full recovery is foreseeable. I focus on sick leave claims
for up to 30 days in the empirical application.
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zero for θ corresponds to the healthy state.

Sick pay utilization. Upon the realization of the health shock (θ, dow), the worker decides

her sick pay utilization to maximize her utility. I assume the worker derives utility over

consumption (c) and time outside of work (s), given her budget constraint. The budget

constraint is c = w(M − s) + wB(s), where w is the daily wage rate, M is the number

of workable days in a month that the worker takes as given and B(s) represents the sick

pay transfer function.26 I assume that B(s) is a piece-wise linear function, with marginal

replacement rates (bj) constant for sick leave claims in a duration bracket [s, s̄], and that it

is a non-decreasing function of s. The worker’s utility takes the following form:

u(s;φ, f, w,B, θ, dow) = w(M − s) + wB(s) + φ(sl(s; dow)− θ)− φf(s− θ) + φq 1{weekend}.

The last three terms represent utility from time outside work. The preference parameter

φ reflects the opportunity cost of time away from work relative to the time allocated to

consumption. The term (sl(s; dow) − θ) captures the utility cost of working while sick

(sl < θ), and the gains from taking time off when not sick (sl > θ). In this expression, sl

indicates business days, a function of total days on leave and the day of the week a sick leave

claim starts.27

The function f(s − θ) equals zero if the difference between s and θ is non-positive and

it takes positive values otherwise. This implies that there is no cost for the worker to file a

sick leave claim for the duration of her health shock, but there is a cost of filing a claim for a

duration above her health shock. Thus, the compliance costs function f(s− θ) is increasing

in (s − θ). These costs are motivated on the risks and efforts associated with extending

absences above the time needed for recovery. For example, if a worker is caught in violation

26For individuals working full-time, M is the number of workdays in a month.
27For example, two days long sick leave claim that starts on a Monday represents two business days away

from work, while a sick leave claim that starts on Friday implies one day away from work. See Appendix
Table A.29
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of mandatory rest, the claim can be denied—and not paid by the insurance company—and

his reputation could suffer—impacting future promotions or increasing the likelihood of being

fired.28 The compliance costs function can also reflect the effort that the worker could exert

to find a physician who would sign off on a longer leave. These mechanisms are captured

in reduced form; i.e., I do not model the specific action that workers take to extend their

absences.

The term φq 1{weekend} captures the extra utility that a worker derives when the sick

leave claim allows her to not return to work until after the weekend. The indicator variable

1{weekend} is defined as follows29:

1{weekend} = 1 if dow = Monday and s = 5

= 1 if dow = Tuesday and s = 4

= 1 if dow = Wednesday and s = 3

= 1 if dow = Thursday and s = 2

= 1 if dow = Friday and s = 1

= 0 otherwise.

Given this specification of the utility function, workers choose sick pay utilization by

trading off the cost of a day away from working w(1 − B′(sc)) with its net gain. This net

gain depends on the day of the week and the duration of the claim. An additional day on

leave beyond the worker’s sickness level (i) lowers utility by increasing the compliance cost

term in φf ′(s − θ), (ii) increases utility in φ if sl increases by a unit, i.e., if s′l(s) = 1, and

28In practice, the insurance office screens claims and audit that workers are resting, e.g., are at home
during working hours—over the duration of the leave.

29The definition of the indicator variable 1{weekend} considers only the extra utility from sick leave
claims with a duration of up to 5 days. A more general definition would be to have 1{weekend} equal one
for each sick leave claim that ends on a Friday and assume different values of q for the first and second
weekends. I argue that the extra utility from the first weekend is more salient in a worker’s decision when
filing a sick leave claim. The data presented in Figures 1.5 and A.29 support this assumption.
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(iii) increases utility in q if the sick leave claim ends on a Friday. Thus, the net gain of time

away from work is given by the term φ [s′l − f ′(s− θ) + q1{weekend}]. The optimal sick pay

utilization is s∗(φ, f, w,B, θ, dow) = argmaxu(s;φ, f, w,B, θ, dow).

Moral Hazard. Insurance provision lowers the marginal cost of sick leave—by lowering the

cost of a day away from work—weakly increasing sick pay utilization. That is, s∗(·) is

nondecreasing in the sick leave benefits function B(s). In my model, moral hazard refers

to the responsiveness of the sick leave demand to varying the generosity of sick pay. The

magnitude of this response depends on workers’ valuation of time off (φ), their preferences

for behaving as expected (summarized by the parameters of function f), their wages (w),

and generosity of the paid sick leave contract summarized by the function B.

To formalize this, consider two alternative sick pay contracts B0 and B1. The contracts

may specify different replacement rates given a particular piece-wise linear function or may

differ in the shape of the function itself. For example, both contracts could feature a three-

day-long deductible but differ in the marginal replacement rate for claims longer than three

days. Alternatively, contract B0 could have a three-days-long deductible, and contract B1

could have a constant replacement rate. Thus, moral hazard is the change in the demand

for sick leave (∆s) when the worker is shifted from contract B0 to contract B1:

∆s = s∗(φ, f, w,B1, θ, dow)− s∗(φ, f, w,B0, θ, dow) .

This definition follows the conventional use of the term moral hazard. In the health-

care insurance literature, the term is used to capture the notion that insurance coverage,

by lowering the marginal cost of care to the individual, may increase healthcare use (see

Pauly, 1968; Cutler and Zeckhauser, 2000; Einav et al., 2013; Einav and Finkelstein, 2018).

Put another way, moral hazard refers to the responsiveness of consumer demand for health-
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care to the price she has to pay for it. In the context of paid sick leave contracts, workers

(consumers) demand time off (healthcare) by considering the share of wages that is forgone

with an absence (price). Thus, moral hazard refers to the responsiveness of workers to the

replacement rate. The literature on paid sick leave refers to this responsiveness as moral

hazard as well (see Johansson and Palme, 2005 and Ziebarth and Karlsson, 2010).30

Optimal utilization under linear contracts and quadratic penalties. To facilitate intuition, I

impose the following functional form assumptions: (i) a linear benefit scheme B(s) = bs,

where b ∈ [0, 1], and (ii) a quadratic compliance cost function. Under these assumptions,

and not taking into account the day of the week when a sick leave claim is filed, the worker’s

utility function is:

u(s;φ, κ, w, b, θ) = w(M − s) + wbs+ φ(s− θ)− φ 1
2κ(s− θ)2 × 1{(s− θ) > 0}.

Thus, the optimal choice of sick leave duration from the worker’s perspective, conditional on

s > θ, is:

s∗(φ, κ, w, b, θ) = θ + κ

(
1− w

φ
(1− b)

)
.

In the case of full coverage (b = 1), the worker optimally chooses s∗ = θ + κ. This case

is presented in Panel (a) of Figure A.30; for strictly positive values of κ, sick pay utilization

is above the worker’s health state. Lower compliance costs (higher κ) are associated with

greater deviations from the worker’s health status. The nonpaid sick leave contract (b = 0)

is presented in Panel (b) of Figure A.30. If the worker’s valuation of time outside work φ is

30This definition of moral hazard refers to “ex post moral hazard”; i.e., how workers respond to the
generosity of sick pay. It abstracts from “ex ante moral hazard”; i.e., actions that workers can take to
prevent deterioration of their health. Understanding how these actions are shaped by the generosity of the
sick leave system is above the scope of this paper.
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greater than the wage rate, the worker would optimally choose to claim longer sick leaves.

Panels (c) and (d) of Figure A.30 consider the case of partial coverage—i.e., a strictly

positive replacement rate less than one b ∈ (0, 1) —for different values of κ and φ.31 All

else equal, a greater valuation of time outside work (a higher φ) is associated with a longer

sick leave claim. Similarly, lower compliance costs (higher κ) are associated with longer sick

leave claims. That is, moral hazard is increasing in the valuation of time outside work and

decreasing in compliance costs. Additionally, given the worker’s preferences, the previous

expression shows that the duration of a sick leave claim is increasing in the replacement rate b.

Scope of the model of workers’ behavior. The propose model of workers’ behavior aims to

illustrate how illness affects the absence behavior of employed individuals. Thus, I make

some simplifying assumptions to keep the model tractable and the estimation feasible. I

discussed some of the most salient assumptions and its consequences next.

The model abstracts from the behavior of “when” to file a sick leave claim—that is, in the

model, a worker cannot choose the day when she files a claim. Nonetheless, the model allows

for strategic behavior in the duration margin of a sick leave claim. While both margins play

a role in the worker’s choices, incorporating a filing-day choice in the model would require

detailed data on when a worker falls sick and when she files a claim. Absent such data, I

assume that workers claim on the day when they fall sick.

The model also abstracts from the interaction between workers and physicians. In real-

ity, physicians write sick leave claims with (partial) information about workers’ health. The

main implication of not modeling this interaction is that the compliance cost function does

not disentangle workers’ and physicians’ risks and costs. For example, suppose physicians

want to avoid facing the cost of being caught signing off an excessively long claim. In that

case, compliance costs will be higher, and the duration of sick leave would closely reflect

31In this case, workers care about the effective valuation of time, i.e., w(1−b)
φ .
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workers’ health state.32

Expected utility. Ex ante, the worker aims to maximize her expected utility, taken over

the distribution of health shocks G(θ, dow). I assume that the worker is risk averse with

a von Neumann–Morgenstern (vNM) utility function of the constant relative risk aversion

(CRRA) type: v(y) = y1−γ/(1 − γ), where y corresponds to the realized utility u∗(θ, dow).

Thus, expected utility is given by

U = E [v(u∗(θ, dow))] =
∫
v(u∗(θ, dow)) dG(θ, dow) .

This utility maximization problem can be viewed as a two-stage problem (Einav et al.,

2013). Once the health shock is realized, the uncertainty is resolved, workers aim to maximize

the contribution of the state utility u∗(θ, dow) to their expected utility Eθ,dow [v(u∗(θ, dow))]

by optimally choosing the duration of a claim s.33 Put another way, given the health shock,

risk preferences become irrelevant. That is, risk aversion does not affect workers’ decision

over sick pay utilization, and all else equal, variation in the utilization of paid leave across

workers reflects variation in their preference parameters (φ, f and q).

For the rest of the section, it is helpful to consider an economy populated by I workers

and let i index workers. Thus, si∗(φi, f i, wi, B, θi, dowi) represents the optimal sick pay

utilization choice of worker i when insured in contract B, and U i(θi, dowi) represents her

expected utility.

32Physicians are subject to screenings and penalties for fraudulent sick leave prescriptions. Policies aiming
to correct physician behavior would use instruments not included in my model, e.g., the mentioned penalties.
This paper focuses on the level of generosity of the system and the trade-off between risk protection and
workers moral hazard responses.

33In this model, the only source of uncertainty the worker faces is over her health status, which is the risk
the planner seeks to insure.
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3.2 Production

Changes in the generosity of sick pay induce two costs. First, as discussed in the previous

section, the cost of moral hazard that accrues to the government (the insurer). This is the

typical cost modeled in the design of social insurance programs. Second, sick leave insurance

provision, by changing labor supply, affects production. In this section, I propose a stylized

version of a model of a firm to capture the production losses (or gains) of changes in the sick

pay policy.

Sickness is detrimental to production for two reasons. First, sickness might impair indi-

viduals’ ability to perform their work, i.e., a worker is less productive when sick. Second, if a

worker is contagious and infects her coworkers, further production losses could arise: either

by direct absences or by reducing other workers’ productivity.

Let ν represent the worker’s productivity on a day she is sick. I assume that ν also

incorporates any potentially negative effects on coworkers. Thus, ν ∈ (− inf, 1]. If ν = 1,

the worker is equally productive when healthy and sick and is not contagious, and any value

of ν below one implies a productivity loss from sickness.

The firm pays worker i a daily wage wi independent of her realized health-related pro-

ductivity. I assume that the firm does not observe workers’ health state. Thus, the posted

wage does not depend on it. Given the wage rate, labor costs are a function of total days

worked by each individual. On the other hand, revenue is a function of days worked and the

worker’s health state. Let dhealthy denote the number of days that i works and is healthy,

and let disick the number of days that i works sick. These are a function of the optimal sick

pay utilization si∗. Using these definitions, the profits generated by worker i are:
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πi(si∗) = g(dhealthy(si∗) + νdsick(si∗))− wi(dhealthy(si∗) + dsick(si∗)) ,

where the price of the good is normalized to one. The production function g(·) exhibits

diminishing returns on effective days worked. Total profits equal the sum of individual

workers’ profit: Π = ∑I
i=1 π

i(si∗).

In this setting, the firm pays wi to a worker regardless of whether she showed up sick

or healthy, i.e., wages are not conditioned on workers’ health-related productivity.34 Thus,

from the point of view of the firm, it would be optimal that worker i stays home every time

her marginal productivity when sick (νg′(si∗)) is below wi. Nonetheless, worker i chooses her

labor supply trading of the net pay from working (wi(1 − B′(s))) with her marginal utility

of leisure—the wedge between the wage rate and marginal productivity when sick drives the

production externalities.

3.3 Social Planner

In this section, I derive the optimal sick pay contract. A maintain assumption in this paper

is that the planner offers one contract and only observes the duration of sick leave claims.

Thus, the replacement rates could depend only on this dimension.35

To facilitate intuition, I start with a stylized version of the model to illustrate the main

trade-off the planner faces when designing the optimal policy. Then, I relax these assump-
34This assumption is consistent with an information asymmetry between the firm and the worker—the

worker knows her health state but the firm cannot observe it—and with contracting frictions—even if the
firm could observe workers’ health, it might not be able to offer a contract that induces worker to report
their health state. Nonetheless, this paper focuses on the consequences of this production externalities and
does not explicitly model its source.

35Understanding whether it would be optimal to offer more than one contract is beyond the scope of this
paper. From a theoretical standpoint, the key condition determining whether the optimal menu features
vertical choice is whether consumers with higher willingness to pay have a higher efficient level of coverage
(Marone and Sabety, 2022). In practice, almost all paid sick leave systems feature one contract, see Table
A.20.
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tions and present the full-fledged model of insurance provision.

The textbook case

Consider two simplifying assumptions: (i) the planner offers a linear contract, i.e., B(s) = bs,

and (ii) workers are risk-neutral. This first assumption allows us to focus on one policy

parameter: the replacement rate level b. The second assumption allows us to ignore the

value of risk protection and focus on the role of moral hazard responses in the design of sick

pay.

Worker i chooses her sick pay utilization by comparing the cost of an absence ((1− b)wi)

with the net gain from an extra day off (uis). The former depends on the wage rate wi and

the replacement rate b. The marginal utility of an extra day off depends on the health shock

and workers’ preferences as derived in the previous section:

uis = φi
[
∂sil
∂si
− ∂f i(si − θi)

∂si
+ qi1{weekend}

]
.

Thus, when uis ≤ wi(1− b), the individual chooses to go to work, else she takes a day off.

No externalities. Assume that sickness does not affect workers’ productivity. That is,

worker i is (i) equally productive when healthy and when sick, and (ii) sickness is not

contagious. In equilibrium, the firm is willing to pay worker i her marginal product. Thus

wi equals the marginal productivity νi.36 Given this wage rate, worker i efficiently self-selects

into working or not working depending on uis.

Panel (a) of Figure 1.4 graphically shows the effect of sick pay provision on workers’

choices and welfare. This figure puts together the worker and the firm problems. The

36To keep the exposition as simple as possible, I let ν represent the marginal productivity when sick. This
is equivalent to assuming that g′(s) = 1 in section 3.2. In the no externalities case, νi represents workers
productivity when sick or healthy.
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vertical axis shows the marginal utility of a day off (uis) and her marginal productivity νi.

The horizontal axis corresponds to the daily wage rate wi. Thus, at the 45◦ line, wages equal

marginal productivity wi = νi for different productivity levels. Additionally, at the 45◦ line,

the marginal utility of an extra day off equals its cost—the forgone wage. Thus, absent of

sick pay, workers efficiently sort into working (uis ≤ wi) and not working (uis > wi).

The provision of sick pay distorts workers’ incentives by lowering the cost of absences

and induces some individuals to take a day off. The blue shaded area represents inefficient

absenteeism.37 It comprises the pool of individuals with marginal utility for time off below

their marginal product (νi) that takes a day off induced by sick pay provision. This is the

pool of workers such that: uis ≥ wi(1 − b) and uis ≤ wi. If the replacement rate increases

from b to b′, more workers are induced to call in sick. This is the traditional moral hazard

response in insurance provision applied to the sick pay setting: an increase in the replace-

ment rate increases inefficient absenteeism, i.e., workers’ behavioral responses reduce welfare.

Production externalities. Let us consider the more interesting case where sickness affects

workers’ productivity. Note that workers’ decisions remain the same: given the wage rate wi,

worker i chooses to go to work if uis ≤ wi(1− b). Nonetheless, when sickness is detrimental

to workers’ productivity, wages no longer reflect their marginal product when sick.

The firm pays worker i a daily wage wi independent of her health-related productivity.38

From the point of view of the firm, it would be optimal that worker i stays home if her

marginal productivity when sick (νi) is below the wage rate wi. From a welfare standpoint,

optimal employment trades off the productivity from working sick νi—which incorporates

any potential adverse effect of worker i on her coworkers—against the value of leisure uis.

That is, it would be efficient that workers who value time off more than their productivity
37This terminology is close to the one proposed by Pichler and Ziebarth (2017).
38As discussed in the previous section, this assumption is consistent with an information asymmetry

between the firm and the worker and with contracting frictions. However, this paper abstracts on modeling
the determination of wages.
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do not work when sick. Nonetheless, workers’ trade-off abstracts from the reduction in

productivity, and production externalities arise.

Panel (b) of Figure 1.4 provides a graphical illustration. I define four regions based on

the relation between wages, productivity and the marginal value of a day off. The wage

rate wi is presented in the horizontal axis, and the value of a day off uis in the vertical axis.

As in Panel (a), at the 45◦ line, the marginal utility of an extra day off equals its (private)

cost, i.e., the wage rate. In contrast with the previous case, in this figure, I consider one

level of productivity νi given by the horizontal line labeled health-related productivity. This

emphasizes that wages (horizontal axis) do not vary with the health-related productivity

level ν.39

First, consider the top left area of Panel (b). It corresponds to the pool of individuals

who do not work and for whom this is efficient, given their productivity. I refer to this pool of

workers as involved in efficient absenteeism. That is, workers in this pool have the following

relation between their valuation of time off, their productivity when sick, and wages:

Efficient absenteeism: uis ≥ wi(1− b)︸ ︷︷ ︸
Worker’s trade-off

do not work

and uis ≥ νi︸ ︷︷ ︸
Optimal employment

do not work

The bottom right area shows the efficient presenteeism case: a pool of individuals who

do work (uis ≤ wi(1− b)) and for whom this is the efficient response (uis ≤ νi).

The two darker areas show inefficient absenteeism and inefficient presenteeism. These

are the situations where the workers’ choices do not coincide with what the planner would

find optimal in terms of employment. Inefficient absenteeism was first described in Panel

(a). It refers to the pool of workers who find it optimal to be absent when it would be

efficient that they work based on their productivity. Inefficient presenteeism, on the other

hand, refers to the situation where workers’ value of time off is below the cost of the absence,

39Appendix Figure A.28 presents each relevant trade-off separately in the absence of insurance provision.
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so they work. However, that valuation is below their marginal productivity when sick:

Inefficient presenteeism: uis ≤ wi(1− b)︸ ︷︷ ︸
Worker’s trade-off

work

and uis ≤ νi︸ ︷︷ ︸
Optimal employment

do not work

What is the effect of an increase in the replacement rate? Consider the case where b

increases to b′; this shifts the slope of the effective wage function wi(1− b′). The welfare ef-

fects of moral hazard responses has two components. On the one hand, a higher replacement

rate induces absences from workers with a relatively low value of time off; it increases inef-

ficient absenteeism. This is the same response as in the no externalities case. On the other

hand, a higher replacement rate reduces inefficient presenteeism: workers with relatively low

productivity take time off (uis > νi).

This exercise illustrates the main differences between the design of sick pay insurance and

other health-related insurance programs (e.g., healthcare insurance, disability insurance).

The presence of production externalities changes the welfare effect of moral hazard. A

higher replacement rate induces workers who would take up “too little” sick pay to take

time off efficiently. Thus, workers’ behavioral responses do not necessarily make insurance

provision more expensive.

The full-fledged model

The previous discussion made some important simplifying assumption. In this section, I

relax these assumptions. First, I consider that the benefit function is piece-wise linear

(B(s)). Second, I assume that workers are risk averse. Risk-averse individuals gain utility

from insurance, because it lowers the uncertainty they face. Thus, the optimal design needs

to incorporate the value of insurance provision. Aggregate welfare can be written as follows:
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W (B(s)) =
I∑
i

ωiU i(B(s); θi, dowi),

where ωi represents the Pareto weight assigned to worker i and U i represents her expected

utility. To incorporate the production side to the welfare maximization problem, I assume

that every worker i obtains the same share of total profits π = Π
N
. Thus, workers’ expected

utility is given by: U i(B(s); θi, dowi) = Eθ,dow [v(u∗(θ, dow) + π)].

The social planner chooses B(s) to maximize the sum of individual welfare:

max
B(s)

W (B(s)) =
I∑
i

ωiU i(B(s); θi, dowi) s.t.
I∑
i

si∗B(s) ≤ S ,

where S represents the allocated funds to cover the cost of the sick pay system. This

constraint allows comparisons across policies that have the same cost. It is not feasible to

solve this problem without restricting attention to a sub-set of the universe of piece-wise

linear functions B(s). The set of contracts that I consider are the ones characterized by the

following transfer function:

B(s) = b1 s for s ∈ [1, s]

= b2 (s− s) for s ∈ (s, s̄]

= b3 s for s > s̄.

This function features a deductible of s days. Absent moral hazard, the optimal sick leave

contract would be one featuring full coverage for any duration, i.e., Bs = b ∀ s. It

would be socially optimal for all workers to be fully insured against health risks since their

leave duration would equal their health state. In the presence of moral hazard, the optimal

contract features some level of incompleteness of coverage to deter unjustified leave taking
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and minimize the production cost associated with unjustified absences. I empirically derive

such contract. To do so, I rely on (i) estimates of workers preferences, which allows me to

quantify the value of risk protection and the cost of behavioral responses; (ii) estimates of

the underlying distribution of health; and (iii) estimates of the production costs associated

with sick pay provision. I discuss how I estimate these objects in the next sections.

4. Model Estimation and Identification Discussion

In this section I start discussing the parametric assumptions and the procedure that I follow

to estimate the model of workers’ behavior. Then I present heuristic arguments for the

variation I use to identify each one of the parameters of workers’ preferences.

4.1 Model Estimation: Workers’ Behavior

I represent the theoretical model fully in terms of parameters to estimate. I assume the

following utility function:

u(si;φi,κi, wi, B, θi, αi) =wi(M − si) + wiB(si) + φi(sil(si; dowi)− θi) + φiq 1{weekend}

− φi
[
κi0(si − θi)2

1{si − θi > 0}+
3∑
j=1

κj1{si − θi = j}
]
,

where i indexes workers. The compliance cost function takes a flexible functional form: it

allows for quadratic penalties and specific costs of deviating one, two, or three days. Addi-

tionally, I assume that the transfer function is captured by a piece-wise linear function with

day brackets corresponding to those currently implemented in the Chilean system.

Preference parameters. The preference parameter φi governs the valuation of time outside

work. I assume that ln(φi) is drawn from a normal distribution with mean µφ and variance

40



σ2
φ such that

ln(φi) ∼ N(µφ, σ2
φ) .

Heterogeneity in the valuation of time outside work reflects variation in the opportunity costs

of missing work to recover from a disease or in tastes for leisure relative to consumption.

The term φq captures the extra utility that a worker derives when the sick leave claim has a

weekend-streak duration. I assume that all of the variation in this term is governed by the

parameter φ; thus, q does not vary across workers and is constant across sick leave duration.

That is, the value of a weekend streak combination varies across workers reflecting their

valuation of time off.

Variation in the compliance cost parameter κ0 reflects variation in workers’ preferences

over behaving as expected or revealing their “true” health status. Additionally, job charac-

teristics can justify variation in κ0. For example, if a coworker can easily perform a worker’s

job, workers might face high compliance costs and ask for time outside work that closely fol-

lows their health status. Alternatively, high risks of extending a sick leave claim above ones’

health would be captured by a high compliance cost. I capture both of these mechanisms in

a reduced-form manner. I assume that ln(κi0) follows a normal distribution with mean and

variance µκ0 and σ2
κ0 :

ln(κi0) ∼ N(µκ0 , σ
2
κ0) .

I interpret κ1, κ2, and κ3 as shifters of the compliance cost of deviating for one, two, and

three days, respectively. For example, the value of the compliance cost function for an extra

day off is: f i1 = f i(si = θi + 1; θi) = κi0 + κ1. Thus, heterogeneity in κ0 implies that the cost

of deviating for one day varies across individuals—a similar argument applies for two- and

three-day-long deviations. Nonetheless, this specification assumes that workers with high
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(low) compliance costs face a high (low) cost of deviating for one, two, three, four, or any

number of days.

Distribution of health states (θ, dow). Worker i draws a health shock (θi, dowi) from the

distribution G(θi, dowi) = P (θi = m, dowi = day| X). The vector X is a vector of observable

characteristics: age and occupation.

I use the Peruvian Handbook of Recovery Times to assign the average number of days

that a worker would need to recover from the condition reported in the sick leave claim data,

i.e., θi. I use these average days as an input to construct the underlying distribution of

health G(θi), as discussed in Section 2.. This approach allows me to construct an underlying

distribution of health without imposing parametric assumptions.

I observe the day when a sick leave claim is filed from the data. When estimating the

model, I assume that workers fall sick on the day that they start a recovery spell, i.e., dowi is

the first day of the sick leave claim filed by worker i. Relaxing this assumption would require

an additional source of data that distinguishes between the day that a worker falls sick and

the day that she starts an absence spell or files a sick leave claim. Absent such data, I use the

starting day of a recovery span as the day when the worker falls sick. I assume that workers

file sick leave claims from Monday to Friday and that their work schedule is precisely Monday

to Friday. In the data, less than 6% of sick leave claims are filed on weekends. Additionally,

83% of Chilean workers have a regular work schedule (Aguayo Ormeño, 2019).

Heterogeneity in health states. The model of workers’ behavior allows for heterogeneity

in how workers suffer a health shock. To see this, let the parameter α reflect how sickness

affects a worker: workers with a higher α benefit more from time outside work. Consider

two workers such that worker a is more affected by the symptoms of any disease than worker

b: αa > αb. For example, workers a and b fall sick with the common cold on Monday, i.e.,

they suffer the same health shock, but the realization that a gets is worse and she would
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need more time to recover. The proposed model implies that worker a would file long sick

leave claims: s∗a > s∗b. Nonetheless, the perception parameter (α) is not identified. To see

this, note that the utility of worker i explicitly accounting for her perception of a shock is:

u(si;φi,κi, wi, bi, θi, αi) = wi(M − si) + wiB(si) + φ̃i αi(sil(si; dowi)− θi) + φ̃iq 1{weekend}

− φ̃i
[
κi0(si − θi)2

1{si − θi > 0}+
3∑
j=1

κj1{si − θi = j}
]
.

The parameter αi is not separately identified from φi, i.e., φ̃iαi is observational equivalent

to φi. Nonetheless, it is not necessary to separately identify αi to derive the optimal sick

pay policy. What matters for the optimal design of the policy are workers’ responses to

the incentives generated by the provision of sick pay. These responses are a function of the

parameters φ, q, κ0, κ1, κ2, and κ3 which are identified.

Rounding and measurement error. I include two additional mechanisms when estimat-

ing the model to capture the behavior of physicians who prescribe sick leave claims in a

reduced-form way.40 First, I allow the duration of sick leave claims assigned to a worker to

differ from the one optimally chosen by the worker. This discrepancy allows the model to

accommodate (i) informational frictions between a worker and a physician and (ii) observed

sick leaves with a combination of duration and day of the week that the model does not

predict. I assume that the duration of sick leave claims is measured with an additive error

that has a mean zero and is uncorrelated with the “true” sickness level. That is, I assume

that given the optimal sick leave duration s∗, the physician prescribes s̃:

s̃ = s∗ + δ ,

40While explicitly modeling physician behavior is relevant for the design of paid sick leave, the lack of
available data on physicians’ characteristics limits our ability to address the question empirically.
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where δ is a mean-zero random variable with support [−3, 3]. With probability pme, it takes

the values one or negative one; i.e., it shifts the duration of a sick leave claim by one day.

With probability p2
me, the duration of the sick leave claim is shifted two days. That is, δ

takes the values two or negative two. And a similar argument works for p3
me.

Second, I adjust the sick leave duration to consider the rounding or heaping observed in

the data. I interpret this pattern as coming from physicians being more likely to prescribe

rest for a number of days that is a multiple of seven. I assume that with some probability

p7, a sick leave claim of duration m is rounded up (down) to 7 days.

Estimation procedure. I estimate a vector of ten parameters: Λ = {q, µφ, σ2
φ, µκ0 , σ

2
κ0 , κ1,

κ2, κ3, pme, p7}. For this estimation, I select informative moments from the sick leave claims

data and use the SMM to estimate the vector of parameters that minimize the criterion

function. Let G(Λ) represent the vector of simulated moments and GE their empirical

counterpart. I aim to find the vector of parameters Λ that minimizes the squared distance

between the simulated moments and the moments computed from the data:

min
Λ

10∑
t=1

(
Gt(Λ)−GE

GE

)2

.

To compute the simulated moments, I draw a representative sample of the data. This

sample consists of a vector of wages, recovery times, and days of the week. The sample

is stratified at the workers’ group level.41 The main strength of this approach is that it

does not impose parametric assumptions on the distributions of wages and health shocks.

Put another way, this strategy allows for arbitrary correlation between the health shocks

and workers’ wages to capture two empirical facts: (i) as discussed in 2.4, the duration of

41Table A.11 verifies balance in terms of workers’ characteristics and sick leave utilization between the
sample drawn for estimation of the model and the sample used to document workers’ behaviors and compute
data moments.

44



days on leave varies with income; and (ii) diagnosis prevalence changes with the age and

occupation of workers.

In the estimation, I exploit workers’ responses to the incentives created by sick insur-

ance provision. That is, the estimation procedure relies only on workers’ observed decisions

and does not require imposing optimality of the current policy. Put another way, in the

estimation of the model, I do not assume that the current policy is the optimal one, I only

need to assume that workers are utility maximizers. This result relies on the fact that the

worker’s problem can be viewed as a two-stage problem. Once the health shock is realized,

workers optimally choose their sick pay utilization. Neither risk preferences nor production

effects affect workers’ utility. Risk preferences do not affect the utilization decision since

the uncertainty is resolved once the health shock is realized. The production effects are not

internalized by workers: they take the share of profits as given and not depending on their

labor supply decision.42

4.2 Moments and Identification

Even though the parameters are jointly estimated, below I provide a heuristic discussion of

the most relevant moment for each parameter.

Weekend-streak utility (q). The term φq1{weekend} captures the extra utility that a

worker derives when the interaction of the sick leave claim duration and day of the week

implies a streak of days off work that includes the weekend, which I term a weekend-streak

combination. To identify q, I exploit variation across days of the week on which a sick leave

claim of duration s is filed. That is, I rely on the fact that the temptation to extend a sick

leave claim varies between days of the week. For example, a 2-day-long sick leave claim is

more attractive on a Thursday than on a Tuesday. Figure 1.5 illustrates this variation.

42I assume that each worker is infinitesimal and her labor supply does not impact profits.
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The identification of q relies on the difference between the share of 1- to 5-day-long

sick leave claims filed on a weekend-streak day and the share of 1- to 5-day-long claims

filed any other day of the week. I pool all the weekend-streak combinations to compute

the average share of claims on those days and compare it with the average share of claims

made during the rest of the week. The model requires a higher q to rationalize the data

if a larger difference is observed. This comparison relies on the idea that the share of sick

leave claims of duration s on a non–weekend-streak day is a good counterfactual to estimate

the effect of filing a sick leave claim of duration s on a weekend-streak day. The last panel

of Figure 1.5 shows this moment graphically, and Table A.30 presents detailed computations.

Compliance cost function (µκ0 , σ
2
κ0 , κ1, κ2, κ3): I exploit variation across days of the week

and sick leave claims duration conditional on workers’ health to inform the distribution of

compliance costs. I consider the pool of workers with similar characteristics and the same

assigned recovery time—i.e., I hold fixed workers’ health, age, and occupation—and compare

their demand for sick pay across days of the week. For each day of the week and assigned

recovery time, I compute the share of sick leave claims, indexed by j, of duration s filed by

workers with health θ:

sharedays,θ =
∑
j 1{dowj = day, sj = s, θj = x}∑

j 1{dowj = day, θj = x}
,

where the denominator counts the number of sick leave claims filed on day of the week day

with primary diagnoses that would require x days of leave and the numerator counts how

many of these claims have duration s. For example, the share of workers with a 1-day-long

health shock on a Friday who ask for a one-day-long leave is given by

shareFriday1,1 =
∑
j 1{dowj = Friday, sj = 1, θj = 1}∑

j 1{dowj = Friday, θj = 1} .
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Figure 1.6 illustrates this computation for sick leave claims with a health shock that requires

a 1-day-long recovery. I start by computing the share of claims filed for a duration that

matches the assigned recovery time on a weekend-streak day and compare this share with

the share of claims filed for an extra day on a weekend-streak day. That is, I compare Panel

(a) vs. Panel (b) of Figure 1.6. This difference is informative on how costly it is for individuals

to ask for an extra day of leave. I restrict this comparison to claims filed for a combination

of duration and day of the week representing a weekend streak. This conditioning keeps the

incentives for extending a sick leave claim fixed. That is, every combination implies that

workers would be on leave through the weekend. These are the darker columns in Figure

1.6. Panel (c) of Figure 1.6 shows how costly it would be to ask for two extra days of leave.

Panel (f) summarizes the probabilities of not asking for extra days of leave, asking for one

extra day of leave, asking for two extra days of leave, and asking for up to four extra days

of leave conditional on filing a sick leave claim on a weekend-streak day.

I perform these comparisons for sick leave claims with diagnoses assigned one, two, and

three days of rest (see Figures A.34 and A.35). To inform the distribution of compliance

costs, I compute the average share of claims with a given deviation. These shares are pre-

sented in Panel (a) of Figure 1.7. The pattern in the data suggest that a one-day-long

deviation is not too costly relative to truth-telling while two-day deviations are more costly,

as reflected by the lower share of sick leave claims in the third column of this graph.

Value of time off work (µφ, σ2
φ): The parameter φ captures the taste for leisure relative

to the taste for consumption. It can therefore be identified by the average ratio of leisure to

consumption. I leverage data on wages, duration of sick leave claims, and sick pay to compute

this ratio. I compute consumption as the net earnings in a month using data on wages and

sick pay, this is the consumption measure implied by the model. To compute leisure, I use
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the number of days that a worker is on leave. For worker i, this ratio is computed as follows:

LCi = leisurei

consumptioni = 1
N i

∑
m

wim × Days on leaveim
wim ×Days workedim + Sick payim

,

where m indexes the month of the year. N i is the number of months in the year in which

worker i used at least one sick leave claim. The numerator estimates worker i’s valuation

of leisure in month m, and the denominator estimates her consumption in month m. Thus,

the ratio LCi is the average relative valuation of leisure for individual i. Figure A.36 shows

the distribution of LCi; the mean and standard deviation of this distribution inform the

distribution of φ, which I assume to be log-normal with mean µφ and standard deviation σφ.

Rounding and measurement error. I use the difference between the share of 5-day-

long sick leave claims filed on a Monday relative to the share of claims filed on a Tuesday,

conditional on health shocks with a 1-day recovery, to pin down the success probability of

the measurement error term δ (see Panel (e) of Figure 1.6). Given the share of claims filed

on a Monday, a smaller difference implies that more sick leave claims have been moved away

from the most-profitable duration. That is, the smaller the difference, the more likely it is

that the observed duration is not the optimal one in terms of workers’ utility. To inform the

probability of a sick leave claim being rounded to duration that is a multiple of seven, I use

the share of seven-day-long sick leave claims.

5. Results: Workers’ Behavior

5.1 Parameter Estimates

Table 1.3 presents the values of the estimated parameters. I use the spikes in the share

of claims filed on weekend-streak days relative to non-weekend-streak days to identify the
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parameter governing the utility that workers derive from sick leave claims that end on a

Friday (q). I estimate that, all else equal the utility of a worker increases in 0.79 for filing a

sick leave claim weekend-streak combination.

Conditional on their health shocks, I exploit the share of sick leave claims observed on

weekend-streak days to identify the parameters of the compliance cost function. Panel (b)

of Figure 1.7 compares targeted moments from the data and a model-simulated sample.

The model matches the distribution of compliance costs—i.e., the cost of reporting the true

health shock—reasonable well with µκ0 = 0.82 and σκ0 = 1.77.

I use the distribution of the ratio of leisure to consumption to identify the distribution

of values of time outside work, i.e., the distribution of the parameter φ. I estimate that, on

average, workers value time off work, either to recover from disease or to engage in leisure,

about 45% more than their wages. To put this estimate into context, consider that 26.54%

of sick leave claims involve non-paid time off, and a total of 67.60% of claims involve partial

paid for workers—, i.e., 67.60% of claims have a duration of up to 10 days for which the

replacement rate is less than one.

5.2 Workers’ responses

Exploiting these estimates, I document how sick leave taking behavior varies with changes

in the replacement rate. First, I document how workers’ behavior changes if the jump at

11 days is reduced. I consider three alternative systems that keep the marginal replacement

rates in each bracket fixed—the slope of each payment function is one for claims above 4

days—and reduce the size of the jump at 11 days. Panel (a) of Figure 1.9 presents the

alternative payment schemes, each scheme reduces the jump at 11 days in one day, the less

generous alternative features no discontinuity. Panel (b) shows the share of sick leave claims

filed under each alternative system.

Two main patterns arise. First, the mass at 11 days decreases monotonically as the jump
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at 11 days is reduced. Second, the share of sick leave claims filed for eight, nine, and ten days

increases as the discontinuity decreases. This result suggests that workers who would extend

their time off to 11 days to enter the “full insurance” region, find this behavior less attractive

as the jump at 11 days decreases. I estimate that, on average, the share of 11-days-long sick

leave claims declines in 0.1538 percent for each day that is not reimbursed. That is, when

move from the current system to the one that pays 10 days out of 11 days, the share of

claims filed for 11 days decreases in 0.1417 percent. Similarly, when move from the current

system to the one that pays 9 out of 11 days, the share of claims decreases in 0.1565 percent,

on average, per day.

5.3 Model Fit

Matched moments. With the estimated parameters, the model matches the most relevant

moments, presented in Table 1.4. There are, on average, 12.33% more sick leave claims on

weekend-streak days. The share generated by the model is very close: on average, I estimate

14.64% more sick leave claims on weekend-streak days relative to non–weekend-streak days.

Panel (b) of Figure 1.7 compares the share of sick leave claims with non, one, and

up to three-days long deviation implied by the data and by a model-simulated sample. I

overestimate the share of claims with non deviations—i.e., claims with duration equal to

the assigned diagnosis. I slightly underestimate the share of claims for a day above the

assigned diagnosis. Nonetheless, the model replicates the decay in the share of sick leave

claims with positive deviations quite well. For example, a two-day deviation is more costly

than a one-day deviation, as reflected by the lower share of sick leave claims in this category.

The distribution of the ratio of leisure to consumption is assumed log-normal. Under

this assumption, the mean generated by the model is slightly higher than the observed in

the data, while the variance, on the other hand, is very close.
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Specification Tests. I test how well the model matches data moments not used in the

estimation. Figure 1.8 compares the share of claims filed for a duration of 8 to 13 days from

the data and a model-simulated sample. The model captures the main pattern observed

in the data: sick leave claims spike at 11 days, with lower mass at 8, 9, and 10 days.

In particular, using the measure of heaping proposed by Roberts and Brewer (2001), I

estimate that, in the data, the 11-day duration accumulates an additional 4.50% mass than

its neighbors. Using the model-simulated sample, I estimate an additional 4.03% mass

relative to its neighbors.43 The derivation of the optimal policy requires an estimate of

the moral hazard costs associated with this discontinuity, thus the importance of a precise

estimate of workers’ responses to this feature of the paid sick leave contract.

Additionally, I construct the demand for days on leave as a function of the duration

of the health shock. For each duration, I compute how many days; on average, workers

request to be on leave. Figure A.37 compares the average days on leave from the data and a

model-simulated sample. This figure tests the model’s ability to replicate workers’ sick leave

utilization choices and provides evidence that the model can replicate workers’ responses to

different health shocks. It is important that the model performs well on this dimension since

the derivation of the optimal policy relies on estimates of workers’ responses to changes in

the paid sick leave policy.

I also propose an out-of-sample exercise exploiting data not used in the estimation of the

model. Using data on sick leave claims filed in 2019, I compute the vector of moments used

to estimate preference parameters and the share of claims with a duration in the neighbor-

hood of 11 days. I compare these moments with their model-simulated counterparts to test

the model performance. To obtain the latter, I simulate the model based on a representa-

tive sample drawn from the 2019 data and the estimated vector of preference parameters.

43Roberts and Brewer (2001) proposes the following measure: hz = f(z)− f(z−1)+f(z+1)
2 , where z corre-

sponds to 11 days, and f(·) indicates the frequency of sick leave claims with duration z. Thus, hz gives the
difference between a duration frequency and the average of the frequencies of the two immediately neighbor-
ing duration. It indicates how much a duration sticks out from the pattern suggested by its neighbors.
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Table 1.5 presents the results of this exercise. The results suggest that the model performs

reasonably well out of the sample: preference parameters and the share of sick leave claims

of selected durations are comparable in magnitude. Additionally, the model reproduces (i)

the decay of the share of sick leave claims with positive deviations and (ii) the excess mass

at 11 days.

Robustness Checks: Moments’ computation. The estimation of the model relies the

computation of moments using data on all sick leave claims filed during the 2017. I ask

whether the main moments are affected by restricting the sample to specific times of the

year, e.g., Winter.

Weekend-streak utility (q). In figures A.38 to A.41, I compute this moment restricting the

sample to claims filed during each quarter of the year. These figures show the same qualitative

pattern than Figure 1.5 providing evidence that claims from a particular time of the year,

e.g., winter do not drive the patterns in the data.

Compliance cost function (µκ0 , σ
2
κ0 , κ1, κ2, κ3): Figure A.42 proposes a similar exercise. I

show the distribution of share of sick leave claims with none and positive deviations for each

quarter of the year. This figure tells a similar story: the share of sick leave claims with no

or one day deviations are almost the same, and the share of sick leave claims corresponding

to longer deviations decreases monotonically.

6. The Optimal Sick Pay Contract: Derivation and

Counterfactuals

I use the estimated model of workers’ behavior to determine the sick paid leave system that

maximizes aggregate welfare. In this section, first I present the set of assumptions that I

impose when solving the social planner maximization problem. Second, I discuss what the
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optimal system is and compare it with the current system. Finally, I present counterfactual

analyses.

6.1 Solving the Social Planner’s Problem

I consider solutions of the social planners problem in the set of piece-wise linear contracts

with three-brackets. That is, when solving the welfare maximization problem I aim to find

the marginal replacement rate b within a sick leave duration bracket [s, s̄] that maximizes

welfare given the budget constraint. I restrict attention to contracts where s equals three

days. That is, I constraint the solution to those contracts that reproduce the bracket systems

summarized in Table A.20.44 Motivated by the features of such contracts, I also assume that

transfers are nondecreasing, i.e., B(s + 1) ≥ B(s). Additionally, I constrain the system to

be at most as generous as the full-coverage case: B(s) ≤ s.

The derivation of the optimal contract relies on the estimates of workers’ preference pa-

rameters discussed in the previous section and requires an estimate of risk preferences and

the parameters of the production function. In the baseline estimates, I consider the case

where the pareto weights are the same for all workers.

Risk Aversion. Identification of γ would require, for instance, variation in plan choices

across workers. Nonetheless, the Chilean paid sick leave system does not offer choice over

sick pay plans. Absent this variation, I calibrate γ using results from the literature. I assume

that γ = 2 and present results with two alternative specifications that allow for preference

heterogeneity.

Production costs. To quantify the cost of the production losses associated to the changes

44Using the proposed framework, one could allow s to be a choice variable. Nonetheless, adding the
brackets’ limit as an additional choice variable increases the dimensionallity of the problem quickly. For
example, if we consider the set of contracts with two brackets, and allow bracket’s limits to take any value
between 2 and 30 days there are 406 contracts. Then, for each contract one should find the vector of
replacement rates that maximize welfare.
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in the sick pay policy, I need an estimate of the toll of sickness on workers’ productivity, i.e.,

an estimate of ν. Unfortunately, my data do not allow a direct estimate. Thus, I rely on

the estimate proposed by Maestas, Mullen and Rennane (2021). This estimate is based on

the American Working Conditions Survey (AWCS), which asks a nationally representative

sample of U.S. adults to estimate their reduced work productivity when working sick. In

the main estimates of the optimal policy, I calibrate ν = 0.77 and consider sensitivity checks

regarding this assumption.

6.2 The Optimal Paid Sick Pay Contract

Figure 1.10 presents the total payment function implied by the optimal sick pay contract.

The total payment function could be interpreted as the monetary payment a worker with

wage w = 1 would receive for a sick leave claim with the indicated duration. The optimal

policy differs from the current system in three key ways. First, it offers partial replacement,

with an average replacement rate of 0.36, for claims of up to three days. This shift increases

the utility of workers who would not take sick leave under the current system but do under

the optimal policy. At the same time, partial coverage constraints moral hazard since most

of the cost of those absences is faced by workers.

Second, the optimal policy eliminates the discontinuity at 11 days and exhibits a higher

average replacement rate between 4 and 10 days. This feature curbs the cost of the behavioral

responses to the program incentives and provides more risk protection. Implementing the

optimal scheme would shift the distribution of sick leave duration relative to the distribution

of claims under the current Chilean system: workers would be more likely to file sick leave

claims between 8 and 10 days and less likely to file claims for 11 days.

Third, the optimal policy does not offer full replacement for sick leave claims longer than

11 days. The average replacement rate is increasing, as in the current system, but is less

generous for longer claims. Taken together, these changes in the replacement rate reflect
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that workers value a contract that offers more protection for shorter claims to smooth con-

sumption across different health states. I estimate that workers are willing to give up 1.53%

of their earnings to be insured under the optimal policy.

Changes in compliance cost function. In this section, I examine how the optimal sick

pay policy changes when workers’ are more (less) reluctant to extend sick leave claims. First,

all else equal, I reduce the cost of filing a sick leave claim longer than the health state (θ).

For example, the cost of filing a sick leave claim for an extra day (f1) is given by:

f1 = f(s = θ + 1; θ) = κi0 + κ1 .

I use the estimates of (µκ0 , σκ0 , κ1, κ2, κ3) and construct a new distribution of compliance

costs by shifting the mean of κj such that E(κj) = µκj
× (1 + ε) for ε = 0.10. The second

exercise considers the case where ε = −0.10.

Using these counterfactual compliance costs distributions, I first show workers’ choices

assuming that they are insured under the Chilean paid sick leave system. Panel (a) of Figure

1.11 shows that when compliance costs are higher, the average number of days on leave more

closely reflects workers’ health state. In contrast, when compliance costs are low, workers’

ask for longer claims, given their health state. That is, in the scenario with low compliance

costs, the average duration of a sick leave claim for a given health shock is longer.

Panel (b) of Figure 1.11 presents the optimal policy for higher compliance costs and

the policy for lower compliance costs and compares it to that in the benchmark case. This

exercise provides two main lessons. First, when workers use sick leave claims that closely

reflect recovery times, their duration is shorter and the optimal contract is more generous.

That is, the optimal contract offers more coverage for all sick leave claims using the same

budget as the baseline policy. Financing a higher level of coverage is possible due to shorter
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sick leave claims—this is a mechanical effect—and smaller production losses. Second, when

workers’ are more prompt to extending sick leave claims, the optimal policy aims to contain

these responses by lowering coverage for all durations. The new policy is bellow the baseline

case. This reduction is more marked for longer sick leave claims. This result indicates

that the savings from providing less coverage to longer claims outweighs its utility costs—a

reduction in coverage lowers the utility value of sick pay provision.

7. Conclusions

This paper addresses a relevant but poorly understood question in the provision of social

insurance: What is the optimal paid sick leave system? I answer this question by combining

a unique dataset on sick pay utilization and a model of insurance provision. I start by

providing descriptive evidence of the main determinants of workers’ behavior. I show three

main empirical facts (i) workers’ sick leave claim utilization varies with age and occupation;

(ii) workers respond to the discontinuity in the replacement rate bunching at 11 days; (iii)

workers respond to nonmonetary shifts in the temptation to extend their time off through

the weekend.

Based on these facts, I develop a model of sick pay provision. The model gives three main

insights. First, workers demand sick pay by trading off the utility cost of working while sick

with the consumption loss from missing work when taking sick leave. The provision of

sick pay lowers the cost of absences, increasing sick pay utilization. This trade-off governs

the moral hazard cost of insurance provision. Second, sick leave insurance could generate

production externalities arising from extended absences and workers showing up sick (when

their productivity is lower). Third, the model provides intuition on the trade-off faced by

the social planner (the insurer). The optimal policy balances the benefits of risk protection

with the cost associated with moral hazard and production losses.
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I use the estimated model of workers’ behavior to determine the sick paid leave system

that maximizes aggregate welfare. I limit attention to those payment schemes of the piece-

wise linear family. The optimal policy differs from the current system in three key ways.

First, it offers partial replacement, with an average replacement rate of 0.36, for claims of

up to three days. Second, the optimal policy eliminates the discontinuity at 11 days and

exhibits a higher average replacement rate between 4 and 10 days. Doing so curbs the cost

of the behavioral responses to the program incentives and provides more risk protection.

Third, the optimal policy does not offer full replacement for sick leave claims longer than

11 days. The average replacement rate is increasing, as in the current system, but it is less

generous for longer claims. I estimate that workers are willing to give up 1.53% of their

earnings to be insured under the optimal policy.

The empirical application of this paper exploits the Chilean context but the insights are

informative in other contexts and more generally for the discussion on sick pay policy design.

Many paid sick leave systems use the replacement rate as the relevant policy parameter.

This paper provides a framework to study and quantify the main trade offs that arise when

considering changing this rate.
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8. Figures

Figure 1.1: Chilean paid sick leave system: benefits computation

(a) Days paid as a function of days on leave
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(b) Average replacement rate
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Notes: This figure shows the paid sick leave benefit scheme for private-sector employees. Panel (a) shows
the number of days paid as a function of days on leave. The replacement rate for the first three days of
a sick leave spell is zero. Starting on the fourth day, there is full coverage of each missed day—i.e., the
replacement rate is one. If the sick leave lasts 11 days or more, the nonpayable period is reimbursed. Panel
(b) shows the average replacement rate, i.e., the ratio between the number of days paid and the number of
days on leave. This figure is referenced in Section 2.2.
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Figure 1.2: Duration of sick leave claims: Private-sector male workers
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Notes: This figure shows the distribution of the duration of sick leave claims made by male workers on the
left-hand-side vertical axis and the average replacement rate on the right-hand-side vertical axis. The figure
includes only sick leave claims of up to 29 days; these represent 89% of all claims. This figure is referenced
in Section 2.4.
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Figure 1.3: Sick leave duration: data and counterfactual distribution

(a) Distributions: data vs. counterfactual
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(b) Proportional differences
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Notes: This figure shows the distribution of days on leave coming from the data, as shown in Figure 1.2,
and the counterfactual distribution of days on leave. The latter is constructed assigning to each sick leave
the recovery time suggested by the Peruvian Handbook of Recovery Times, adjusted by worker age and
occupation. This figure is referenced in Section 2.4.
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Figure 1.4: The welfare effects of moral hazard

(a) No externalities case
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Notes: Panel (a) shows the effect of an increase in the replacement rate on absences in the no production externalities case.
The provision of sick benefits gives rise to inefficient absenteeism: a pool of individuals with marginal utility for time off
below their marginal product (νi) takes a day off. An increase in the replacement rate accentuates this response increasing
inefficient absenteeism. Panel (b) presents the case where there are production externalities (ν < 1). The relation between
wages, productivity, and the marginal value of a day off defines four regions. The top left area corresponds to the pool of
individuals who do not work (us > w(1 − b)) and for whom this is efficient given their productivity (us > ν). I refer to this
pool of workers as involved in efficient absenteeism. The bottom right area shows the opposite situation: a pool of individuals
who do work (us < w(1− b)) and for whom this is the efficient response (us < ν). I refer to this pool of workers as involved in
efficient presenteeism. The other two (darker) areas show inefficient absences (us > w(1− b) and us < ν) and inefficient work
(us < w(1− b) and us > v). This figure is referenced in Section 3.3.

61



Figure 1.5: Days of the week and sick leave claim duration

(a) One day
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(c) Three days
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(d) Four days
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(e) Five days
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(f) Aggregate across days of the week
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-day-long
sick leave claims filed on each day of the week. Panel (f) aggregates across durations and days of the
week: The first bar—labeled “weekend streak”—averages the share of one- to five-day-long sick leave
claims that end on a Friday and are filed on any day of the week (for example, one-day-long claims filed
on a Friday, two-day-long claims filed on a Thursday, and so on). The second bar—labeled “non–weekend
streak”—averages the share one- to five-day-long sick leave claims filed on any other day of the week (for
example, two-day-long claims filed on a Friday). Table A.30 reports the estimated shares and moments.
This figure is referenced in Sections 3.1 and 4.2.
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Figure 1.6: Identification of compliance cost function: Sick leave claims by duration and
day of the week

(one-day recovery time)

(a) Deviation = 0, duration = 1
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(b) Deviation = 1, duration = 2
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(c) Deviation = 2, duration = 3
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(d) Deviation = 3, duration = 4
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(e) Deviation = 4, duration = 5

0

.1

.2

.3

.4

.5

S
h

ar
e 

o
f 

S
L

 c
la

im
s

Monday Tuesday Wednesday Thursday Friday

Day sick leave claim is filed

(f) Aggregate across days of the week
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s for workers whose main diagnosis
would imply a health state of 1 day on leave. Panel (f) aggregates the share of sick leave claims across days
of the week, including only weekend-streak combinations; e.g., from Panel (a), I consider only the share for
Friday. This figure is referenced in Section 4.2.
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Figure 1.7: Compliance cost function

(a) Share of sick leave claims as a function of
deviation
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(b) Model fit: Data vs. model moments
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Notes: Panel (a) shows the average share of sick leave claims with deviations between 0 and 4 days. The
average is computed over sick leave claims with primary diagnoses requiring 1, 2 or 3 days of rest filed on
weekend-streak days. Each column is the weighted average of the probability for each health state. Panel
(b) replicates this figure and adds the moments computed from the simulated data. This figure is referenced
in Section 4.2.
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Figure 1.8: Model’s fit: Distribution of sick leave claims with durations around 11 days
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Notes: This figure compares the distribution of sick leave claims with a duration in the neighborhood of 11
days from the data and a model-simulated sample. Using the measure of heaping proposed by Roberts J.
(2001) , I estimate that, in the data, the 11-day duration accumulates an additional 4.50% mass than its
neighbors. Using the model-simulated sample, I estimate an additional 4.03% mass relative to its neighbors.
This measure approximates how much a duration ‘sticks out’ from the pattern suggested by its neighbors.
Roberts J. (2001) proposes: hz = f(z) − f(z−1)+f(z+1)

2 , where z corresponds to 11 days, and f(·) indicates
the frequency of sick leave claims with duration z. Thus, hz gives the difference between a duration frequency
and the average of the frequencies of the two immediately neighboring duration. This figure is referenced in
Section 5.3.
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Figure 1.9: Workers’ behavior: Changes in the discontinuity at 11 days

(a) Days paid as a function of days on leave
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(b) Share of SLC with durations around 11 days
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Notes: This figure shows workers responses to changes in the paid sick leave benefit scheme, relative to the
current Chilean system. I consider three alternative systems that keep the marginal replacement rates in
each bracket fixed—the slope of each function is one for claims above 4 days—and reduce the size of the
jump at 11 days. Panel (a) presents the alternative payment schemes and Panel (b) shows the share of SLC
filed under each alternative payment scheme. This figure is referenced in Section 5.1.
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Figure 1.10: The Optimal Sick Pay System
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Notes: This figure compares the Chilean system with the optimal paid sick leave system. It presents the
total payment function under each contract. This function could be interpreted as the monetary payment a
worker with wage w = 1 would receive for a sick leave claim with the duration indicated in the horizontal
axis. That is, this presents sick pay as a function of the duration of a claim for a unitary wage. This figure
is referenced in Section 5.1.
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Figure 1.11: Counterfactual exercise: Changes in compliance cost

(a) Workers’ responses: Ave. number of days on leave
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(b) Optimal paid sick leave contract
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Notes: This figure presents the optimal policy under alternative distributions of compliance costs.
Panel (a) summarizes workers behavior. It shows the average duration of sick leave claims for the
estimated distribution of compliance costs and for two alternative distributions. To construct the high
compliance costs distribution, I increase the average cost of an extra day off by 10%. Similarly, the low
compliance costs distribution is constructed by decreasing the average cost of an extra day off by 10%.
Panel (b) shows the optimal policy under each of these distributions. This figure is referenced in Section 5.1.
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9. Tables

Table 1.1: Summary statistics: all workers and workers who use sick leave insurance

Workers who had used SL benefits

All workers Any
Included conditions

All Up to 30
days

(1) (2) (3) (4)

Age
Mean 43.94 43.41 43.30 42.24
Share of workers aged (%)
25 - 34 years old 26.35 28.90 29.14 32.11
35 - 44 years old 24.48 24.10 24.34 25.35
45 - 54 years old 26.70 24.71 24.66 23.73
55 - 64 years old 22.47 22.28 21.86 18.81

Income (monthly USD)
Mean 772.00 904.70 909.42 918.02
Standard deviation 367.27 388.79 389.99 390.03
25th percentile 484.45 587.51 591.79 601.77
Median 682.15 829.84 835.53 845.74
75th percentile 997.97 1,146.82 1,152.48 1,161.29
90th percentile 1,328.04 1,483.17 1,489.20 1,496.41

Region (%)
Central 34.97 40.76 41.22 41.92
Mining intensive 8.96 8.49 8.32 7.62

Health - chronic conditions (%)
Hypertension 12.90 16.12 15.96 13.93
Diabetes 6.04 7.95 7.51 6.19

Share of workers (%) 100 18.50 17.12 13.78
Observations 1,916,138 354,469 328,053 263,951

Notes: This table presents summary statistics for all male workers in the sample (column 1) and for workers
who have used sick leave benefits in the past year based on the conditions and duration of sick leave claims
(columns 2 to 4). The sample includes private and public sector employees age 25 to 64 years old. Income
statistics are based on the winsorized distribution where the lowest and highest 5% of the income values
are excluded. Sick leave claims of up to 30 days account for 95% of all claims filed in a year. This table is
referenced in Section 2.4.
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Table 1.2: Summary statistics: workers who use sick leave insurance by duration.

All Sick leave claims duration
1 to 3 days 4 to 10 days 11 to 29 days

(1) (2) (3) (4)

Age
Mean 42.00 39.40 41.79 43.97
Share of workers aged (%)
25 - 34 years old 33.07 41.74 33.74 26.38
35 - 44 years old 25.11 26.22 25.23 24.56
45 - 54 years old 23.50 19.82 23.15 26.10
55 - 64 years old 18.32 12.23 17.88 22.96

Income (monthly USD)
Mean 870.30 953.50 852.48 849.98
Standard deviation 367.30 386.19 353.57 358.76
25th percentile 569.20 645.54 564.03 552.85
Median 797.88 892.11 782.44 776.38
75th percentile 1,103.05 1,201.53 1,075.22 1,072.83
90th percentile 1,418.81 1,523.37 1,380.31 1,390.51

Region (%)
Central 48.35 59.10 48.05 43.78
Mining intensive 6.01 4.09 5.30 7.89

Health - chronic conditions (%)
Hypertension 14.34 11.46 14.48 17.17
Diabetes 6.22 4.64 6.21 7.92

Share of workers (%) 100 32.00 49.76 38.08
Observations 177,531 56,803 88,345 67,599

Notes: This table presents summary statistics for all male workers who have used sick leave insurance in the
past year. Column (1) presents characteristics of all workers who have filed at least one claim with duration
of up to 30 days for conditions included in the analysis of this paper (see Table A.23 for more details).
Columns (2) to (4) present characteristics of workers by duration of the sick leave claims filed. Columns (2)
to (4) are not exhaustive, that is, workers can be included in more than one category based on the claims
they have filed. This table is referenced in Section 2.3.
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Table 1.3: Parameter Estimates

Parameter Description Value Std. error
Preferences parameters
q Weekend-streak utility 0.7894 0.2110
µ̃φ Value of time off relative to consumption, mean 56.8930 26.8567
σ̃φ Value of time off relative to consumption, std. dev. 39.8246 13.1373
µ̃κ0 Compliance costs, mean 0.8290 0.2320
σ̃κ0 Compliance costs, standard deviation 1.7714 0.2616
κ1 Cost of one day deviation 0.3594 0.0960
κ2 Cost of two days deviation 0.3217 0.0998
κ3 Cost of three days deviation 0.0041 0.0021

Measurement error
pme Prob. physician assigns one day more (less) than asked 0.2992 0.0430

Rounding
p7 Prob. SL duration is round to the closest multiple of 7 0.5746 0.1751

Notes: This table presents the estimated parameters for the model of workers’ behavior. I assume that
the value of time off relative to consumption is distributed log-normal, i.e., ln(φ) ∼ N(µφ, σ2

φ). Thus,
φ ∼ Lognormal(µ̃φ, σ̃2

φ). I report (µ̃φ, σ̃φ). Similarly, I assume that the compliance cost parameter
κ0 follows a log-normal distribution and I report (µ̃κ0 , σ̃κ0) which are the moments that characterize:
κ0 ∼ Lognormal(µ̃κ0 , σ̃κ0). The standard errors are based on 200 bootstrap simulations. This table is
referenced in Section 5..
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Table 1.4: Moments used in the estimation.

Moments Data Model
(1) (2)

Preferences parameters
Weekend streak utility
Weekend streak days relative to non-streak days 0.1233 0.1546

Compliance costs
Sh. of SLC with 0 day deviation 0.4300 0.4635
Sh. of SLC with 1 day deviation 0.4120 0.3745
Sh. of SLC with 2 days deviation 0.2480 0.2401
Sh. of SLC with 3 days deviation 0.1975 0.1858
Sh. of SLC with 4 days deviation 0.1663 0.1371

Value of time outside work
Mean time outside work to consumption ratio 0.2972 0.3342
SD time outside work to consumption ratio 0.1962 0.1965

Measurement error
Sh. Monday SLC - sh Tuesday SLC
conditional to 5-days-long and a day of recovery 0.0822 0.0802

Rounding
Share of 7-days-long claims 0.1364 0.1050

Notes: This table presents the moments used to estimate the model’s parameter. Column 2 reports the
data moments. Column 3 reports simulated moments.This table is referenced in Section 5.3.
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Table 1.5: Out-of-sample: selected moments from 2019 data and simulated counterparts

Moments Data Model
(1) (2)

Preference parameters
Weekend streak utility
Weekend streak days relative to non-streak days 0.1158 0.1428

Compliance costs
Sh. of SLC with 0 day deviation 0.4385 0.4611
Sh. of SLC with 1 day deviation 0.4223 0.3819
Sh. of SLC with 2 days deviation 0.2293 0.2330
Sh. of SLC with 3 days deviation 0.1843 0.1683
Sh. of SLC with 4 days deviation 0.1650 0.1232

Value of leisure
Mean leisure to consumption ratio 0.2993 0.3297
SD leisure to consumption ratio 0.1985 0.1980

Share of SLC - selected durations
7 days 0.1305 0.1053
8 days 0.0162 0.0162
9 days 0.0057 0.0262
10 days 0.0211 0.0461
11 days 0.0834 0.0939
12 days 0.0404 0.0535
13 days 0.0051 0.0172

Notes: This table presents results from an out-of-sample test of the model performance. Column (1) is
constructed using data on sick leave claims filed in 2019. The moments included correspond to those used
for the estimation of preference parameters and the shares of claims with duration in the neighborhood
of 11 days. To test the performance of the model, I compare these moments with their model-simulated
counterparts. These are presented in column (2). To construct column (2) I simulate the model based on a
representative sample drawn from the 2019 data and the estimated vector of preference parameters. This
table is referenced in Section 5.3.
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Chapter 2

A Manufactured Tragedy: The

Origins and Deep Ripples of the

Opioid Epidemic

1. Introduction

Over the past two decades, mortality from opioid overdoses in the United States has increased

at an alarming rate, claiming the lives of over 300,000 individuals (CDC, 2021). These tragic

losses coincide with an increase in the level of prescription opioids per capita, which grew

232% from 1997 to 2018 (DEA, 2020). Prescription opioids are highly addictive. Even at

medically prescribed doses and within short periods of time, they can lead to physiological

dependence, with users experiencing tolerance and withdrawal (Sharma et al., 2016; Hah

et al., 2017). The potential effects of the rise in the supply of prescription opioids stretch

beyond the increase in overdose deaths and include transitions to the use of illegal opioids

such as heroin and fentanyl or declines in one’s ability to work, recover from illness, and care

for children, among other daily activities (Alpert, Powell and Pacula, 2018; Lynch et al.,
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2018; Meinhofer and Angleró-Díaz, 2019; Buckles, Evans and Lieber, 2022).

Understanding how we arrived at this situation and the extent of the consequences of

the opioid crisis is challenging, given the non-random variation in the use of prescription

opioids across geographies and over time (Ruhm, 2019; Currie and Schwandt, 2021). On the

one hand, deteriorating socioeconomic conditions in certain geographic areas could cause

an increase in the demand for opioid pain killers and also explain the subsequent decline

in the same areas, which would lead to negatively biased estimates (Carpenter, McClellan

and Rees, 2017; Case and Deaton, 2017; Hungerman, Giles and Oostrom, 2022). On the

other hand, the origin of the epidemic coincides with dramatic supply-side changes such

as aggressive marketing of prescription opioids, a shift in physician prescribing attitudes,

and an increase in the availability of potent opioids.1 It has been documented that this

increase is positively linked to access to healthcare and the number of physicians per capita

(Finkelstein, Gentzkow and Williams, 2018). As a result, areas with higher access to opioids

are positively selected on these variables, which could, in turn, attenuate the estimates of

the effects of the epidemic.

In this paper, we uncovered rich geographic quasi-exogenous variation in the level of

prescription opioids to credibly link the pharmaceutical industry to the origin and unfolding

of the opioid epidemic. We also use this variation to present causal evidence of the epi-

demic’s tragic consequences for the wellbeing of adults and its intergenerational effects. Our

approach exploits detailed features of the initial marketing of prescription opioids, which

we obtained from unsealed court records drawn from litigation against Purdue Pharma, the

manufacturer of OxyContin —a prescription opioid at the center of the epidemic.2 Those

records show OxyContin was initially promoted to the cancer pain market with the plan

1See, for example, Fernandez and Zejcirovic (2018); Alpert et al. (2022); Eichmeyer and Zhang (2020);
Schnell and Currie (2018); Finkelstein, Gentzkow and Williams (2018) and Miloucheva (2021); among others.

2These court documents are from cases 07-CI-01303 Commonwealth of Kentucky v. Purdue Pharma
and case CJ-2017-816 State of Oklahoma v. Purdue Pharma et al; C.A.No. 1884-cv-01808 Commonwealth
of Massachusetts v. Purdue Pharma et al. and Case no. 17-md-2804 (N.D. Ohio).
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to quickly expand to the much larger non-cancer pain market. This targeting implied that

non-cancer physicians and patients in high-cancer areas were first exposed to OxyContin

promotion and gained access to potent prescription opioids to treat moderate and chronic

pain. Purdue Pharma’s later strategy to disproportionally target top prescribers—those in

the highest deciles of the opioid dispensing distribution—meant that those initial targets

always received more marketing, even in the expansion phase of OxyContin, when the atten-

tion was not on the cancer market. Furthermore, Purdue’s successful strategy paved the way

for the widespread promotion of opioids beyond the cancer market. Other pharmaceutical

companies in the market seized this opportunity, and closely emulated Purdue’s marketing.

Drawing on these insights, we exploit the geographic variation in cancer mortality in the

mid-nineties as a proxy for the cancer pain market served by Purdue Pharma and other

pharmaceutical companies to assess the role of supply-side factors in the unfolding of the

opioid epidemic. We then use this variation as an instrument for the supply of prescription

opioids, allowing us to estimate its effects on the wellbeing of adults and its intergenerational

effects.

We collect data from multiple sources and construct a panel of commuting zones cover-

ing the United States from 1989 to 2018.3 We use data from the Drug Enforcement Agency

(DEA) on the distribution of controlled substances to measure the level of prescription opi-

oids at the commuting zone level. We measure adult wellbeing as health and social assistance

need, using data on mortality from opioids and other causes from the National Vital Statistics

System and data on beneficiaries of social safety net programs—namely, the Supplemental

Nutrition Assistance Program (SNAP), Supplemental Security Income (SSI)—and Social Se-

curity Disability Insurance (SSDI) program. To capture the intergenerational effects of the

epidemic, we exploit linked data on births and maternal outcomes.

3Commuting zones are geographic areas defined to capture local economic markets. They encompass all
metropolitan and nonmetropolitan areas in the US. While less granular than counties, commuting zones are
much more granular than states (Tolbert and Sizer, 1996).
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We start by showing the link between Purdue’s marketing targets when introducing

OxyContin and the future growth in prescription opioids. Specifically, we estimate a strong

positive relationship between higher cancer mortality in the mid-nineties and the rise in

prescription opioids after the launch of OxyContin. Commuting zones with the highest cancer

incidence at the time of the launch of OxyContin—those at the 95th percentile—received

1.96 more doses of opioids per capita relative to the 5th percentile, accounting for 64% of

the growth in prescription opioids from 1999 to 2018.

Turning to the effects of the epidemic on the wellbeing of adults and its intergenerational

effects, we find three key results. In terms of opioid-related mortality, increasing the supply

of opioids from the 25th to the 75th percentile caused an 89% increase in prescription opioids

deaths and a 39% increase in deaths from all opioids. This corresponds to approximately

200,000 deaths. These deaths are concentrated in young and middle-aged adults, with no

effects on those 55 and older. We do not find effects of the rise in opioid supply on non-

opioid deaths of despair (such as suicide and alcohol-related deaths) or other causes of

death.4 Second, the opioid epidemic had important health and social assistance effects

beyond overdose mortality. The number of individuals participating in social safety net

programs increased: A move from the 25th to the 75th percentile of prescriptions corresponds

to a 57% increase in the share of SNAP recipients and a 38% increase in the share of

the population receiving SSI. We also find a 76% increase in the share of the population

receiving SSDI. Third, we document large intergenerational effects. We estimate a 10%

increase in fertility rates, driven entirely by increases in non-marital births. We find declines

in pregnancy duration of 0.24 weeks, a reduction in birth weight of 0.7%, and a worsening

of APGAR scores by 0.9%.5 We estimate that there was no effect on infant mortality, but

4Our measure of deaths of despair follows Case and Deaton (2017)’s definition but excludes drug overdose
deaths; these are counted in the prescription opioid and all-opioid death categories. More details on these
definitions are provided in Section 3.

5The APGAR score is a measure of the physical condition of a newborn infant. It is obtained by adding
points (2, 1, or 0) for heart rate, respiratory effort, muscle tone, response to stimulation, and skin coloration;
a score of 10 represents the best possible condition.

77



we find an increase in the APGAR score of infants who died in the first year, meaning that

healthier infants died. Taken together, these results point to a general deterioration in the

lives of adults with serious consequences for the health of their children.

Our identification strategy requires that in the absence of OxyContin’s marketing, out-

comes in areas with higher cancer mortality would have exhibited the same trends as in areas

with lower cancer mortality (Goldsmith-Pinkham, Sorkin and Swift, 2020). To test this iden-

tifying assumption, we use an event-study approach and investigate the possible presence of

differential pre-trends. We do not find any evidence of a relationship between mid-nineties

cancer mortality and growth in any of our outcome variables before the launch of OxyCon-

tin. In contrast, reduced-form event-study graphs show that for the period soon after the

introduction of OxyContin, our instrument predicts higher opioid mortality, a higher share

of population receiving SNAP and disability, and higher fertility rates. In addition, we doc-

ument that areas with higher cancer mortality were not on a differential trend with respect

to other socio-economic variables that affect outcomes such as education, income, or other

health variables.6 That is not to say that the variation in cancer mortality across space is

randomly distributed. In fact, we find strong demographic predictors of cancer, such as the

share of the population over 65 and the Hispanic population share. What is needed to es-

tablish a causal interpretation—and what we provide evidence to substantiate—is that areas

with high and low cancer mortality were on the same trends in terms of the focal health and

economic outcomes.

Further, we propose two placebo exercises to probe the validity of our instrument. First,

we show that mid-1990s mortality rates from other causes, such as cerebrovascular disease

mortality, are not predictive of the future prescription opioids distribution. In a second

placebo exercise, we relate cancer mortality in 1989–1990—the first year of our data—to the

evolution of the outcomes of interest before the launch of OxyContin. That is, we test if there

6For example, we find that commuting zones with high and low cancer mortality were on the same trend
regarding suicide mortality and the share of employment in manufacturing and mining industries.
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is a relationship between lagged cancer mortality and the growth of our outcomes outside

the analysis period. We find no evidence of such a link. Both of these exercises suggest

that the connection between cancer mortality and the prescription opioid distribution is not

driven by other underlying health trends, but by the link created by Purdue Pharma through

the marketing of OxyContin. Finally, our results are not driven by differential exposure to

Chinese import competition, the 2001 economic recession or unemployment at the time of

the introduction of OxyContin.

The contribution of this paper is twofold. First, we provide new evidence that links the

origin and unfolding of the opioid epidemic to the marketing strategy of OxyContin. While

a large literature documents the role of supply-side factors as contributing forces to the

epidemic, its origins remain understudied.7 We build on the work of Alpert et al. (2022),

who use state-level variation in the regulation regarding the prescription of opioids. They

show that five states with early versions of prescription drug monitoring programs (PDMPs),

or triplicate prescriptions, received less marketing from Purdue Pharma and reported lower

levels of prescription opioids and fewer overdose deaths.8 In this paper, we exploit richer

commuting zone-level variation in the initial marketing strategy of OxyContin to provide new

evidence linking its launch to the origin and unfolding of the opioid epidemic.9 Crucially,

this variation allows us to account for important confounders at the state and year level, and

serves as a rich instrument for future work on the epidemic.10 In Appendix 1.3 we quantify
7Eichmeyer and Zhang (2020) and Schnell and Currie (2018): physicians; Powell, Pacula and Taylor

(2020): access to healthcare; and Fernandez and Zejcirovic (2018) and Miloucheva (2021): pharmaceutical
promotions, among others.

8These early versions of PDMPs were often referred to as “triplicate” programs. Our reading of Purdue
and other pharma industry and academic documents suggests that the industry’s perception of what con-
stitutes a “triplicate” program could differ from the designation used by Alpert et al. (2022). Appendix 1.3
examines this evidence and extends the analysis in Alpert et al. (2022).

9Previous literature often relies on changes in the access to prescription opioids induced by the adoption
of state-level policies, e.g., PDMPs, to indirectly assess the impact of the opioid epidemic on a broad set
of outcomes. See Meara et al. (2016), Buchmueller and Carey (2018a), Evans, Harris and Kessler (2020),
Ziedan and Kaestner (2020), and Gihleb, Giuntella and Zhang (2022). There is, however, debate on what
constitutes an operational or mandatory PDMP; the definitions vary across the literature, making it difficult
to leverage this variation to estimate the effects of the opioids epidemic.

10During this period, there was relevant state-level variation in response to the opioid epidemic, such
as the implementation of Prescription Drug Monitoring Programs (PDMP), the regulation of “pill mill”
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the gains in power from this empirical strategy and source of variation.

Second, this paper is the first to document the direct effects of the epidemic on important

health and social assistance beyond overdose mortality. Mortality from opioids is only one

of the many social costs associated with drug use. In 2019, an estimated 10.1 million people

in the US aged 12 or older misused opioids (SAMHSA, 2020). These numbers are orders of

magnitude larger than the number of deaths. We document the effects on the demand for dis-

ability benefits and on participation in one of the largest antipoverty programs in the United

States, SNAP, which has not been studied before. Our work is related to that of Savych,

Neumark and Lea (2019), who find evidence that an increase in long-term opioid prescribing

behavior leads to a considerably longer duration of temporary disability, and to the work of

Park and Powell (2021), who document that the rise in access to and consumption of illicit

opioids such as heroin and fentanyl increased disability applications by 7%. Finally, we also

document the intergenerational impacts of the opioid epidemic. The epidemic has primarily

affected individuals in early adulthood through mid-life, with potential costs beyond the

generation directly affected. Heil et al. (2011) and Caudillo and Villarreal (2021) document

a positive correlation between opioid use and unintended pregnancies and between opioid

overdose deaths and non-marital births. We provide the first causal estimates of the effects

on fertility and the first direct effects on birth outcomes.

clinics, and the availability of naloxone. The term “pill mill" is typically used to describe a doctor, clinic,
or pharmacy that prescribes or dispenses controlled prescription drugs inappropriately (Malbran, 2007).
Naloxone is a drug that can reverse an opioid overdose if administered quickly. The level of naloxone access
varies by state and over time. Between 2001 and 2017, every US state passed a law that facilitates the
widespread distribution and use of naloxone (Doleac and Mukherjee, 2019).
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2. Background: The Marketing of OxyContin and the Opioid

Epidemic

In 1996, Purdue Pharma introduced OxyContin to the market. When patented, OxyContin

was described as a controlled-release oxycodone compound that substantially reduces the

time and resources needed to titrate patients who require pain relief on opioid analgesics

(Oshlack et al., 1996).11 Two key technological innovations are responsible for its success.

First, its long-acting formula provided 12 hours of continuous pain relief, an improvement

over the standard practice of pain relief every 6-8 hours. Second, it is a single-agent nar-

cotic, so there is no ceiling on the amount of oxycodone per tablet.12 Both of these factors

significantly increased patients’ access to potent doses of opioids and augmented the risk

of dependency and use disorder. For example, Percocet was the most common oxycodone

product on the market before 1996 and was mostly sold in the form of 2.5 mg of oxycodone

per tablet. In contrast, the most common forms of OxyContin were 20 mg and 40 mg tablets

of oxycodone, while 80 mg and 160 mg tablets were also available. Furthermore, OxyContin

users rapidly learned that crushing or dissolving the pill causes the oxycodone to be delivered

all at once—instead of the slow release over 12 hours—which induces strong euphoric effects.

Prior to the introduction of OxyContin, pain management focused on cancer and end-

of-life pain treatment. Patients who suffered from debilitating chronic pain but who do

not have a terminal illness were excluded from long-term therapy with opioids, based on

care providers’ fears of the risk of severe addiction (Melzack, 1990). In this context, MS

Contin, a drug also produced by Purdue Pharma, was the gold standard for cancer pain

treatment. OxyContin’s development was in response to the generic competition Purdue

Pharma expected to face when MS Contin’s patent protection expired in 1996. In their

11Oxycodone is a semisynthetic opioid that is 50% more potent than morphine and is prescribed for acute
pain management.

12Other oxycodone products on the market were a combination of oxycodone and ibuprofen or ac-
etaminophen, and the toxicity of the former sets a limit on the amount of active ingredients in the formula.
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words:“Because a bioequivalent AB rated generic control-release morphine sulfate is expected

to be available sometime during the later part of 1996, one of the primary objectives is to

switch patients who would have been started on MS Contin onto OxyContin as quickly as

possible” (OxyContin Launch Plan, September 1995).

OxyContin was intended to take over MS Contin’s market and gain ground in the much

larger non-cancer pain treatment market, in which opioids were almost absent. Nonetheless,

establishing the use of OxyContin for moderate and chronic pain was not an easy task; it

was clear to Purdue that they were going to face pushback when expanding to the non-

cancer market. Specifically, based on physicians’ focus groups in 1995, Purdue concluded

that “there is not the same level of enthusiasm toward this drug for use in non-cancer pain

as we identified in cancer pain” (Purdue Pharma, 1995). The two main barriers Purdue

Pharma faced were (i) the fear and stigma related to the use of opioids for non-terminal

or non-cancer pain and (ii) the administrative barriers physicians and pharmacies had to

overcome to prescribe and sell Schedule II drugs.

To overcome these obstacles, Purdue deployed a comprehensive marketing strategy based

on three main pillars. First, to effectively change physician prescribing behaviors, Purdue

Pharma implemented an aggressive marketing plan that pushed the message of an untreated

pain epidemic that affected millions of Americans on a daily basis. Pain was introduced as

the fifth vital sign, with the goal of encouraging the standardized evaluation and treatment of

pain symptoms (Jones et al., 2018). This messaging also included misleading statements—for

instance, that opioid addiction rates were lower than 1% and that oxycodone was weaker

than morphine when it is 50% more potent.13

Second, OxyContin was promoted directly to physicians by the largest and highest-paid
13“We are well aware of the view held by many physicians that oxycodone is weaker than morphine. We

all know that this is the result of their association of oxycodone with less serious pain syndromes. This
association arises from their extensive experience with and use of oxycodone combinations to treat pain
arising from a diverse set of causes, some serious, but most less serious. This ‘personality’ of oxycodone
is an integral part of the ‘personality’ of OxyContin.” Exhibit 11 from Richard Sackler’s—chairman and
president of Purdue Pharma—deposition, August 28, 2015.
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sales force in the industry.14 The continuous promotion of OxyContin through advertise-

ments, gifts, and promoted medical literature was delivered through repeated visits and calls

to physicians. Furthermore, the marketing team carefully tracked physician prescription

habits to optimize and personalize their detailing messages.15 These promotional efforts

quickly translated into a growing number of prescription from OxyContin (Figure A.1).

Third, Purdue focused its initial marketing efforts on the physicians and pharmacies

who faced less stigma around opioids and who knew how to navigate the paperwork related

to the distribution of Schedule II drugs: Those in the cancer pain market. On repeated

occasions Purdue states clearly that: “OxyContin Tablets will be targeted at the cancer pain

Market.” (OxyContin Team Meeting, April 1994).“OxyContin primary market positioning

will be for cancer pain.” (OxyContin Team Meeting, March 1995).“At the time of launch,

OxyContin will be marketed for cancer pain.” (OxyContin Launch Plan, September 1995).

This, however, was only intended as their entering path to the larger non-cancer pain market.

Purdue explicitly stated that:

“The use of OxyContin in cancer patients, initiated by their oncologists and then

referred back to FPs/GPs/IMs, will result in a comfort that will enable the ex-

pansion of use in chronic non-malignant pain patients also seen by the family

practice specialists” (OxyContin Launch Plan, September 1995).

That is, Purdue exploited its previously established network of cancer patients and their

physicians to introduce its newest product to the broader pain market. This strategy also

solved additional logistical problems related to the sales of Schedule II drugs, such as Oxy-

Contin. At the time of launch, only about half of the pharmacies in the country had the

14The average sales representative’s annual salary of $55,000, was complemented by annual bonuses that
averaged $71,500, with a range of $15,000 to nearly $240,000 (Van Zee, 2009).

15From 1996 to 2000, Purdue increased its total physician call list from approximately 33,400 to approxi-
mately 70,500 physicians; United States General Accounting Office (2003). See Figure A.2 for details on the
targeting of top deciles prescribers by Purdue Pharma.
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paperwork required to sell Schedule II drugs, and because “pharmacists are generally reluc-

tant to stock Class II opioids”, Purdue decided that their “initial targets will be the 25,000

stores who stock MS Contin”, where there was no additional paperwork or training required

for pharmacies to stock OxyContin.

Purdue’s marketing strategy succeeded in making the use of highly addictive opioids stan-

dard practice in the treatment of moderate and chronic pain for a wide range of conditions.

By 2003, nearly half of all physicians prescribing OxyContin were primary care physicians

(Van Zee, 2009). This strategy also opened the door for other pharmaceutical companies to

promote their prescription opioids beyond the cancer market following Purdue’s leadership.

These companies—Janssen, Endo, Cephalon-Teva, Actavis, Insys, and Mallinckrodt—who

are also part of dozens of lawsuits for their role in the opioid epidemic, closely shadowed

OxyContin’s marketing intending to grow by reducing OxyContin’s market share:“Success

means increasing Duragesic share at the expense of OxyContin” (Sales Force Memorandum,

2001, Janssen Exhibit S0510, State of Oklahoma v. Purdue Pharma et al.).16

Finally, Purdue’s later strategy to promote only to top opioid prescribing physicians,

those in the highest three deciles of the distribution (Figure A.2), meant that areas with

high initial promotion as a result of the cancer market focus, also observed higher future

promotion when Purdue’s plan shifted to the broader pain market.17 This created a path

dependency that made initial targets always relevant even when the distribution of opioids

expanded.

For our identification purposes, Purdue’s marketing strategy means that areas with a

higher incidence of cancer at the time of the launch of OxyContin received a disproportionate

amount of marketing and prescriptions for OxyContin and other opioids. In practice, this

created a spillover in high-cancer communities from cancer patients, to non-cancer patients,
16Duragesic is a fentanyl patch manufactured by Janssen, the pharmaceutical company of Johnson &

Johnson.
17Other pharmaceutical companies also follow this strategy. For example, Janssen referred to high decile

prescribers as their highmost important customers in a Sales Force Memorandum for Duragesic in 2001.
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through their common physicians. In this context, the ideal instrument is a measure of

the cancer market Purdue Pharma was serving with MS Contin prior to the introduction

of OxyContin. Hypothetically, there are multiple ways to proxy this market. One is to

use mid-nineties MS Contin prescription rates as this was Purdue’s gateway to the non-

cancer pain market. However, for the period of analysis, these data are not available at the

county or commuting zone level. Alternatively, we could leverage the State Drug Utilization

Data (SDUD), which reports the number of prescriptions paid by Medicaid agencies at the

state level. This dataset does not allow us to exploit within-state variation. However, it is

useful to document that, at the state level, there is a strong relationship between MS Contin

prescription rates and mid-nineties cancer mortality prior to the launch of OxyContin (see

Figure A.3).18

We proxy the market served by Purdue Pharma using cancer mortality between 1994

and 1996. This variable is available at the county level and is accurately and consistently

measured throughout the period. Additionally, it has a close connection to the rates of cancer

patients who are using opioid painkillers to manage cancer pain (e.g., MS Contin), especially

in the later stages of cancer treatment.19 This instrument allows for the identification of the

role of supply in the origin of the crisis and to estimate the causal effect of the opioid epidemic

on a broad range of outcomes.

18From reading court litigation’s documents, we know that at that time, Purdue had access to extremely
granular prescription drugs data through a firm called IMS (later called Xponent and today called IQVIA).
We have contacted IQVIA to inquire about these data, and they stated they do not keep any historical data
records. A plausible alternative instrument is the number of oncologists per capita. This measure, however,
is far too concentrated in the largest commuting zones.

19An additional measure of cancer incidence is the rate of cancer patients in the population. Unfor-
tunately, incidence measures reported by the CDC and the Surveillance, Epidemiology, and End Results
(SEER) program are aggregated at the state level. Importantly, the two measures are highly correlated: the
correlation coefficient is 0.88.
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3. Data and Summary Statistics

3.1 Prescription Opioids

We digitize historical records from the Automation of Reports and Consolidated Orders

System (ARCOS) of the Drug Enforcement Administration (DEA). These reports contain

the distribution records of all Schedule II substances by active ingredient (e.g., oxycodone,

hydrocodone, and morphine) at the 3-digit ZIP code level—the smallest geographic unit

available—from 1997 to 2018.20 We construct a geographic crosswalk from 3-digit ZIP codes

to commuting zones using Geocorr (a geographic correspondence engine) powered by the

Missouri Census Data Center. Our main independent variable is grams of prescription opioids

per capita at the commuting-zone level; this corresponds to the sum of oxycodone, codeine,

morphine, fentanyl, hydrocodone, hydromorphone, and meperidine in morphine-equivalent

mg. The group of drugs included in the ARCOS changes over time—e.g., to account for

changes in the classification of an ingredient. Nonetheless, we focus on a set of prescription

opioids that can be tracked consistently over the period of analysis. We report all ARCOS

measures in morphine-equivalent doses, equal to 60 morphine-equivalent mg.

The first panel of Table 2.1 presents summary statistics of shipments of all prescription

opioids and the three main controlled substances: oxycodone, hydrocodone, and morphine.

Oxycodone represents around half of all prescription opioids shipments, and the average

commuting zone receives 3.15 doses per capita in a given year. This number masks substan-

tial geographical variation. While some commuting zones received no doses, others report

as much as 51.31 oxycodone doses per capita in a given year, Map 2.1 shows this variation.

Figure A.4 shows the rapid growth of prescription opioids over time and the dominant role

of oxycodone in such growth. Additional summary statistics on opioids shipment over time

20ARCOS system data are available online from 2000 to the first half of 2022. We retrieved and digitized
the reports up to 2018, the last year of our sample. For periods before 2000, we used the WayBack Machine
application to access reports for 1997 to 1999. These data is available here.
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are presented in Table A.1.

3.2 Cancer Mortality

To proxy the cancer market served by Purdue Pharma at the time of OxyContin’s launch we

construct the average cancer mortality rate between 1994 and 1996 at the commuting zone

level using a restricted-access version of the Detailed Multiple Cause of Death (MCOD)

files.21 These files record every death in the US along with the county of residence, the

underlying cause of death, and up to 20 additional causes and thus represent a census of

deaths in the US. The 1989-1998 data use ICD-9 codes to categorize the cause of death, and

the 1999-2018 data use ICD-10 codes.22 Map 2.2 shows large variation in average cancer

mortality in 1994 and 1996.

3.3 Outcome measures and control variables

Opioid mortality. We construct two main measures of opioid-related deaths: prescription

opioids and all opioid deaths. The prescription opioids category captures deaths whose

underlying cause is substances usually found in prescription painkillers such as hydrocodone,

methadone, morphine, and oxycodone, among others.23 We also consider a broader measure

of opioid-related deaths, in which we include deaths from heroin and synthetic opioids; e.g.,

fentanyl.24 Map 2.3 shows this geographical variation; mortality rates vary from no deaths

to as many as 106 per 100,000 residents in the most affected commuting zones.25
21We also consider age-adjusted cancer mortality and test if our results are sensitive to any of the years

used as our baseline cancer mortality measure. We find very similar and strong first-stage estimates across
these alternative measures, see Section 6.6.1

22We construct cancer deaths as those from malignant neoplasms (codes 140-208 in ICD-9 data and
C00-C97 in ICD-10 data) and in situ neoplasms, benign neoplasms and neoplasms of uncertain or unknown
behavior (codes 210-239 in ICD-9 data and D00-D48 in ICD-10 data).

23We use identification codes T40.2 and T40.3 to specify prescription-opioid-related overdoses in the
ICD-10 data and codes 965.00, 965.02, 965.09, E850.1, and E850.2 in the ICD-9 data.

24We use identification codes T40.0-T40.4, X42, X62, and Y12 to count deaths from any opioid in the
ICD10-data and codes 965.00, 965.01, 965.02, 965.09, E850.0, E850.1, and E850.2 in the ICD-9 data.

25The CDC reports that the transition from the ICD-9 to ICD-10 resulted in a small increase in poison-
related deaths of 2% (Warner et al., 2011). Appendix Figure A.5 shows the time series for the US for these

87



Deaths of despair. We also study how the opioids epidemic affected other deaths of

despair. Case and Deaton (2015) define deaths of despair as deaths by drug and alcohol

poisonings, suicide, and chronic liver diseases and cirrhosis. Our measure of deaths of despair

does not include drug poisonings as these are counted in prescription and any opioids deaths

separatedly in our analysis. That is, our measure is limited to deaths from suicide, chronic

liver disease, cirrhosis, and poisonings that are attributable to alcohol—these deaths amount

to, on average, 79% of the deaths studied by Case and Deaton (2017).26

Demand for social insurance and welfare programs. We construct a measure of SNAP

benefit recipiency rates at the commuting-zone level, using data from the Food and Nutri-

tion Service of the Department of Agriculture. In particular, we use data on county-level

participation in the month of January for all years spanning 1989-2018, focusing on benefi-

ciaries of Food Stamps (FSP) and Electronic Benefit Transfers (EBT) in the context of the

program. We then aggregate the county-level counts to compute the share of beneficiaries

in the population at the commuting-zone level.27 We include two measures of disability

benefits recipiency, constructed as the share of the population that receives Supplemental

Security Income (SSI) and who is blind or disabled, and the share of the population 18 to 65

that receives Social Security Disability Insurance (SSDI). Information on the total number of

SSI recipients in each county is based on SSI Annual Statistical Reports and Old Age, Sur-

vivors and Disability Insurance (OASDI) reports prepared by the National Social Security

Administration, which we aggregate at the commuting-zone level.28

two measures.
26We use identification codes K70, K73-74 to count deaths from alcoholic liver diseases and cirrhosis in

the ICD10-data and codes 571.0 – 571.4 and 57109 in the ICD-9 data. We count deaths from suicide using
codes X60-84 and Y87.0 in the ICD10-data and codes E950-E959 in the ICD-9 data. Deaths from alcohol
poising are counted using codes X45 and Y15 in the ICD10-data and codes E850-E858, E860, and E980.1 in
the ICD-9 data.

27When information at the local level is not available, we impute the state-level share of SNAP recipients.
Table A.14 shows the result for the sample of commuting zones that do not require state-level imputation.
Our results are not sensitive to this sample restriction.

28We observe the number of beneficiaries at a given point in time but do not observe the number of
beneficiaries entering or exiting the programs. Thus, we cannot speak to the question of whether a change
in the stock is due to people entering more quickly or receiving benefits for a longer time.
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Birth outcomes and fertility. Data on birth outcomes come from the Linked Birth and

Infant Death Data of the National Vitals Statistic System (NVSS). The microdata for each

year between 1995 and 2018 include the deaths of all infants born in that calendar year for

which the death certificate can be linked to a birth certificate and all births occurring in

a given calendar year.29 We construct infant mortality as the ratio of infant deaths to live

births in a given calendar year. The Linked Birth and Infant Death Data also include data

on the infant’s condition at birth, such as weight and length of gestation. The main measures

of infant health we compute from the birth files are the commuting-zone-level (i) average

birth weight for all live births, (ii) share of low-birth-weight newborns, (iii) share of preterm

births, (iv) APGAR score of all births, (v) APGAR score of deceased infants, and (vi) median

pregnancy duration. Finally, we use the birth files to compute the average fertility rate at

the commuting-zone level, defined as the ratio of the number of single pregnancies to the

female population aged 15 to 44 years old.30,31

Demographic controls. Data on population counts comes from the Survey of Epidemiology

and End Results (SEER) which reports population at the county level and by age, race, sex,

and Hispanic origin. We use these data to construct the denominators for adult mortality rate

measures, e.g., opioid mortality and aggregate mortality. Denominators for infant mortality

rate come from the “Denominator File” provided by the NVSS.

In sum, we build a data set at the commuting-zone level, covering the period from 1989 to

2018 for our outcome variables and the instrument. We choose commuting-zones as our unit

of observation since it is the geographic space that captures ones economic life—which often

29At least 98% of deaths are linked to their corresponding birth certificate. This figure varies by year;
e.g., in 2018, 99.3% of all infant deaths were successfully linked, while in 1998, 98.4% of death records were
linked.

30We follow the CDC’s definition to compute the aggregate or general fertility rate. In additional results,
we also present fertility rates for other age breakdowns.

31Data for the period 1989-1994 come from the Natality Birth Files. These files provide demographic and
health data for all births occurring during the calendar year. We use these data to construct infant mortality
rates, birth weight, fertility rate, and APGAR scores measures for the analysis in Section 4.5.2
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spans beyond county borders—and the access to the local market for prescription opioids.32,33

ARCOS data are available since 1997, so analyses using this measure are restricted to a later

period.34 We restrict our sample to areas with more than 25,000 residents. This represents

99.8% of all opioid deaths and 99.3% of the total population. Our final dataset is a balanced

panel of 590 commuting zones and consists of 17,110 observations.

4. Empirical Strategy

The level of prescription opioids in a given place and time is an equilibrium object determined

by supply and demand factors. Supply factors, such as the density of the healthcare network,

and demand factors, such as the incidence of pain in the population, affect the level of

prescription opioids and may also affect the evolution of our outcome variables. Table 2.2

shows that the distribution of opioids is not random across space, but rather is related to the

demographic composition of the commuting zone and its economic performance. A greater

share of the white population and higher median income at the commuting-zone level have a

positive correlation with prescription opioids per capita; the share of the Hispanic population,

the employment rate, and the demand for social insurance have a negative correlation with

the opioid supply.35 This is in line with Finkelstein, Gentzkow and Williams (2018), who

estimate that areas with more physicians per capita, higher levels of income and education,

lower Medicare spending per capita, and higher scores on a healthcare quality index have

higher opioid abuse rates.

32We will miss prescription opioid use from those who are willing to cross commuting-zone lines to obtain
opioids prescriptions, nonetheless the literature suggests that this is a rare behavior (Buchmueller and Carey,
2018a).

33We use the crosswalks developed by Autor and Dorn (2013) to go from county-level to commuting-
zone-level aggregates. Some commuting zones cross state borders. When this happens, the commuting zone
is assigned to the state where the higher share of the zone’s population is located. This criterion helps to
preserve the strong within-cluster and weak between-cluster commuting ties.

34Table A.2 presents summary statistics for the pre-Oxycontin launch period.
35We also find a small negative correlation between the share of employment in the manufacturing industry

and opioid prescription rates.
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To identify the effect of the opioid epidemic we use an instrumental variable strategy

that exploits rich geographical variation in the promotional efforts for OxyContin and other

prescription opioids as an exogenous source of variation in the future inflows of opioids. We

estimate the causal effects of the supply of prescription opioids via the following equations,

which are run over our sample of commuting zones for the period 1997-2018:

First Stage:

∆ Presc. Opioidsct = α1 + φ CancerMRct0 + α ∆ Xct + γst + υct . (2.1)

Second Stage:

∆ yct = τ1 + β ̂∆Presc. Opioidsct + τ ∆ Xct + λst + εct , (2.2)

where c indexes commuting zones, t indexes years, s indexes states, and t0 is defined as the

average of the pre-OxyContin period. The operator ∆ works as follows: For any random

variable Wct, ∆Wct equals the difference Wct −Wct0 ; we refer to this operation as the long-

change of variable Wct. Regarding Equation (2.1), Presc. Opioidsct corresponds to doses of

opioids per capita shipped to commuting zone c in year t and CancerMRct0 is the cancer

mortality rate in commuting zone c in 1994-1996 (t0). In Equation (2.2), yct refers to one of

our outcomes of interest, e.g., a measure of opioid-related mortality. Both equations include

a vector ∆ Xct that represents the long-changes in the time-varying control variables. The

control variables included are contemporaneous cancer mortality, share of the population

over 66, share of the population 18-65, share of the population under 1 year, shares of the

white and black populations, share of females, and share of Hispanic population.

We add state times year fixed effects represented by the term γst (and λst in the second-

stage equation). These fixed effects control for the variation in outcomes over time that is
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common to all commuting zones within state s, and purge the variation in the supply of

prescription opioids that results from a change in state-level policies—such as the implemen-

tation of a PDMP, access to naloxone, and regulation of “pill mills”. These policy changes

were quite common, for example, between 2007 and 2013, 17 states implemented some ver-

sion of a PDMP (Buchmueller and Carey, 2018a). Between 2001 and 2017, every US state

passed a law that facilitates the widespread distribution and use of naloxone (Doleac and

Mukherjee, 2019). Since our exogenous variation is at the commuting-zone level, we cannot

include commuting-zone fixed effects in the regression. However, by expressing our variable

in changes, we can partially absorb some of the variation that is specific to the commuting

zone. We cluster standard errors at the commuting-zone level.

We examine how changes in the supply of prescription opioids relate to the initial cancer

mortality rate—our measure of the market initially targeted by pharmaceutical companies.

Thus, φ captures the growth in the supply of prescription opioids per capita for an additional

percentile point in cancer mortality. The parameter of interest β captures the causal effect

of an increase in one dose of opioids per capita relative to the baseline year on the change

in opioid mortality rate (and other outcomes of interest). That is, for a unit increase in the

supply of prescription opioids relative to the period 1994-1996, the mortality rate from pre-

scription opioids (and any other outcome) changes in β units relative to the pre-OxyContin’s

launch period. For the IV estimator of β to be consistent, the cancer mortality rate in the

baseline period must be (i) strongly correlated with the opioid supply, and (ii) uncorrelated

with the error term in the second-stage equation (Equation 2.2). Evidence supporting our

strategy was first presented in Section II, in which we discussed Purdue Pharma’s marketing

strategy and its rationale for focusing on the cancer market as the place to start and expand

from. Next, we provide empirical evidence to support this strategy and assess threats to the

validity of the instrument.

92



4.1 Does cancer mortality in the mid-1990s predict growth in the supply of prescription

opioids?

We start by providing graphical evidence in Figure 2.4. We divide commuting zones into

quartiles according to their level of cancer mortality before the launch of OxyContin and trace

the evolution of all prescription opioids, oxycodone, hydrocodone, and morphine in these

communities. Panel (a) of Figure 2.4 shows the evolution of the aggregate of prescription

opioids per capita in commuting zones in the bottom and top quartiles of cancer mortality in

1994-1996, as well as the evolution of oxycodone—the active ingredient of OxyContin, which

accounts for the largest share of this growth.36 It is clear from the graph that communities

with high rates of cancer experienced a much larger influx of prescribed oxycodone (solid

orange line) than low-cancer communities (dashed orange line), even though the two groups

started the period with a comparable prevalence of oxycodone. Specifically, between 1997

and 2010, areas in the highest quartile of cancer incidence saw an increase in oxycodone

gm per capita of 2,900%, and areas in the lowest quartile experienced a growth that was

one-third of that, even though the incidence of cancer varied equally across the two groups,

as shown in Figure A.6.

Table 2.3 shows the results of the first-stage regression defined in Equation 2.1. Col-

umn 1 is a bivariate regression of prescription opioids per capita on cancer mortality at t0.

Columns to the right add time-varying controls and different specifications of fixed effects.

Our preferred specification is the one in column 5, in which we control for state-times-year

fixed effects and our covariates. Across all specifications, there is a positive and strong

relationship between cancer rates in the mid-1990s and the change in opioids per capita.

A one-unit (one-standard-deviation) increase in 1994-1996 cancer mortality increases the

change in prescription opioids per capita relative to 1997 by 1.1 (0.13 standard deviation).37

36In Appendix Figure A.7 we present the analogous analysis, but we split the data based on 8 octiles of
cancer mortality and observe the same pattern.

37We present weak-instrument-robust inference and follow Andrews, Stock and Sun (2019) recommenda-
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To put this figure in context, a change from a commuting zone in the 5th percentile of the

cancer distribution to the 95th percentile explains 64% of the increase in opioids relative to

the base period. We show the strength of this relationship graphically in panel (b) of Figure

2.4 where we plot the first stage coefficients by year. We find that starting in 1998, the

second year of the opioids data, and until 2018, the last year in our data, there is a positive

and statistically significant relationship between cancer rates and prescription opioids per

capita. However, due to the limited data availability on the illicit opioid market, our first

stage analysis underestimates the impact of the initial marketing of opioids on the overall

level of both legal and illegal opioid use. Previous research has established a strong causal

link between prescription opioid use and illegal opioid use (Alpert, Powell and Pacula, 2018;

Evans, Lieber and Power, 2019).

Our hypothesis is that the connection between pre-OxyContin cancer rates and future

opioid inflows is generated by the marketing efforts from Purdue and other pharmaceutical

companies. Unfortunately, most of the data that could test this hypothesis is still confiden-

tial. Here, we perform two exercises that provide evidence in this direction, one using public

data and the second, using new unsealed records we digitized. First, we examine pharmaceu-

tical marketing in 2013–2018 using the CMS Open Payments database. These data report

visits and payments from pharmaceutical manufacturers to physicians related to promoting

specific drugs, including payments for meals, travel, and gifts. Panels A and B of Figure 2.5

show that, even 17 years after the introduction of OxyContin, the share of visits and the

share of payments to promote opioids relative to all other drugs was higher in high cancer

tions and present the effective first-stage F statistic proposed by Montiel Olea and Pflueger (2013) to assess
the instrument’s strength. In the rest of this paper, we refer to this as the effective F-stat. The value of the
F-statistic testing the null hypothesis that the instrument is equal to zero in the first stage is always greater
than 10, suggesting that we can reject the null hypothesis. Nonetheless, Lee et al. (2020) suggest that this
standard practice of relying on the first-stage F exceeding some threshold (e.g., 10) delivers tests of incorrect
size. Thus, to assess the statistical significance of our estimates, we (i) compute the “tF 0.05 standard error”
proposed by Lee et al. (2020), which inflates the usual standard errors to take into account the strength
of the first stage, and (ii) present p-values based on Anderson-Rubin Test (Anderson, Rubin et al., 1949).
Based on Lee et al. (2020), we use a correction factor of 2.75

1.96 = 1.4031 to compute the “tF 0.05 standard
error.” To facilitate its interpretation, we present the t-statistic computed with the corrected standard errors.
This t-statistic should be compared with a critical value of 1.96 to assess the null hypothesis.
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commuting zones. Commuting zones at the top quartile of the cancer distribution in the

mid-nineties, relative to commuting zones in the bottom quartile of the cancer distribution,

received on average 22% more opioids-related visits, and the share of payments was 83%

higher. We interpret this as a measure of persistent effect of the initial targeting of cancer

areas by pharmaceutical companies.

Second, records on all sales representatives’ visits to promote OxyContin in Massachusetts

have been released, as part of recent litigation, from May 2007 to December 2018 (Figure

A.8). We digitized these data for 2007 to 2011 and created aggregate measures at the

county level of the number of visits per 1,000, and the number of targets–either physicians

or pharmacists, per 1,000. Panels C and D of Figure 2.5 show scatter plots of these variables

on the y-axis and mid-nineties cancer mortality on the x-axis. Both of these measures

show a positive relationship between cancer mortality at the time of launch and persistent

future marketing in those areas. This persistence of the initial targeting is consistent with

the marketing strategy discussed in the internal documents and supports our identification

strategy.

4.2 Exogeneity and exclusion restriction: Is cancer mortality in the mid-1990s directly re-

lated to our outcome variables?

Variation in mid-1990s cancer mortality across locations is not random; rather, it depends on

demographic, environmental and socioeconomic variables. In Table A.3 we find that cancer

mortality is: strongly related to share of the population over 65, negatively associated with

the share of Hispanic population, and positively associated with mortality from other causes

of death. There is not, however, a cross-sectional correlation with our outcome variables:

opioid mortality, shares in SNAP and disability, infant mortality rate, or fertility. Nonethe-

less, the validity of our identification strategy does not require that cancer be randomly

distributed across areas, but rather that in the absence of OxyContin marketing, areas with
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higher cancer mortality in the pre-OxyContin period (t0) exhibit the same trend as areas

with lower cancer mortality in t0 in terms of our outcome variables (Goldsmith-Pinkham,

Sorkin and Swift, 2020).

We provide evidence to support this assumption in four ways. First, we estimate reduced-

form type regressions where we interact our instrument with year dummy variables to directly

test for the presence of pre-trends, i.e., we estimate an event-study version of the reduced

form relationship between the outcome variables and our instrument. For each outcome

variable we consider the following specification, which is run over a balanced sample of

commuting zones for the years 1989 to 2018:

∆ yct = α1 +
2018∑

τ=1989
φτ CancerMRct01(Y ear = τ) + α ∆ Xct + γst + υct , (2.3)

where ∆ is the long change operator, yct is the outcome of interest, and Xct is a vector

of time-varying control variables defined previously. CancerMRct0 is the cancer mortality

rate in commuting zone c at time t0 and it is interacted with a full set of year fixed effects

index by τ . In this specification, the coefficients for the pre-OxyContin period; i.e., φ1989,

φ1990, to φ1995, test whether the outcome of interest yct in higher and lower cancer mortality

areas followed similar trends before OxyContin was introduced to the market in 1996. This

research design allows us to control for state-specific trends and state-level policy changes

which were common during this period that directly affected the supply of opioids—e.g.,

the implementation of PDMP, the regulation of “pill mill” clinics, and the availability of

naloxone—and also the evolution of our outcome variables—e.g., welfare reform and child

support policies.

Figures 2.6, 2.7, and 2.8 show the results of this estimation on main outcomes of inter-

est.38 We find that areas with higher cancer mortality in the mid-nineties were not on a
38Appendix Figures A.13, A.15, and A.17 complement this analysis.
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differential trend along: opioid-related mortality, despair mortality, infant mortality, birth

weight, fertility, or share of population using SNAP.39 There is no evidence of pre-trends, i.e.,

the estimated coefficients for the pre-OxyContin period are jointly statistically indistinguish-

able from zero. After the introduction of OxyContin in 1996, strong patterns appear, and

mid-nineties cancer mortality starts to predict opioid-related mortality, demand for SNAP,

and increased fertility.

Second, there is no evidence of a systemic relationship between lagged cancer mortality

and past or future overall health trends and despair. We show that young adults entirely

drive the excess opioid mortality we estimate, and opioid mortality for adults over 55 years

old does not increase (see Figure 2.9). This supports the argument that our results are not

driven by underlying health conditions since the population over 55 would be the closest to

the population that drives the variation in our instrument and that instead, what we observe

is a spillover from the cancer population to the younger and healthier population, through

the introduction of OxyContin in those markets. We also report event study estimates for

suicide mortality and overall 75+ mortality —excluding cancer (Figure 2.10). Additionally,

we find no evidence of pre-trends for suicide and overall mortality prior to or after the

introduction of OxyContin. Finally, in Figure A.9 we document that high cancer places

were not on a differential trend along health behaviors such as smoking.

Third, we provide evidence that higher cancer mortality places were not on a differential

trend along economic outcomes. To do so, we perform an out-of-sample dynamic reduced-

form analysis in our pre-period. That is, we run Equation 2.3 over a sample of commuting

zones for the years 1989 to 1995 and estimate if lagged cancer mortality—average cancer

mortality rate in 1989 and 1990, the first years in our data—predicts our outcome vari-

ables. We present the results of this analysis in Figure 2.11 and Figure A.10. These results

demonstrate that before the introduction of OxyContin there is no relationship between our

39Data on SSDI and SSI are not available at the county level before 1996 so we can not conduct this
exercise for such outcomes.
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outcome measures and lagged cancer mortality—the estimated coefficients are statistically

indistinguishable from zero. In Appendix Figure A.11, we test for a relationship between the

share of employment in the manufacturing and mining industry and cancer mortality before

the launch of OxyContin and find no evidence of a differential trends in these variables.

Finally, for variables such as income per capita, educational attainment, or our outcome

variables SSI and SSDI rates, for which we do not have yearly data for 1989-1995, we test

whether lagged cancer mortality in 1989 and 1990, predicts changes in these variables, using

a cross-sectional reduced form analysis. Table 2.4 presents the results of this exercise. In

column 1, we find no evidence of a relationship between cancer incidence and relevant eco-

nomic indicators, and similarly in column 2, which presents this analysis for our outcome

variables, including SSI and SSDI, we do not find any relationship. Taken together these

results suggest that in the absence of OxyContin marketing, areas with higher cancer mor-

tality exhibit the same trends as areas with lower cancer mortality in terms of our outcome

variables and additional socio-economic measures.

5. Results

5.1 Effects on Opioid-related Mortality

We start by inspecting the raw data; in panel (a) of Figure 2.6 we split commuting zones

based on the cancer mortality distribution and document that early in the 2000s, a wedge

starts to appear between high- and low-cancer-incidence groups, and by the end of the

sample opioid mortality in high-cancer areas is 75% higher.40 Second, following the reduced-

form approach from Equation 2.3, we estimate that after the launch of OxyContin a strong

relationship emerges between mid-nineties cancer mortality and opioid-related mortality as

40In Appendix Figure A.12 we present the analogous analysis, but we split the data based on 8 octiles of
cancer mortality and observe the same pattern.
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shown in Panel (b) of Figure 2.6.41

Next we take Equations 2.1 and 2.2 to the data. Commuting zones with the highest cancer

incidence at the time of OxyContin’s launch received 64% more opioids per capita than their

counterparts—i.e., the 95th percentile relative to the 5th percentile. Using this increase as

an exogenous change, we estimate that an additional dose of prescription opioids per capita

caused an increase in prescription opioid mortality of 0.0068 points and in all opioid mortality

of 0.0065 points. The estimates presented in columns 3 and 6 of Table 2.5 are statistically

significant using t-ratio inference, Anderson-Rubin weak instrument robust inference, and

the tF procedure suggested by Lee et al. (2020). Our results imply that when doses per

capita increase from the 25th to the 75th percentile—i.e., a 5.02 dose increase—mortality

from prescription opioids increases by 88.6% and all opioid mortality increases by 39.3%.42

The ordinary least squares (OLS) estimates (columns 1 and 4 of Table 2.5) differ con-

siderably from the IV estimates. We find a positive correlation between opioid supply and

opioid mortality rate, but the difference in magnitude between the OLS and the IV estimates

suggests that the former suffers from downward bias. Put another way, by looking at the

correlation between opioid supply and opioid deaths, we would underestimate the role of the

supply of prescription opioids in explaining the rise in mortality. The negative bias in the

OLS estimates is consistent with commuting zones that receive a disproportionate amount

of marketing being positively selected on observable characteristics: Areas initially targeted

by OxyContin campaigns had better access to healthcare and a larger number of physicians

per capita, which served as OxyContin initial network.

Heterogeneous effects. The excess opioid-related mortality induced by the marketing of

prescription opioids is by and large coming from young and middle-aged adults and at the

begging of the epidemic, is driven mainly by white adults. In Figure 2.9, we present the
41In Appendix Figure A.13 we replicate this analysis for any opioid mortality and document similar

patterns.
42The standard deviation of the distribution of prescription opioids per capita between 1997-2018 is 4.34,

thus a change from the 25th to the 75th percentile in such distribution represents 1.15 of a standard deviation.
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interactive-reduced-form analysis for three age groups and in Figure A.14 we split the data

by race and gender. The analysis by age shows (i) no evidence of pre-trends on opioid

mortality for any of these groups, and (ii) opioid mortality increases that are concentrated

among individuals aged less than 55 years old. Furthermore, different from the trends in

prescription opioids mortality, for the case of any opioid mortality—which adds deaths from

heroin and fentanyl—the effects are persistent even in the last years of our sample, for those

under 55. Additionally, we find the epidemic affected men and women similarly. When

splitting the data by race, we find that estimates for whites are positive and statistically

significant starting soon after the launch of OxyContin. For non-whites it takes around a

decade for estimates to be positive and statistically significant.

The opioid crisis can be viewed as having occurred in three waves (Maclean et al., 2020).

In the first prescription opioids was the main source of overdose deaths, in the second was

heroin, and in the third fentanyl. Panel A of Table A.4 reproduces the estimates of the first

stage for different starting and ending years, and Panel B replicates the main instrumental

variables regressions. We find a strong first-stage relationship between mid-nineties cancer

mortality and the supply of prescription opioids in all the stages of the crisis. In terms of

the effects, our results suggest that the increase in the supply of prescription opioids had a

stronger impact on opioid-related mortality in the first wave of the epidemic. However, the

effects are positive and statistically significant across all periods.

5.2 Adult Wellbeing and Intergenerational Effects

In this section, we study whether the access to potent opioids has deteriorated the wellbe-

ing of adults by looking at overall mortality, the demand for social insurance and welfare

programs. We then turn to the intergenerational effects of the epidemic.

Other mortality measures. We ask whether the dramatic increase in opioid supply affected

all-cause mortality, excluding cancer deaths. These results are presented in Table 2.6. We
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find no relationship between overall mortality and the increase in prescription opioids. To

put this result into context, note that at their peak in 2017, opioid-related deaths accounted

for 1.8% of all deaths. The introduction of effective pain medication could have improved

the quality of life of individuals with high incidence of pain and low risks of addiction, and

those potential improvements could translate into health indicators. To asses if there is

any indication of such improvements we estimate our reduced-form exercise on mortality for

those 75 and older, but find no evidence of any effects in mortality (Figure 2.10 Panel b).

Case and Deaton (2017) document a dramatic decline in life expectancy for white non-

Hispanic Americans, which is mostly driven by deaths from despair such as drug overdoses,

suicides, and alcohol-related liver mortality, and point to a possible connection to the opioid

epidemic. We explore this connection studying the effects of opioid supply on non-opioid-

related deaths of despair. In Appendix Figure A.15 we show that there is only a weak link

between the increase in the supply of opioids and deaths of despair during the last wave

of the opioid epidemic that is driven by alcohol-related deaths. We estimate a positive but

small increase in deaths from alcoholic liver diseases and cirrhosis significant only at the 10%

level and no effect on suicides, see Table 2.6. The category alcoholic liver diseases includes

causes of deaths such as hepatitis and related conditions, that may be directly affected by

opioid use (Ruhm, 2021), so it is possible this small effect is directly driven by opioid use.

Furthermore, the fact that we do not find an effect on suicides (Panel a), suggests that first,

there are no pre-trends between our instrument and this measure of despair, and second,

that the marketing of OxyContin did not trigger further despair, when measured as suicides.

Similarly, we do not find evidence of changes in smoking rates (Figure A.9).

Beneficiaries of social insurance and welfare programs. Addiction to and misuse of pre-

scription opioids could deteriorate one’s health, reduce one’s productive capacity and put

one at risk of permanently reducing ones attachment to the economy. We document a tight

link between the opioid epidemic and an increase in disability-programs beneficiaries. These
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results are presented in Table 2.7. We find positive and significant effects for measures of

both disability programs. A change from the 25th to the 75th percentile in the growth of

opioids per capita caused a 38% increase in the share of the population receiving SSI and

a 76% increase in the share receiving SSDI.43 We do not have data for SSI or SSDI claims

in the pre-period, but we can estimate our reduced-form event-study after the introduction

of OxyContin. Figure A.16 shows the strong positive pattern between mid-nineties cancer

mortality and disability claims.

SNAP is designed to act as a safety net for low-income families. In our context, the

share of SNAP beneficiaries in the population is a useful proxy for deteriorating economic

conditions. We find a positive effect on the share of SNAP beneficiaries: Our estimates

suggest that a change from the 25th to the 75th percentile in the growth of oxycodone per

capita caused a 57% increase in the share of the population enrolled in SNAP. This effect is

comparable to an increase of 3.78 percentage points in the unemployment rate (Ganong and

Liebman, 2018).44 Figure 2.7 shows the dynamic evolution of these effects. These results

point to a substantial worsening of economic conditions. The effects we observe on SSI,

SSDI, and SNAP are particularly strong during the third wave of the epidemic, when the

incidence of illicit drug use, such as of heroin and fentanyl, increased (Table A.5).

Fertility and birth outcomes. An important feature of the crisis is that it has primarily

impacted people in early adulthood through mid-life with potential costs beyond the genera-

tion directly affected by it. One in five pregnant women filled a prescription for opioids from

2000 to 2007 (Desai et al., 2014); and between 2008 and 2012, 39% of women of reproductive

age covered by Medicaid obtained a prescription for opioids. These figures, joint with the

43SSDI uses 1996 data as the baseline year, and SSI uses 1998 as the baseline year.
44The receipt of benefits from multiple programs is not uncommon. SNAP administrative data from

2011 indicate that 20% of SNAP households received SSI benefits and 22% received Social Security benefits
(see, for example, Strayer et al., 2012). We claim that our estimated effect on SNAP applications cannot
be entirely driven by dual applicants. Under the assumption that 20% of SNAP recipients are also SSI
recipients, the lower bound for the effect on SNAP recipiency rate is 15.6% (0.20× 78). Our estimated effect
is well above this figure, suggesting that the average effect on SNAP applications is also driven by low-income
workers.
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staggering increase in the incidence of neonatal abstinence syndrome (Patrick et al., 2015)

raise concerns about the risks and consequences of opioid misuse in this population.45 Ter-

plan et al. (2015) document that the higher rates of unwanted pregnancies in the population

of women who take opioids is mostly driven by the lack of adherence to contraception. Ad-

ditionally, opioid use early in pregnancy, often before women know they are pregnant, can

increase the risk for some birth defects and other poor pregnancy outcomes, such as preterm

birth or low birth weight (Ailes et al., 2015).

We find that a 25th-to-75th percentile increase in opioids increases fertility by 10% (Table

2.9). This result is entirely explained by non-marital births as we can see in column 1 of

Appendix Table A.6.46 By age, we find that most of the increase in fertility is coming from

women 25 to 29 years old, which compensates a decline in fertility for those over 35 years

old. To the best of our knowledge, we are the first to document a causal rise in fertility as

a result of the opioid epidemic. This is in line with cross-sectional estimates of the higher

risk of unintended pregnancies for women with opioid use disorder (Stone et al., 2020), and

with work that documents access barriers to contraceptives for women with substance use

disorders (Rinehart et al., 2021).

Regarding birth outcomes, we find evidence that a 25th-to-75th-percentile increase in the

supply of prescription opioids decreases birth weight by 0.7%, deteriorates APGAR scores

by 1% relative to its mean value, and reduces median pregnancy duration by 0.63% which

translates to a reduction in the median length of pregnancy of 0.24 weeks. We also estimate

increases in the incidence of preterm births and the share of low-weight births, but these are

not statistically significant. We find an increase in the APGAR score of infants who died in

the first year, which means that healthier infants died. However, in aggregate terms we do

45Neonatal abstinence syndrome is a result of the sudden discontinuation of fetal exposure to medicine
or drugs that were used or misused by the mother during pregnancy.

46We compute non-marital fertility as the ratio between births to unmarried mothers and the female
population aged 15 to 44 years old. We do this, as data on the population of unmarried females does not
exist at the year–commuting-zone level.
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not find any increase in the infant mortality rate.

Our estimated declines in birth weight are not small in magnitude. For a reference,

Almond, Hoynes and Schanzenbach (2011) estimate an increase in birth weight of 0.5% as

a result of the roll-out of food stamps among participants, i.e., a treatment on the treated

estimates.47 Hoynes, Miller and Simon (2015) find a 0.3% increase in birth weight from the

expansion of the Earned Income Tax Credit (EITC). This is particularly relevant in light of

evidence on the importance of birth weight and health at birth for future health, schooling,

and earnings (Behrman and Rosenzweig, 2004).

In summary, our results suggest that the opioid epidemic lead to important increases

in fertility, driven by young and unmarried mothers. While not affecting directly the in-

fant mortality rate, the epidemic worsened birth outcomes through reductions in pregnancy

duration and infant health at birth. In 24 states and the District of Columbia, the use of

any illegal substance during pregnancy constitutes child abuse, and can lead to foster care

placement. Nonetheless, Eichmeyer and Kent (2021) document that treatment for opioid use

disorder increases in the year after childbirth, and that the timing of this increase is consis-

tent with pregnancy triggering treatment for a pre-existing disorder. Using, state-level data,

Buckles, Evans and Lieber (2022) document that greater exposure to the crisis increases the

likelihood that a child’s mother or father is absent from the household and it increases the

likelihood that he or she lives in a household headed by a grandparent. Unfortunately, after

multiple efforts we were not able to access foster care records with county or commuting

zone identifiers.48 Future work is needed to quantify the effect of the opioid crisis on foster

care placements, and to assess the future outcomes for these children.

47Estimates are higher for black participants: between 0.4% and 1.4%.
48The Adoption and Foster Care Analysis and Reporting System (AFCARS) provides case level data, but

county identifiers are only available for counties with more than a 1,000 cases.

104



5.3 Complier Analysis

Our instrumental variable estimates identify the causal effects of the increased supply of

opioids for commuting zones where marketing was more aggressive because of higher cancer

mortality in the mid-nineties. Variation in underlying characteristics across commuting

zones could have made such opioids’ marketing more or less successful. In Table 2.10 we

characterize compliers based on observable characteristics before OxyContin’s launch.

First, we assess the strength of the first stage in different sub-samples. Column 1 shows

that the positive and strong relationship between cancer rates in the mid-1990s and the

change in opioids per capita is present in all the considered sub-samples. Nonetheless, there

are important differences on the strength of this relationship. The first-stage is stronger in

commuting zones with higher poverty rates, employment in mining, and cocaine and alcohol

mortality rates, however, these difference are not statistically significant. Next, we follow

Abadie (2003), to recover the fraction of compliers for different characteristics. We find

that commuting zones with higher poverty rates, lower educational attainment, and a higher

share of mining employment are more likely to be compliers. In terms of health outcomes,

areas with a higher number of primary care physicians (PCP) per capita are overrepresented

among the compliers, as is the case for places with higher smoking rates and higher cocaine

and alcohol mortality rates.

6. Robustness Checks

In this section, we explore alternative explanations for our findings and test the robustness

of our results. We start by presenting alternative specifications of the first stage and then

test the robustness of the main results.
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6.1 First Stage

Additional demographic controls. A potential concern with our choice of instrument is that

mid-nineties cancer mortality may be capturing demographic variation along the age distri-

bution. Our baseline regression already controls for the change in the share of the population

over 65, but our instrument is expressed in levels, so some of this variation may still be im-

portant. We directly test this by including the share of population over 65, the size of the

population over 65, and total population as additional control variables. Table A.7 shows

the results of this exercise. We find that the first stage regression is as strong as in our

baseline regression.

Alternative measures of our instrument. Additionally, we test the robustness of the

first stage to alternative choices of instruments. Column 1 of Table A.8, replicates the

first stage with age-adjusted cancer mortality, we find a very similar and strong first-stage

estimates. We also test whether the relationship between future opioid distribution and

mid nineties cancer mortality is sensitive to any of the years used as our baseline cancer

mortality measure. Columns two to four show there is a strong first-stage for 1994, 1995 and

1996 cancer mortality. In column five we estimate a population weighted regression and find

similar results.49 As an additional robustness check, in Panel b we construct a measure of

cancer mortality that exclude deaths from lung cancer, this measure is less likely to be driven

by behavioral and environmental factors that could correlate with our outcome variables.

As with other alternative instruments, in column one, we find a strong first stage coefficient.

In columns two to four we use mid-nineties cancer mortality for those over 55, 65 and 75

respectively, and find a positive and statistically significant first stage in all cases. Finally,

we inspect the dynamic relation between mid-nineties cancer mortality and opioid supply.

Panel (a) of Figure A.19 presents the dynamic first-stage using cancer mortality in 1994 as

49Figure A.18 shows the results for our main event-study specification with population weights and the
results are very similar.
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the instrument and the remaining panels in this Figure show the dynamic reduced-form for

the main outcomes of interest. The pattern of the estimated coefficients is equivalent to

the one we obtain using the cancer 1994-1996 as instrument. Additionally, we do not find

evidence of pre-trends in the relation between opioid mortality—and the main outcomes of

interest—and mid-nineties cancer mortality in this alternative specification.

Mechanical Effects. A potential threat to our hypothesis is that commuting zones with

higher cancer mortality would see a larger uptake of opioids from an innovation in the pain

medication market, even in the absence of marketing efforts. Several facts suggest this is

not the mechanism at play. First, cancer patients had access to potent opioids before the

launch of OxyContin, as this was standard pain management practice. For these patients,

the introduction of OxyContin represented a switch from MS Contin—the gold standard to

treat cancer pain—to OxyContin. Second, our results suggest there is no evidence of misuse

of opioids in the population most affected by cancer, as we find no increases in deaths from

prescriptions and non prescription opioids for those over 55 years of age (Figure 2.9).

Alternative instrumental variable approach. Our instrumental variable approach is similar

in spirit to a shift-share instrument. In this research design, the shares measure differen-

tial exposure to common shocks and identification is based on its exogeneity (Goldsmith-

Pinkham, Sorkin and Swift, 2020). In our application, the shares are cancer rates in the

mid-1990s, which capture exposure to the marketing of prescription opioids, and the shift is

the national growth of Purdue Pharma’s marketing or the growth in the supply of prescrip-

tion opioids. Our preferred specification uses as an instrument cancer mortality before the

launch of OxyContin, which highlights the fact that our only source of exogenous variation

corresponds to the shares. In Appendix Table A.9, we show results using the shift-share

instrument. To construct this instrument, we use the national growth rate of prescription

opioids as the shift component. The results are quantitatively indistinguishable from our

preferred specification. As Goldsmith-Pinkham, Sorkin and Swift (2020) point out, using a
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Bartik instrument is “equivalent” to exploiting the shares as an instrument. This is because

the temporal variation induced by the growth of prescription opioids is mostly absorbed by

the time dimension of our state times year fixed effects.

Additional sample restrictions. We test whether the positive relationship in our first

stage is driven by a given state or a group of states. Figure A.20 presents the estimate of the

first stage coefficient restricting the sample to (i) all non-triplicate states, (ii) only triplicate

states, and (iii) to the exclusion of all states, one at the time. We find that the positive

relationship between mid-nineties cancer mortality and the supply of opioids is present in

both triplicate and non-triplicate states, and is robust to the exclusion of any given state.

Furthermore, the first stage is stronger in the five triplicate states defined in Alpert et al.

(2022), which would be consistent with a story in which pharmaceutical companies need to

be more strategic in promoting opioids in places where they face additional barriers.50

Alternative measures of prescription opioids. Even though Purdue Pharma was the pio-

neer in the use of opioids in the non-cancer pain market with OxyContin, many pharmaceuti-

cal companies—Janssen, Endo, Cephalon-Teva, Actavis, Insys, and Mallinckrodt—promoted

their prescription opioids beyond the cancer market following Purdue’s leadership. To asses

whether the positive relationship that we observe between the total level of prescription

opioids and mid-nineties cancer mortality is present across different opioids’ categories, in

Panel C of Table A.8, we split opioids between oxycodone—which captures the supply of

Oxycontin—and the rest of opioids. We find there is a strong positive first stage for both

categories.

50The first stage coefficient is 1.542 in the five triplicate states defined in Alpert et al. (2022), and 0.917
in the other states. This difference is not statistically different and the p-value of such test is 0.203.
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6.2 Placebo checks

Are other mid-1990s mortality rates predictive of future prescription opioids per capita dis-

tribution? Our identification strategy connects mid-1990s cancer mortality to future growth

in the supply of prescription opioids through the targeted marketing of Purdue Pharma.

This implies that we can test the validity of our design by estimating first-stage regressions

for placebo instruments—i.e., mid-1990s mortality from causes unrelated to cancer. Finding

a good placebo instrument is challenging, given that the causes that underlie the incidence

of cancer and other conditions, such as heart disease are not independent (Chiang, 1991

and Honoré and Lleras-Muney, 2006). As a result, there is substantial overlap across un-

derlying causes and the correlation across measures is very high. With this caveat, in Table

A.10 we show placebo instrument regressions for three mortality rates that are less likely

to be affected by the previous concern: Cerebrovascular disease (CVD), transit accidents,

and homicide.51 We find that none of these measures predict future distribution of opioids

(Columns 1 to 3) or change the predicted power of our instrument (Columns 4 to 6).

6.3 Alternative Definitions: Opioid Mortality and Opioid Supply

Drug overdose deaths can be hard to categorize, specially when using data that spans more

than one version of the ICD codes. We construct an additional outcome measure for opioid

mortality and present the results using this measure in Table A.11. This measure has the

advantage that comparisons across years are less affected by changes in the ICD classification,

but this comes at the cost of including a broader set of drugs as the cause of deaths.52

Exploiting this measure, we arrive at similar conclusions: An additional dose of opioids per

51A good candidate for this placebo check is mortality from external causes of deaths. External causes are
defined as intentional and unintentional injury and poisoning (including drug overdose). From this category,
we construct measures of mortality that do not include any of our outcome measures: accidental poisoning
and suicide.

52Drug-induced deaths category includes deaths from poisoning and medical conditions caused by the use
of legal or illegal drugs, as well as deaths from poisoning due to medically prescribed and other drugs.
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capita caused an increase in the drug-induced mortality rate of 0.0112 points. An increase

from the 25th to the 75th percentile of prescription opioids per capita increases drug-induced

mortality by 47%.

As an additional check, we use data only on Oxycodone as an alternative measure of opi-

oid supply. We find a positive relationship between cancer mortality rates and this measure

of opioid supply. In Table A.12, columns (2) and (3) we estimate that an additional dose of

oxycodone per capita caused an increase in prescription opioid mortality of 91% and in all

opioid mortality of 40%.

6.4 Alternative Sample Restrictions and Specifications

In our main specification, we restrict our sample to areas with more than 25,000 residents,

which represents 99.8% of all opioid deaths and 99.3% of the total population. In Table A.13

we reproduce our analysis using alternative restrictions on the size of commuting zones. We

arrive at analogous conclusions to the main analysis; there is a strong and positive relation

between mid-nineties cancer mortality and supply of prescription opioids which translates

to (i) increases in opioid-related mortality, and (ii) deteriorating economic conditions and

health outcomes.

SNAP benefit recipiency rates at the commuting-zone level required imputations for some

commuting zones with no available data at the local level. Table A.14 shows the result for

the sample of commuting zones that do not require state-level imputation. Our results are

not sensitive to this sample restriction.

Finally, in Table A.15 we expand the set of controls in our regression to include either

the unemployment rate or the employment rate and we find our results are quantitatively

indistinguishable.
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6.5 Trade shocks & the 2001 Economic Recession

During our period of study, the US experienced significant economic changes that affected

communities differentially. In October, 2000, the US Congress passed a bill granting per-

manent normal trade relations (PNTR) with China. This trade liberalization impact on

communities is a function of the importance of the manufacturing industries for local em-

ployment, especially in industries subjected to import competition from China. Researchers

have estimated the impact of this trade shock on a host of outcomes. Regions more exposed

to Chinese import competition experienced relatively larger declines in employment and a

greater uptake of social welfare programs (Autor and Dorn, 2013). Additionally, areas more

exposed to Chinese import competition exhibit relative increases in fatal drug overdoses

(Pierce and Schott, 2020).

In light of this evidence, we ask whether our results are confounded or mediated by this

trade policy. To answer this, we follow the trade literature to construct two alternative

measures of exposure to PNTR and then estimate our first-stage and reduced-form models

controlling for these exposure measures (Pierce and Schott, 2020 and Autor and Dorn, 2013).

Table A.16 columns two to four reproduce the first stage when we control for exposure to

Chinese import competition. We find the results are unaffected by the inclusion of these

variables. Figure A.21 replicates our main results adding the china shock measures to our

event-study specification. Here as well we find our estimates do not change with this exercise.

This is the result of a very low correlation between our instrument and the exposure to

Chinese import competition.

The timing of some of our results overlaps with the 2001 economic recession. To asses

whether the recession is mediating some of our effects, we construct a measure of exposure to

the recession as the change in the unemployment rate from 2001 to 2000 at the commuting

zone. Similar to the china shock, we find that our instrument and this exposure measure have
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a very low correlation level (ρ=0.03), and our first stage estimate are completely unaffected

(column 1 in Table A.16). More broadly, in the last three columns of Table A.16 we add

controls for the unemployment rate in years 1994 to 1996, respectively, and find that our

estimates do not change.

7. Policy Implications and Conclusions

This paper studies the origins and effects of the opioid epidemic, one of the most tragic

episodes in recent history. To do so, we uncover novel geographical variation in the initial

promotion of OxyContin that targeted the cancer patients market. We document that this

initial targeting had long-term effects on the supply of prescription opioids, overdose deaths

involving opioids, and a deterioration in adult wellbeing measured by the demand for SSDI,

SSI, and SNAP. These effects will continue to unfold as a result of the increase in non-marital

fertility and the worsening of birth outcomes.

In this paper, we sought to provide a comprehensive picture of the effects of the opioid

epidemic. However, data access limitations have prevented us from speaking about important

topics, such as the effects on children’s well-being, foster care referrals, and the demand for

and use of healthcare. We hope that future research will shed light on these subjects.

In terms of policy recommendations, we want to highlight how complex and far-reaching

the effects of the opioid epidemic are and how this calls for a coordinated response from

multiple policy angles. Monitoring, limiting, and restricting access to prescription opioids,

which has been the main policy response, is essential, but it falls short for the needs of the

affected population. Increasing access to rehabilitation treatments and programs aimed at

reincorporating parents and workers into their lives should be the center of this response.

Finally, our results have direct policy implications regarding the desirability of promo-

tional efforts of addictive drugs by pharmaceutical companies that target physicians, phar-

112



macies, and patients. We document the devastating consequences of aggressive and deceitful

marketing of addictive drugs. Although marketing has expanded over the 25 years since the

introduction of OxyContin, regulatory oversight remains relatively limited.53 Some regula-

tory initiatives constitute small steps in the right direction, however, most of these initiatives

are concerned with the rising costs of prescription drugs and not with the risks of abuse and

addiction. More can be done to restrict the pharmaceutical promotion that carries this risk.

53Currently, prescription drug marketing practices in the US include direct-to-consumer and professional
branded advertising, detailing visits, free drug samples, and direct physician and hospital payments (e.g.,
speaker fees, food, travel accommodations).
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8. Figures

Figure 2.1: Prescription Opioids Distribution at the Peak of the Epidemic (2010).

10.5+ doses
7.5−10.5 doses
5.5 − 7.5 doses
0 − 5.5 doses
Not in sample

Notes: This map shows the distribution of prescription opioids at the commuting zone level in 2010, the
year when the distribution of prescription opioids peaked as shown in Figure 2.4. Lighter shades indicate
commuting zones with a lower prescription-opioid supply and darker shades indicate commuting zones with
a higher prescription-opioid supply. Each group corresponds to one quartile of the prescription opioids
distribution; i.e., each color accumulates 25% of the mass of this distribution. Commuting zones included in
our sample represent 99.8% of all opioid deaths and 99.3% of the total population. This figure is referenced
in Section 3.3.1
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Figure 2.2: Distribution of Cancer Mortality Rates Before the OxyContin’s Launch.

High cancer
Medium − high cancer
Low − medium cancer
Low cancer
Not in sample

Notes: This map shows the cancer mortality rate at the commuting-zone level for the year 1994 - 1996,
before OxyContin was introduced to the market. Lighter shades indicate commuting zones with lower
cancer prevalence, while darker shades indicate commuting zones with higher cancer prevalence. Each
group corresponds to one quartile of the cancer mortality distribution; i.e., each color accumulates 25% of
the mass of this distribution. Commuting zones included in our sample represent 99.8% of all opioid deaths
and 99.3% of the total population.
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Figure 2.3: Prescriptions Opioid Mortality Rate 1999 - 2018

MR > 0.09
MR 0.056−0.090
MR 0.036 − 0.056
MR 0−0.036 
Not in sample

Notes: This map shows the distribution of prescription opioid mortality at the commuting zone level for
the period 1999 - 2018. Lighter shades indicate commuting zones with lower opioid mortality, while darker
shades indicate commuting zones with higher opioid mortality. Each group corresponds to one quartile
of the opioid mortality distribution; i.e., each color accumulates 25% of the mass of this distribution.
Commuting zones included in our sample represent 99.8% of all opioid deaths and 99.3% of the total
population.
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Figure 2.4: Prescription Opioids Distribution by Mid-nineties Cancer Prevalence

(a) Trends in High versus Low Cancer Mortality CZs
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Notes: Panel (a) shows the evolution oxycodone, hydrocodone, and morphine in commuting zones in the
bottom (dashed lines) and top (solid lines) quartiles of cancer mortality before the launch of OxyContin.
Oxycodone is OxyContin’s active ingredient. Between 1997 and 2010, areas in the highest quartile of cancer
incidence saw an increase in oxycodone grams per capita of 2,900%, while areas in the lowest quartile
experienced a growth that was one-third that. All prescription opioids and oxycodone are measured in
morphine-equivalent doses. Panel (b) shows estimates of the coefficients of the dynamic first stage.
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Figure 2.5: Opioids Marketing and Mid-nineties Cancer Mortality
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C: Purdue Targets per capita in MA
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D: Purdue visits per capita in MA

Notes: Panels A and B use data from the CMS Open Payments. High cancer corresponds to the top quartile
of cancer incidence in 1994-1996, and low cancer to the bottom quartile. Panels C and D use digitized data
from “Exhibit 1 - Sales Visits By Purdue In Massachusetts. COMMONWEALTH OF MASSACHUSETTS
v. PURDUE PHARMA C.A. No. 1884-cv-01808”(Figure A.8) to construct county-level averages.
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Figure 2.6: Effects of Mid-nineties Cancer-market Targeting on Prescription Opioid Mortal-
ity

(a) High versus Low Cancer Mortality CZs

OxyContin's launch

High cancer CZs

Low cancer  CZs

0

.2

.4

.6

.8

1

Pr
es

c.
 O

pi
oi

d 
M

or
ta

lit
y 

by
 1

0,
00

0 
in

di
vi

du
al

s

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

(b) Reduced Form - Event Study Approach
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Notes: This figure shows the effects of the increase in prescription opioid supply in prescription opioid
mortality. Panel (a) shows the raw data, early in the 2000s, a wedge starts to appear between high- and
low-cancer-incidence groups, and by 2018 prescription opioid mortality in high-cancer areas is 75% higher.
Panel (b) shows the dynamic reduced-form estimation. We regress prescription opioid mortality on a set of
year-dummy variables interacted with our instrument—cancer mortality in 1994-1996.
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Figure 2.7: Effects of Mid-nineties Cancer-market Targeting on the Sh. of SNAP Recipients
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Notes: This figure shows the effects of the increase in prescription opioid supply on SNAP recipients per
capita. We present the results of a dynamic reduced-form estimation were we regress SNAP claims per
capita on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996.
These coefficients corresponds to the estimate of φt in Equation 2.3. We use this specification to test for the
presence of pre-trends in the relation between SNAP claims and mid-nineties cancer mortality; we do not
reject the null hypothesis that the estimated coefficients before 1996 are jointly equal to zero, the p value of
this test equals 0.6539.
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Figure 2.8: Effects of Mid-nineties Cancer-market Targeting on Fertility Rates and Birth
Outcomes

(a) Non-marital Fertility Rate
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(b) Infant Mortality Rate
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Notes: This figure shows the effects of the increase in prescription opioid supply in the fertility rate of
unmarried women (panel a) and in infant mortality rate (panel b). We present the results of a dynamic
reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with
our instrument—cancer mortality in 1994-1996. These coefficients corresponds to the estimate of φt in
Equation 2.3.
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Figure 2.9: Effects of Mid-nineties Cancer-market Targeting on Opioid Mortality by Age

(a) Prescription Opioids
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(b) Any Opioids
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Notes: This figure shows the effects of the increase in prescription opioid supply in opioid related mortality
by age group. We present the results of a dynamic reduced-form estimation were we regress these outcomes
on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These
coefficients corresponds to the estimate of φt in Equation 2.3.
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Figure 2.10: Trends on Despair and Overall Health

(a) Suicide Mortality Rate
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(b) Non-cancer Mortality for Adults Aged +75 Years Old.
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Notes: This figure shows the dynamic reduced-form relationship between suicide mortality rate (panel a)
and mortality of 75-years-old and older adults (panel b) and our instrument. That is, the figure presents
the results of a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy
variables interacted with our instrument—cancer mortality in 1994-1996.
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Figure 2.11: Robustness Check: Dynamic Reduced Form for Out-of-sample Opioid-Mortality

(a) Prescription Opioids Mortality
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Notes: This figure shows the dynamic reduced-form relationship between outcomes of interest and our
instrument in a out-of-sample period. That is, we replicate our dynamic reduced-form analysis in the
pre-OxyContin period. We regress each outcome on a set of year-dummy variables interacted with the
out-of-sample instrument—cancer mortality in 1989 - 1990.
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9. Tables

Table 2.1: Summary Statistics for 1999-2018

Mean Median SD Min Max Obs.
(1) (2) (3) (4) (5) (6)

Opioid Prescriptions: Doses per capita
All Prescription Opioids 6.42 5.48 4.32 0.00 57.65 11,800
Oxycodone 3.15 2.52 2.60 0.00 51.31 11,800
Hydrocodone 1.93 1.55 1.50 0.00 16.66 11,800
Morphine 0.94 0.77 0.69 0.00 10.67 11,800

Cancer Mortality per 1,000
Cancer mortality rate 1994-1996 2.53 2.53 0.58 0.12 6.24 590
Cancer mortality rate 2.48 2.49 0.55 0.59 4.75 11,800

Opioid-related Mortality per 1,000
Prescription opioids 0.04 0.03 0.05 0.00 1.06 11,800
Any opioids 0.07 0.05 0.07 0.00 1.22 11,800

Other Mortality Measures per 1,000
All-cause mortality (+20 years old) 9.87 9.93 2.06 2.79 20.92 11,800
Deaths of despair 0.27 0.25 0.10 0.00 1.17 11,800
Alcoholic liver diseases and cirrhosis 0.12 0.11 0.06 0.00 0.63 11,800
Suicide 0.15 0.14 0.06 0.00 0.48 11,800

Demand for Social Services
Share SSI 0.04 0.03 0.02 0.00 0.30 11,800
Share SSDI 0.05 0.04 0.02 0.01 0.16 11,800
Share SNAP 0.12 0.11 0.07 0.00 1.20 11,800

Infant and Fertility Outcomes
Infant MR (per 1,000 births) 6.86 6.54 2.87 0.00 30.61 11,800
Birth weight 3,274.25 3,276.53 79.47 2,930.28 3,569.76 11,800
Share low birth weight 0.08 0.08 0.02 0.02 0.20 11,800
Share preterm 0.12 0.12 0.03 0.05 0.62 11,800
APGAR score - all infants 8.82 8.84 0.19 5.00 10.00 11,800
APGAR score - dead infants 5.62 6.00 2.28 0.00 10.00 11,460
Median gestation 38.95 39.00 0.24 35.00 40.00 11,800
Fertility rate 0.08 0.08 0.01 0.04 0.19 11,800
Fertility rate 25-29 0.13 0.12 0.02 0.05 0.27 11,800
Fertility rate - unmarried women 0.03 0.03 0.01 0.00 0.09 11,800

Notes: This table presents summary statistics for our main outcomes, measures of the prescription opioid
supply, and cancer mortality incidence for the period 1999 - 2018. We leverage data from multiple sources.
Prescription drugs distribution data come from the DEA. Data on opioid, cancer, birth, and fertility
outcomes come from the NVSS. We use data from the Food and Nutrition Service of the Department
of Agriculture and the SSA to construct demand for the Supplemental Nutrition Assistance Program
(SNAP), Supplemental Security Income (SSI), and Social Security Disability Insurance (SSDI). This table
is referenced in Section 3.
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Table 2.2: Determinants of the Opioid Distribution in 2000

Dependent variable: Prescription opioids per capita
(1) (2)

Demographics (in shares) Crime (in rates)
White 3.526*** Overall -0.0000622

[0.961] [0.0000752]
Hispanic -3.323*** Violent 0.00160***

[0.807] [0.000614]
Female 6.709 Economic characteristics

[9.973] Ln income 2.517***
Aged 18-65 21.67*** [0.922]

[4.348] Share below poverty line 0.0521
Aged +66 6.211 [0.0625]

[7.665] Share employed in manufacturing -0.0374***
Infants -100.8* [0.0105]

[56.42] Share with some college education 0.00938
Labor market [0.0135]
Employment rate -16.18*** Health outcomes

[6.031] Cancer mortality rate -0.164
Labor Force Participation -1.805 [0.330]

[2.493] Infant mortality rate -0.0117
Safety net and social insurance [0.0199]
SSDI 48.45*** Birth weight 0.000336

[9.821] [0.00127]
SSI 5.740 Share preterm births 2.330

[8.944] [4.796]
SNAP -1.914 Gestation -0.200

[3.848] [0.396]
Fertility rate 52.51***

[14.07]
Mean dependent variable 2.8567
Year 2000
Observations 590

Notes: This table presents estimated coefficients from a cross-section regression of oxycodone distribution
per capita on demographic characteristics, labor market outcomes, measures of social assistance demand,
crime outcomes, economic characteristics, and health outcomes at the commuting-zone level. Data on
economic characteristics come from county-level tabulations of Decennial Census Data. The variable share
with some college measures the share of the population older than 25 years old who have some education at
the college level or higher. Standard errors are robust to heteroskedasticity. *p<0.10, **p<0.05, *** p<0.01.
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Table 2.3: First-stage Results

Dependent variable: Prescription opioids per capita
(1) (2) (3) (4) (5)

Cancer MR 94-96 0.960*** 1.091*** 1.061*** 1.132*** 1.078***
se [0.210] [0.222] [0.231] [0.258] [0.264]
t-stat 4.571 4.914 4.593 4.388 4.083
Effective F-stat 20.894 24.147 21.096 19.254 16.630

Effect size 56.92 64.69 62.91 67.12 63.92

Controls No No No Yes Yes
FE No State Year State × Year State Year State × Year
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.019 0.524 0.559 0.533 0.564

Notes: This table presents estimates of the first-stage equation. The dependent variable is the long change
in prescription opioids per capita and it is constructed using a baseline the year 1997—the first year ARCOS
data are available. Control variables in long changes are contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66 years, share
of Black, White, and Hispanic population, and share of female population. Effect size is computed as the
explained changes in doses of prescription opioids per capita from an increase in cancer mortality that would
change a commuting zone in the 5th percentile of the cancer distribution to the 95th percentile, relative to
change in our period. t− stat corresponds to the t− statistic for the null hypothesis that the coefficient on
cancer mortality rate is equal to zero. Effective F-stat corresponds to the the effective first-stage F statistic
proposed by Montiel Olea and Pflueger (2013). Standard errors are clustered at the CZ level. * p<0.10, **
p<0.05, *** p<0.01. This table is referenced in Section 4.4.1
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Table 2.4: Cancer Mortality Rate: Out-of-sample Analysis

Cancer MR 89-90 Cancer MR 89-90
(1) (2)

Dependent variables: Dependent variables:
Income per capita 19.42 Prescription Opioids MR -0.000795

[62.24] [0.000580]

Share with some college 0.0063 Any Opioids MR -0.00101
[0.00386] [0.000671]

Share with high school or less 0.00257 Share SNAP -0.000529
[0.00420] [0.000840]

Share working in manufacturing 0.0063 Share SSDI -0.000523
[0.00386] [0.000890]

Labor Force Participation -0.00153* Share SSI 0.000151
[0.000821] [0.000345]

Employment rate -0.000781 Infant Mortality Rate -0.0989
[0.000489] [0.154]

Total crime rate 44.5 Fertility rate -0.641
[28.63] [0.490]

Notes: Each coefficient corresponds to a separate regression where the dependent variable is measured
as the change with respect to 1989-1990. For prescription opioids, any opioids, labor market variables,
SNAP, and infant mortality rate, we run a panel regression; for the other variables, where yearly data are
not available, we run one cross-sectional regression. MR stands for mortality rate. All regressions include
as control variables in long changes: cancer mortality rate, share of population under 1 year, share of
population between 18 and 65, share of population over 66 years old, share of Black, White, and Hispanic
population, and share of female population. In panel-level regressions, standard errors are clustered at the
commuting-zone level; in cross-sectional regressions, standard errors are robust to heteroskedasticity. *
p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 4.4.2
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Table 2.5: Direct Effects on Opioid Mortality

Dependent var: Prescription opioids MR Any Opioid MR
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.00374*** 0.00679*** 0.00419*** 0.00646***
[0.00117] [0.00200] [0.00139] [0.00231]

tF 0.05 se (0.00281) (0.00324)
t-stat using tF 0.05 se 2.3876 1.9747
AR p-value 0.0000 0.0019

Cancer MR 94-96 0.00732*** 0.00697***
[0.00167] [0.00229]

Effect size (%) 49.47 88.63 25.73 39.30

Model OLS RF IV OLS RF IV
Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590
Adj R2 0.4304 0.3908 0.5368 0.5144
Effective F-stat 16.63 16.63
Cragg-Donald Wald F-stat 358.58 358.58

Notes: Control variables in long changes are contemporaneous cancer mortality rate, share of population
under 1 year old, share of population between 18 and 65, share of population over 66 years old, share of
Black, White, and Hispanic population, and share of female population. All regressions include state times
year fixed effects. MR stands for mortality rate. Effect size indicates the percent change in the dependent
variable relative to its mean when doses of prescription opioids per capita increase from the 25th to the 75th
percentile. Standard errors in square brackets are clustered at the CZ level. Using these standard errors, we
report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond
to weak-instrument-robust inference procedures. This table is referenced in Section 5.5.1
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Table 2.6: Effects of the Opioid Epidemic on Other Mortality Measures

Dependent var: All cause mortality Deaths of Despair
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0213 0.0286 -0.000442 -0.00494
[0.0136] [0.0469] [0.000732] [0.00621]

tF 0.05 se (0.0658) (0.0087)
t-stat using tF 0.05 se 0.4346 -0.459
AR p-value 0.5319 0.4311

Cancer MR 94-96 0.0309 -0.00533
[0.0515] [0.00699]

Effect size (%) 3.68 4.94 -0.74 -7.39
Model OLS RF IV OLS RF IV

Dependent var: Alcoholic Liver Diseases and Cirrhosis Suicide
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000765** 0.00552* -0.0000460 -0.00582
[0.000353] [0.00292] [0.000430] [0.00378]

tF 0.05 se (0.0041) (0.0053)
t-stat using tF 0.05 se 1.3473 -1.0974
AR p-value 0.0351 0.1065

Cancer MR 94-96 0.00596** -0.00628
[0.00302] [0.00402]

Effect size (%) 3.23 23.34 -0.16 -19.80
Model OLS RF IV OLS RF IV

Notes: The all-cause mortality measure excludes deaths from cancer. Deaths of despair refers to deaths from
suicide, chronic liver disease, cirrhosis, and poisonings that are attributable to alcohol. Each regression is
run over a sample of 11,800 observations with 590 clusters (commuting zones). Control variables in long
changes are contemporaneous cancer mortality rate, share of population under 1 year old, share of population
between 18 and 65, share of population over 66 years old, share of Black, White, and Hispanic population,
and share of female population. All regressions include state times year fixed effects. Effect size: indicates the
percent change in the respective dependent variable relative to its mean when doses of prescription opioids
per capita increase from the 25th to the 75th percentile. Standard errors in square brackets are clustered
at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat
using tF0.05 se, and the AR p-value correspond to weak-instrument-robust inference procedures. This table
is referenced in Section 5.5.2
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Table 2.7: Effects of the Opioid Epidemic on the Share of Social Insurance and
Welfare Programs Recipients

Dependent var: SSDI SSI
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000444*** 0.00574*** 0.0000137 0.00184**
[0.0000985] [0.00132] [0.0000896] [0.000841]

tF 0.05 se (0.0018) (0.0012)
t-stat using tF 0.05 se 3.1250 1.5612
AR p-value 0.0000 0.0107

Cancer MR 94-96 0.00619*** 0.00198**
[0.000385] [0.000803]

Effect size (%) 5.36 76.39 0.27 38.43
Model OLS RF IV OLS RF IV

Dependent var: SNAP
(1) (2) (3)

Prescription opioids pc 0.000144 0.00982***
[0.000285] [0.00299]

tF 0.05 se (0.0041)
t-stat using tF 0.05 se 2.4134
AR p-value 0.0000

Cancer MR 94-96 0.0106***
[0.00227]

Effect size (%) 0.58 56.70
Model OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters (commuting zones).
Control variables in long changes are contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years old, share of Black,
White, and Hispanic population, and share of female population. All regressions include state times year
fixed effects. Effect size: indicates the percent change in the respective dependent variable relative to its mean
when doses of prescription opioids per capita increase from the 25th to the 75th percentile. Standard errors
in square brackets are clustered at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05,
*** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust
inference procedures. This table is referenced in Section 5.5.2
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Table 2.8: Effects of the Opioid Epidemic on Infant Outcomes

Dependent var: Infant Mortality Rate Birth Weight
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0511** -0.0232 -0.552* -4.490**
[0.0242] [0.140] [0.331] [2.143]

tF 0.05 se (0.19643) (3.00676)
t-stat using tF 0.05 se -0.1181 -1.4933
AR p-value 0.8678 0.0163
Cancer MR 94-96 -0.0250 -4.843**

[0.157] [2.127]
Effect size (%) 4.06 -1.84 -0.08 -0.69
Model OLS RF IV OLS RF IV

Dependent var: Share low birth weight Preterm births
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.000169* 0.000905 0.000270* 0.00141
[0.000102] [0.000640] [0.000150] [0.000937]

tF 0.05 se (0.00090) (0.00131)
t-stat using tF 0.05 se 1.0023 1.0649
AR p-value 0.1272 0.1126
Cancer MR 94-96 0.000976 0.00152

[0.000665] [0.00100]
Effect size (%) 0.62 5.55 0.84 5.90
Model OLS RF IV OLS RF IV

Dependent var: APGAR Score - All Infants APGAR Score - infant casualties
(1) (2) (3) (4) (5) (6)

Prescription opioids pc -0.000501 -0.0169* 0.0155 0.282*
[0.00188] [0.00994] [0.0179] [0.153]

tF 0.05 se (0.01395) (0.21467)
t-stat using tF 0.05 se -1.2118 1.3137
AR p-value 0.0674 0.0383
Cancer MR 94-96 -0.0189* 0.319*

[0.0107] [0.164]
Effect size (%) -0.03 -0.96 1.38 25.17
Model OLS RF IV OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters (commuting zones).
Control variables in long changes are contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years old, share of Black,
White, and Hispanic population, and share of female population. All regressions include state times year
fixed effects. Effect size: indicates the percent change in the respective dependent variable relative to its mean
when doses of prescription opioids per capita increase from the 25th to the 75th percentile. Standard errors
in square brackets are clustered at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05,
*** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust
inference procedures. This table is referenced in Section 5.5.2
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Table 2.9: Effects of the Opioid Epidemic on Fertility Outcomes

Dependent var: Fertility rate Gestation
(1) (2) (3) (4) (5) (6)

Prescription opioids pc 0.0000665 0.00153*** -0.000164 -0.0489***
[0.0000621] [0.000566] [0.00304] [0.0186]

tF 0.05 se (0.00079) (0.02610)
t-stat using tF 0.05 se 1.9266 -1.8738
AR p-value 0.001 0.0011
Cancer MR 94-96 0.00165*** -0.0527***

[0.000482] [0.0171]
Effect size (%) 0.43 9.85 0.00 -0.63
Model OLS RF IV OLS RF IV

Notes: Each regression is run over a sample of 11,800 observations with 590 clusters (commuting zones).
Control variables in long changes are contemporaneous cancer mortality rate, share of population under
1 year old, share of population between 18 and 65, share of population over 66 years old, share of Black,
White, and Hispanic population, and share of female population. All regressions include state times year
fixed effects. Effect size: indicates the percent change in the respective dependent variable relative to its mean
when doses of prescription opioids per capita increase from the 25th to the 75th percentile. Standard errors
in square brackets are clustered at the CZ level; using these standard errors, we report * p<0.10, ** p<0.05,
*** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value correspond to weak-instrument-robust
inference procedures. This table is referenced in Section 5.5.2
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Table 2.10: Complier Analysis

Commuting zone characteristic First Stage P [X = x] P [X = x|Complier] P [X=x|Complier]
P [X=x]

(1) (2) (3) (4)

High sh. of pop below poverty line 1.382*** 0.52 0.991 1.923
[0.499] [0.178]

Low sh. of pop below poverty line 0.629*** 0.48 0.00863 0.018
[0.236] [0.178]

High sh. of pop w/ less 1.125*** 0.51 0.964 1.883
than HS degree [0.419] [0.210]

Low sh. of pop w/ less 0.855*** 0.49 0.0365 0.075
than HS degree [0.322] [0.210]

High sh. of employment in mining 1.232*** 0.50 0.931 1.856
[0.356] [0.235]

Low sh. of employment in mining 0.820* 0.50 0.0694 0.139
[0.471] [0.235]

High sh. of PCP per capita 1.180** 0.50 1.427 2.854
[0.518] [0.224]

Low sh. of PCP per capita 1.103*** 0.50 -0.427 -0.854
[0.218] [0.224]

High sh. of smoking 1.012*** 0.54 0.645 1.197
[0.365] [0.213]

Low sh. of smoking 0.825*** 0.46 0.355 0.770
[0.298] [0.213]

High cocaine and alcohol MR 1.273*** 0.50 1.12 2.240
[0.440] [0.188]

Low cocaine and alcohol MR 0.656** 0.50 -0.12 -0.240
[0.275] [0.188]

Notes: Column 1 corresponds to the first stage regression for each specific group. Column 2 is the frequency
of the group in the estimation sample. Column 3 corresponds to the estimation of the characteristic in the
complier sample, following Abadie (2003) this is a 2SLS regression where the dependent variable corresponds
to the endogenous variable multiplied by the indicator of the group. Column 4 divides column 3 by column
2 and corresponds to the complier relative likelihood. For each of the commuting zone characteristics, we
consider a commuting zone to be in the low (high) group if the value of such characteristic is below (above)
the median value. Poverty, share of the population with less than a high school (HS) degree, and employment
in the mining sector are measured in 1994. Primary care physicians (PCP) per capita, smoking, and cocaine
and alcohol mortality rates are measured in 1996.
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Chapter 3

Tobacco Consumption Habits in

Argentina: Causal Evidence from a

New Regulation

1. Introduction

Modifiable risky behaviors, such as smoking tobacco, are a major determinant of premature

death in both developed and developing countries (Blecher, 2008; Cawley and Ruhm, 2011).

The World Health Organization (WHO) estimates that tobacco use is the leading risk factor

in high-income countries, accounting for 18% of deaths.1 In middle-income countries, where

80% of smokers worldwide live, tobacco use is the second most important risk factor and is

responsible for about 11% of deaths. Moreover, Goodchild, Nargis and d’Espaignet (2018)

estimate that 40% of the health care expenditure due to smoking-attributable diseases occurs

in developing countries, highlighting the substantial burden these countries face.

Although tobacco has long been heavily taxed, non-price policies have become increas-

1WHO, 2009
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ingly common in the last two decades. The most frequently implemented non-price policies

are place-based bans and warning labels. For instance, by 2016, at least 105 countries

required graphic warnings to be printed on cigarette packages.2 Non-price policies are par-

ticularly attractive in middle- and low-income countries, where tobacco use is concentrated

among low-income households.3

In this paper, I examine the effect of non-price interventions on smoking, drinking, and

health outcomes in the context of a middle-income country, Argentina, where smoking is re-

sponsible for 13.2% of deaths, with a direct cost equal to 0.75% of its GDP—or, equivalently,

7.5% of the 2015 federal health budget (Alcaraz et al., 2016). In 2011, the Argentinean gov-

ernment implemented an anti-smoking law that banned smoking in public spaces, including

bars and restaurants, and in public and private workplaces; restricted cigarette sales; and

regulated the inclusion of graphic tobacco warnings on cigarette packages. The Argentinean

case offers a good setting for this research because (i) the policy implementation was not

accompanied by changes in taxation or cigarette prices, so it represents a pure non-price

policy, and (ii) Argentina is a federal country, like the US, which allows me to exploit state-

level differences in the stringency of tobacco regulation before 2011 as a source of exogenous

variation.

The contribution of this paper is threefold. First, this paper contributes to a vast lit-

erature in health economics that evaluates place-based bans and has yielded mixed results.

North America-based research shows mixed impacts of smoking bans on smoking behavior

(Adda and Cornaglia, 2010; Bitler, Carpenter and Zavodny, 2010; Carpenter, Postolek and

2In 2001, Canada became the first country in the world to introduce graphic warnings on cigarette
packages and was quickly followed by many others (Azagba and Sharaf, 2012). In the US, the 2009 Tobacco
Control Act required that cigarette packaging includes graphic warnings, but implementation has been
delayed by legal challenges from cigarette manufacturers. For example; on March 2, 2021, the U.S. District
Court for the Eastern District of Texas granted a motion by the plaintiffs in the case of R.J. Reynolds
Tobacco Co. et al. v. United States Food and Drug Administration et al., No. 6:20-cv-00176, to postpone
the effective date of the “Required Warnings for Cigarette Packages and Advertisements” final rule by an
additional 90 days. The new effective date of the final rule is April 14, 2022.

3Tobacco use rises to 29% in households in the lowest income quintile versus 20% in the richest households;
see Crawfurd and Nestour (2019) and Fuchs, Gonzalez Icaza and Paz (2019).

136



Warman, 2011; Burton, 2020), while research in Europe suggests a systematic reduction of

small magnitude in smoking behavior (Buonanno and Ranzani, 2013; Pieroni et al., 2013;

Sureda et al., 2014). The local context of smoking behavior could help explain differences

in estimates: how popular and accepted smoking is, whether it is strongly associated with

other behaviors, and whether the accessibility of smoking cessation programs among others

would contribute to individuals’ responses to anti-tobacco policies. Nonetheless, the effec-

tiveness of smoking restrictions in the context of middle- and low-income countries, where

80% of tobacco smokers worldwide live, has been much less studied. My research fills this

gap by analyzing the anti-tobacco law passed by the Argentinean federal government in 2011.

Unlike other studies of the effects of smoking bans in the context of middle- and low- in-

come countries that have relied on cross-country (e.g, Blecher, 2008; Abascal et al., 2012) or

before-and-after comparisons (e.g., Thrasher et al., 2010), I employ an identification strategy

that provides causal estimates of the impacts of this policy on smoking, drinking, and health

outcomes.

Second, this paper contributes to the literature on the impacts of graphic tobacco warn-

ings. Cigarette warning labels are well-established policies, but research based on actual

consumption behavior is limited. The effectiveness of this policy has been assessed by ran-

domized controlled laboratory experiments (e.g., Hammond, 2011) and cross-country com-

parisons (e.g, Blecher, 2008). The main empirical challenge in evaluating this policy is that

graphic warnings have often been enacted as part of broader anti-smoking campaigns (DeCi-

cca, Kenkel and Lovenheim, 2022). To overcome this challenge and disentangle the effect of

graphic tobacco warnings and place-based bans, I combine (i) a simple framework that im-

poses structure on the effect of a bundled policy and (ii) additional variation among early and

late adopters of place-based bans. My paper is closest to Kuehnle (2019) who uses individual-

level panel data from Australia to examine the association between pictorial warnings and

smoking behavior—prevalence, quitting,initiating and relapsing. Nonetheless, one limitation
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of their study is that it cannot separate the effect of pictorial warnings from the effects of the

introduction of Quitline reference, and mass media campaigns that accompanied the policy.

Third, I aim to advance the economic research on tobacco regulation effects on health

outcomes. The main empirical challenge in measuring the effects of regulatory changes on

health outcomes originates in the fact that many health conditions associated with smok-

ing—such as, heart disease, lung cancer, and overall premature mortality—are processes that

develop over long periods of time making it difficult to know the appropriate lag between

policy implementation and disease onset and progression (DeCicca, Kenkel and Lovenheim,

2022). To overcome this limitation, I exploit data on hospital discharges, this approach has

two advantages. On one hand, when studying hospitalization events rather than mortality,

the lag required to observed health effects is shorter. On the other hand, hospitalization

data is well suited to capture health gains, such as less severe symptoms associated with

smoking cessation, that might not translate into mortality declines. For example, in the case

of chronic obstructive pulmonary disease (COPD), it has been shown that smoking cessa-

tion and avoidance of cigarette smoke reduce the excess lung function decline (Eklund et al.,

2012). 4

Data for this paper come from three main sources. First, to estimate the effects of this

non-price intervention on smoking and drinking, I use individual-level data from two national

surveys for the years 2008 to 2013.5 These data include geographic location, demographic

characteristics, and cigarette and alcohol consumption, which I use to construct the smoking

status and participation and drinking behaviors of smokers. Second, to study the effects on

health outcomes, I use restricted-access administrative data on hospital discharges provided

by the Argentinean National Center for Health Statistics, which I aggregate at the state

4Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes
obstructed airflow from the lungs. Symptoms include breathing difficulty, cough, mucus (sputum) production
and wheezing. The main cause of COPD is tobacco smoke and smoking accounts for up to 8 out of 10 deaths
(US Department of Health, 2014)

5The National Survey on Risk Factors (ENFR) and the National Survey on Consumption Prevalence of
Psychoactive Substances (EnPreCoSP); data are available for the years 2008, 2009, 2011, and 2013.
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level. Third, I compile data on tobacco regulation from state statutes and laws, coding a

total of 47 state-level regulations to characterize the regulatory environment of each state

before the 2011 national law was enacted.

My identification strategy relies on state-level differences in the strength of regulation on

tobacco products before the national law was passed. States with more lenient restrictions

were more exposed to the effects of the new regulation than states with strict regulations.

I compare the smoking and drinking behavior of individuals in lenient states (treated in-

dividuals) with that of individuals in strict states (comparison states). I show that before

2011, treated and comparison states were comparable in observable characteristics, including

smoking prevalence and demographic composition. I also show that individuals in treated

and comparison states were observationally equivalent before 2011.

I find that the anti-tobacco regulation effectively reduced smoking participation: The

probability of being a current smoker decreased by 22% among people aged 18 to 65. On the

intensive margin, the share of individuals smoking fewer than 5 cigarettes a day decreased

by 0.16 percentage point, suggesting that the reduced probability of being a current smoker

is driven by former smokers whose consumption was on the lower end of the distribution.

But importantly, the 2011 national law has regressive implications. Non-price policies are

expected to be less regressive than price policies, because they do not increase the economic

burden of consumption on poorer smoker; who make up a large proportion of the smoking

population in developing countries. Despite not changing the monetary cost of smoking,

I find that the policy disproportionately benefited more educated and richer individuals.

Specifically, an elementary school graduate is 4.37 percentage points less likely to be a

current smoker, while a college graduate is 9.86 percentage points less likely after the policy

implementation. A similar pattern is observed across the income gradient: an individual who

belongs to the highest income quintile is 8.92 percentage points less likely to be a smoker

after the national law was introduced—3 percentage points greater in absolute values than
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the change for the lowest income quintile.

Understanding whether alcohol and tobacco are consumed as complements or substitutes

is crucial in determining the side effects of tobacco control policies, especially when these

policies target venues such as bars and restaurants where smoking and drinking are usually

combined. Smoking bans in bars and restaurants represent a change in the non-price deter-

minant of demand for alcohol consumed in bars; under the hypothesis that these goods are

substitutes, an effective anti-smoking policy would backfire and lead to an increase in alcohol

consumption. I find that the new tobacco regulation induced a decrease in the abusive con-

sumption of beer (3 percentage points), wine (2.74 percentage points), and binge drinking

(5.44 percentage points). The direction of these changes is consistent with a complementary

relationship when it comes to the consumption of these pairs of goods. 6

The impacts on extensive and intensive margin outcomes are reflected in slightly better

health outcomes. The rate of hospital discharges due to diagnoses of chronic obstructive

pulmonary disease (COPD) decreased in the short run, but I find no effects on rates of hos-

pital discharges due to lung cancer. I interpret these results as suggestive of an improvement

in population health correlated with more strict regulation of tobacco products, but due

to data limitations, I cannot perform a longer term analysis of these outcomes or identify

whether the results are driven by fewer individuals being diagnosed or the same number of

individuals being diagnosed with less severe symptoms and requiring fewer hospitalizations.

The rest of the paper is organized as follows. Section II presents background information

on tobacco regulation in Argentina. Section III describes the data. Section IV presents the

research design and provides evidence supporting the identification assumption. Section V

examines the effects of the national regulation on smoking, drinking, and health outcomes.

6I find that, in contrast to beer and wine, smoking and spirits—vodka, gin, tequila, rum, and
whiskey—have a substitution relationship on consumption. One potential explanation of this result is that
smokers who drink spirits are different from other smokers who abuse alcohol. I find that this result is driven
by single young people (less than 25 years) with more education who are increasing their consumption of
alcohol.
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Section VI discusses the mechanisms through which the law operates and section VII con-

cludes.

2. Non-price Regulation and the Argentinean National Law

Argentina’s 2011 national law has three main components: (i) it bans smoking in public

spaces, such as restaurants, bars, educational institutions, and public and private work sites;

(ii) it bans sales in schools, hospitals, public buildings, and means of public transportation;

and (iii) it regulates advertising of tobacco products and mandates the incorporation of

graphic tobacco warnings. These warnings consist of short messages about smoking’s health

consequences and side effects displayed with a shocking picture on one side of the package

(see Appendix Figure A.43 for examples). Images are designed by the National Department

of Health and are updated once every 18 months in order to attenuate potential wear-out

effects of graphic warnings. After the law was approved, producers had up to 6 months to

incorporate the designs on their packages and could not adapt the warnings to reduce their

effectiveness. 7

Argentina is a federal country; as in the US, states have autonomy to implement dif-

ferent regulations. States do not have control over cigarette prices, and the taxation of

tobacco-related products is exclusive to the national government. However, each state has

the autonomy to regulate smoking and access to tobacco products. I compile data on to-

bacco regulation from state statutes and laws for each of the 23 Argentinean states and the

capital city to characterize the regulatory environment of each state before the 2011 national

law was enacted. Then, I use this information to construct a legislation index, which is a

7An advantage of this setting is that individuals are almost randomly assigned to graphic warnings.
Cigarettes packages are mainly sold at convenience stores, where consumers cannot directly access the
cigarette package and must ask the cashier to retrieve it, leaving very little room to pick which warning
is printed on the package they are buying. This means that the effects I estimate are an average effect of
the graphic warnings selected by the Argentinean government, but, I cannot provide evidence about which
warning is more effective.
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discrete and bounded index that summarizes the state-level regulations.8 Higher values on

the legislation index represent strong regulation of tobacco products. A value of 0 indicates

that a given state has only banned cigarette sales to minors. A value of 1 indicates that the

state has also banned consumption in public means of transportation. A value of 2 indicates

that a state has banned consumption in educational and health care institutions or that a

state has banned some type of advertising—e.g., event sponsorship. A value of 3 indicates

that the state has banned consumption in additional venues, such as bars and restaurants.

Each subsequent unit increase indicates a tightening in the regulation. The highest value of

the index before 2011 was 6, which implies limiting advertising in public spaces, sport events

and other venues; banning indoor smoking in several venues (bars, restaurants, educational

and health care institutions); and allowing cigarette sales only in specialty or authorized

shops. A value of 7 was reached by all states in 2011 when the national law was passed,

which demonstrates the fact that no state had legislation as strict as the new national law.

The legislation index allows for a convenient summary of the regulatory apparatus, but its

weakness is that each unit increase does not reflect the same change in regulation. The data

construction section in Appendix 3.3 provides details on the criteria and definitions used.

Figure 3.1 shows the regional variation across states in 2009. Darker shades on the map

(higher values of the legislation index) indicate stricter regulation, and lighter shades (lower

values of the legislation index) indicate less strict regulation. The 2011 law impacted the

regulation of tobacco products in every state with different intensity. For example, in a

state in which only sales to minors were banned (a state with a legislation index equal to 0),

the national law introduced place-base bans, advertising limitations and graphic warnings.

On the other hand, in a state in which tobacco was heavily regulated—such as a state

with a legislation index of 6,—the main change was the incorporation of graphic warnings.

8This attempt to assemble data on the enactment of tobacco regulation policies is similar to the Pre-
scription Drug Abuse Policy System, which aims to track state laws related to prescription drug abuse.
Researchers have widely used these data to study the effects of such laws on opioid use and mortality (see
Buchmueller and Carey, 2018b)
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Nonetheless, every state experienced tightened regulation after introduction of the 2011

national law. The ideal research design would exploit the intensity of treatment—i.e., the

difference between the value of the legislation index for state s and the maximum value

of the index. This exercise would be informative regarding the effectiveness of the policy

for different increments in strength of regulation. Unfortunately, the number of states and

years observed is relatively small, which limits the implementation of this design. Hence,

I use the legislation index to identify lenient vs strict states, and use the latter as the

comparison or untreated group. In the rest of the paper, I refer to “lenient” states as those

with low legislation index value (less than or equal to 3) and to the other states as “strict” or

comparison states. As a robustness check, I replicate the main analysis using an alternative

definition of treated and comparison states, and find similar results (see robustness Section

3.41).

3. Data and Descriptive Statistics

To measure tobacco and alcohol consumption, I use individual-level data from the National

Survey on Risk Factors (ENFR) and the National Survey on Consumption Prevalence of

Psychoactive Substances (EnPreCoSP). The surveys provide information on self-reported

consumption of tobacco and alcohol within the last year for individuals aged 18 to 65.9

Importantly, these survey data include state identifiers and are available for the years before

and after the policy was implemented: 2008 , 2009, 2011, and 2013. I study two outcomes of

smoking behavior. First, I construct extensive margin outcomes, defined as the probability

that an individual is a current smoker and the probability that an individual has never

smoker. I consider an individual to be a current smoker if she has ever smoked more than 100

9Both surveys use the same questionnaire for smoking and alcohol consumption. The main difference
between the surveys is that the ENFR also asks individuals about their health, diet, and physical activity,
among other behaviors, while the EnPreCoSP also asks individuals about consumption of other drugs, such
as marijuana.
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cigarettes and if, at the moment of the survey, she smokes every day or some days. I consider

an invidual to be a never smoker if she has never smoked before or if, she has smoked less

than 100 cigarettes. These definitions are close to the one used by Carpenter, Postolek and

Warman (2011) with Canadian survey data. Second, I study an intensive margin measure

given by the number of daily cigarettes smoked in the last month; this measure is informative

regarding whether the distribution of smoked cigarettes was responsive to the national law.

I recognize two potential limitations of these survey data. First, social smokers could be

classified as non-smokers. This would imply that my results provide a conservative estimate

of the true parameters of interest, since restaurants and bars are where social smokers are

more likely to smoke and drink and the policy directly bans consumption in these venues.

Second, extensive- and intensive- margin measures are based on self-reported data, which are

not free of measurement error; this would arise if smokers deny their habit when surveyed

or incorrectly report how much they smoke. I use data on sales to provide evidence on the

direction of measurement error in Table A.31. Consumption time series from sales and survey

data show a similar trend and suggest that (i) individuals underreport their consumption and

(ii) under-reporting is stable across the years, i.e. it did not change after the implementation

of the national law.10 Smoking behavior outcomes are measured with some error in the

survey data; however, the direction of this error is consistent with my results providing a

lower bound rather than being driven by changes in reporting after the policy.

To document whether cigarettes and alcohol are substitutes or complements, I construct

measures of alcohol consumption among smokers. I study alcohol consumption in the last

month and two measures of harmful alcohol consumption: abusive consumption and binge

drinking. I define alcohol abuse as an indicator of having more than eight drinks of beer,

five drinks of wine or three drinks of spirits in a given day.11 Binge drinking is defined as

10Survey data captures about 58% of consumption relative to sales data for every year that is available.
Unfortunately, sales data is not available at the state level so I can not reproduce my main results using
these data.

11Spirits include vodka, gin, tequila, rum, and whiskey. These thresholds are defined following the guide-
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consuming five or more drinks on a single occasion in the past 30 days, on either a weekend

or a weekday.

Last, I study effects on health outcomes. I use restricted-access administrative data

on hospital discharges to compute the prevalence rate of hospitalization from COPD and

respiratory-system-related cancer.12 These data come from the Argentinean National Cen-

ter for Health Statistics and are provided at the hospitalization level.13 In the data, one

observation corresponds to a hospitalization event for which I observed the individual’s gen-

der, age, and the main diagnosis and a state identifier. The main limitation of these data

is that I do not observe individual identifiers or their smoker status. For this reason, my

analysis is only suggestive with respect to how the population’s health changed after the

national law and cannot distinguish whether there are fewer diagnoses or less severe ones.

Table 3.1 shows mean outcomes before the national law was enacted. Strict states (high

values in the legislation index) and lenient states (low values in the legislation index) have

comparable proportions of never and current smokers. But, the distribution of smoked

cigarettes per day in lenient states has a heavier right tail; i.e., the proportion of more-than-

10-cigarettes-per-day smokers is higher in these states. The difference in the distribution of

smoked cigarettes per day—statistically significant at the 5- and 10-percent level—suggests

that strict and lenient states might have been on different trends before 2011. I directly test

for the presence of pre-trends in intensive-margin outcomes in Table 3.3. I find no statistically

significant differences in the proportion of smokers whose consumption is between one and

five cigarettes per day, or between 10 and 15 cigarettes a day. I find a small difference in

the consumption group 15 to 20 cigarettes per day, which is statistically significant at a 10-

percent significance level and not economically meaningful. Importantly, strict and lenient

lines from the World Health Organization (WHO) and the Center for Diseases Control (CDC).
12COPD is defined using ICD 10th revision codes J41, J42, J43, and J44. Respiratory-system-related

cancer is defined using ICD 10th revision codes C30, C33, and C34.
13In Spanish, Direccion de Estadisticas e Informacion de Salud (DEIS). This agency is analogous to the

U.S. National Center for Health Statistics.
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states show similar prevalence rates in the diagnosis directly affected by tobacco smoking.

4. Empirical Strategy

The 2011 law impacted the regulation of tobacco products nationally, but I exploit the

fact that states with more lenient restrictions were more exposed to the effects of the new

regulation, by comparing more lenient with stricter states. To do so, I define a dichotomous

variable (Treats) that equals 1 if the legislation index for state s is less than or equal to 3

before 2011; i.e., states with legislation strictly greater than 3 serve as comparison states.14

I estimate the causal effect of the national regulation via the following regression, which is

run over the sample of individuals in treated and comparison states two periods before and

one period after the regulation was implemented:

yi =
1∑

τ=−2
δτ [Treats · (Y ears After Treat = τ)] + β′Xis + Γ′Xst + αs + αt + εi , (3.1)

where s indexes the state in which individual i is observed in year t,and yi is the outcome of

interest. The variable Y ears After Treat = τ indexes time relative to the law’s implemen-

tation.15 The variable Treats indicates whether state s is a comparison state (Treats = 0)

or a treated state (Treats = 1). In this specification, lagged coefficients (δ−2 and δ−1) test

whether the outcome of interest y in comparison and treated states followed similar trends

before the policy was introduced. The coefficient for the lead period, δ1 captures the effect

of the national law 1 year after implementation. The omitted coefficient is δ0, which cor-

responds to the year of the treatment. Xis is a vector of control variables that comprises

individual-level characteristics—e.g., age, gender, educational attainment, and income. I

also include state-time varying controls: private employment and population. States’ fixed

14I present estimates of the main results defining Treats = 1 if the legislation index is strictly less than
3 in the robustness checks section (see Section 3.4) and arrive at similar conclusions.

15I normalize time relative to the law implementation to match the years when I observe outcome variables:
i.e., τ = −2 corresponds to 2008, τ = −1 to 2009, τ = 0 to 2011, and τ = 1 to 2013.
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effects (αs) control for variation in outcomes across states that is constant over time. Time

fixed effects (αt) control for variation in outcomes over time that is common across all states.

The variable εi is an individual error term. Standard errors are block-bootstrapped at the

state level with 200 replications.16

My identifying assumption is that comparison states would have been on the same trend

as treated states absent the national legislation. The remainder of this section provides

evidence in support of the research strategy and discusses the identifying assumption.

4.1 Why Did State Governments Regulate Tobacco Consumption?

As shown in Table 3.1, treated and comparison states are comparable in terms of the out-

comes of interest before the national law was enacted. Nonetheless, identifying the causal

effect of the 2011 national law on tobacco consumption requires that treatment and com-

parison status at the state level be exogenous to outcomes of interest. In order to better

understand why some states chose to regulate tobacco more than others before 2011, I regress

the probability of having enacted strong regulation before 2011 on a set of covariates that

include the political affiliation of the state government, an indicator of whether a state is a to-

bacco producer, measures of the prevalence of tobacco consumption and hospitalizations due

to COPD, a measure of private employment that proxies the economic well-being of a state,

and demographic characteristics. These results are presented in Table A.32. The Peronist

party was responsible for enacting the 2011 national law; nonetheless, I find that the it was

not more likely to regulate tobacco consumption at the state level than opposition parties.

Similarly, I find that states that are tobacco producers did not have a smaller probability

of being strict states, although one would expect these states to be more lenient regarding
16Using cluster-robust standard errors permits both error heteroskedasticity and flexible error correla-

tion within clusters. With a small number of clusters, cluster-robust standard errors are downward biased
(Cameron, Gelbach and Miller, 2008); block-bootstrap procedures yield more accurate cluster-robust in-
ference when there are few clusters. Block-bootstrap standard-error estimation procedure maintain the
autocorrelation structure within groups—states in this specific application—by keeping observations that
belong to the same group together in a block, as it samples groups instead of observations.
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the consumption of tobacco products. States with a higher prevalence of COPD diagnoses

were 0.394% more likely to have enacted a stricter regulation; although statistically different

from zero, this coefficient indicates that for the probability of enacting a strong regulation

to increase in 1% the prevalence of COPD has to increase 2.53 times. Finally, states with

a greater share of individuals between 15 and 25 years were more likely to have a stricter

regulation. In my estimates, I control for state fixed effects, which partially purge initial

differences across states in the prevalence of COPD and demographic composition.

4.2 Were Individuals in Treated and Comparison States Observationally Equivalent?

I test whether individuals in treated and comparison states were statistically indistinguish-

able in terms of their observed characteristics in 2008 and 2009.17 Balancing test results are

presented in Table 3.2. The estimated differences indicate that individuals are statistically

indistinguishable in terms of gender, age, marital status, employment status, and educational

attainment.

I find evidence that on average, individuals in comparison states are poorer than in-

dividuals in treated states. The proportion of households in the second quintile is bigger

in comparison states, while the proportion of households in the third and fourth quintiles

is smaller in comparison states. To account for this difference in observable characteris-

tics, I include controls for household income in every specification, as well as age, gender,

employment status, and other individual characteristics.

4.3 Did State Governments Enforce the 2011 National Law?

Before examining the effects of the policy on outcomes of interest, I provide evidence of

compliance with the law using data on exposure to environmental tobacco smoke in closed

17I present pooled results only. Conclusions on balance on observable characteristics do not change when
the analysis is done by year.
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venues. In the 2009 and 2013 surveys, non-smokers were asked whether they notice someone

smoking inside their home, the workplace, an educational institution, a hospital, or in bars

and restaurants. With the exception of bars and restaurants, all states banned consumption

in these venues before implementation of the national law. I use these data to document how

exposure to tobacco smoke changed across venues before and after 2011. Figure A.44 shows

that the share of non-smokers not exposed to environmental tobacco smoke increased by

5% in homes, workplaces, educational institutions and hospitals; whereas the share of non-

smokers not exposed in bars and restaurants increased by 10%. These results suggest that

exposure to tobacco smoke in bars and restaurants decreased more than in other venues.

I argue that, since smoking in the workplace, educational institutions, and hospitals was

already regulated in comparison and treatment states before the 2011 law, the differential

response in restaurants is informative of law enforcement and compliance.

5. Results

My empirical analysis proceeds in three steps. First, I estimate the causal impact of the 2011

national law on smoking behavior, by examining smoking participation and intensity among

smokers. These exercises provide evidence on the effectiveness of the policy. Second, to

assess potential side-effects of the tobacco control policy, I ask whether alcohol and tobacco

are consumed as complements or substitutes . Finally, I study health outcomes in the short

run.

5.1 Effects of the 2011 National Law on Tobacco Consumption

Extensive margin outcomes. Smoking participation decreased as a result of the stricter regu-

lation implemented in 2011. To understand how the policy affected smoking participation, I

study its effects on (i) the probability of individuals’ having never smoked, and (ii) the proba-
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bility of individuals’ being current smokers. The former increased by 4.34 percentage points.

This suggests that the regulation curbed tobacco initiation: The law caused a roughly 10%

increase in the probability of an individual’s being a never-smoker. This result is reinforced

by a reduction of 6.17 percentage points in the probability of being a current smoker, which

represents a 22% reduction in this outcome. Taken together these effects suggest that the law

caused a reduction on smoking participation helping individuals to quit smoking and curving

smoking initiation. Figure 3.2 shows these results and Appendix Table A.33 presents point

estimates and standard errors. These event-study graphs also show that comparison and

treated states were on similar trends regarding cigarette consumption before the national

law was passed. The estimates for δτ=−2 and δτ=−1 are not statistically distinguishable from

zero, which provides additional support to the identification assumption.

Intensive Margin Outcomes. I examine whether there is a reduction in the number of daily

cigarettes smoked. To measure smoking intensity, I generate bins (b) of consumption in five-

unit increments up to 20 cigarettes a day, and 10-unit increments for higher quantities. These

intervals are open to the left: (0,5] (5, 10] (10, 15] (15, 20] (20, 30] (30,40] and (40,50].18 For

example, b1 is a dummy variable that takes the value of one if the number of cigarettes smoked

is positive but less than or equal to five. Results are presented in Table 3.3.

I find evidence that the distribution of cigarettes smoked daily shifts to the right; i.e.,

it is more likely that smokers consume more than 5 cigarettes per day and less likely that

they consume fewer than 5 cigarettes per day. Specifically, the proportion of smokers who

consume between one and five cigarettes per day decreased by 16 percentage points, while the

proportion consuming between 5 and 20 cigarettes a day increased by 13 percentage points.

Notice that about 93% of the consumers have consumption in the first four bins—i.e., up to

a pack per day. Thus, estimating the effects for bins above 20 cigarettes a day requires a

18In Table 3.3, I present the proportion of smokers for each bin in 2011. I did not include smokers who
report smoking more than 50 cigarettes a day; they represent the 3% of the sample in 2011. Note that the
shares of smokers in each bin add up to one and that the coefficients for each year add up to zero, since they
represent the changes in accumulated mass in the distribution of smoked cigarettes.
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bigger sample or sizable effects to avoid power-related limitations.

Extensive and intensive margin results indicate that the reduction in the probability of

being a current smoker is driven by quitters whose consumption was less than five cigarettes

per day. Thus, after the law was passed, the pool of smokers becomes more negatively

selected.

Heterogeneity in Smoking Participation. Do the effects of stricter restrictions on tobacco

consumption vary across populations? To tackle this question, I estimate equation (3.1)

restricting the sample by age group, gender, educational attainment, and household income.

Figures 3 and 4 plot estimates of the causal effect of the national law by demographic group.

Tables A.34, A.35, A.36, and A.37 complement these figures and present estimates of the pre-

policy coefficients which are statistically indistinguishable from zero and provide additional

support for the parallel trends assumption.

The reduction in the probability of being a current smoker is driven by individuals aged

18 to 25 years old and individuals aged 40 to 55 years old. Although the estimated effects are

comparable in magnitude, the mechanisms behind them are quite different. The reduction

in current smokers among the younger adults is driven by an increase in non-smokers and

shows how the policy curbed tobacco initiation; whereas the result among adults aged 40

to 55 is driven by an increase in former smokers. In 2013, the percentage of never-smokers

aged 18 to 25 was 66.54% and this figure for adults aged 50 to 55 was 46.89%, a 20-point

difference. At the same time, the percentage of current smokers was comparable in the two

age groups—26.66% and 28.81%, respectively, suggesting that the group of younger non-

smokers had a higher share of never-smokers, while the group of older non-smokers had a

higher share of former smokers.

Adults aged 55 to 65 did not respond to the increase in the cost of smoking induced by

the national law. A potential explanation is that people might find quitting more difficult

the older they are and the longer they have been addicted to nicotine. The length of ad-

151



diction mechanically increases as consumers age if they do not quit. Using intention-to-quit

data, I find that 67% of smokers aged 50 to 55 have intended to quit smoking, while only

60% of smokers aged between 55 and 60 have intended to quit. Hence, the hypothesis of

discouraged smokers is a plausible explanation for the null effects estimated for these groups.

Other papers have find similar results, e.g., Kuehnle (2019) find that the smoking behavior

of individuals aged 50 and over was not affected by the introduction of tobacco graphic

warnings.

Women are less likely to smoke than men, but they are equally responsive to increases in

the cost of smoking induced by the national law. Panel (b) of Figure 3.3 presents estimated

effects by age and gender and tests the null hypothesis that the effect on women of a given

age is equal to the effect on men of the same age group. I do not find evidence to reject this

hypothesis for any age group (see Table A.35 for the respective p-values).

Cigarette taxes would be regressive with respect to income if poorer and richer consumers

smoked at the same rate, since the same price increase entails a higher economic burden for

poorer consumers; this regressive effect is exacerbated when smoking prevalence is inversely

related to income, as is the case in most developing countries. In contrast, non-price poli-

cies are particularly attractive in middle- and low-income countries, where tobacco use is

concentrated among low-income households. These policies change the non-monetary costs

of smoking and have the comparative advantage of not increasing the economic burden for

consumption on poorer smokers. Nonetheless, I find that the 2011 national law has regressive

implications. The causal impacts of the law on tobacco consumption are higher in absolute

values for more educated and richer individuals (see Figure 3.4).

I document that an elementary school graduate is 4.37 percentage points less likely to be

a current smoker after the policy, while a college graduate is 9.86 percentage points less likely

to be a current smoker after the policy implementation. Also, an individual who belongs

to the highest income quintile is 8.92 percentage points less likely to be a smoker after the
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national law was introduced. This change is 3 percentage points higher in absolute values

than the change for the lowest income quintile (a 5.61 percentage points decrease).

Robustness checks. The main results on extensive and intensive margin outcomes are

robust to a change in the definition of the treatment. The baseline specification defines the

treatment group as those states with a legislation index less than or equal to 3 before 2011. I

consider an alternative definition and use as a treatment group those states with a legislation

index strictly less than 3 before 2011. This change implies that the pool of treated states has

on average a more lenient regulation. I present the results of this exercise in Appendix Tables

A.42, A.43, and A.44. Regarding extensive margin outcomes, I find that (i) estimates of the

coefficients for 2008 and 2009 are not statistically distinguishable from zero, and (ii) results

on the probability of being a never-smoker and the probability of being a current-smoker

are smaller in absolute value but still significantly different from zero. Regarding intensive

margin outcomes, I find reductions in the probability of smoking up to 5, up to 10 and up

to 15 cigarettes per day. These results imply that the distribution of cigarettes smoked daily

shift to the right, similarly to the main results.

I also consider two additional robustness checks. First, I test whether the results are

driven by one state by estimating the main outcomes of interest in samples that drop one

state at a time. I present these results in Figure A.45, which results indicate that the

estimated effect is not driven by one state with particularly strong effects. Second, another

concern is whether the trend in cigarette price confounds my results. I present evidence that

for the period of analysis, there is no sharp changes in the price of the cheapest cigarette

package (see Figure A.46). I pay special attention at the minimum price because smokers

could easily substitute between brands to avoid price changes in the more expensive brands.
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5.2 Effects of the 2011 National Law on Alcohol Consumption

Policies that ban the consumption of tobacco in bars and restaurants could have important

effects on a smoker’s alcohol consumption, since a smoking ban could lower a smoker’s utility

from drinking in a bar. Also, the question of whether alcohol and tobacco are consumed as

complements or substitutes is crucial for determining the side effects of tobacco control poli-

cies. Under the hypothesis that these goods are substitutes, an effective anti-smoking policy

would backfire and lead to an increase in alcohol consumption, all else equal. Conversely,

under the hypothesis that they are complementary goods, an effective anti-smoking policy

would lead to a decrease in alcohol consumption. Most of the literature has studied the

responses of alcohol consumption to a price policy by exploiting changes in cigarette prices

(e.g., Decker and Schwartz, 2000; Tauchmann et al., 2013; Krauss et al., 2014; Shrestha,

2018). A notable exception is Burton (2020), who finds that smoking bans in bars and

restaurants lead to an increase of one serving of alcohol a month, though these bans do not

have an effect on smoking participation. In this paper, I study alcohol consumption and

alcohol abuse; the latter is particularly important in assessing the potential negative side

effects of tobacco control policies.

Figure 3.5 reports estimates of the marginal effects on alcohol consumption from the esti-

mation of equation (3.1) using a probit model. Appendix Table A.38 presents the estimates

of the (raw) coefficients. Marginal effects can be interpreted as the percentage-point change

in the relevant outcome relative to the average level of such outcomes. Standard errors are

clustered at the state level. The estimated coefficients for 2008 and 2009 are statistically

indistinguishable from zero; this supports the identifying assumption of parallel trends in

the consumption of alcoholic beverages between comparison and treated states.

I find no evidence of changes in the average consumption of alcohol by smokers (column

1 of Table A.38), but measures of extreme consumption did change as a result of stricter
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tobacco regulation, i.e., I do find a reduction in unhealthy alcohol drinking behaviors, such

as, alcohol abuse and binge drinking. In particular, cigarette smoking and the abusive

consumption of beer and wine are complementary goods, i.e., the consumption of wine and

beer decreases after an increase in the non-monetary cost of smoking.

Similarly, tobacco consumption and binge drinking also change in a direction that suggests

a complementary relationship. The stricter regulation of tobacco consumption caused a

reduction in smoking participation and a decrease in the abusive consumption of beer of

3.20 percentage points; of 3.00 percentage points for wine, and of 5.67 percentage points for

binge drinking.

Tobacco and spirits—vodka, gin, tequila, rum, and whiskey—have a substitution rela-

tionship. The consumption of spirits increased by 5.98 percentage points after the stricter

regulations on tobacco consumption and advertising went into effect. The average level of

abusive consumption of spirits in 2011 was 3.18%, and thus the estimated effect suggests a

huge increase in this risky behavior. A potential explanation of this result is that smokers

who drink spirits are different from other smokers who abuse alcohol. Smokers who abuse

spirits are more likely to be single young people (less than 25 years) and are more educated

and wealthier than those who abuse other drinks; see appendix Table (A.39). Thus, the

difference in sign of the coefficient could be attributable to young people who were induced

to substitute smoking for drinking in bars and pubs. This seems to be especially true for

young men; the policy effect on spirits consumption is three times larger for men than for

women.

5.3 Effects of the 2011 National Law on Health Outcomes

Reduced smoking in public places could entail important health benefits on both nonsmokers

and smokers. Smoking can cause lung disease by damaging the airways and the small air

sacs (alveoli) in the lungs. COPD, which includes emphysema and chronic bronchitis, is one
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of the most common lung diseases caused by smoking. Also, cigarette smoking causes most

cases of lung cancer. Estimates from the US indicate that smoking causes about 90% of all

lung cancer deaths and 80% of all deaths from COPD.19 In the Argentinean setting, Alcaraz

et al. (2016) estimate that cigarette smoking caused 75% of COPD deaths and 82% of lung

cancer deaths, while 33% of other cancers could be attributed to cigarette smoking.

I estimate the effects of the clean-indoor-air policy and the introduction of graphic tobacco

warnings using hospital discharge data. I construct the prevalence rate for disease c for age

group a as the ratio between the number of cases with diagnoses c in age group a and the

total population aged a of state s in year t times 1,000. I run the following regression over

the sample of treated and comparison states for the period 2008-2014 by cause of discharge

c:

ya =
4∑

τ=−3
δτ [Treats · (Y ears after treat = τ)] + Γ′Xst + αa + αs + υt+ εa, (3.2)

where Y ears after treat = τ is equal to the difference between the calendar year and the

year the national law was passed. The variable Treats is defined as before. Xst is a vector of

control variables that comprise state-level characteristics. I include age-group fixed effects

(αa), and thus δτ is identified by within age-group differences between lenient and strict

states over time. The linear time trend t controls for changes in population health over time

that are constant across states. Standard errors are block-bootstrapped at the state level

with 200 replications. The coefficients can be interpreted as a change in the prevalence rate

of diagnosis c when the legislation was tightened.

The left (right) panel in figure 3.6 shows the estimated effect on COPD (lung cancer)

prevalence rate for the population aged 18 to 65—Table A.40 presents point estimates and

standard errors. I estimate that by 2014, the prevalence of COPD decreased about 3.6

19See Department of Health and Human Services, The Health Consequences of Smoking—50 Years of
Progress: A Report of the Surgeon General, 2014.
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percentage points relative to 2011, while respiratory system cancer decreased by about 2.2

percentage points. However, the latter result is not statistically different from zero. The

effect for each year after the national law was passed is greater in absolute value than the

previous one, which suggests that the policy could have important long-term effects.20 The

results on health outcomes could be driven by fewer individuals being diagnosed with these

diseases; the same number of individuals being diagnosed with less severe symptoms and

requiring fewer hospitalizations, or a combination of both. Although I can not shed light

on which channel is the most important, my results suggest an improvement in population

health correlated with stricter regulation of tobacco products.

My results are consistent with the fact that many health conditions associated with

smoking—such as, heart disease, lung cancer, and overall premature mortality—are processes

that develop over long periods of time making it difficult to know the appropriate lag between

policy implementation and disease onset and progression (DeCicca, Kenkel and Lovenheim,

2022). Nonetheless, in the case of chronic obstructive pulmonary disease (COPD), it has

been shown that smoking cessation and avoidance of cigarette smoke reduce the excess lung

function decline (Eklund et al., 2012). Thus, the reduction on hospitalization from COPD

could reflect the health gains from smoking cessation and reduced exposure to cigarette

smoke induce by the law. In contrast, the null effects on cancer diagnoses reflect the fact

that reverting the onset of this disease requires a longer time horizon.

6. Bans or Graphic Tobacco Warnings?

The implementation of Argentina’s 2011 policy features a common characteristic across

countries: The government implemented two anti-tobacco policies at the same time, i.e.,

the clean-indoor-air policy and the mandate for graphic tobacco warnings. In particular,

20Unfortunately, the Argentinean National Center for Health Statistics stopped collecting hospital dis-
charge data after 2014, so conducting a longer term analysis is not feasible.
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graphic warning labels have often been enacted as part of broader anti-smoking campaigns

(DeCicca, Kenkel and Lovenheim, 2022). One example is the 2001 Canadian Federal Tobacco

Control Strategy, which proposed raising tobacco taxes in addition to the incorporation of

graphic tobacco warnings (Health Canada, 2002).21 Another example of joint implementa-

tion of policies is the Taiwan Tobacco Hazards Prevention Amendment Act of 2009, which

extended smoke-free areas to almost all enclosed workplaces and public places, added graphic

health warnings to cigarette packages, and banned tobacco advertisement (see, Chang et al.,

2010).

The joint-implementation setting poses two empirical challenges to the identification of

policy effects. The first challenge is that researchers cannot exploit either regional or tempo-

ral variation to disentangle the effects of each policy because these are implemented at the

same time. The second challenge is the presence of spillover effects between policies. If these

are nonzero, the estimated effect of the policy bundle would be a function of the effects of

each policy and the spillover effects. To overcome these identification challenges, I exploit

an additional source of variation in my data and impose structure on how the two policies

interact. This exercise helps in understanding what mechanisms are driving the extensive

margin outcomes.

Effects of place-based bans. I exploit the fact that, while tobacco graphic warnings were

implemented nationally in 2011, place-based bans were adopted by some states before 2011.

Thus, the comparison between states that have implemented place-based bans before the

national implementation—bans early adopters—and the states that have not implemented

bans until the national law—bans late adopters—provides useful variation to identify the

effect of place-based bans.22 Under the assumption that conditional on time and fixed effects

21Beginning in April 2001, the federal government implemented a sequence of tax hikes. The excise tax
was first raised to $10.99 per carton in May 2001, and then to $12.62 by the end of 2001. In mid-2002, the
federal tax was further raised to $13.86 per carton and then to $15.85 in July 2002 (Gabler and Katz, 2010).

22Importantly, the group of states that adopted bans before the national implementation is not the same
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the two groups of states would have followed the same trend absence the 2011’s federal policy;

the following regression provides a causal estimate of δbans:

yi =
1∑

τ=−2
δbansτ [Banss · (Y ears after treat = τ)] + β′Xis + Γ′Xst + αs + αt + ϕi, (3.3)

where Banss is a dummy variable that equals 1 if the state s is a late-adopter of place-based

bans; and the rest of the parameters are defined as in equation 3.1. Figure 3.7 shows the

results of this estimation and replicates the main results for comparison.23 I find no effect

of place-based bans on the proportion of non-smokers, which highlights the fact that non-

smokers do not experience the cost of place-based bans—i.e., non-smokers are not compelled

to go outside to smoke. On the other hand, roughly 40% of the change in the proportion of

current smokers can be attributed to place-based bans, suggesting that the reduction in the

probability of being a current smoker is driven by both components of the policy.

Effects of graphic tobacco warnings. To construct estimates of the effects of graphic tobacco

warnings, I make two additional assumptions (i) I assume that treatment effects are constant

across states and time, and (ii) I assume that the effects of each policy branch are additive.

Under these assumptions, the total effect of the policy (δ) can be written as a linear com-

bination of the effects of each branch of the policy: tobacco graphic warnings (δtgw) and

place-based bans (δbans):24

δ =δtgw + ω δbans , (3.4)

where ω is the proportion of states that have not implemented a place-based ban before the

national regulation, and δbans is the effect of place-based bans, and estimates of these effects

as those states classified as strict states. These two groups differ because the legislation index has multiple
dimensions. Thus, a strict state could have ban cigarette sales, advertising, and consumption in schools and
other venues but not in restaurants. This state will be a control state in the regression that estimates δ but
a treated state in the regression that estimates δ̃bans.

23Appendix Table A.41 presents point estimates and standard errors.
24See Appendix 3.5 for a detailed derivation of this equation.
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can be used to construct estimates of the effect of graphic tobacco warnings. The left panel

of Figure 3.8 shows that graphic tobacco warnings are an effective policy instrument to deter

smoking initiation. I find that most of the effect on the probability of being a never-smoker

is explained by the introduction of these warnings. The rationale behind pictorial warnings

on tobacco products is to inform smokers and non-smokers about the documented health

risks of smoking. When non-smokers were asked about graphic warnings, 73% reported

having seen them in the last 30 days. Studies in experimental settings have documented

that graphic warnings elicit emotional responses, such as fear or disgust (DeCicca, Kenkel

and Lovenheim, 2022).

My results indicate that these emotional responses may be an effective tool to keep non-

smokers away from cigarettes. For current smokers, around 60% of the effect can be at-

tributed to the incorporation of tobacco graphic warnings (Figure 3.8, right panel). I estimate

that graphic warnings reduce the probability of being a current smoker by 3.85 percentage

points, these results are in line with Kuehnle (2019) who finds that the introduction of pic-

torial warnings on cigarette packages reduced smoking by around 4% within the first year

of the policy in Australia.

Interpretations. The previous exercise helps in understanding what mechanisms are driv-

ing the extensive margin outcomes; nonetheless, some caveats are in place. First, spillover

effects may arise from complementarities in policy intervention and these effects can not be

disentangled from the effect of place-based bans. If these spillover effects are positive—for

example, because the effectiveness of place-based bans is enhanced by the implementation

of the advertising restriction as the latter helps to raise awareness of the side effects of

smoking—the estimates of δbans would provide an upper-bound estimate of the true effect.

Second, the derivation of Equation 3.4 relies on the assumption that effects are additive. If

this where not the case, this expression would still provide a useful decomposition of the

total effect but we would need to assume that interaction terms are small.
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7. Conclusions and Discussion

Smoking bans and advertising regulations have played an increasingly important role in

tobacco control policies over the past 20 years. These policies are particularly attractive

in middle- and low-income countries, where tobacco use is concentrated among low-income

households. This paper provides evidence of the effectiveness and potential limitations of

these policies by studying the Argentinean case. Argentina’s 2011 national law has two

main components: (i) it implements indoor smoking bans and (ii) it regulates advertising

of tobacco products and mandates the incorporation of graphic tobacco warnings. I exploit

regional variation in the leniency of tobacco regulation before 2011 to identify the effects of

this new regulation on various outcomes. I find that the new regulations effectively curbed

smoking initiation and consumption. Nonetheless, when looking at heterogeneous effects,

my results suggest that the policy disproportionately benefited more educated and richer

individuals, and thus potentially widens health disparities between these groups. This paper

also highlights the incorporation of graphic tobacco warnings as a valuable policy instrument.

Well-designed package warnings are a highly cost-effective means for increasing awareness of

the smoking’s effects on health and deterring individuals from smoking.
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8. Figures

Figure 3.1: Legislation Index in 2009

5 , 6 
4
2 , 3
0 , 1

Notes: The legislation index summarizes the strength of regulations at the state level; higher index values
(darker shades) indicate stricter regulation and lighter shades indicate more lenient regulation. See Appendix
3.3 for details on construction of the legislation index.
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Figure 3.2: Effects on Extensive Margin Outcomes

(a) −.05

0

.05

.1

E
ff

e
c
t 

a
n

d
 9

5
%

 C
I

2008 2009 2011 2013

 Year 

(b) −.08

−.06

−.04

−.02

0

.02

E
ff

e
c
t 

a
n

d
 9

5
%

 C
I

2008 2009 2011 2013

 Year 

(a) Prob. Never Smoker (b) Prob. Current Smoker

Notes: This figure presents point estimates and symmetric percentile-t confidence intervals of the causal
effect of the national regulation on the probability of being a never smoker (left panel) and the probability
of being a current smoker (right panel). The omitted year corresponds to 2011, the year the law was passed.
Standard errors are block-bootstrapped at the state level with 200 replications.
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Figure 3.3: Extensive Margin Effects by Age and Gender
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Notes: This figure presents point estimates and symmetric percentile-t confidence intervals of the causal
effect of the national regulation on the probability of being a smoker in 2013 by subgroups. Standard errors
are block-bootstrapped at the state-level with 200 replications.
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Figure 3.4: Extensive Margin Effects by Education and Income
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Notes: This figure presents point estimates and symmetric percentile-t confidence intervals of the causal
effect of the national regulation on the probability of being a smoker in 2013 by subgroups. Standard errors
are block-bootstrapped at the state-level with 200 replications. Panel (a) presents results by educational
attainment, in which d.o. stands for drop-out; panel (b) presents results by household income ranking. The
1st quintile corresponds to the lowest 20% of households in the income distribution. Analogously, the 5th
quintile corresponds to the highest 20% of households in the income distribution.
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Figure 3.5: Effects on the Risky Consumption of Alcoholic Beverages
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Notes: This figure presents estimates of the marginal effects and confidence intervals of the 2011 national
law on the probability of abusive consumption of beer, wine, and spirits and binge drinking across smokers.
Abusive consumption thresholds and binge drinking are defined in the main text. The omitted category
corresponds to 2011, the year the federal law was passed. Standard errors are clustered at the state level.

166



Figure 3.6: Effects on Health Outcomes
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Notes: This figure presents point estimates and symmetric percentile-t confidence intervals of the causal
effect of the national regulation on the prevalence rate of COPD (left panel) and lung cancer (right panel).
The omitted year corresponds to 2011, the year the law was passed. Standard errors are block-bootstrapped
at the state level with 200 replications.
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Figure 3.7: Effects of Place-based Bans
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Notes: This figure presents point estimates and symmetric percentile-t confidence intervals of the causal
effect of the national regulation and place-base bans on the probability of being a never smoker (left panel)
and the probability of being a current smoker (right panel). The omitted year corresponds to 2011, the year
the law was passed. Standard errors are block-bootstrapped at the state level with 200 replications.
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Figure 3.8: Effects of Graphic Tobacco Warnings
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Notes: This figure presents point estimates and symmetric percentile-t confidence intervals of the causal
effect of the national regulation and tobacco graphic warnings on the probability of being a never smoker
(left panel) and the probability of being a current smoker (right panel). The omitted year corresponds
to 2011, the year the law was passed. Standard errors are block-bootstrapped at the state level with 200
replications.
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9. Tables

Table 3.1: Summary Statistics, Pre-policy Period

Equality
Variable (mean) All states Strict states Lenient states of means
Never-smokers 0.560 0.561 0.558 0.777
Current smokers 0.286 0.281 0.290 0.587
Mean cigarettes per day
0 to 5 0.373 0.397 0.352 0.024
6 to 10 0.266 0.260 0.270 0.513
11 to 20 0.297 0.282 0.310 0.073
more than 20 0.064 0.060 0.068 0.382

Prevalence rate (per 1,000)
COPD 0.203 0.196 0.209 0.765
Lung cancer 0.069 0.061 0.076 0.330

Number of states 24 11 13
Notes: This table presents summary statistics for the outcomes of interest for the pre-policy period. I pooled
2008 and 2009 for consumption outcomes and 2008 to 2010 for health outcomes. The last column reports the
p-value for the test of equality of means for strict and lenient states. The category more than 20 cigarettes
per day includes smokers with consumption strictly greater than 20 and less than or equal to 50 cigarettes
a day.
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Table 3.2: Balance in Terms of Individual Characteristics in Strict versus Lenient States

Equality
Variable (mean) All states Strict states Lenient states of means
Average age 37.719 37.745 37.698 0.896
Male 0.491 0.495 0.487 0.581
Young (< 25 years old) 0.236 0.239 0.234 0.749
Married or cohabitant 0.579 0.570 0.587 0.316
Employed 0.701 0.702 0.700 0.878
Educational level
Elementary school 0.196 0.195 0.196 0.973
High school 0.237 0.234 0.239 0.598
College 0.146 0.150 0.141 0.451

Income category
First quintile 0.134 0.131 0.136 0.605
Second quintile 0.294 0.355 0.242 0.000
Third quintile 0.214 0.199 0.227 0.038
Forth quintile 0.222 0.181 0.257 0.000
Fifth quintile 0.136 0.135 0.137 0.876

Observations 60,449 23,830 36,619
Number of states 24 11 13

Notes: This table presents summary statistics for demographic characteristics for the pre-policy period. I
pooled 2008 and 2009. Demographic characteristics other than age indicate the proportion of individuals
with a given attribute. The last column reports the p-value for the test of equality of means for strict and
lenient states.
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Table 3.3: Effects on Intensive Margin Outcomes

Cigarettes smoked (0,5] (5, 10] (10, 15] (15, 20] (20, 30] (30 , 40] (40 , 50]
(1) (2) (3) (4) (5) (6) (7)

2008 -0.0201 0.0225 -0.0006 0.0003 0.0015 -0.0042 0.0006
(0.0293) (0.0161) (0.0085) (0.0143) (0.0077) (0.0064) (0.0009)

2009 -0.0052 0.0603 0.0008 -0.0379* -0.0097* -0.0101* 0.0018
(0.0276) (0.0227) (0.0092) (0.0201) (0.0047) (0.0052) (0.0018)

2013 -0.1652*** 0.0584* 0.0102* 0.0786*** 0.0216 -0.0035 -0.0001
(0.0295) (0.0141) (0.0087) (0.0150) (0.0050) (0.0035) (0.0009)

Mean dep. var. 0.3500 0.2708 0.0966 0.2143 0.0385 0.0272 0.0024
Observations 40,651 40,651 40,651 40,651 40,651 40,651 40,651
R-squared 0.0716 0.0108 0.0071 0.0324 0.0138 0.0181 0.0017
Correctly predicted 0.6242 0.6949 0.8627 0.7526 0.9077 0.9181 0.9398

Notes: This table presents estimated effects on cigarettes smoked in the last 30 days. The omitted category
corresponds to 2011, the year the federal law was passed. All regressions include individual-level controls:
age, gender, educational attainment, employment status, and income category of the household. State-time
varying controls include total private employment and total population. All regressions include state and
time fixed effects. Correctly predicted indicates the percentage of times the predicted outcome matches the
actual outcome. Standard errors are block-bootstrapped at the state-level with 200 replications. *** p<0.01,
** p<0.05, * p<0.10
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1. Appendix to “A Manufactured Tragedy: The Origins and

Deep Ripples of the Opioid Epidemic”

1.1 Additional Figures

Figure A.1: OxyContin Marketing Budget and Total Prescription Sales
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Notes: Author’s constructions based on OxyContin Budget Plans 1998-2002 and United States General
Accounting Office (GAO). Prescription Drugs: OxyContin Abuse and Diversion and Efforts to Address the
Problem: Report to Congressional Requesters. 2003. This figure is referenced in Section 2.
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Figure A.2: Purdue Pharma Budget Plan 1997: Target Audiences

Notes: This figure is an extract of Purdue Pharma marketing plan. It shows that Purdue marketing tar-
geted top opioid prescribers. Purdue Pharma Budget Plan 1997, p.25. This figure is referenced in Section 2.
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Figure A.3: Mid-nineties Cancer Mortality Rate and 1994 MS Contin prescriptions
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Notes: This figure shows the relationship between MS Contin prescription rates prior to the launch of
OxyContin and mid-nineties cancer mortality. Source: CMS- Medicaid State Drug Utilization. This figure
is referenced in Section 2.

177



Figure A.4: Evolution of Prescription Opioid Distribution
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Notes: This figure shows the evolution of shipments of all prescription opioids and the three main
components: oxycodone, hydrocodone and morphine. Oxycodone is the active ingredient of OxyContin.
Shipments of prescription opioids are expressed in morphine-equivalent doses. Data on opioids distribution
come from the ARCOS. The mortality rate (MR) from prescription opioids is constructed using data from
the National Vital Statistic System and plotted in the right-hand-side axis. Details on the construction of
this measure are found in 3.3 This figure is referenced in Section 3.3.1
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Figure A.5: Evolution of Prescription Opioid and All Opioid Mortality Rates
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Notes: This figure shows the evolution of prescription opioid and all opioid mortality rates from 1989 to
2018. The 1989-1998 data use ICD-9 codes to categorize the cause of death, and the 1999-2018 data use
ICD-10 codes. The time series show that the transition from ICD-9 to ICD-10 classifications resulted in a
small increase in poison-related deaths; this is consistent with what the CDC reports (Warner et al., 2011).
This figure is referenced in Section 3.3.3
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Figure A.6: Evolution of Cancer Mortality and Prescription Opioid Supply
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Notes: This figure shows the evolution of prescription opioids (light blue lines in the left-hand axis)
and cancer mortality rates (dark-blue lines in the right-hand axis) over time for commuting zones in the
top and bottom quartiles of the cancer mortality distribution. Areas in the top quartile of the cancer
distribution experienced an influx of opioids that was up to 3 times larger than the one experience by
areas in the bottom quartile. Changes in cancer mortality does not explain this discrepancy; trends in
carcer mortality rates in these groups of commuting zones suggest that mortality was quite stable in the
period. Prescription opioids is measured in morphine-equivalent mg. This figure is referenced in Section 4.4.1
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Figure A.7: Evolution of Oxycodone by Octiles of the 1994-1996 Cancer Prevalence
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Notes: This figure shows the evolution of oxycodone in eight groups of commuting zones. Each group
is composed of those commuting zones in the n-th octile of the cancer mortality rate distribution
before the launch of OxyContin. Darker colors indicate groups with higher cancer prevalence (e.g., the
8th octile corresponds to the series that peaked in 2010 at 19 morphine-equivalent millions of gm per
capita). Lighter colors indicate groups with lower cancer prevalence. This figure is referenced in Section 4.4.1
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Figure A.8: Extract Exhibit 1 - Sales Visits By Purdue In Massachusetts

Notes: Exhibit 1 - Sales Visits By Purdue In Massachusetts. COMMONWEALTH OF MASSACHUSETTS
v.PURDUE PHARMA C.A. No. 1884-cv-01808. This figure is referenced in Section 4.4.1

182



Figure A.9: Effects of Mid-nineties Cancer-market Targeting on Share of Smokers
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Notes: This figure shows the effects of the increase in prescription opioids supply in the share of smokers.
We present the results of a dynamic reduced-form estimation were we regress the outcome on a set of
year-dummy variables interacted with our instrument. We construct the share of smokers using data from
the Behavioral Risk Factor Surveillance System (BRFSS). We perform the analysis up to 2010 since starting
in 2011, BRFSS changed its data collection, structure, and weighting methodology. In 2011 there is an
increase in the proportion of people being surveyed on cell phones and it also coincides with a rise in the
percentage of respondents with unknown smoking status as documented by DeCicca, Kenkel and Lovenheim
(2022). This figure is referenced in Section 4.4.2 and Section 5.5.2
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Figure A.10: Dynamic Reduced Form Estimates - Out-of-sample Analysis
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(c) Infant Mortality Rate
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(d) Birth Weight
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(e) Fertility Rate - 25 to 29 years old
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(f) Fertility Rate - unmarried woman
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Notes: This figure shows the dynamic reduced-form relationship between outcomes of interest and our
instrument in an out-of-sample period. That is, we replicate our dynamic reduced-form analysis in the
pre-OxyContin period. We regress each outcome on a set of year-dummy variables interacted with the
out-of-sample instrument—cancer mortality in 1989 - 1990. We use this specification to test for the
presence a relationship between our outcomes and mid-nineties cancer mortality before the introduction of
OxyContin. We do not reject the null hypothesis that the estimated coefficients are jointly equal to zero,
the p value of these tests are presented in the figures. This figure is referenced in Section 4.4.2
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Figure A.11: Dynamic Reduced Form Estimates - Out-of-sample Analysis: Labor Market
Outcomes
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(b) Mining
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Notes: This figure shows the dynamic reduced-form relationship between the share of employment in the
manufacturing and mining industries and labor force participation and our instrument in an out-of-sample
period. The first year of available data is 1990. We use this specification to test for the presence a
relationship between our outcomes and mid-nineties cancer mortality before the introduction of OxyContin.
We do not reject the null hypothesis that the estimated coefficients are jointly equal to zero, the p value of
these tests are presented in the figures. This figure is referenced in Section 4.4.2
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Figure A.12: Opioid Mortality Rate by Octiles of the 1994-1996 Cancer Prevalence
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Notes: This figure shows the evolution of prescription opioid (panel a) and all opioids (panel b) mortality
in eight groups of commuting zones. Each group is composed of those commuting zones in the n-th octile
of the cancer mortality rate distribution before the launch of OxyContin. Darker colors indicate groups
with higher cancer prevalence. Lighter colors indicate groups with lower cancer prevalence. This figure is
referenced in Section 5.5.1
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Figure A.13: Effects of Mid-nineties Cancer-market Targeting on All-Opioid Mortality

(a) High vs Low Cancer Mortality CZs

OxyContin's launch

High cancer CZs

Low cancer  CZs

0

.5

1

1.5

2
O

pi
oi

d 
M

or
ta

lit
y 

by
 1

0,
00

0 
in

di
vi

du
al

s

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

(b) Reduced Form - Event Study Approach
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Notes: This figure shows the effects of the increase in prescription opioid supply in all-opioid mortality.
Panel (a) shows the raw data, early in the 2000s, a wedge starts to appear between high- and low-cancer-
incidence groups. Panel (b) shows the dynamic reduced-form estimation. We regress all-opioid mortality
on a set of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These
coefficients corresponds to the estimate of φt in Equation 2.3. We use this specification to test for the
presence of pre-trends in the relation between opioid mortality and mid-nineties cancer mortality; we do
not reject the null hypothesis that the estimated coefficients before 1996 are jointly equal to zero, the p
value of this test equals 0.1574. This figure is referenced in Section 4.4.2, in Section 5.5.1, and in Section 5.5.2
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Figure A.14: Effects of Mid-nineties Cancer-market Targeting on Opioid Mortality by Race
and Gender
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(b) Gender
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Notes: This figure shows the effects of the increase in prescription opioid supply in opioid related mortality by
race group (panel a) and by gender (panel b). We present the results of a dynamic reduced-form estimation
were we regress these outcomes on a set of year-dummy variables interacted with our instrument—cancer
mortality in 1994-1996. These coefficients corresponds to the estimate of φt in Equation 2.3. This figure is
referenced in Section 5.5.1
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Figure A.15: Effects of Mid-nineties Cancer-market Targeting on Deaths of Despair

(a) Deaths of Despair (excluding opioids)
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(b) Alcohol-related Deaths
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Notes: This figure shows the effects of the increase in prescription opioids supply in various measures of
deaths of despair; excluding deaths which cause is opioid poisoning. We present the results of a dynamic
reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with
our instrument. We test for the presence of pre-trends in the relation between deaths of despair and
mid-nineties cancer mortality and do not reject the null hypothesis that the estimated coefficients before
1996 are jointly equal to zero. This figure is referenced in Section 4.4.2, in Section 5.5.1, and in Section
5.5.2
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Figure A.16: Effects of Mid-nineties Cancer-market Targeting on Disability Claims

(a) SSDI
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(b) SSI
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Notes: We present the results of a dynamic reduced-form estimation were we regress these outcomes on a set
of year-dummy variables interacted with our instrument—cancer mortality in 1994-1996. These coefficients
corresponds to the estimate of φt in Equation 2.3. This figure is referenced in Section 5.5.2
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Figure A.17: Effects of Mid-nineties Cancer-market Targeting on Birth Outcomes

(a) Birth Weight
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(b) Share infants born with low weight
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(c) APGAR Score
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Notes: This figure shows the effects of the increase in prescription opioids supply in birth weight (panel a), share of infants
with low birth weight (panel b) and in APGAR score (panel c). The APGAR score is a measure of the physical condition
of a newborn infant. It varies from 0 to 10, a score of 10 represents the best possible condition. We present the results of
a dynamic reduced-form estimation were we regress these outcomes on a set of year-dummy variables interacted with our
instrument—cancer mortality in 1994-1996 (φt in Equation 2.3). We use this specification to test for the presence of pre-trends
in the relation between infant outcomes and mid-nineties cancer mortality; we do not reject the null hypothesis that the
estimated coefficients before 1996 are jointly equal to zero, the p values are presented in the figures. This figure is referenced
in Section 4.4.2, in Section 5.5.1, and in Section 5.5.2
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Figure A.18: Effects of Mid-nineties Cancer-market Targeting on Prescription Opioid Mor-
tality

(a) Baseline specification
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(b) Population weighted Specification
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Notes: This figure shows the effects of the increase in prescription opioid supply in prescription opioid
mortality. Panel (a) reproduces our main analysis (see Panel (b) in Figure 2.6) and Panel (b) reproduces
this analysis using population weights in the estimation of the event study coefficients. This figure is
referenced in Section 6.6.1
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Figure A.19: Dynamic First Stage and Reduced Form Estimates - Alternative specification

(a) First Stage
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(d) SNAP
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(e) Birth Weight
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(f) Fertility Rate of Unmarried woman
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Notes: This figure shows the dynamic first stage (panel a) and reduced-form (panels b to f) relations
between outcomes of interest and an alternative instrument: cancer mortality rate in 1994. That is, we
regress the outcomes of interest on a set of year-dummy variables interacted with cancer mortality in
1994. This figure provides a robustness check for our preferred specification which uses cancer mortality
in 1994-1996 as an instrument. We do not find evidence for the presence of pre-trends in the relation
between opioid mortality—and other outcomes of interest—and mid-nineties cancer mortality in this
alternative specification. We test if the estimated coefficients before 1996 are jointly equal to zero and do
not reject the null hypotheses, the p values are reported in each panel. This figure is referenced in Section 6.6.1
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Figure A.20: Robustness check: Leave-ones-out estimates

(a) First-stage coefficient estimates

.5

1

1.5

2

2.5
C

oe
ffi

ci
en

t a
nd

 9
5%

 C
I

 B
as

el
in

e
 N

ot
 T

rip
lic

at
e

 T
rip

lic
at

e
Al

ab
am

a
Al

as
ka

Ar
iz

on
a

Ar
ka

ns
as

C
al

ifo
rn

ia
C

ol
or

ad
o

C
on

ne
ct

ic
ut

D
el

aw
ar

e
Fl

or
id

a
G

eo
rg

ia
H

aw
ai

i
Id

ah
o

Ill
in

oi
s

In
di

an
a

Io
w

a
Ka

ns
as

Ke
nt

uc
ky

Lo
ui

si
an

a
M

ai
ne

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

M
ic

hi
ga

n
M

in
ne

so
ta

M
is

si
ss

ip
pi

M
is

so
ur

i
M

on
ta

na
N

eb
ra

sk
a

N
ev

ad
a

N
ew

 H
am

ps
hi

re
N

ew
 J

er
se

y
N

ew
 M

ex
ic

o
N

ew
 Y

or
k

N
or

th
 C

ar
ol

in
a

N
or

th
 D

ak
ot

a
O

hi
o

O
kl

ah
om

a
O

re
go

n
Pe

nn
sy

lv
an

ia
R

ho
de

 Is
la

nd
So

ut
h 

C
ar

ol
in

a
So

ut
h 

D
ak

ot
a

Te
nn

es
se

e
Te

xa
s

U
ta

h
Ve

rm
on

t
Vi

rg
in

ia
W

as
hi

ng
to

n
W

es
t V

irg
in

ia
W

is
co

ns
in

W
yo

m
in

g

State left out 

(b) Prescription opioids: Reduced-form coefficient estimates
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Notes: Panel (a) of this figure reports the estimated coefficient φ of the first stage equation (Equation 2.1)
and the corresponding 95% confidence interval. Panel (b) of this figure reports the estimated reduced-form
coefficient. The first coefficient and confidence interval of each graph replicate the main result result—see
column 5 of Table 2.3 and column 2 of Table 2.5. Each of the subsequent coefficients are computed by
excluding all commuting zones in the state or group of states indicated on the horizontal axis (thus, the
x-axis label). Triplicate states are: California, Idaho, Illinois, New York, and Texas. Not triplicate group
excludes all these 5 states. This figure is referenced in Section 6.6.1

194



Figure A.21: Robustness check: Control for exposure to permanent normal trade relations
to China (“China shock”)

(a) NTR gap (Pierce and Schott, 2020)
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(b) Change in Chinese import exposure (ADH, 2013)
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Notes: This figure presents the baseline dynamic reduced-form estimates and the dynamic reduced-form
estimates when we control for exposure to permanent normal trade relations (PNTR) to China—termed the
China shock in the trade literature. In October, 2000, the US Congress passed a bill granting permanent
normal trade relations to China, a trade liberalization that granted China imports access to normal trade
relations (NTR) tariff rates. This trade liberalization differentially exposed US regions to increased import
competition from China via their industry structure. We test whether results on opioid mortality are driven
by this differential exposure. First, we follow Pierce and Schott (2020) and construct a measure of exposure
to trade liberalization as the difference between the non-NTR rates to which tariffs could have risen prior
to PNTR and the NTR rates that were locked in by the change in policy. A higher NTR gap indicates a
larger trade liberalization after the passage of PNTR.
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1.2 Additional Tables

Table A.1: Additional Summary Statistics: Opioid Prescriptions, doses per capita

Mean Median SD Min Max Observations
1997
All opioids 1.49 1.40 0.67 0.04 7.64 590
Oxycodone 0.35 0.32 0.21 0.01 1.76 590
Hydrocodone 0.55 0.49 0.34 0.01 2.73 590
Morphine 0.31 0.29 0.17 0.01 1.89 590
2007
All opioids 7.03 6.24 4.01 0.22 36.24 590
Oxycodone 3.26 2.76 2.33 0.08 26.86 590
Hydrocodone 2.33 1.87 1.72 0.04 14.30 590
Morphine 1.04 0.89 0.68 0.04 8.58 590
2017
All opioids 6.97 6.30 3.50 0.19 27.47 590
Oxycodone 3.75 3.42 2.25 0.11 15.34 590
Hydrocodone 1.86 1.63 1.17 0.04 10.57 590
Morphine 0.92 0.82 0.50 0.03 5.27 590

Notes: This table presents summary statistics for our measure of the prescription opioids supply and
the distribution of oxycodone, hydrocodone, and morphine for the years 1997, 2007, and 2017. Data
come from the ARCOS and are expressed in morphine-equivalent mg. This table is referenced in Section 3.3.1
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Table A.2: Summary statistics: Pre-period and sample period.

1989 - 1995 1999 - 2018

Mean SD Mean SD
(1) (2) (3) (4)

Cancer Mortality per 1,000
Cancer mortality rate 1994-1996 2.53 0.58 2.53 0.58
Cancer mortality rate 2.53 0.59 2.48 0.55

Opioid-related Mortality per 1,000
Prescription opioids 0.01 0.01 0.04 0.05
Any opioids 0.01 0.02 0.07 0.07

Other Mortality Measures per 1,000
All-cause mortality (+20 years old) 9.81 2.07 9.87 2.06
Deaths of despair 0.24 0.08 0.27 0.10
Deaths of despair - alcohol only 0.09 0.04 0.12 0.06
Deaths of despair - suicide only 0.13 0.05 0.15 0.06

Demand for Social Services
Share SNAP 0.10 0.06 0.12 0.07

Infant and Fertility Outcomes
Infant MR (per 1,000 births) 8.87 3.22 6.86 2.87
Birth weight 3416.31 80.77 3274.25 79.47
Share low birth weight 0.07 0.02 0.08 0.02
Share preterm 0.11 0.02 0.12 0.03
APGAR score - all infants 8.24 2.65 8.82 0.19
APGAR score - dead infants 6.14 2.15 5.62 2.28
Median gestation 39.12 0.32 38.95 0.24
Fertility rate 0.08 0.03 0.08 0.01
Fertility rate 25-29 0.12 0.04 0.13 0.02
Fertility rate - unmarried women 0.02 0.01 0.03 0.01

Notes: This table presents summary statistics for our main outcomes and cancer mortality incidence for the
period before the launch of OxyContin (1989-1995) and the period of analysis (1999 - 2018). We leverage
data from multiple sources. The last two columns reproduce columns (2) and (4) of Table 2.1. Data on
opioid, cancer, birth, and fertility outcomes come from the NVSS. We use data from the Food and Nutrition
Service of the Department of Agriculture and the SSA to construct demand for the Supplemental Nutrition
Assistance Program (SNAP), Supplemental Security Income (SSI), and Social Security Disability Insurance
(SSDI). This table is referenced in Section 3.
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Table A.3: Determinants of Cancer Mortality Rate 94-96

Dependent variable: Cancer MR 94-96
(1) (2)

Sh. of population over 66 11.13*** Adult MR excluding cancer 0.0439**
[1.895] [0.0179]

Sh. of population 18-65 -0.664 Income per capita -0.00000857
[1.361] 0.118

Sh. of population under 1 2.156 Share with some college 0.518*
[9.066] [0.274]

Share Black 0.127 Share with high school or less 0.124
[0.241] [0.191]

Share Hispanic -1.215*** Share working in manufacturing -0.199
[0.303] [0.133]

Share female -1.48 Labor Force Participation 0.528
[1.565] [0.399]

Prescription Opioids MR 1.093 Employment rate -1.984*
[1.078] [1.118]

Infant Mortality rate -0.00288 Share SNAP 0.484
[0.00337] [0.383]

Fertility rate 0.311 Share SSDI 1.856
[0.426] [1.929]

Observations 590 R2 0.847

Notes: This table presents estimates of the determinants of the 1994-1996 cancer mortality rate at the
commuting zone level. This regression includes state fixed effects. Robust to heteroskedasticity standard
errors are in brackets. MR stands for Mortality rate. * p<0.10, ** p<0.05, *** p<0.01. This table is
referenced in Section 4.4.2
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Table A.4: Baseline Results with Different Time Periods

Panel A: First Stage
Dependent variable: Prescription Opioids pc

(1) (2) (3) (4)
Cancer MR 94-96 1.078*** 0.916*** 1.047*** 1.474***
se [0.264] [0.258] [0.277] [0.330]
t-stat 4.08 3.55 3.78 4.46
Effective F-stat 16.63 12.62 14.25 19.90

Observations 11,800 7,080 8,850 5,310
Adjusted R2 0.564 0.565 0.582 0.425
Sample All 1999-2010 1999-2013 2010-2018

Panel B: Instrumental Variables
Dependent variable: Prescription Opioids Mortality Rate

(1) (2) (3) (4)
Presc. Opioids pc 0.00679*** 0.00785*** 0.00769*** 0.00533***

[0.00200] [0.00259] [0.00230] [0.00169]

Observations 11,800 7,080 8,850 5,310
Sample All 1999-2010 1999-2013 2010-2018

Dependent variable: Any Opioid Mortality Rate

(1) (2) (3) (4)
Presc. Opioids pc 0.00646*** 0.00677*** 0.00672*** 0.00562**

[0.00231] [0.00256] [0.00232] [0.00237]

Observations 11,800 7,080 8,850 5,310
Sample All 1999-2010 1999-2013 2010-2018

Notes: Panel A presents results for the first-stage regression using alternative periods. Column (1)
reproduces the main results for 1999-2018, column (2) presents estimates for the first wave of the opioid
epidemic, column (3) presents estimates for the first and second waves pooled together, and column (4)
presents estimates for the after-OxyContin reformulation period. Panel B presents results from a regression
of the opioid mortality measure on all prescription opioids distribution per capita, instrumenting the latter
by the cancer incidence in the commuting zone in 1994-1996; i.e., reproduces the results presented in Table
2.5 under alternative periods. All regressions include state times year fixed effects and a set of control
variables: contemporaneous cancer mortality rate, share of population under 1 year old, share of population
between 18 and 65, share of population over 66 years old, share of Black, White, and Hispanic population,
and share of female population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, ***
p<0.01. This table is referenced in Section 5.5.1
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Table A.5: Baseline Results with Different Time Periods. IV Estimates.

SNAP SSDI

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc 0.00455* 0.00487** 0.00680*** 0.00584*** 0.00605*** 0.00718***

[0.00250] [0.00219] [0.00205] [0.00144] [0.00141] [0.00135]

Effective F 15.22 17.06 25.70 15.22 17.06 25.70
Sample 1999-2010 1999-2013 2010-2018 1999-2010 1999-2013 2010-2018

SSI IMR

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc 0.00226* 0.00248* 0.00320* 0.0458 0.0512 0.0846

[0.00133] [0.00141] [0.00174] [0.185] [0.160] [0.113]

Effective F 15.22 17.06 25.70 15.22 17.06 25.70
Sample 1999-2010 1999-2013 2010-2018 1999-2010 1999-2013 2010-2018

Birth weight Fertility

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc -5.989** -5.093** -2.915* 0.00210*** 0.00233*** 0.00350***

[2.811] [2.316] [1.623] [0.000696] [0.000674] [0.000778]

Effective F 15.22 17.06 25.70 15.22 17.06 25.70
Sample 1999-2010 1999-2013 2010-2018 1999-2010 1999-2013 2010-2018

Notes: This table presents results from a regression of outcome y on prescription opioids distribution per capita,
instrumenting the latter by the cancer incidence in the commuting zone in 1994-1996; i.e., reproduces the results
presented in Tables 2.7 and 2.9 under alternative periods. Columns (1) and (4) present estimates for the first wave
of the opioid epidemic, columns (2) and (5) present estimates for the first and second waves pooled together, and
columns (3) and (6) present estimates for the after-OxyContin reformulation period. All regressions include state
times year fixed effects and a set of control variables: contemporaneous cancer mortality rate, share of population
under 1 year old, share of population between 18 and 65, share of population over 66 years old, share of Black,
White, and Hispanic population, and share of female population. Standard errors are clustered at the CZ level.
* p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 5.5.2
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Table A.6: Effects on Fertility Rate by Marital Status and Age

Dependent variable: Fertility rate
(1) (2) (3) (4) (5) (6)

Pres. Opioids pc 0.00166*** -0.000119 -0.00107 0.00327*** 0.0000223 -0.00123**
[0.000475] [0.000517] [0.00111] [0.00115] [0.000446] [0.000497]

Sample Non-marital Marital All 20-24 All 25-29 All 30-34 All 35-39
births births

Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590

Notes: This table presents results from a regression of measures of fertility rate on prescription opioids distri-
bution per capita, instrumenting the latter by the cancer incidence in the commuting zone in 1994-1996. All
regressions include state times year fixed effects and a set of control variables: contemporaneous cancer mor-
tality rate, share of population under 1 year old, share of population between 18 and 65, share of population
over 66 years old, share of Black, White, and Hispanic population, and share of female population. Standard
errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 5.5.2
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Table A.7: First Stage Results with Population Size Controls

Dependent variable: Prescription opioids per capita
(1) (2) (3) (4) (5)

Cancer MR 94-96 1.078*** 1.635*** 1.072*** 1.046*** 1.608***
se [0.264] [0.483] [0.276] [0.266] [0.490]
t-stat 4.08 3.39 3.88 3.94 3.28
Effective F-stat 16.63 11.49 15.05 15.52 10.76

Share pop +65 yo No Yes No No Yes
Total pop +65 yo No No Yes No No
Total population No No No Yes Yes
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.56 0.57 0.56 0.57 0.57

Notes: All specifications include as control variables: contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66 years, share
of Black, White, and Hispanic population, and share of female population. Standard errors are clustered at
the commuting-zone level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 6.6.1
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Table A.8: First Stage Robustness Check

Panel A. Alternative choices of instruments
Dependent variable: Prescription Opioids pc

(1) (2) (3) (4) (5)
Cancer MR 0.868*** 1.171*** 0.930*** 0.754*** 1.417***

[0.229] [0.272] [0.260] [0.223] [0.284]

Mean cancer MR 2.5168 2.5403 2.5477 2.5221 2.2582
Instrument version: Age adjusted 1994 1995 1996 Weighted

MR 94-96
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.553 0.565 0.557 0.551 0.553

Panel B. Alternative choices of instruments
Dependent variable: Prescription Opioids pc

(1) (2) (3) (4) (5)
Cancer MR 1.186*** 0.402*** 0.210** 0.127** 11.72***

[0.315] [0.149] [0.0988] [0.0563] [4.317]

Mean cancer MR 0.6836 9.8072 13.1382 17.5892 0.1342
Instrument version: Excluding 55+ 65+ 75+ Sh. Pop 66+

lung cancer
Observations 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590
Adj. R2 0.55 0.55 0.56 0.56 0.57

Panel C. Alternative measures of prescription opioids supply
Dependent variable: Oxycodone pc Non-oxycodone prescription opioids

(1) (2)
Cancer MR 0.605*** 0.473***

[0.186] [0.107]

Mean cancer MR 2.5312 2.5312
Instrument version: Baseline Baseline
Observations 11,800 11,800
Clusters 590 590
Adj. R2 0.526 0.594

Notes: All regressions include state times year fixed effects and a set of control variables: contemporaneous
cancer mortality rate, share of population under 1 year old, share of population between 18 and 65, share of
population over 66 years, share of Black, White, and Hispanic population, and share of female population.
Standard errors are clustered at the commuting-zone level. * p<0.10, ** p<0.05, ***p<0.01. This table is
referenced in Section 6.6.1
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Table A.9: Baseline Results under a Shift-share Instrument

Dependent var: Presc. Opioids pc Presc. Opioids MR Any Opioids MR SNAP SSDI

(1) (2) (3) (4) (5)

Shift Share 0.00417***
[0.000997]

Effective F 17.47

Presc. Opioids pc 0.00644*** 0.00635*** 0.00927*** 0.00553***
[0.00188] [0.00219] [0.00277] [0.00127]

Model FS IV IV IV IV

Dependent var: SSI Infant Mortality Rate Fertility rate Birth weight

(6) (7) (8) (9)

Presc. Opioids pc 0.00319** -0.0218 0.00149*** -4.344**
[0.00158] [0.120] [0.000548] [1.964]

Model IV IV IV IV

Notes: Column 1 reports the estimated coefficient for the first stage. Columns 2 to 9 present results from IV
regressions using the shift-share instrument. Each regression is run over a sample of 11,800 observations with
590 clusters (commuting zones). All regressions include state times year fixed effects and a set of control
variables: contemporaneous cancer mortality rate, share of population under 1 year old, share of population
between 18 and 65, share of population over 66 years old, share of Black, White, and Hispanic population,
and share of female population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, ***
p<0.01. This table is referenced in Section 6.6.1
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Table A.10: Placebo Check - Alternative Instruments

Dependent variable: Prescription opioids per capita
(1) (2) (3) (4) (5) (6)

CVD MR 94 96 0.372 -2.023**
[0.611] [0.822]

Accidental MR 94 96 1.067 -1.639
[1.411] [1.406]

Homicides MR 94 96 0.214 -0.474
[3.379] [3.173]

Cancer MR 94 96 1.381*** 1.015*** 0.923***
[0.347] [0.245] [0.233]

Model FS FS FS FS FS FS
Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590
Adjusted R2 0.55 0.549 0.549 0.565 0.561 0.562

Notes: CVD stands for cerebrovascular diseases. Columns 1-3 report first-stage regression with alternative
instrument. Columns 4-6 add our baseline instrument. All regressions include state times year fixed
effects and a set of control variables: labor force participation, contemporaneous cancer mortality rate,
share of population under 1 year old, share of population between 18 and 65, share of population over
66 years old, share of Black, White, and Hispanic population, and share of female population. Standard
errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 6.6.2
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Table A.11: Direct Effects. Alternative Measure of Opioid Mortality

Dependent var: Drug Induced Mortality Rate

(1) (2) (3)

Prescription opioids pc 0.00505*** 0.0112***
[0.00152] [0.00369]

tF 0.05 se 0.00518
t-stat using tF 0.05 se 2.16329
AR p-value 0.00010

Cancer MR 94-96 0.0121***
[0.00314]

Effect size (%) 20.96 46.94

Model OLS RF IV
Observations 11,800 11,800 11,800
Clusters 590 590 590
Adjusted R2 0.4304 0.3908
Effective F-stat 16.63
Cragg-Donald Wald F-stat 358.58

Notes: Control variables are contemporaneous cancer mortality rate, share of population under 1 year
old, share of population between 18 and 65, share of population over 66 years old, share of Black, White,
and Hispanic population, and share of female population. Effect size indicates the percent change in the
dependent variable relative to its mean when doses of prescription opioids per capita increase from the 25th
to the 75th percentile. Standard errors in square brackets are clustered at the CZ level. Using these standard
errors, we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, t-stat using tF0.05 se, and the AR p-value
correspond to weak-instrument-robust inference procedures. This table is referenced in Section 6.6.3
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Table A.12: Alternative Measure of Opioid Supply.

Dependent var: Oxycodone pc Presc. opioids MR All opioids MR
(1) (2) (3)

Cancer MR 94-96 0.605***
[0.186]

Oxycodone pc 0.0121*** 0.0115***
[0.00412] [0.00436]

tF 0.05 se (0.00578) (0.00612)
t-stat using tF 0.05 se 2.0932 1.8799

Effect size (%) 38.00 91.50 40.37

Model FS IV IV
Observations 11,800 11,800 11,800
Clusters 590 590 590
Adjusted R2 0.526

Notes: All regressions include state times year fixed effects. Control variables are contemporaneous cancer
mortality rate, share of population under 1 year old, share of population between 18 and 65, share of
population over 66 years old, share of Black, White, and Hispanic population, and share of female population.
This table reproduces the main analysis using Oxycodone shipments as the measure of opioid supply. Effect
size in column (1) is computed as the predicted changes in doses of oxycodone and prescription opioids per
capita from an increase in cancer mortality that would change a commuting zone in the 5th percentile of the
cancer distribution to the 95th percentile. Effect sizes in columns (2) and (3) indicate the percent change
in the dependent variable relative to its mean when doses of prescription opioids per capita increase from
the 25th to the 75th percentile. Standard errors in square brackets are clustered at the CZ level; using
these standard errors, we report * p<0.10, ** p<0.05, *** p<0.01. tF 0.05 se, and t-stat using tF0.05 se
correspond to weak-instrument-robust inference procedures. This table is referenced in Section 6.6.3
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Table A.13: Baseline Results under Alternative Sample Restrictions

Dependent var: Presc. Opioids pc Prescription Opioids MR

(1) (2) (3) (4) (5) (6)
Cancer MR 94-96 1.191*** 1.055*** 1.018***

[0.249] [0.297] [0.288]
Presc. Opioids pc 0.00355*** 0.00684*** 0.00826***

[0.00134] [0.00231] [0.00268]
Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Any Opioids MR All-cause mortality over 20

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc 0.00152 0.00697** 0.00885*** 0.0137 0.0515 0.102

[0.00171] [0.00273] [0.00329] [0.0361] [0.0477] [0.0668]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

SSDI SSI

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc 0.00504*** 0.00586*** 0.00652*** 0.00204** 0.00339** 0.00438*

[0.00106] [0.00155] [0.00173] [0.000851] [0.00169] [0.00239]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

SNAP IMR

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc 0.00941*** 0.00997*** 0.00919*** 0.175 -0.0297 0.0604

[0.00248] [0.00336] [0.00307] [0.130] [0.142] [0.150]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Birth weight Fertility

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc -4.896*** -3.770* -6.480** 0.00108*** 0.00156** 0.00160**

[1.852] [2.240] [2.624] [0.000404] [0.000632] [0.000706]

Sample 15,000+ 40,000+ 55,000+ 15,000+ 40,000+ 55,000+

Notes: This table presents results for the first-stage regression and IV results using alternative sample
definitions. Our preferred specification restricts the sample to commuting zones with population higher than
25,000 residents. When the sample is restricted to population above 15,000, the sample size is 12,820 obser-
vations and 641 clusters. Analogously, when restricted to population above 40,000, sample size is 10,880 and
544 cluster, and 9,620 and 481 clusters when restriction is above 55,000. All regressions include state times
year fixed effects and a set of control variables: contemporaneous cancer mortality rate, share of population
under 1 year old, share of population between 18 and 65, share of population over 66 years old, share of
Black, White, and Hispanic population, and share of female population. Standard errors are clustered
at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 3.3.3 and in Section 6.6.4
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Table A.14: Alternative Sample Results for SNAP

Dependent variable: Share SNAP

(1) (2) (3) (4) (5) (6)
Presc. Opioids pc 0.000144 0.00982*** 0.000213 0.0106***

[0.51] [3.28] [0.74] [3.23]

Cancer 94 96 0.0106*** 0.0116***
[4.67] [5.53]

Effective F-stat 16.63 13.70
Model OLS RF IV OLS RF IV
Sample Baseline Baseline Baseline Restricted Restricted Restricted
Observations 11,800 11,800 11,800 9,962 9,962 9,962
Clusters 590 590 590 533 533 533

Notes: Columns 1-3 report baseline results and columns 4-6 report results only for commuting zones
where county-level data were available. All regressions include state times year fixed effects and a
set of control variables: labor force participation, contemporaneous cancer mortality rate, share of
population under 1 year old, share of population between 18 and 65, share of population over 66
years old, share of Black, White, and Hispanic population, and share of female population. Standard
errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced in Section 6.6.4
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Table A.15: Alternative Specifications

Dependent var: Presc. Op Any Op. SSDI SSI SNAP Fertility
Mortality Mortality

Presc. Opioids pc 0.00684*** 0.00643*** 0.00579*** 0.00322** 0.00922*** 0.00145***
[0.00204] [0.00232] [0.00136] [0.00152] [0.00270] [0.000529]

Extra covariate Empl. Empl. Empl. Empl. Empl. Empl.
Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590

Dependent var: Presc. Op Any Op. SSDI SSI SNAP Fertility
Mortality Mortality

Presc. Opioids pc 0.00684*** 0.00643*** 0.00579*** 0.00322** 0.00922*** 0.00145***
[0.00204] [0.00232] [0.00136] [0.00152] [0.00270] [0.000529]

Extra covariate Unemp. Unemp. Unemp. Unemp. Unemp. Unemp.
Observations 11,800 11,800 11,800 11,800 11,800 11,800
Clusters 590 590 590 590 590 590

Notes: All regressions include state times year fixed effects and a set of control variables: contemporaneous
cancer mortality rate, share of population under 1 year old, share of population between 18 and 65, share
of population over 66 years old, share of Black, White, and Hispanic population, and share of female
population. Standard errors are clustered at the CZ level. * p<0.10, ** p<0.05, *** p<0.01. This table is
referenced in Section 6.6.4
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Table A.16: First Stage with Additional Control Variables: Recession, China Shock & Un-
employment

Presc. Opioids pc (1) (2) (3) (4) (5) (6) (7)
Cancer MR 94 96 1.078*** 1.137*** 1.101*** 1.104*** 1.075*** 1.074*** 1.075***

[0.266] [0.272] [0.268] [0.268] [0.264] [0.264] [0.263]

Extra control Recession NTR
Gap

ADH
1990

ADH
2000

Unemp.
94

Unemp.
95

Unemp.
96

Observations 11,800 11,800 11,740 11,740 11,800 11,800 11,800
Adjusted R2 0.57 0.57 0.57 0.57 0.56 0.56 0.56
Clusters 590 590 587 587 590 590 590

Notes: This table estimate the first stage including additional control variables to account for the 2001
Economic Recession and the China Shock. All regressions include state times year fixed effects and a set of
control variables Standard errors are clustered at the CZ level. All regressions are run on panel at the CZ
level with 11,800 observations and 590 clusters. * p<0.10, ** p<0.05, *** p<0.01. This table is referenced
in Section 6.6.5
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1.3 Alternative Sources of Variation in the Marketing of OxyContin

In this appendix, we compare the approach presented in this paper to the work of Alpert

et al. (2022). We pay special attention to the ways in which we improve on their work, with

focus on the differences in specifications, the statistical power of the two approaches, and we

highlight concerns around the source of variation.

Both papers exploit geographic exposure to the initial marketing of OxyContin. Alpert

et al. (2022) use a state-level binary variation, whereas we exploit continuous commuting-

zone variation.1 Alpert et al. (2022) show that five states with early versions of prescription

drug monitoring programs, or triplicate prescriptions, received less marketing from Purdue

Pharma. These early versions of PDMPs were often referred to as “triplicate” programs.

We exploit a different dimension of the initial marketing strategy of OxyContin: the fact

that prescription opioids were initially promoted to the cancer pain market, with the plan

to expand from there to the much larger non-cancer pain market. This produces variation

in the marketing of opioids that tracks the cancer pain market and that we measure as

commuting-zone level cancer mortality between 1994 and 1996.

Specification

Exploiting different dimensions of the initial marketing strategy of OxyContin translates into

different empirical strategies. The event study specification proposed in each paper is given

by:

AELP: yst =
2017∑

τ=1983
βτ × 1( Nontriplicate )s × 1(t = τ) + α̃s + γ̃t + ζXst + εst ,

AB: ∆ ysct =
2018∑

τ=1989
φτ × CancerMRsct0 × 1(Y ear = τ) + γst + α ∆ Xct + υct .

1Using state-level data implies 50 potential units of analysis: 49 continental US states and the District
of Columbia. Using commuting-zone level data implies 740 potential units of analysis.
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where s indexes state, t indexes time, c indexes commuting zone, t0 defines the pre-OxiContin

period (1994-1996), and τ indexes event time. AELP reproduces Equation (1) in Alpert

et al. (2022), augmented to include the baseline controls (Xst) considered by the authors:

the fraction of the population that is white non-Hispanic, Black non-Hispanic, Hispanic,

the fraction ages 25–44, 45–64, 65+, the fraction with a college degree, and log population.

This specification includes state (αs) and year (γs) fixed effects. The indicator variable

1(Nontriplicate)s is based on the initial triplicate status of the state in 1996.

AB reproduces Equation 2.3 of this paper and its terms have been defined before. Dif-

ferent from Alpert et al. (2022), this specification allows the inclusion of state times year

fixed effects (γst) to account for important confounders at the state and year level. During

the period of analysis there was relevant state-level variation in response to the opioid epi-

demic, such as the implementation of Prescription Drug Monitoring Programs (PDMP), the

regulation of “pill mill” clinics, and the availability of naloxone. These policy changes were

quite common, for example, between 2007 and 2013, 17 states implemented some version of

a PDMP (Buchmueller and Carey, 2018a). Between 2001 and 2017, every US state passed a

law that facilitates the widespread distribution and use of naloxone (Doleac and Mukherjee,

2019). These changes are likely related to both the levels of opioid in the population and

downstream outcomes of the epidemic, biasing regression estimates.

Statistical precision

Next, we study how the two strategies compare in their statistical power to measure the

impacts of the opioid epidemic on the outcomes of interest. To assess the statistical power

of each model, we compute the minimum detectable effect and compare its distribution. We

define this statistic as follows:

213



Minimum detectable effect = tcritical ×
semin

SDy

, (4.1)

where tcritical corresponds to the xth percentile of the t−distribution and SDy is the standard

deviation of the outcome variable, e.g., opioid-related mortality or change in the share of the

population on the SNAP. In the previous expression, semin is given by:

semin = min{seτ} = min{seτ0 , seτ1 , seτ2 , . . . , seτT
} ,

where seτ corresponds to the standard error of the β̂τ and φ̂τ coefficients respectively, e.g.,

seτ = se(β̂τ ). Thus, the minimum detectable effect of the vector of parameters βτ is the

smallest effect size on the outcome variable y for which the researcher can reject the null

hypothesis that the βτ with the smallest variance equals zero. Analogously, the minimum

detectable effect of the vector of parameters φτ requires the computation of seτ = se(φ̂τ ).

We construct the distribution of this statistic for each model {AELP,AB}. To do so,

we perform S simulations of each model, and for each iteration s, we compute the minimum

detectable effect as defined in Equation 4.1. In doing this exercise, we need to take a stand

on the data-generating process for the outcome variable of interest (y and ∆y, respectively).

We consider alternative distributions of the outcome variable and parameter values. Table

A.17 summarizes the results of this exercise and Figure A.22 presents selected distributions.

We run 500 simulations for each proposed distribution of the outcome variable and work

with a tcritical = 1.96. For example, the series labeled Beta(1,3) in Panel (a) corresponds

to the distribution of the minimum detectable effect of the vector of parameters βτ when

the outcome y follows a Beta (1,3) distribution. The Log-normal(8.85,7.15) closely captures

the distribution of opioid-related mortality as defined by Alpert et al. (2022). Similarly, the

Log-normal(0.02, 0.04) closely captures the distribution of the change in prescription opioid
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mortality as defined in this paper. Our results in Figure A.22 and Table A.17 show that

across distributions, the variation and specification presented in this paper has substantially

higher statistical power. Specifially, at the median, we can identify effects that are 25% of

the size that the model proposed by Alpert et al. (2022).

Definition of triplicate status

From our review of Purdue Pharma and other pharmaceutical companies’ internal docu-

ments, we believe that when Purdue referred to “Triplicate States” it meant a group of nine

states and not five as stated in Alpert et al. (2022). We base this statement on the fact that at

least on two separate occasions, Purdue explicitly referred to triplicates as the “nine states”

(Figure A.23), and to our knowledge, never mentioned only five. A footnote in Alpert et al.

(2022) comments on one of these references to the nine states and deemed it an incorrect

reference by Purdue. Academic documents that explain the prescription drug monitoring

programs that were in effect at the time also refer to a group of nine states. These documents

are more precise in their language and refer to these programs as multiple-copy prescription

programs (Joranson, D et al., 2020 and Fishman, S et al., 2004). Similar to today’s PDMPs,

different states had different versions of the program, but the informal industry name for

these programs was “triplicate programs”. In an internal email between Mallinckrodt sales

specialists, also disclosed as part of the opioid litigation, one sales specialist lists and explains

to the other the history of the triplicate programs and lists the original nine states (Figure

A.24). These are California, Hawaii, Idaho, Indiana, Michigan, Illinois, New York, Rhode

Island, and Texas.2

In light of these alternative definitions of the group of states with triplicate programs,

we inspect the time trends of overdose mortality in triplicate states and replicate the main
2Mallinckrodt is a pharmaceutical company that is also part of the opioid litigation for their role in

the opioid epidemic. More precisely, “Collectively, Purdue, Actavis, Cephalon, Janssen, Endo, Insys, and
Mallinckrodt are referred to as “Marketing Defendants” Case No. 17-md-2804. United States District Court
for the Northern District of Ohio Eastern Division.
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results in Alpert et al. (2022).3 First, in Figure A.25 we inspect patterns in the raw data.

Panels (a) and (b) show the evolution of overdose mortality in five triplicate states and nine

triplicate states, respectively, compared to the evolution in the rest of the country. Using

the alternative definition of triplicates provides less clear evidence that “triplicate states”

fare better regarding overdose mortality.

Event studies models in Figure A.26 suggest a similar story. While the main results are

not overturned, they are attenuated and are often equal to zero statistically, suggesting a

smaller effect of the triplicate status on overdose mortality. We estimate the event studies

with and without population weights. The unweighted version is more sensitive to the

definition of triplicate status, which is natural since even though the sample of “treated”

states is increasing by 80%, the treated population is only changing by 21%. Finally, Table

A.18 replicates the main estimate in Alpert et al. (2022). Consistent with the event study

estimates, results are attenuated when using the alternative definition and are more sensitive

when regressions are not weighted by population.

Finally, we test whether our instrument has predictive power in the group of triplicates

states as defined by Alpert et al. (2022). We find that the positive relationship between

mid-nineties cancer mortality and the supply of opioids is present in both triplicate and

non-triplicate states (Figure A.20). In fact, the first stage is stronger in the five triplicate

states. This result is consistent with a story in which pharmaceutical companies need to

be more strategic in promoting opioids in places where they face additional barriers and do

not avoid the largest markets in the country (For example, California, Texas, New York,

and Illinois).4 Anecdotal evidence is consistent with this fact: All five “triplicate” states

filed lawsuits against Purdue Pharma and other pharmaceutical companies for their direct

3We define overdose deaths as deaths involving underlying cause of death ICD-9 codes E850-E858,
E950.0-E950.5, E962.0, or E980.0-E980.5 and ICD-10 codes X40-X44, X60-64, X85, or Y10-Y14.

4The first stage coefficient is 1.542 in the five triplicate states defined in Alpert et al. (2022), and 0.917
in the other states. This difference is not statistically different, and the p-value of such test is 0.203.
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responsibility in the unfolding of the opioid epidemic.5 We corroborate this, in the reduced

form estimates, our results are indistinguishable, both qualitatively and statistically, in the

five states triplicate states and the rest of the states, as panel b of Figure A.20 shows.6

5For example, “New York State is in the throes of an opioid epidemic that has ravaged the lives of its
residents and drained its public coffers for more than two decades. This statewide catastrophe happened be-
cause the Defendants in this case deliberately betrayed those duties through a persistent course of fraudulent
and illegal misconduct, in order to profiteer from the plague they knew would be unleashed”—the People of
New York, -against-Purdue Pharma et al.; March 28, 2019.

6The reduced form coefficient is 0.0072 in the five triplicate states defined in Alpert et al. (2022), and
0.0073 in the other states. This difference is not statistically different, and the p-value of such test is 0.97.
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Figure A.22: Distribution of the Minimum Detectable Effect: Alternative Specifications

(a) State-level Variation: Triplicate programs

0

1

2

3

4

D
en

si
ty

0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

Minimum detectable effect

Beta (1,3) Lognormal (8.85,3.58)

Normal (0,1) Lognormal (8.85,14.30)

Gamma (1,2) Lognormal (8.85,7.15)

Lognormal (0.02,0.04)

(b) Commuting-zone level variation: Cancer market
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Notes: Panel (a) shows the distribution of the minimum detectable effect for the AELP model under
alternative distributions of the outcome variable. For example, the series labeled Beta(1,3) corresponds to
the distribution of the minimum detectable effect of the vector of parameters βτ when the outcome y follows
a Beta(1,3) distribution. The Log-normal(8.85,7.15) closely captures the distribution of opioid-related
mortality as defined by Alpert et al. (2022). The additional Log-normal distributions have the same mean
but change the variance. Similarly, panel (b) shows the distribution of the minimum detectable effect of
the vector of parameters φτ , i.e., it corresponds to this paper’s model under alternative distributions of the
outcome variable. The Log-normal(0.02, 0.04) closely captures the distribution of the change in prescription
opioid mortality as defined in this paper.
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Figure A.23: Reference to Nine Triplicate States in OxyContin Launch Plan

Notes: This figure shows extracts of OxyContin Launch plans. The left panel reproduces a segment of the
OxyContin Launch Plan, page 27 September 27th 1995. The right panel is an extract from OxyContin
Budget Plan 1996, page 29. This figure is referenced in Appendix 1.3.

Figure A.24: Reference to Nine Triplicate States in Internal Communications

Notes: This figure shows extracts of the internal email from the opioid litigation with details on the list of
triplicate states. This figure is referenced in Appendix 1.3.
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Figure A.25: All Drug Overdose Mortality by Triplicate Status.

(a) Triplicate definition as in Alpert et al. (2022).
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(b) Alternative triplicate definition
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Notes: Time series for all drug overdose mortality. Panel (a) defines triplicates as California, Idaho, Illinois,
New York, and Texas. Panel (b) adds Hawaii, Indiana, Michigan, and Rhode Island for a total of 9 triplicate
states. This figure is referenced in Appendix 1.3.
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Figure A.26: All Drug Overdose Mortality By Triplicate Status - Unweighted analysis.

(a) 5 Triplicates unweighted
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(b) 9 Triplicates unweighted
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(c) 5 Triplicates weighted
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(d) 9 Triplicates weighted
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Notes: Figures in panels (a) and (c) reproduce Figure 4 in Alpert et al. (2022). Panels (b) and (d) present
the analysis using the alternative definition of triplicate states: we add Hawaii, Indiana, Michigan, and
Rhode Island for a total of 9 triplicate states. Event study models include state and year fixed effects. 95%
confidence intervals are generated using a clustered (at state) wild bootstrap. Estimates are normalized to
zero in 1995. This figure is referenced in Appendix 1.3.
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Table A.17: Distribution of the Minimum Detectable Effect for Alternative Specifications
and Distributions of the Outcome Variables

Outcome variable Minimun effect size

Mean SD Min 1st pctile 5th pctile Mean Median 95th pctile 99th pctile Max

Distribution (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Alpert et al. (2022) model
Beta (2, 2) 0.50 0.22 0.36 0.41 0.46 0.62 0.60 0.85 0.96 1.24
Beta (1, 3) 0.25 0.19 0.33 0.38 0.44 0.61 0.59 0.82 1.05 1.34
Gamma (1, 2) 2.00 1.99 0.28 0.33 0.38 0.60 0.54 0.95 1.53 3.03
Gamma (2, 2) 4.00 2.82 0.31 0.36 0.40 0.61 0.58 0.90 1.31 1.85
Normal (0, 1) 0.00 1.00 0.32 0.39 0.46 0.63 0.60 0.91 1.08 1.58
Log-normal (2.5, 0.5) 2.50 0.50 0.30 0.39 0.46 0.62 0.59 0.92 1.12 1.59
Log-normal (7, 5) 7.01 5.02 0.24 0.31 0.39 0.59 0.53 1.00 1.64 3.87
Log-normal (8.85, 3.58) 8.80 3.56 0.27 0.38 0.44 0.61 0.57 0.94 1.32 2.26
Log-normal (8.85, 7.15) 8.84 7.14 0.24 0.29 0.36 0.58 0.51 1.01 1.77 4.40
Log-normal (8.85, 14.3) 8.86 14.28 0.12 0.17 0.22 0.51 0.39 1.09 2.51 8.92
Log-normal (0.02, 0.04) 0.02 0.04 0.07 0.11 0.17 0.48 0.33 1.14 2.85 11.16

Panel B: Arteaga and Barone (2023) model
Beta (2, 2) 0.50 0.22 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16
Beta (1, 3) 0.25 0.19 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15
Gamma (1, 2) 2.00 2.00 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.15
Gamma (2, 2) 4.00 2.83 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.15
Normal (0, 1) 0.02 0.04 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15
Log-normal (2.5, 0.5) 2.50 0.50 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15
Log-normal (7, 5) 7.00 5.00 0.11 0.11 0.12 0.13 0.13 0.14 0.14 0.15
Log-normal (0.02, 0.02) 0.02 0.02 0.09 0.10 0.10 0.12 0.12 0.13 0.13 0.14
Log-normal (0.02, 0.04) 0.02 0.04 0.04 0.06 0.07 0.09 0.09 0.10 0.11 0.12
Log-normal (0.02, 0.08) 0.02 0.08 0.01 0.02 0.04 0.06 0.06 0.08 0.09 0.09
Log-normal (8.85, 7.15) 8.83 7.11 0.10 0.11 0.12 0.13 0.13 0.14 0.14 0.14

Notes: This table presents summary statistics for the distribution of the minimum detectable effect. Panel
A considers the model proposed by Alpert et al. (2022) and panel B considers the model proposed in
this paper. Columns (1) and (2) present the mean and standard deviation of the simulated outcome of
interest (y and ∆y respectively). Columns (3) to (10) present moments of the distribution of the minimum
detectable effect, pctile stands for percentile. This table is referenced in Appendix 1.3.
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Table A.18: Replication of Table 1 in Alpert et al. (2022)

Triplicate state group (n) Nine Five Nine Five
Nontriplicate × (1) (2) (3) (4)
1996–2000 0.998*** 1.173 0.711 1.229**
SE, CI [0.356] [0.390, 2.374] [0.538] [0.017, 2.483]
Coeff. change 14.9% 42.1%

2001–2010 2.257** 3.667** 1.998** 3.232**
SE, CI [0.913] [1.521, 6.210] [0.994] [1.011, 5.318]
Coeff. change 38.5% 38.2%

2011–2017 2.793 6.061** 3.203** 4.714***
SE, CI [1.891] [2.812, 9.371] [1.337] [1.811, 7.253]
Coeff. change 53.9% 32.1%
Weighted No No Yes Yes
Covariates No No Yes Yes
Region-time dummies No No Yes Yes
Observations 1,377 1,377 1,377 1,377

Notes: Columns (2) and (4) of this table reproduce columns (1) and (4) of Table 1 in Alpert et al. (2022)
respectively. Columns (1) and (3) present the analysis using an alternative definition of triplicate status.
This table is referenced in Appendix 1.3.
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2. Appendix to “On the Design of Paid Sick Leave: A

Structural Approach”

2.1 Additional Figures

Figure A.27: Distribution of monthly income (in USD). Workers eligible to file a sick leave
claim
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Notes: This figure shows the distribution of monthly income (in USD) for workers eligible to file a sick leave
claim in 2017. The vertical line indicates the income level associated with the maximum benefit threshold.
This figure is referenced in Section 2.2.
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Figure A.28: Worker vs Social Planner trade-offs: externalities and no insurance provision

(a) Worker trade-off
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(b) Social Planner trade-off: optimal employment
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(𝑤)

𝑤 = 𝑢𝑠
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utility 
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𝑢𝑠 < 𝜈 → work

Notes: Panel (a) summarizes workers’ choices. Absent of sick pay, worker i takes a day off if ui
s > wi, this corresponds to the

solid fill area. Note that some workers optimally choose to work even if their value of a day off is above their productivity
(ν). This is the pattern fill area located above the horizontal line. This is a consequence of the fact that wages do not longer
reflect productivity. Panel (b) shows the optimal employment decision. This trade-off compares the productivity of working
with the value of a day off. Absent of sick pay, it would be efficient that worker i takes a day off if her valuation is above
her marginal product when sick, i.e., when ui

s > ν. This corresponds to the solid fill area located above the horizontal line.
Note that some workers would find optimal to not work regardless: those with ui

s > wi. This figure is referenced in Section 3.3.
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Figure A.29: Distribution of sick leave claims by duration and day of the week.

(a) Eight and nine days long
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(b) Ten and eleven days long
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(c) Twelve and thirteen days long
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(d) Fourteen and fifteen days long
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Notes: This figure shows the share of sick leave claims of duration s filed on each day of the week. Each
panel aggregates sick leave claims with consecutive duration as stated in the title. This figure is referenced
in Section 4.2.
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Figure A.30: Sick Pay Utilization with Linear Contract

(a) Full coverage (b = 1)

45°

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

D
ay

s 
o

n
 l

ea
v

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Health state

kappa = 0 kappa = 1 kappa = 2 kappa = 3

(b) Unpaid sick leave (b = 0) and κ = 3
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(c) Partial coverage (b = 0.75) and κ = 3
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(d) Partial coverage (b = 0.75) and κ = 5
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Notes: This figure shows the optimal demand of days on leave s∗(θ) as a function of worker’s health status
(θ) under the assumption of linear contracts with different levels of coverage. This figure is referenced in
Section 3..
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Figure A.31: Histogram of days on leave by worker characteristics

(a) 25–34 years old, blue-collar
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(b) 25–34 years old, white-collar
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(c) 55–64 years old, blue-collar

0

5

10

15

20

P
er

ce
n

ta
g

e 
o

f 
S

L
 c

la
im

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sick leave claim duration

(d) 55–64 years old, white-collar
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Notes: This figure shows the distribution of days on leave by worker age and occupation for the youngest
and oldest group of workers. The sample includes male private-sector employees. Blue-collar workers refers
to workers who engage in hard manual labor, typically agriculture, manufacturing, construction, mining,
or maintenance. White-collar workers refers to workers whose daily work activities do not involve manual
labor—e.g., teachers or administrative staff. Additional groups are presented in Appendix Figure A.32.
This figure is referenced in Section 2.4 and in Section 4.1.
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Figure A.32: Histogram of days on leave by workers characteristics

(a) 35-44 years old. Blue-collar
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(b) 35-44 years old. White collar
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(c) 45-54 years old. Blue-collar
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(d) 45-54 years old. White collar
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Notes: This figure shows the distribution of days on leave by workers’ age and occupation for the youngest
and oldest group of workers. Sample includes male private-sector employees. Blue-collar worker refers to
workers who engage in hard manual labor, typically agriculture, manufacturing, construction, mining, or
maintenance. White-collar worker refers to workers whose daily work activities do not involve manual
labor—e.g., teachers or administrative staff. Additional groups are presented in Appendix Figure A.31.
This figure is referenced in Section 2.3 and in Section 4.1.
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Figure A.33: Histogram of days on leave by workers characteristics

(a) 25-34 years old. Blue-collar
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(b) 25-34 years old. White collar
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(c) 55-64 years old. Blue-collar
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(d) 55-64 years old. White collar
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Notes: This figure shows the probability that a worker contracts disease d by by workers’ age and occupation
for the youngest and oldest group of workers. Diseases are ordered as presented in Table A.28. Sample
includes male private-sector employees. Blue-collar worker refers to workers who engage in hard manual
labor, typically agriculture, manufacturing, construction, mining, or maintenance. White-collar worker
refers to workers whose daily work activities do not involve manual labor—e.g., teachers or administrative
staff. This figure is referenced in Section 4.2.
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Figure A.34: Identification of compliance costs parameter: Sick leave claims by duration
and day of the week.

Health shock (θ) equals 2-days-long.

(a) Deviation = 0, duration = 2
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(b) Deviation = 1, duration = 3
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(c) Deviation = 2, duration = 4
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(d) Deviation = 3 , duration = 5
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(e) Aggregate across days of the week
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Notes: Panels (a) to (d) show the share of sick leave claims with duration s for workers whose main diagnose
would implied a health state of 2 days on leave. Panel (e) aggregates the share of sick leave claims across
days of the week, including only the weekend-streak combinations, e.g., from panel (a) I only consider the
share for Thursday. This figure is referenced in Section 4.2.
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Figure A.35: Identification of compliance costs parameter: Sick leave claims by duration
and day of the week.

Health shock (θ) equals 3-days-long.

(a) Deviation = 0, duration = 3
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(b) Deviation = 1, duration = 4
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(c) Deviation = 2, duration = 5
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(d) Aggregate across days of the week
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Notes: Panels (a) to (c) show the share of sick leave claims with duration s for workers whose main diagnose
would implied a health state of 3 days on leave. Panel (d) aggregates the share of sick leave claims across
days of the week, including only the weekend-streak combinations, e.g., from panel (a) I only consider the
share for Wednesday. This figure is referenced in Section 4.2.
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Figure A.36: Distribution of leisure to consumption ratio from raw data
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Notes: This figure shows the distribution of the leisure to consumption ratio LCi. This figure is referenced
in Section 4.2.
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Figure A.37: Demand for days on leave as a function of health shock
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Notes: This figure shows the demand for days on leave as a function of the duration of the health shock from
the data and a model-simulated sample. For each duration, I compute how many days; on average, workers
request to be on leave. The 45 degrees line can be interpreted as the demand for days on leave when workers
report their health. The horizontal line at 11 days indicates the position of the discontinuity in the sick pay
scheme. This figure is referenced in Section 5.3.
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Figure A.38: Days of the week and sick leave claim duration. Conditional to first quarter of
the year (Summer quarter).
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(b) Two days long
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(d) Four days long
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(e) Five days long
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(f) Aggregate across days of the week
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims
filed on each day of the week. Panel (f) aggregates across duration and days of the week: the first bar—labeled “weekend
streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week.
For example, one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend
streak”—averages the share one-to-five-days-long sick leave claims filed any other day of the week. For example, two-days-long
claims file on Friday. This figure is restricted to sick leave claims filed during the first quarter of the year (Summer quarter in
Chile).

235



Figure A.39: Days of the week and sick leave claim duration. Conditional to the second
quarter of the year (Fall quarter).
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims
filed on each day of the week. Panel (f) aggregates across duration and days of the week: the first bar—labeled “weekend
streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week.
For example, one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend
streak”—averages the share one-to-five-days-long sick leave claims filed any other day of the week. For example, two-days-long
claims file on Friday. This figure is restricted to sick leave claims filed during the second quarter of the year (Fall quarter in
Chile).

236



Figure A.40: Days of the week and sick leave claim duration. Conditional to the third
quarter of the year (Winter quarter).
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims
filed on each day of the week. Panel (f) aggregates across duration and days of the week: the first bar—labeled “weekend
streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week.
For example, one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend
streak”—averages the share one-to-five-days-long sick leave claims filed any other day of the week. For example, two-days-long
claims file on Friday. This figure is restricted to sick leave claims filed during the third quarter of the year (Winter quarter in
Chile).
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Figure A.41: Days of the week and sick leave claim duration. Conditional to the third
quarter of the year (Spring quarter).
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Notes: Panels (a) to (e) show the share of sick leave claims with duration s and the share of seven-days-long sick leave claims
filed on each day of the week. Panel (f) aggregates across duration and days of the week: the first bar—labeled “weekend
streak”—averages the share of one-to-five-days-long sick leave claims that end of a Friday and are filed any day of the week.
For example, one-day-long on Friday, two-days-long on a Thursday, and so on. The second bar—labeled “non-weekend
streak”—averages the share one-to-five-days-long sick leave claims filed any other day of the week. This figure is restricted to
sick leave claims filed during the fourth quarter of the year (Spring quarter in Chile).

238



Figure A.42: Compliance cost function by quarter.
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(c) Quarter 3 (Winter)

0

.1

.2

.3

.4

.5

S
h

a
r
e
 o

f 
S

L
 c

la
im

s

0 1 2 3 4

Deviation = SL duration − health state

(d) Quarter 4 (Spring)

0

.1

.2

.3

.4

.5

S
h

a
r
e
 o

f 
S

L
 c

la
im

s

0 1 2 3 4

Deviation = SL duration − health state

Notes: Panels (a) to (d) show the average share of sick leave claims with deviations between 0 and 4 days
for each quarter. Summer quarter goes from Jan to March. The average is computed over sick leave claims
with primary diagnosis requiring 1, 2 or 3 days of rest filed on a weekend streak days.
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2.2 Additional Tables

Table A.19: Summary statistics by healthcare insurance provider

Government-run Private Year(s)
insurance insurance

(1) (2) (3)
Panel A. Enrollees Characteristics
Share of enrollees aged
25 - 34 25.06 31.76 2015-2019∗

35 - 44 21.51 28.84 2015-2019∗

45 - 54 21.11 20.12 2015-2019∗

55 - 64 14.64 11.47 2015-2019∗

Share female enrollees 0.44 0.35 2015-2019∗

Wages (in USD monthly)
Average 761.27 1,824.94 2015-2019∗

Enrollees w/ wage above median (%) 34.44 86.69 2015-2019∗

Metropolitan region (%) 38.04 60.01 2015-2019∗

N of enrollees 4,503,474 1,689,240 2015-2019∗

Share (%) 72.72 27.28 2015-2019∗

Panel B. Sick Leave Claims
Ratio SL claims to enrollees (%)
2015 77.66 86.53 2015
2019 98.42 90.66 2019

Approved SL claims (%) 91.94 74.54 2015-2019
Rejected SL claims (%) 5.31 14.76 2015-2019
Ratio days on leave to SL claim 13.09 10.24 2015-2019
Annual cost per enrollee (in USD) 240.69 463.61 2015-2019
Ratio of total annual cost 24.91 58.90 2015-2019
to paid days on leave
Annual cost
percentage of mandatory contribution 2.6 2.1 2015-2019
as percentage of GDP 0.51 0.37 2015-2019

N of sick leave claims 3,910,482 1,473,540 2015-2019
Share (%) 72.63 27.37 2015-2019

Notes: Panel A presents summary statistics of individuals enrolled in plans offered by each healthcare insurance provider.
Only individuals eligible to file a sick leave claim are included in the computations. Panel B shows characteristics of the sick
leave claims handled by each insurer. Data come from the Annual Statistics of the Sick Leave System published by the Social
Security Administration (SUSESO, 2020; 2019; 2018; 2017; 2016). Statistics in this table correspond to averages for 2015 -
2019, ∗ indicates that data for 2018 are not available. The median monthly wage is computed from the 2017 CASEN survey,
and using this figure I compute the share of workers with monthly salary above the median. GDP data comes from the World
Bank national accounts data. SL stands for sick leave.
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Table A.20: Paid sick leave systems across countries

Country Design Benefits’ computation
(1) (2)

Bulgaria bracket system - Days 1 to 3: rep. rate = 0.7
- Day 4 onward: rep. rate = 0.8

Chile bracket system - Days 1 to 3: rep. rate = 0
- Days 4 to 10: rep. rate = 1
- Days 11 onward: rep. rate = 1
and the waiting period is reimbursed

Estonia bracket system - Days 1 to 3: rep. rate = 0
- Day 4 and onward: rep. rate = 0.7

Finland bracket system - Days 1 to 9: rep. rate = 0
- Day 10 and onward: rep. rate = 0.7

France bracket system - Days 1 to 3: rep. rate = 0
- Day 4 and onward: rep. rate = 0.5

Greece bracket system - Days 1 to 3: rep. rate = 0.5
- Days 4 to 30 are paid with a rep. rate of 1

Ireland bracket system -Days 1 to 3: 6 working days
- Rates vary by earnings

Hungary bracket system - Days 1 to 15: rep rate = 0.7
- Days 16 onward: rep. rate = 0.5

Italy bracket system - Days 1 to 3: rep rate = 0
- Days 4 to 20: rep. rate = 0.5
- Days 21 onward: rep. rate = 0.66

Portugal bracket system - Days 1 to 3: rep rate = 0
- Days 4 onward: rep rate between 0.65 and 0.75

Spain bracket system - Days 1 to 5: rep rate = 0
- Days 6 to 20: rep. rate = 0.60
- Days 21 onward: rep. rate = 0.75

United Kingdom bracket system (hybrid) - Waiting period = 3 days , rep. rate = 0
- 99.35 pounds per week

Denmark linear system Replacement rate = 0.9
Netherlands linear system Replacement rate = 0.7
Norway linear system Replacement rate = 1
Poland linear system Replacement rate = 0.8
Switzerland linear system Replacement rate = 1
Germany linear system* - Days 1 to 42 : rep. rate = 1

- Week 7 onward: rep. rate = 0.7
Australia credit account 10 sick days per year
Austria credit account Six weeks full paid sick leave
Belgium credit account 30 sick days per year
United States credit account Average private-sector: < 10 days per year

Source: several sources, author’s own collection and illustration. Notes: This table summarizes sick paid systems for 22
countries. Bracket system refers vary the replacement rate based on the duration of a leave. Linear system feature a constant
replacement rate. Credit account refers to the case where paid leave is earned over time and unused leave accumulates, producing
an employee-specific "leave balance." The UK system is hybrid because the second bracket proposes a lump sum transfer. The
German system a hybrid because it features a change in the replacement rate that kicks in after a long period. This table is
referenced in Section 2.2.
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Table A.21: Average recovery times - Examples from Peruvian Handbook

Workers’ characteristics and Correction factor and
diagnoses recovery time

Example 1
Lumbago with sciatica (M544) 14
43 years old 1.05
Operator/manual worker (blue collar) 1.5
Optimal time 22.05

Example 2
Common cold (J00) 3
25 years old 0.87
Teacher (white collar) 0.75
Optimal time 2

Example 3
Infectious gastroenteritis (A09) 2
57 years old 1.3
Office manager (white collar) 0.75
Optimal time 2

Notes: This table presents examples on how to construct the average recovery time based on workers’
characteristics and sick leave diagnoses. This table is referenced in Section 2.3 and Section 4.2.
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Table A.22: Sick leave claims and sick leave spells definitions

(1) (2) (3)
Number of sick leave claims 1,483,103 657,125 551,647
Number of sick leave spells 1,030,613 437,418 365,127

N of SL claims in a spell (% of claims)
One claim 55.43 51.71 51.22
Two claims 16.85 17.19 17.30
Three claims 7.30 7.93 8.00
Four claims 4.49 5.06 5.12
Five claims 3.19 3.63 3.67
Six or more claims 12.75 14.48 14.70

Among sick leave spells with more than 1 claim∗ (% of claims)
Diagnoses change within spell
Yes — 4 digits disease code 30.83 30.01 29.97
Yes — 3 digits disease code 28.67 27.86 27.82

Physician change within spell 31.21 30.87 30.83

Sample: Private sector workers
Gender All Male Male
Age 18-70 18-70 25-64

Notes: This table presents counts and summary statistics of sick leave claims and sick leave spells. A spell
is a group of consecutive claims—these are considered one claim for the computation of sick leave benefits.
The first row counts each sick leave claim as one observation and the second row considers the number
of sick leave spells. The subsequent rows explore the composition of a spell in terms of number of claims
and whether diagnoses and physicians changed withing a spell. ∗ indicates that proportions are computed
for spells composed by two to five sick leave claims. This table is referenced in Section 2.2 and in Section 2.3.
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Table A.23: Conditions included in the analysis by ICD-10 group

Included Sick leave claims

ICD Group Description (=1 if yes) Number Share (%)

(1) (2) (3)
A00-B99 Certain infectious and parasitic diseases 1 31,244 8.56
C00-D49 Neoplasms 0 6,515 1.78
D50-D89 Blood and blood-forming organs 0 478 0.13
E00-E89 Nutritional and metabolic diseases 0 3,842 1.05
G00-G99 Nervous system 1 8,758 2.40
H00-H59 Eye and adnexa 1 6,141 1.68
H60-H95 Ear and mastoid process 1 6,246 1.71
I00-I99 Circulatory system 1 15,139 4.15
J00-J99 Respiratory system 1 64,823 17.75
K00-K95 Digestive system 1 25,854 7.08
L00-L99 Skin and subcutaneous tissue 0 8,762 2.40
M00-M99 Musculoskeletal system 1 108,908 29.83
N00-N99 Genitourinary system 1 11,605 3.18
O00-O9A Pregnancy and childbirth 0 <50 0.01
P00-P96 Certain conditions of the perinatal 0 149 0.04
Q00-Q99 Congenital malformations 0 331 0.09
R00-R99 Abnormal clinical and laboratory findings 1 9,840 2.69
S00-S99 Injuries 1 44,922 12.30
T00-T88 Poisoning and external causes 0 4,385 1.20
U00-U85 Codes for special purposes 0 <50 0.00
V00-Y99 External causes of morbidity 0 3,578 0.98
Z00-Z99 Contact with health services 0 3,577 0.98
Total included 329,312 90.19
Total 365,127

Notes: This table reports the health conditions included in the analysis, the number of sick leave claims filed
in 2017, and what share these represent of the universe of claims. The criteria for excluding the selected
health conditions is discussed in detailed in Section 2.3 This table is referenced in Section 2.3.
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Table A.24: Average recovery time by workers characteristics

25 - 34 years old 35 - 44 years old 45 - 54 years old 55 - 64 years old

ICD group Main diagnoses Blue c. White c. Blue c. White c. Blue c. White c. Blue c. White c.
(1) (2) (3) (4) (5) (6) (7) (8)

A00-A99 Infectious gastroenteritis 2 1 3 2 3 2 3 2
G00-G99 Migraine and headaches 3 2 4 2 4 2 5 3
G00-G99 Carpal tunnel syndrome 13 8 17 10 17 10 21 13
H00-H59 Conjunctivitis 5 3 7 4 7 4 9 5
H60-H95 Vertigo 4 2 5 3 5 3 6 4
I00-I99 Hypertension 4 3 6 3 6 3 7 4
I00-I99 Myocardial infarction 16 10 21 13 21 13 26 16
J00-J06 Common cold 3 2 4 2 4 2 5 3
J09-J18 Influenza and pneumonia 4 3 5 3 5 3 6 4
J20-J22 Bronchitis 5 3 7 4 7 4 8 5
J23-J99 Other respiratory diseases 8 5 9 6 9 6 11 7
K00-K95 Noninfective gastroenteritis 2 1 2 1 2 1 3 2
K00-K95 Inguinal hernia 6 4 9 5 9 5 11 7
M50-M54 Chronic low back pain 10 6 12 7 12 7 14 8
M50-M54 Lumbago with sciatica 10 6 12 7 12 7 14 8
M60-M79 Tendinitis 8 5 9 6 9 6 10 6
M60-M79 Shoulder lesions 8 5 9 6 9 6 10 6
Other M Arthritis 9 5 10 6 11 6 12 7
Other M Knee injuries 12 7 14 8 14 8 16 10
N00-N99 Renal colic 4 3 5 3 5 3 6 4
R00-R99* Abdominal and pelvic pain 2 1 3 2 3 2 3 2
S00-S99 Injuries (e.g., sprain ankle) 14 8 16 9 16 9 18 11

Notes: This table shows the average recovery time by workers’ age and occupation type for 22 disease groups.
Blue c. stands for blue collar and white c. stands for white collar. Table A.25 indicates what occupations
and industries are classified as blue and white collar. This table is referenced in Section 2.3 and Section 4.2.
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Table A.25: Workers’ occupation, industry and manual work classification

Occupation Industry Blue collar (=1 if yes)
(1)

Executive, managers Any 0
Professor, lecturer, teacher Any 0
Other professional Any 0
Sales representative Any 0
Admin staff Any 0
Factory worker Any 1
Trabajador de casa particular Any 1
Technician Any 1
Unknown Agriculture 1
Unknown Natural Resources and mining 1
Unknown Manufacturing 1
Unknown Construction 1
Unknown Utilities 1
Unknown Retail trade 0

Unknown Transportation, warehousing
and telecommunications 1

Unknown Service-Providing Industries 0
Unknown Public administration 0
Unknown Not specified n.a.

Notes: This table reports workers’ occupation, industry, and whether its combination implies the worker is
considered a blue-collar (or manual) worker or not. If information is available on occupation and industry, I
use worker’s occupation to classified the worker as a blue-collar. If occupation is not available, I use workers’
industry information. When neither occupation or industry is available, I drop observations for this worker.
“n.a.” stands for not applicable. This table is referenced in notes to Table A.24 and in Section 2.3.
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Table A.26: Sample construction

2017
Panel A. Sick leave claims
Single claims - from clean dataset 2,698,993
Observations without demographic information 22,757
Workers’ age not in the interval [18,70] 50,369
Worker is not Chilean 61,740
Worker not enrolled in a public insurance plan 33,560
Observations without income information 8,920

Observations 2,521,647

Panel B. Sick leave spells
Single spells 1,825,904
Condition on private sector workers 1,030,613
Condition on male workers 437,418
Condition on ages 25-64 365,127
Condition on diagnoses included in analysis 329,312

Notes: Panel A of this table shows the counts of sick leave claims drop due to each sample selection
criterion. Panel B shows the counts of sick leave spells—consecutive claims with continuous start and end
dates—for each sample selection criterion. A complete list of diagnoses included in the analysis is provided
in Table A.23. This table is referenced in Section 2.3.
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Table A.27: Summary statistics: Private sector workers who have used SL benefits

Any
Included conditions

All Up to 30 days

(1) (2) (3)

Age
Mean 43.39 43.25 42.00
Share of workers aged (%)
25 - 34 years old 29.21 29.51 33.07
35 - 44 years old 23.71 23.98 25.11
45 - 54 years old 24.70 24.63 23.50
55 - 64 years old 22.38 21.89 18.32

Income (monthly USD)
Mean 857.97 862.72 870.30
Standard deviation 367.59 368.79 367.30
25th percentile 555.28 559.42 569.20
Median 782.85 788.21 797.88
75th percentile 1,089.33 1,095.32 1,103.05
90th percentile 1,408.30 1,414.46 1,418.81

Region (%)
Central 46.78 47.32 48.35
Mining intensive 6.77 6.67 6.01

Health - chronic conditions (%)
Hypertension 16.89 16.71 14.34
Diabetes 8.24 7.79 6.22

Share of workers (%) 100.00 92.59 72.16
Observations 246,017 227,797 177,531

Notes: This table presents summary statistics for all male workers who had used sick leave benefits in the
past year based on the conditions and duration of sick leave claims. The sample includes private sector
employees age 25 to 64 years old. Income statistics are based on the winsorized distribution where the lowest
and highest 5% of the income values are excluded. Sick leave claims of up to 30 days account for 95% of all
claims filed in a year. This table is referenced in Section 2.3.
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Table A.28: Probability of filing a SLC for each disease group by workers’ characteristics

25 - 34 years old 35 - 44 years old 45 - 54 years old 55 - 64 years old

ICD group Main diagnoses Blue c. White c. Blue c. White c. Blue c. White c. Blue c. White c.
(1) (2) (3) (4) (5) (6) (7) (8)

A00-A99 Infectious gastroenteritis 12.36 18.26 8.91 13.06 6.51 9.36 4.80 6.57
G00-G99 Migraine and headaches 1.64 2.28 1.57 1.86 1.19 1.64 0.89 1.14
G00-G99 Carpal tunnel syndrome 1.13 1.08 1.31 1.30 1.48 1.31 1.63 1.33
H00-H59 Conjunctivitis 1.57 1.46 1.92 2.40 2.40 2.40 3.03 3.19
H60-H95 Vertigo 1.08 1.24 1.32 1.23 1.85 1.68 2.49 2.64
I00-I99 Hypertension 1.09 0.80 1.88 1.70 2.95 2.85 4.16 3.81
I00-I99 Myocardial infarction 0.12 0.08 0.31 0.34 0.77 0.71 1.55 1.38
J00-J06 Common cold 11.89 17.12 10.64 14.87 8.62 12.79 6.34 10.17
J09-J18 Influenza and pneumonia 3.31 3.92 3.78 4.66 4.68 4.88 5.53 5.58
J20-J22 Bronchitis 5.44 6.44 5.91 7.33 7.18 8.35 8.06 10.80
J23-J99 Other respiratory diseases 0.96 1.00 1.11 1.13 1.30 1.37 1.74 1.71
K00-K95 Noninfective gastroenteritis 5.34 5.99 4.19 4.99 3.95 4.57 3.34 3.93
K00-K95 Inguinal hernia 1.93 1.62 3.02 2.87 3.82 4.02 4.48 4.73
M50-M54 Chronic low back pain 16.85 12.35 16.73 12.78 14.17 11.43 12.02 10.02
M50-M54 Lumbago with sciatica 6.37 4.86 8.11 6.33 7.54 6.60 6.70 5.87
M60-M79 Tendinitis 5.17 3.56 5.99 4.37 6.55 4.98 6.67 4.95
M60-M79 Shoulder lesions 2.47 1.79 3.78 2.49 4.62 3.61 4.43 3.11
Other M Arthritis 1.91 1.34 2.25 1.79 3.11 2.63 4.38 3.63
Other M Knee injuries 0.57 0.41 0.70 0.66 1.16 0.99 1.61 1.33
N00-N99 Renal colic 2.42 2.12 3.06 3.23 3.63 3.47 4.29 4.48
R00-R99* Abdominal and pelvic pain 2.19 2.38 1.99 2.37 2.38 2.72 3.01 2.83
S00-S99 Injuries (e.g., sprain ankle) 14.19 9.89 11.53 8.25 10.13 7.64 8.87 6.82

Notes: This table shows the probability of filling a sick leave claim for each disease (d) by workers’ group
(b). Each of these probabilities is computed as the ratio of sick leave claims with diagnosis d and all claims
from group b, thus columns add up to 100. Main diagnoses indicates the most common condition for a
disease group. Blue c. and white c. stand for blue-collar and white-collar occupations respectively. These
probabilities are plotted in Figure A.33. This table is referenced in Section 2.4.
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Table A.29: Number of business days on leave (sl)

Number of days on leave (sc)

Day of the week (dow) 1 2 3 4 5 6 7 8
Monday 1 2 3 4 5 5 5 6
Tuesday 1 2 3 4 4 4 5 6
Wednesday 1 2 3 3 3 4 5 6
Thursday 1 2 2 2 3 4 5 6
Friday 1 1 1 2 3 4 5 6

Notes: This table shows the number of business days on leave (sl) as a function of (total) days on leave (sc)
and day of the week (dow) a sick leave claim is filed. This table is referenced in Section 3.1.
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Table A.30: Identification of weekend-streak utility parameter (q): estimates from raw data

Day of the week

Duration Weekend streak Non-weekend streak Difference

(1) (2) (3)
1 day long 0.1219 0.0355 0.0864
2 days long 0.2062 0.0672 0.1391
3 days long 0.2872 0.1482 0.1390
4 days long 0.1640 0.0489 0.1151
5 days long 0.2330 0.1216 0.1114

Simple average 0.2025 0.0843 0.1182
Weighted average 0.2274 0.1041 0.1233

Notes: This table presents the distribution of sick leave claims by duration and day of the week. Weekend
streak refers to the day of the week a sick leave claim should start to finish on Friday. For example, when
duration is one day, weekend streak refers to Friday, when duration is two days, it refers to Thursday.
The non-weekend streak category groups all the other days of the week. The share of sick leave claims of
duration s filed on day dow is computed as the ratio between the number of claims with duration s filed
on dow and the number of claims of filed on dow with duration between one and fifteen days. Figure 1.5
presents this table graphically. This table is referenced in Section 4.2.
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2.3 Distribution of health states

The Peruvian Handbook of Recovery Times specifies an average recovery time for 2,763

unique disease codes at the fourth digit level of the 10th revision of the ICD. This paper

focuses on non-mental health conditions; excluding these diagnoses reduces the number of

unique diseases to 2,690.7 Estimating the model with such level of granularity is unfeasible: it

would require estimating a probability for each disease and group of observable characteristics

(2,690 diagnoses × 4 age group × 2 occupation groups = 21,520). For this reason, I group

diagnoses in more aggregated categories.

I these categories considering (i) the type of diseases they represent and (ii) how frequently

these diagnoses are used in the claims data. Table A.23 lists the conditions included in the

analysis by their ICD 10th revision group and the share of sick leave claim data with these

diagnoses. To compute these shares, I used the sample constructed for the quantitative

analysis of this paper. Table A.26 provides details on sample construction.

The first criteria for excluding a group of conditions are those not listed in the Peruvian

handbook. These are conditions originating in the perinatal period (codes in groups P00-

P96) and congenital malformations, deformations, and chromosomal abnormalities (codes

in groups Q00-Q99). In fact, 0.15% of the sick leave claim data is reported under these

diagnoses. I dropped such observations.

The second criteria for excluding a group of conditions is the nature of the diagnosis

which makes very challenging to assign a benchmark recovery time. I exclude poisonings

and burns (codes in group T00-T98)—these diagnoses accumulate 1.22% of the sick leave

claim data. Additionally, I exclude diseases coded under “special purposes codes” (codes U00-

U85), external causes of morbidity (codes V00-Y99), and factor influencing health status and

contact with health services (codes Z00-Z99 ). All these together represent 3.16% of the sick
7I use codes F01-F99 to define mental health conditions, these are grouped under the chapter “Mental,

Behavioral and Neurodevelopmental disorders”.
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leave claims. These conditions associated with longer recovery times or impairments where

full recovery might not be foreseeable, for example, leg amputations and organs transplants.

Finally, I exclude conditions with diagnoses C00-D49; these codes are used for neoplasms,

which in most cases, are chronic conditions or diseases that would require a longer recovery

time. In terms of claims data, these represent 1.78% of the claims. The final sample includes

about 86% of all sick leave claims filed by private-sector male workers.
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3. Appendix to “Tobacco Consumption Habits in Argentina:

Causal Evidence from a New Regulation”

3.1 Additional Figures

Figure A.43: Examples of law-regulated packaging.

Notes: This figure provides an example of the Tobacco Graphic Warnings printed on cigarette packages.
Big font messages: (i) smoking reduces years of life, (ii) smoking causes cancer, (iii) smoking might cause
leg amputation, (iv) pregnant women who smoke harm her child (v) smoking causes death by suffocation.
Small font messages: (i) tobacco drives half of smoker’s deaths, (ii) every cigarette poisons you, (iii) smoking
causes gangrene, (iv) every cigarette damages your respiratory capacity.

254



Figure A.44: Exposure to Environmental Tobacco Smoke
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Notes: This figure presents estimates of the change in the share of non-smokers exposed to environmental
tobacco smoke after the implementation of the national law. Each coefficient corresponds to a separate
regression of the share of individuals reporting to not have noticed someone smoking inside a given venue.
All coefficients are expressed as effect sizes to ease the comparison of the effects across venues.
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3.2 Additional Tables

Table A.31: Evolution of Cigarette Sales and Consumption

Sales data Survey data
Year Consumption Percent change Consumption Percent change
2008 181.06 106.75
2009(a) 177.64 -1.89% 103.42 -3.11%
2010 174.86
2011(b) 182.65 1.40% 105.84 1.16%
2012 178.36
2013(b) 174.07 -2.38% 99.39 -3.09%

Notes: Consumption measures are expressed in millions of 20 cigarettes packages a month. Sales data
is collected by the Ministry of Agriculture, time series are expressed in 20 cigarettes packages in a year.
Consumption from survey data is constructed as the average consumption per day multiplied by 30. Summary
statistics indicates that 62% of smokers smoke every day, this is the modal frequency. Percent changes are:
(a) relative to the previous calendar year; (b) relative to the n− 2 year.
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Table A.32: Determinants of Strong Regulation prior to 2011

Dependent variable: Indicator for Enacting a Strong Regulation
Coefficient Marginal Effect

Peronist party (=1) 0.390 0.133
(0.266) (0.090)

State is tobacco producer (=1) 0.598 0.204
(0.372) (0.128)

Ln employment -0.172 -0.058
(0.516) (0.177)

Unemployment rate 4.769 1.626
(5.197) (1.783)

Proportion of smokers -0.327 -0.112
(3.060) (1.044)

Prevalence of COPD 1.156*** 0.394***
(0.378) (0.130)

Share population 0 - 14 years old 0.066 0.022
(16.370) (5.584)

Share population 15 - 24 years old 48.93*** 16.687***
(17.580) (5.832)

Share population 25 - 44 years old 20.400 6.958
(16.510) (5.682)

Share population 45 - 64 years old 44.210 15.077
(30.110) (10.360)

Ln population 0.542 0.185
(0.529) (0.183)

Observations 144 144
Pseudo R2 0.2196

Notes: This table presents the results of a probit model estimating the determinants of enacting a strong
regulation before 2011. The second column presents estimated coefficients from the probit model and the
last column presents the corresponding marginal effects computed at the means. Standard errors are robust
to heteroskedasticity. * p<0.10, ** p<0.05, *** p<0.01.
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Table A.33: Effects on Extensive Margin Outcomes

Probability of Never smokers Current smokers
(1) (2)

2008 -0.0054 -0.0056
(0.0147) (0.0104)

2009 -0.0155 -0.0076
(0.0162) (0.0087)

2013 0.0434** -0.0617***
(0.0175) (0.0103)

Mean dep. var. in 2011 0.4608 0.2825
Observations 153,093 153,093
R-squared 0.0329 0.0259
Correctly predicted 0.5536 0.6881
Individual controls Yes Yes
State × time controls Yes Yes
State FE Yes Yes
Time FE Yes Yes

Notes: The omitted category corresponds to 2011, the year the federal law was passed. Treatment is a
dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is less than or
equal to 3 before 2011. Individual-level controls include age, gender, educational attainment, employment
status and income category of the household. State × time controls include total private employment and
total population. Standard errors are block-bootstrapped at the state-level with 200 replications.
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Table A.34: Probability of being a current smoker by age group

Age: 18-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65
(1) (2) (3) (4) (5) (6) (7) (8) (9)

2008 0.0009 -0.0252 -0.0363 -0.0212 0.0125 -0.0253 0.0074 0.0177 0.0365
(0.0293) (0.0267) (0.0235) (0.0319) (0.0303) (0.0267) (0.0257) (0.0179) (0.0201)

2009 0.0038 0.0089 -0.0209 -0.0363 -0.0216 0.0163 -0.0227 -0.0038 -0.0088
(0.0157) (0.0225) (0.0212) (0.0224) (0.0166) (0.0249) (0.0302) (0.0201) (0.0158)

2013 -0.1014*** -0.0379 -0.0148 -0.0434 -0.0983*** -0.1207*** -0.1191*** 0.0152 -0.0156
(0.0307) (0.0251) (0.0200) (0.0217) (0.0163) (0.0250) (0.0275) (0.212) (0.0187)

Mean dep. var. in 2011 0.27 0.31 0.29 0.29 0.26 0.30 0.32 0.27 0.23

Observations 24,822 19,409 20,329 18,804 16,121 14,205 13,576 11,992 13,835
R-squared 0.0497 0.0278 0.0377 0.0341 0.0348 0.0247 0.0253 0.0232 0.0240
Correctly predicted 0.6899 0.6604 0.6564 0.7059 0.5085 0.6758 0.6591 0.7331 0.8005
Individual controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
State × time controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The omitted category corresponds to 2011, the year the federal law was passed. Treatment is defined
as a dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is less
than or equal to 3 before 2011. Individual-level controls include gender, educational attainment, employment
status and income category of the household. State × time controls include total private employment and
total population. Standard errors are block-bootstrapped at the state-level with 200 replications. *** p<0.01,
** p<0.05, * p<0.10.
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Table A.35: Probability of being a current smoker by age group and gender

Age: 18-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65
(1) (2) (3) (4) (5) (6) (7) (8) (9)

2008
Female -0.0448 -0.0507 -0.0252 -0.0123 -0.0247 -0.0055 -0.0322 -0.0174 0.0612

(0.0338) (0.0296) (0.0212) (0.0455) (0.0375) (0.0341) (0.0433) (0.0359) (0.0356)
Male 0.0485 0.0146 -0.0442 -0.0204 0.0560 -0.0446 0.0423 0.0510 0.0035

(0.0359) (0.0316) (0.0406) (0.0341) (0.04145) (0.0499) (0.0671) (0.0342) (0.0379)
2009

Female 0.0142 -0.0257 -0.0111 -0.0047 -0.0068 -0.0330 -0.0276 -0.0362 0.0153
(0.0257) (0.03212) (0.0367) (0.225) (0.0218) (0.0359) (0.0414) (0.0294) (0.0266)

Male -0.0056 0.0422 -0.0312 -0.0669 -0.0338 0.0680 -0.0238 0.0220 -0.0391
(0.0247) (0.0329) (0.0315) (0.0363) (0.0344) (0.0306) (0.0327) (0.0274) (0.0272)

2013
Female -0.1150 -0.0253 -0.0036 -0.0549 -0.1125 -0.1115 -0.1044 0.0413 0.0096

(0.0252)*** (0.0381) (0.0386) (0.0266) (0.0259)*** (0.0308)*** (0.0401)*** (0.0343) (0.0283)
Male -0.0891 -0.0599 -0.0271 -0.0261 -0.0859 -0.1292 -0.1318 -0.0215 -0.0508

(0.0510)*** (0.0384) (0.0342) (0.0282) (0.0324)*** (0.0473)*** (0.0304)*** (0.0437) (0.0348)
H0 : δFEMALE = δMALE .432 .1235 .6888 .9247 .5955 .9301 .9443 .8385 .3941
Mean dep. var. in 2011

Female 0.27 0.31 0.29 0.29 0.26 0.30 0.32 0.27 0.23
Male 0.33 0.36 0.36 0.35 0.32 0.35 0.37 0.30 0.25

Observations
Female 13,107 10,700 11,360 10,451 8,859 7,666 7,464 6,697 8,193
Male 11,715 8,709 8,969 8,353 7,262 6,539 6,112 5,295 5,642

Individual controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
State × time controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The omitted category corresponds to 2011, the year the federal law was passed. Treatment is defined
as a dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is less
than or equal to 3 before 2011. Individual-level controls include educational attainment, employment status
and income category of the household. State × time controls include total private employment and total
population. Standard errors are block-bootstrapped at the state-level with 200 replications. *** p<0.01, **
p<0.05, * p<0.10.
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Table A.36: Probability of being a current smoker by educational attainment

Educational level: Elementary d/o Elementary HS d/o HS College d/o College +
(1) (2) (3) (4) (5) (6)

2008 -0.0312 -0.0310 0.0030 0.0336 0.0036 -0.0093
(0.4700) (0.0175) (0.0272) (0.0212) (0.0260) (0.0238)

2009 -0.0630*** 0.0093 -0.0177 -0.0141 0.0049 0.0167
(0.0210) (0.0170) (0.0139) (0.0179) (0.0220) (0.0223)

2013 -0.0080 -0.0437* -0.0599*** -0.0448*** -0.0989*** -0.0986***
(0.0361) (0.0185) (0.0216) (0.0303) (0.0296) (0.0193)

Mean dep. var. in 2011 0.31 0.30 0.35 0.28 0.24 0.228

Observations 12,261 30,388 27,877 35,538 21,195 23,811
R-squared 0.0713 0.0434 0.0258 0.0217 0.0199 0.0134
Correctly predicted 0.5073 0.6906 0.6370 0.6173 0.7181 0.7607
Individual controls Yes Yes Yes Yes Yes Yes
State × time controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes

Notes: The omitted category corresponds to 2011, the year the federal law was passed. Treatment is defined
as a dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is less than
or equal to 3 before 2011. Individual-level controls include age, gender, educational attainment, employment
status and income category of the household. State × time controls include total private employment and
total population. HS stands for High School and d/o stands for drop-out. Standard errors are block-
bootstrapped at the state-level with 200 replications. *** p<0.01, ** p<0.05, * p<0.10.
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Table A.37: Probability of being a current smoker by income

Income category 1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile
(1) (2) (3) (4) (5)

2008 -0.0239 -0.0288 -0.0080 0.0282 -0.0028
(0.0246) (0.0241) (0.0201) (0.0195) (0.0318)

2009 -0.0433 -0.0513** 0.0297 0.0093 -0.0213
(0.0211) (0.0216) (0.0200) (0.0146) (0.0404)

2013 -0.0561*** -0.0313* -0.0534*** -0.0919*** -0.0892***
(0.0135) (0.0187) (0.0137) (0.0183) (0.0207)

Mean dep. var. in 2011 0.29 0.29 0.31 0.28 0.25

Observations 23,427 33,418 32,291 37,006 16,507
R-squared 0.0530 0.0291 0.0248 0.0231 0.0217
Correctly predicted 0.6846 0.7049 0.7032 0.7057 0.7023
Individual controls Yes Yes Yes Yes Yes
State × time controls Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

Notes: The 1st quintile corresponds to the lowest 20 percent households in the income distribution. Anal-
ogously, the 5th quitile corresponds to the highest 20 percent households in the income distribution. The
omitted category corresponds to 2011, the year the federal law was passed. Treatment is defined as a dichoto-
mous variable, Treats, that equals one if the legislation index for state s in moment t is less than or equal
to 3 before 2011. Individual-level controls include age, gender, educational attainment, and employment
status. State × time controls include total private employment and total population. Standard errors are
block-bootstrapped at the state-level with 200 replications. *** p<0.01, ** p<0.05, * p<0.10.
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Table A.38: Probability of risky alcohol consumption - Estimates from the Probit model

Dependent variable Alcohol consumption Beer abuse Wine abuse Spirits Binge
drinking

(1) (2) (3) (4) (5)
2008 -0.0845 -0.0085 0.0132 -0.2020 0.0534

(0.0591) (0.1297) (0.1108) (0.1645) (0.1109)
2009 0.0091 0.0342 -0.0807 -0.1013 -0.0277

(0.0741) (0.0985) (0.0901) (0.1329) (0.0816)
2013 0.0288 -0.2256** -0.1527** 0.6968*** -0.1526**

(0.0355) (0.1079) (0.0556) (0.1553) (0.0730)
Marginal Effects (at means)

2008 -0.0268 -0.0011 0.0021 -0.0171 0.0179
(0.0187) (0.0162) (0.0174) (0.0139) (0.0373)

2009 0.0029 0.0043 -0.0127 -0.0086 -0.0093
(0.0235) (0.0123) (0.0142) (0.0111) (0.0274)

2013 0.0091 -0.0282** -0.0241** 0.0589*** -0.0512**
(0.0113) (0.0133) (0.0089) (0.0117) (0.0246)

Mean dep. var. in 2011 0.7232 0.1095 0.1291 0.0318 0.3605
Observations 29,391 21,561 21,561 21,561 21,561
Pseudo R-squared 0.0534 0.1768 0.1035 0.1613 0.1054
Correctly predicted 0.9816 0.8605 0.8663 0.9258 0.6909
Individual controls Yes Yes Yes Yes Yes
State × time controls Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

Notes: The omitted category corresponds to 2011, the year the federal law was passed. Treatment is defined
as a dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is less
than or equal to 3 before 2011. The sample is restricted to current smokers who have reported drinking
alcohol in the last month. Individual controls include age, gender, educational attainment, employment
status and income category of the household. State × time controls include total private employment and
total population. Standard errors in parentheses are clustered at the state-level.
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Table A.39: Demographic Characteristics of Smokers by Alcohol Beverages

Abusive consumption Binge drinking

Beer Wine Spirits

Female 0.14 0.13 0.30 0.19
(0.01) (0.01) (0.04) (0.01)

Young (<25 years old) 0.45 0.29 0.61 0.35
(0.02) (0.02) (0.04) (0.01)

Less than high school 0.53 0.61 0.44 0.53
(0.02) (0.02) (0.04) (0.01)

Single 0.54 0.36 0.74 0.48
(0.02) (0.02) (0.03) (0.01)

High income hh 0.06 0.03 0.09 0.07
(0.01) (0.01) (0.02) (0.01)

Population share 0.12 0.13 0.03 0.38

Notes:This table presents demographic characteristics of smokers who consumed alcohol in the last month.
Abusive consumption thresholds are specific to the alcohol beverage, see the main text for details. Binge
drinking is defined as consuming 5 or more drinks during a single occasion in the last 30 days, either during
the weekend or during a week day.
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Table A.40: Health Outcomes

Diagnosis COPD Lung cancer
(1) (2)

2008 -0.00085 0.00317
(0.01393) (0.00658)

2009 -0.00492 -0.00031
(0.01240) (0.00518)

2010 -0.01130 0.00309
(0.01043) (0.00641)

2012 -0.01670 -0.01140
(0.01955) (0.01019)

2013 -0.031** -0.0166
(0.01810) (0.01387)

2014 -0.0361* -0.0255
(0.02235) (0.01704)

Mean dep. var. 0.1061 0.0644
Observations 1,512 1,512
R-squared 0.447 0.539
Time varying controls Yes Yes
State FE Yes Yes
Linear trend Yes Yes

Notes: This table presents estimated effects on health outcomes. The omitted category corresponds to 2011,
the year the national law was passed. Standard errors are block-bootstrapped at the state-level with 200
replications. *** p<0.01, ** p<0.05, * p<0.10
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Table A.41: Mechanisms

Policy National regulation (δ) Place-based bans (δbans) Graphic Warnings (δtgw)
Probability of Never smokers Current smokers Never smokers Current smokers Never smokers Current smokers

(1) (2) (3) (4) (5) (6)

2008 -0.0054 -0.0056 -0.00162 -0.0135 -0.00461 0.0012
(0.0147) (0.0104) (0.0149) (0.0115) (0.0103) (0.0083)

2009 -0.0155 -0.0076 0.00879 -0.02318* -0.01988* 0.0040
(0.0162) (0.0087) (0.0168) (0.0087) (0.0164) (0.0092)

2013 0.0434** -0.0617*** 0.00546 -0.04635*** 0.04067* -0.038525***
(0.0175) (0.0103) (0.0020) (0.0080) (0.0207) (0.0102)

Observations 153,093 153,093 153,093 153,093 153,093 153,093
Individual controls Yes Yes Yes Yes Yes Yes
State x time controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes

Notes: This table presents point estimates of the effects of the federal law, the effects of place-based bans,
and the incorporation of graphic tobacco warnings following the decomposition proposed in equation (3.4).
The first column reproduces results presented in Figure 3.2. Standard errors are block-bootstrapped at the
state level with 200 replications. *** p<0.01, ** p<0.05, * p<0.10.
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3.3 Construction of Legislation Index

Argentina has 23 states and one federal district.8 Each state has the autonomy to dictate

laws in their territory as long as these laws are not contrary to the federal laws. Broadly

speaking, taxes on tobacco-related products are implemented at the national level but non-

price policies have been implemented at the regional level before the 26,687 law was passed.

I coded a total of 47 regional laws and two national laws. The three main categories

that composed the index are tobacco advertising, sales, and consumption. Each category is

further divided into sub-categories, to allow for a better understanding of the regulation and

to be able to assess the importance of each particular aspect of the law. The subcategories

were defined following González-Rozada (2006) report on the status of tobacco legislation in

Argentina.

The advertising category includes the sub-categories: publicity, advertising in radio, in

television, to a certain audience, regulation on the content of advertising, events sponsor-

ing, brand stretching, inclusion and size of tobacco graphic warnings, and inclusion of con-

tact information about anti-smoking public services. Sales category—defined as bans on

sales—includes the next sub-categories: sales to under 18 years old individuals, elementary

school, high school, education institutions in general, hospitals or health institutions, govern-

ment buildings, public transportation means, and sales by the unit. Finally, the consumption

category includes the sub-categories: government buildings, workplaces, health institutions,

elementary schools, high schools, universities, public transportation means, restaurants, bars,

entertainment centers.

To construct the legislation index I summarize the previous categories with a dummy

variable. The advertising category is summarized by a dummy that takes the value of 1 if

the state has passed some regulation regarding advertising. The sales category is restricted

8I refer to this administrative unit as another state since the distinction between state and federal district
is not relevant for this paper.
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to bans in sales to underage individuals. Consumption sub-categories are grouped regarding

similarities of the environments: public means of transportation, educational institutions,

health institutions, and restaurants, bars, and other entertainment places together. Thus,

the maximum value the index can take before the implementation of the national law is 6.

I define strict states as those with an index strictly greater than 3.

3.4 Robustness Checks

Alternative Definition of Comparison and Treated States

My identification strategy relies on state-level differences in the strength of regulations on

tobacco products before the national law was passed. I define the treatment as a dichotomous

variable, Treats, that equals 1 if the legislation index for state s is less than or equal to 3

before 2011. In this section, I present the main results of my analysis using an alternative

definition. I define the treatment as a dichotomous variable that equals 1 if the legislation

index for state s is strictly less than 3 before 2011.

Table A.42 presents balancing test results. As in the main analysis, estimated differences

indicate that individuals are statistically indistinguishable in terms of gender, age, marital

status, employment status, and educational attainment. I find evidence that on average

individuals in comparison states are poorer than individuals in treated states.

I reproduce results for the extensive margin in Table A.43. The estimates of the coef-

ficients for 2008 and 2009 are not statistically distinguishable from zero, meaning that the

comparison and treated states were on similar trends regarding cigarette consumption be-

fore the national law was passed. I find that results on the probability of being a never

smoker and the probability of being a current smoker are smaller in absolute value and still

significantly different from zero under the more strict definition of treatment.

I present results for the intensive margin in Table A.44. The estimated coefficients are

268



the percentage change in the probability of observing average daily consumption in bin b.

I find evidence that the distribution of daily cigarettes smoked shifts to the right, i.e. it is

more likely that smokers consume more than 15 cigarettes per day and less likely that they

consume fewer than 15 cigarettes per day. The proportion of smokers who consume between

zero and five cigarettes per day decreases by 23 percentage points. This estimate is slightly

greater than the one found with the original treatment definition.
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Table A.42: Pre Policy Balance Individual Characteristics

Control Treatment Difference
Average age 37.66 37.71 -0.05

(13.47) (13.31) (0.42)
Male 0.49 0.49 0.01

(0.50) (0.50) (0.02)
Young (< 25 years old) 0.24 0.23 0.01

(0.43) (0.42) (0.01)
Married or cohabitant 0.57 0.59 -0.01

(0.49) (0.49) (0.02)
Employed 0.70 0.70 0.00

(0.46) (0.46) (0.02)
Educational level

Elementary school drop out 0.08 0.08 0.01
(0.27) (0.26) (0.01)

Elementary school 0.20 0.19 0.01
(0.40) (0.39) (0.01)

High school drop out 0.19 0.20 -0.01
(0.39) (0.40) (0.01)

High school 0.23 0.24 -0.01
(0.42) (0.43) (0.02)

College drop out 0.14 0.13 0.00
(0.34) (0.34) (0.01)

College 0.14 0.14 0
(0.35) (0.34) (0.01)

Income category
First quintile 0.15 0.13 0.02***

(0.34) (0.32) (0.01)
Second quintile 0.35 0.23 0.12***

(0.47) (0.41) (0.01)
Third quintile 0.20 0.23 -0.03***

(0.40) (0.42) (0.01)
Forth quintile 0.17 0.27 -0.09***

(0.38) (0.43) (0.01)
Fifth quintile 0.13 0.14 -0.01

(0.32) (0.32) (0.01)
Observations 27,348 33,101 60,449
Number of states 15 9 24

Notes: This table presents the mean and standard deviation of individual characteristics for comparison and
treated states in columns 1 and 2. Column 3 presents estimated coefficients and standard errors from an
OLS regression of the mean difference. Estimates use pooled data from national surveys on tobacco use for
2008 and 2009.
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Table A.43: Effects on Extensive Margin Outcomes

Probability of Never smokers Current smokers
(1) (2)

2008 -0.0205 -0.0055
(0.0149) (0.0120)

2009 -0.0238 -0.0138
(0.0165) (0.0099)

2013 0.0402** -0.0594***
(0.0187) (0.0100)

Mean dep. var. in 2011 0.4608 0.2825
Observations 153,093 153,093
R-squared 0.0328 0.0259
Correctly predicted 0.5536 0.6881
Individual controls Yes Yes
State × time controls Yes Yes
State FE Yes Yes
Time FE Yes Yes

Notes: The omitted category corresponds to 2011, the year the federal law was passed. Treatment as a
dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is strictly less
than 3 before 2011. After 2011, all states are treated thus Treats equals one for all states s after 2011.
Individual controls include age, gender, educational attainment, employment status and income category
of the household. State × time controls include total private employment and total population. Standard
errors are block-bootstrapped at the state-level with 200 replications.
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Table A.44: Effects on Intensive Margin Outcomes

Cigarettes smoked (0,5] (5, 10] (10, 15] (15, 20] (20, 30] (30 , 40] (40 , 50]
(1) (2) (3) (4) (5) (6) (7)

2008 0.0017 0.0237 -0.0033 0.0084 0.0051 -0.0100 0.0010
(0.0317) (0.0185) (0.0104) (0.0123) (0.0067) (0.0062) (0.0011)

2009 -0.0839** 0.0394* 0.0020 -0.0182 -0.0111*** -0.0097* 0.0008
(0.0370) (0.0201) (0.0056) (0.0150) (0.0035) (0.0054) (0.0014)

2013 -0.2335*** -0.0224 -0.0147** 0.0110 0.0073 -0.0073** -0.0003
(0.0233) (0.0159) (0.0069) (0.0144) (0.0045) (0.0034) (0.0007)

Mean dep. var. in 2011 0.3397 0.2628 0.0937 0.2080 0.0374 0.0265 0.0024

Observations 45,585 45,585 45,585 45,585 45,585 45,585 45,585
R-squared 0.0797 0.0114 0.0069 0.0257 0.0108 0.0170 0.0014
Correctly predicted 0.8013 0.7775 0.7333 0.7634 0.7211 0.7182 0.7123
Individual controls Yes Yes Yes Yes Yes Yes Yes
State × time controls Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes

Notes:The omitted category corresponds to 2011, the year the federal law was passed. Treatment is a
dichotomous variable, Treats, that equals one if the legislation index for state s in moment t is strictly
less than 3 before 2011. After 2011, all states are treated thus Treats equals one for all states s after 2011
Individual controls include age, gender, educational attainment, employment status and income category
of the household. State × time controls include total private employment and total population. Standard
errors are block-bootstrapped at the state-level with 200 replications.
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Removing One State at a Time

Are the effects of the policy driven by one particular state? I address this question by

performing a simple exercise: I estimate the effect on extensive margin outcomes in a sub-

sample of states where I exclude one state at a time. I present the results of this exercise

in Figure A.45, the category "All" replicates the effects discussed in section ??. This figure

presents estimates of the marginal effect and confidence intervals of the 2011 national law

on the probability of never smokers (panel a) and current smokers (panel b). I find evidence

that point estimates are robust to the exclusion of one state from the sample.

Figure A.45: Extensive Margin Outcomes

−.01

0

.01

.02

.03

.04

.05

.06

.07

.08

.09

.1

E
ff

ec
t 

an
d

 9
5%

 C
I

B
A

 C
it

y

B
A

 s
ta

te

C
at

am
ar

ca

C
o

rd
o

b
a

C
o

rr
ie

n
te

s

C
h

ac
o

C
h

u
b

u
t

E
n

tr
e 

R
io

s

F
o

rm
o

sa

Ju
ju

y

L
a 

P
am

p
a

L
a 

R
io

ja

M
en

d
o

za

M
is

io
n

es

N
eu

q
u

en

R
io

 N
eg

ro

S
al

ta

S
an

 J
u

an

S
an

 L
u

is

S
an

ta
 C

ru
z

S
an

ta
 F

e

S
g

o
. d

el
 E

st
er

o

T
u

cu
m

an

T
ie

rr
a 

d
el

 F
u

eg
o

A
ll

 

(a) Never Smokers

−.1

−.09

−.08

−.07

−.06

−.05

−.04

−.03

−.02

−.01

0

.01

E
ff

ec
t 

an
d

 9
5%

 C
I

B
A

 C
it

y

B
A

 s
ta

te

C
at

am
ar

ca

C
o

rd
o

b
a

C
o

rr
ie

n
te

s

C
h

ac
o

C
h

u
b

u
t

E
n

tr
e 

R
io

s

F
o

rm
o

sa

Ju
ju

y

L
a 

P
am

p
a

L
a 

R
io

ja

M
en

d
o

za

M
is

io
n

es

N
eu

q
u

en

R
io

 N
eg

ro

S
al

ta

S
an

 J
u

an

S
an

 L
u

is

S
an

ta
 C

ru
z

S
an

ta
 F

e

S
g

o
. d

el
 E

st
er

o

T
u

cu
m

an

T
ie

rr
a 

d
el

 F
u

eg
o

A
ll

 

(b) Current Smokers

Notes:This figure presents estimates of the marginal effect and confidence intervals of the 2011 national law
on the probability never smokers (panel a) and never smokers (panel b). Treatment is a dichotomous variable,
Treats, that equals one if the legislation index for state s in moment t is less than or equal to 3 before 2011.
All regressions include individual-level controls: age, gender, educational attainment, employment status,
and income category of the household. The category "All" refers to the sample that includes all the states,
see table ??. Standard errors are clustered at the state-level.
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Prices and Industry

Did the 2011 policy change prices of cigarettes? I use data on prices to address this question.

The Ministry of Agriculture follows the sales of cigarettes at the national level and provides

information on sales by the price paid by the consumer. I focus on three price ranges: the

minimum price paid in the cigarette market, the average price paid and the highest price

paid. Data are at the price-range month level so I can closely follow the evolution around the

dates of the change in the regulation. Figure A.46 presents time series of real and nominal

prices. I use the price index constructed by Cavallo (2013) to construct the real price time

series.9 There is no evidence of sharp changes in the price of the cigarette package. I pay

closer attention to the minimum price because smokers could easily substitute among brands

to avoid price changes in the more expensive brands.

Figure A.46: Cigarette Prices - Time
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Notes: This figure presents time series of real and nominal prices paid by consumers split into three price
ranges: the minimum price, the average price, and the highest price. I use the price index constructed by
Cavallo, 2013) to deflate prices. Data is at the price-monthly level and comes from price series constructed
by the Ministry of Agriculture.

9During the period under study, the Argentinean economy experienced high inflation. The lack of
reliability on official estimates of the Consumer Price Index challenges the use of the official Consumer Price
Index series, for a discussion see, Cavallo (2013).
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3.5 Derivations: Bans or Tobacco Graphic Warnings?

The goal of this section is to discuss a framework that allows the identification of the effect of

each policy branch: tobacco graphic warnings and place-based bans. The exogenous variation

induced by the 2011’s anti-tobacco law alone does not allow me to separately identify the

effect of each policy branch. Thus, to disentangle the effects, I exploit an additional source

of variation and put some structure on how each policy interacts.

Let y0i be the smoking status of individual i in state s in absence of the federal policy and

let y1i be the smoking status of individual i in state s if the federal policy is implemented.

I assume that the effect of the policy is constant across states (s) and time (t), so the

conditional mean function E [y1i|s, t] can be written as: 10

E [y1i|s, t] = E [y0i|s, t] + δ , (3..1)

where the parameter δ is the effect of the national regulation, i.e., the effects of the bundle

policy. I argue that this effect is a linear combination of the effects of each branch of

the policy: tobacco graphic warnings (δtgw) and place-based bans (δbans). While tobacco

graphic warnings were implemented nationally in 2011, place-based bans were adopted by

some states before 2011. Define S1 as the subset of states that have implemented place-

based bans before the national implementation—bans early adopters—and S2 as the subset

of states that have not implemented such bans until the national law—bans late adopters.

Under the assumption that the effects of each policy branch are additive and allowing for

the presence of spillover effects among the clean-indoor-air policy and the tobacco graphic

10In the rest of the derivation I implicitly condition on a vector of covariates X that includes age,
educational achievement, among other observable characteristics. I omit this conditioning to ease notation.
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warnings, the outcomes if the implementation happens are:

S1 states: E [y1i|s ∈ S1, t] = E [y0i|s ∈ S1, t] + δtgw ,

S2 states: E [y1i|s ∈ S2, t] = E [y0i|s ∈ S2, t] + δbans + δtgw + f(δbans, δtgw) , (3..2)

where f(δTGW , δbans) is the spillover effect of implementing the policies jointly. Thus, from

3..1 it follows that the effect of the bundle policy can be written as:

δ =E [y1i|s, t]− E [y0i|s, t] ,

δ =E [y1i|s ∈ S1, t]P (s ∈ S1) + E [y1i|s ∈ S2, t]P (s ∈ S2)−

E [y0i|s ∈ S1, t]P (s ∈ S1)− E [y0i|s ∈ S2, t]P (s ∈ S2) .

Let P (s ∈ S1) = ω1 and P (s ∈ S2) = ω2 and using the expressions in 3..2:

δ =ω1 (E [y1i|s ∈ S1, t]− E [y0i|s ∈ S1, t]) + ω2 (E [y1i|s ∈ S2, t]− E [y0i|s ∈ S2, t]) ,

δ =δtgw + ω2δ
bans + ω2f(δbans, δtgw) . (3..3)

Where ω2 can be estimated as the proportion of states that have not implemented a

place-based ban before the national regulation, and ω1 can be estimated as the proportion of

states that have implemented a place-based ban before the national regulation. Expression

3..3 shows that under the assumptions of (i) homogeneity of policy effects, and (ii) additive

policy effects; the effect of the policy bundle (δ) is a linear combination of the effects of each

branch of the policy. With this expression at hand, the next step is to ask whether each of

these parameters are identified.

The effect of place-based bans is identified by the comparison of early adopters of place-

based bans with late adopters. But, it can not be disentangled from the spillover effects.
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Put another way, we can identified and estimate the parameter δ̃bans = δbans + f(δbans, δtgw).

The effect of the national policy is identified by the comparison between lenient states and

strict states as discussed before. Thus, I can re-write 3..3 as follows:

δ =δtgw + ω2δ̃
bans . (3..4)

Estimates of ω2, δ and δ̃bans can be used to construct estimates of the effect of tobacco

graphic warnings. The running equation to estimate δ is (3.1), replicated here omitting

individual and state-time varying control variables to ease exposition:

yi =
1∑

τ=−2
δτ [Treats · (Years after treat = τ)] + αs + αt + εi . (3..5)

Next, the proportion of states that have not implemented a place-based ban before the

national regulation is observed in the data: ω2 = P (s ∈ S2) and can be estimated as the

number of states that are late-adopters of clean-indoor-air bans relative to the total number

of states. Finally, the running equation to estimate δbans + f(δbans, δtgw) is:

yi = γ0 + γ1 × 1{Y ear = 2013}+ γ2 × 1{s ∈ S2}+ δ̃bans1{Y ear = 2013 , s ∈ S2}+ ui . (3..6)

This regression can be augmented by leads and lags of relative treatment time in an event-
study framework:

yi =
1∑

τ=−2
δ̃bansτ [Banss · (Years after treat = τ)] + αs + αt + ui , (3..7)

where Bans is a dummy variable that equals 1 if the state s is a late-adopter of place-based

bans.
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